
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Kakurasu is NP-complete

av

Morris Lundberg Allerholm

2025 - No K9

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Kakurasu is NP-complete

Morris Lundberg Allerholm

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Per Alexandersson

2025

Abstract

English
NP-complete puzzle games demonstrate the intriguing complexity that can
arise from the combination of simple rules, and allow for non-mathematicians
to interface with one of the largest unsolved questions in mathematics: P
versus NP. In this thesis, we introduce the concept of NP-completeness in the
context of other, similar types of problems. We then show that the puzzle
game Kakurasu is NP-complete.

Svenska
NP-kompletta pusselspel visar på den fängslande komplexitet som kan uppstå
genom kombinationen av enkla regler, och tillåter på så vis icke-matematiker
att interagera med en av de största olösta frågorna inom matematiken: P
kontra NP. I den här uppsatsen introducerar vi konceptet NP-kompletthet i
kontext av andra, liknande problem. Vi visar sedan att pusselspelet Kakurasu
är NP-komplett.

Contents

1 Introduction and description of Kakurasu 4

1.1 Introduction . 4

1.2 Description of the game Kakurasu . 5

2 Theory and earlier results 8

2.1 NP-completeness . 8

2.2 Method of proof: reduction . 11

2.3 Proof of Kakuro´s NP-completeness 12

2.4 3-dimensional matching . 14

2.5 Subset-sum problem with natural numbers 15

3 Kakurasu is NP-complete 17

3.1 Result . 18

4 Appendix 21

4.1 Minsesweeper is NP-complete . 21

4.2 LaserTank is NP-complete . 22

References 23

2

Acknowledgement

Heartfelt thanks to Per Alexandersson for your guidance. You have made the process
of writing this thesis feel easier than expected. Thanks to your pertinent recommen-
dations the right papers have always appeared at the right time. This thesis, and
proof, would not have been completed without your help.

The large language model ChatGPT has been used for assistance with LATEX, and
the creation of images using the package Tikz.

3

1 Introduction and description of Kakurasu

1.1 Introduction

Puzzle games are widely popular, and for good reason; they let the player experience
the stimulating struggle of figuring out, and later on the satisfying release of tension
when completing the game. For a puzzle game to give this experience it must be
sufficiently hard, but not too hard. Many puzzle games that fit this description, such
as Sudoku, Minesweeper and Kakuro, are recognized as belonging to a certain group
of problems: NP-complete problems (NP is short for nondeterministic polynomial
time) [YS03, Kay00, Tak01].

It seems reasonable then that the mathematical definition of this kind of problem
places them between types of problems traditionally considered easy and types of
problems traditionally considered hard. As a matter of fact it is still unknown if
NP-complete problems fall into the category of easier problems, such as sorting
and simple mathematical calculation, or if NP-complete problems should rather be
considered hard in the same way that chess is. The uncertainty preserves a kind of
mystique around these puzzle games: they seem to be both easy and hard at the
same time.

Take a challenging instance of Sudoku, for example. It is usually not too difficult to
find a few numbers, but at a certain stage multiple possibilities reveal themselves,
and it is then no longer certain which number that should go where. At this crossroad
the player must, in their mind, complete the different possibilities of the puzzle to
eliminate the contradictory dead ends, and thus find the way forward. This is no
easy task, and yet the rules are simple.

In this thesis we give an informal, intuitive description of NP-completeness in the
context of famous puzzle games and problems. We also describe a typical method
of proving NP-completeness: reduction. The method relies on reducing an already
known NP-complete problem to the problem that is to be shown to be NP-complete.
Thus many NP-complete problems are linked to each other. To list the problems
mentioned in this thesis, and show how they are related by proofs via reduction, we
include the following illustration in Figure 1.

4

3-SAT

Kakuro 3D Matching

Subset Sum

Kakurasu

Figure 1: An illustration of the problems mentioned in this thesis and of how they are
related via proofs by reduction. The solid lines represent connections we describe,
while the dotted line represents a connection that is not mentioned in detail [Kar75].

As seen in Figure 1 we make a reduction to the puzzle game Kakurasu, and show
that it is NP-complete. To the best of our knowledge, this is a new result.

We also include two additional short descriptions of reduction proofs in the appendix,
in Section 4. Both are from 3-SAT to puzzle games: Minesweeper and LaserTank.

1.2 Description of the game Kakurasu

Kakurasu is played on a square n × n grid. The grid thus consists of n2 entries, each
indexed according to its row and column. A 7 × 7 example of this can be seen in
Figure 2, with the indexing outlined along the left and top edges.

The player interacts by deciding which tiles in the grid are to be filled in, and which
are to be left blank. If a tile is filled in, it contributes to the sum along its row by
the index of its column, and similarly to the sum along its column by the index of

5

its row. To solve the puzzle is to fill in all the necessary tiles such that the sums
along all rows and columns agree with the indicated numbers, marked r1, ..., r7 and
c1, ..., c7 in Figure 2.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

r1

r2

r3

r4

r5

r6

r7

c1 c2 c3 c4 c5 c6 c7

Figure 2: A 7 × 7 Kakurasu grid with row- and column sums marked with r1, ..., r7
and c1, ..., c7.

To further illustrate how the puzzle is solved, a short example is provided. Figure 3
displays an empty 4 × 4 grid with given row- and column sums.

1 2 3 4

1

2

3

4

8

4

5

5

5 3 4 7

Figure 3: A 4 × 4 Kakurasu grid with given sums for rows and columns.

To solve the puzzle, we note that all row- and column sums can be expressed in
multiple ways, except for the first row, which has 8 as its designated sum. With the

6

numbers 1 to 4 in a sum, 8 is uniquely represented as 1 + 3 + 4 = 8. So we fill in
these squares, as seen in Figure 4a.

1 2 3 4

1

2

3

4

8

4

5

5

5 3 4 7
(a) The first step in the solution.

1 2 3 4

1

2

3

4

8

4

5

5

5 3 4 7
(b) The finished puzzle.

Figure 4: An example of how to solve a simple Kakurasu puzzle in two steps.

With the first row completed, all the column sums become uniquely determined, so
we fill these in as well. This results in the finished puzzle, which can be seen in
Figure 4b. To check the solution, all the sums are verified.

7

2 Theory and earlier results

2.1 NP-completeness

This section gives a short, intuitive introduction to the concept of NP-completeness,
and how the class of NP-complete problems relates to similar classes of problems.
The entirety of this section, and of Section 2.2, is based on Introduction to Algorithms
by Cormen et al. [CLRS22] (specifically Chapter 34). Note that we do not describe
a formal, theoretical foundation of NP-completeness, which is beyond the scope of
this thesis, and not necessary to understand the proof.

When discussing NP-completeness we are only interested in a specific form of prob-
lem, called decision problem. Decision problems are solved by correctly answering
"yes" or "no". Most problems are not of this form originally, but can be transformed
by asking the right questions. When considering Kakurasu in this context, the inter-
esting question is not "Which tiles are to be filled in?" Instead it is "Is this instance
of Kakurasu solvable?"

Another concept necessary to understand NP-completeness is polynomial time. In
this context polynomial time refers to the maximum amount of time it can take
for an algorithm to complete its task, if that time scales proportionally to some
polynomial function of the number of inputs.

The number of inputs required to specify a problem instance is called the size of the
problem. This is the amount of information that differs between instances of the
problem. In the case of Kakurasu the only things that vary are the row and column
restraints, so for a m × m grid the number of inputs, or size, is 2m.

So if we call the number of inputs n, a problem is solvable in polynomial time if
there exists an algorithm whose maximum solution time scales with a polynomial
function of n with degree k, for some constant k. Usually the class of problems
which are solvable in polynomial time is denoted P. In general, these problems are
regarded as being easy to solve computationally.

The class NP, on the other hand, denotes the set of problems whose solutions are
verifiable in polynomial time. This means that any proposed solution can be verified

8

in polynomial time. As a consequence of this definition, P is a subset of NP, which
is illustrated in Figure 5. It is important to note that the solution which is verified
is not a solution to the decision problem, i.e. an answer of the form "yes" or "no",
but a specific solution to the puzzle or problem at hand, for example a proposed
tiling of a Kakurasu puzzle.

P NP

Figure 5: An illustration of the two sets of problems: P contained in NP.

It is still unknown if P is a proper subset of NP, which would mean that there are
problems that are in NP but not in P, or if the two sets are equal. In the latter case
the lightly shaded region in Figure 5 would not exist.

Due to the uncertainty regarding the equality of P and NP, an interesting subset
of NP is the set of NP-complete problems, denoted NPC. This set consists of all
problems in NP which are as hard as any other problem in NP.

Because these problems are at least as hard as any problem in this class (which is also
true when comparing two NP-complete problems; they are at least as hard as each
other), if there were to be a polynomial time solution algorithm for a NP-complete
problem, then there must be a polynomial time solution algorithm for all problems in
NP. Otherwise there would be some problem harder than the NP-complete problem
in NP, contradicting the definition of NP-completeness. Finding such a polynomial
time solution algorithm thus constitutes a proof of P and NP being the same class
of problems.

On the other hand, if one could prove the impossibility of such a polynomial time

9

solution algorithm for a specific NP-complete problem, then it would follow that P
is a proper subset of NP and that the two classes are not equal.

The difference between problems which are in NPC and problems which are not in
NPC is often minute. An example of this is the difference between two types of
problems: 2-SAT and 3-SAT. The general form of the problem is described by Biere
et al. [BHvM09].

A 2-SAT problem considers a logical formula consisting of however many disjunctions
with 2 logical variables. Each variable may or may not be negated. So that each
disjunction is of the form: ([¬]xi∨[¬]xj) (where "[¬]" represents a possible negation).
These disjunctions are combined with conjunctions, creating a larger formula:

([¬]xi ∨ [¬]xj) ∧ ([¬]xk ∨ [¬]xl) ∧ ([¬]xm ∨ [¬]xn) ∧ ...

It is important to note that one logical variable may occur multiple times.

The general problem of deciding if there is an assignment of truth values to the logical
variables such that the whole formula is true is called 2-SAT, and is in P. That is,
the decision problem of whether or not such a formula is satisfiable is solvable in
polynomial time.

The following formula is an example of a 2-SAT problem:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x4 ∨ x5) ∧ (x1 ∨ x6).

On the other hand 3-SAT is almost the exact same sort problem, but with disjunc-
tions that contain 3 logical variables. Its formulas look like this:

([¬]xi ∨ [¬]xj ∨ [¬]xk) ∧ ([¬]xl ∨ [¬]xm ∨ [¬]xn) ∧ ...

An example would thus be

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x5 ∨ x6 ∨ ¬x7).

10

3-SAT is an NP-complete problem, as shown by A. Cook [Coo23], and thus at least
as hard as any other problem in NP. This illustrates how subtle the difference can
be between problems in the different classes.

2.2 Method of proof: reduction

The fact that 3-SAT is NP-complete is key for many of the proofs that demonstrate
that other specific problems are NP-complete. This is because of a method called
"reduction" which is used to show that Kakurasu is NP-complete in this project.

A reduction involves making a sort of translation from one problem to another. If
we are able, for any instance of a problem which is known to be NP-complete, call
it ANP C , to translate it to an instance of another problem, B, such that the answer
to the translation is "yes" if and only if the answer to the original instance of ANP C

is "yes", then we have demonstrated that the complexity of ANP C is in some way
inherent in B.

There are restrictions imposed on this translation: it must be performable in poly-
nomial time. Would the translation require greater than polynomial time there
would be no way of guaranteeing that it actually transports the property of NP-
completeness. So by virtue of this polynomial time restriction, the method ensures
that if there is no polynomial time solution for ANP C , then we can guarantee that
there is no polynomial time solution algorithm for B. Conversely, we can guarantee
that there is a polynomial time solution algorithm for ANP C if there is a polynomial
time solution algorithm for B.

This step demonstrates that the other problem, which we called B, is also NP-hard:
as hard as any other problem in NP. What remains then is to show that B is a
member of NP, by checking that any proposed solution for B can be verified in
polynomial time.

In summary, such proofs consist of two steps: a polynomial time reduction, and
showing that the problem is in NP.

The reason why 3-SAT is especially interesting is because it serves as the problem
we denoted by ANP C in many such proofs. The proof in this project relies instead

11

on a problem called subset-sum.

As an illustration of how reductions may look, we provide a description of a proof
that demonstrates the NP-completeness of a puzzle game similar to Kakurasu, namely
Kakuro.

2.3 Proof of Kakuro´s NP-completeness

Kakurasu is in many ways similar to the puzzle game Kakuro (or Cross Sum).
They both involve summing numbers along rows and columns, the difference lies
in Kakurasu being on an n × n grid, with the orders of the numbers being predeter-
mined, and the player choosing which of the numbers that need to be present for the
sums to be correct. Kakuro, on the other hand, exists on a irregular grid, created
by interconnecting rows and columns of different sizes haphazardly, and allows the
placing of numbers from 1 to 9 on whichever square, as long as that number does
not already exist on the same row or column. To solve the puzzle, the numbers on
each row and column must add up to the given number at the end of the row or
column. All boxes must be filled in Kakuro. In Kakurasu, on the other hand, the
game is about determining which boxes are to be filled.

3

7

4 6

Figure 6: A simple instance of the puzzle Kakuro.

To illustrate how the game Kakuro works we display a simple example of it in Figure
6. The goal is, as mentioned, to fill in all the squares with numbers from 1 to 9 such
that the sums along both rows and columns add up to the predetermined numbers,
and such that all digits along each row and column are unique.

The first step is to note that 4 can only be represented by the sum 1 + 3 = 4
(because 2 would require another 2, breaking the duplicate rule), and that the 3
must be placed on the above of the two available squares in the 4-column, since

12

placing it on the bottom row would make it impossible to fill the other tile on that
row. Once the first column is completed we can fill in the other based on the row
sums, and check that the solution is correct by verifying all sums. The solved puzzle
can be seen in Figure 7

3

7

4 6

3 4

1 2

Figure 7: The puzzle from Figure 6, solved.

Kakuro was first shown to be NP-complete by Takahiro [Tak01]. This original proof
made a reduction in two steps, from 3-SAT to an intermediate problem, and then
from this intermediate problem to Kakuro.

A later proof of Kakuro´s NP-completeness, by Ruepp et al. [RH10], accomplishes
this reduction in one step, from planar 3-SAT to Kakuro. Planar 3-SAT is similar to
3-SAT; it describes 3-SAT as a sort of graph. Because of this later proof´s relative
simplicity we choose to describe it instead of the original proof.

The proof by Ruepp et al. relies on so called gadgets to describe planar 3-SAT in
Kakuro. Creating gadgets is a common strategy when making a reduction from a NP-
complete logical problem to the problem which NP-completeness is to be proved.
The gadgets, which are constructed in the latter problem (Kakuro in this case)
function like the operators and logical variables in the logical problem. By having a
gadget for each operator and variable it is possible to formulate any instance of the
logical problem in the latter problem, that is to be shown to be NP-complete. This
constitutes a reduction.

Most of the gadgets were created manually, but for difficult gadgets the authors had
the creative idea of using a Kakuro solver. The solver was created by transforming
instances of Kakuro to instances of SAT-problems, then solved by a program that
solves SAT-problems. The computer program that is used is Minisat [ES03]. This
Kakuro solver is in turn used to test which constructions have the properties that
they are looking for.

13

The main idea of the gadgets in this proof is that they transport the values 1 and
2 (and in rare cases other values) and that they can have two results, true or false,
depending on the input(s) of 1 or 2. One might compare this to electronic circuitry.

The gadgets created can thus be combined to formulate any planar 3-SAT problem
directly in the Kakuro environment, such that answering the question if there is a
solution amounts to solving a planar 3-SAT-problem.

For the interested reader we have included two other short descriptions of proofs of
NP-completeness, that also rely on gadgets. They are included in the appendix, in
Section 4.

2.4 3-dimensional matching

As a prerequisite for the discussion regarding subset-sum being NP-complete we
give a description of a known NP-complete problem called 3-dimensional matching,
described by Garey et al. [GJ02]. Given three sets, X, Y, Z, with |X| = |Y | = |Z| =
n, and a subset T ⊆ X × Y × Z with |T | = m. For example, if x ∈ X, y ∈ Y and
z ∈ Z then (x, y, z) ∈ X × Y × Z, and T consists of such ordered triples, but not
necessarily every such ordered triple.

The question regards a type of subsets of T , which are called 3-dimensional match-
ings. We denote such a subset with M . The requirements for M ⊆ T to be a
3-dimensional matching are that for every pair of ordered triples, (x1, y1, z1) and
(x2, y2, z2) in M , we have that the one element from each respective set do not equal
the other element from the same set: x1 ̸= x2, y1 ̸= y2 and z1 ̸= z2.

Nowadays the decision problem usually asks if it is possible to find M such that
|M | ≥ r, for a given integer r. We are going to use the original version (in the context
of NP-completeness), as formulated by Karp [Kar75], which requires |M | ≥ n, where
n = |X| = |Y | = |Z|. The rest of the criterion for the elements in M enforce |M | ≤ n,
i.e. we require |M | = n. This version of the problem is called perfect 3-dimensional
matching [Wik24], and requires the 3-dimensional matching to cover every element
in X, Y and Z.

14

2.5 Subset-sum problem with natural numbers

Subset-sum is one of the first problems to be shown to be NP-complete. This was
done by Karp [Kar75], approximately a year after the concept of NP-completeness
was first introduced by Cook [Coo23]. Originally the problem was called the knap-
sack problem. Today the knapsack problem generally refers to a broader type of
problem, which the subset-sum problem is a specific version of.

The original formulation of the subset-sum problem describes a set, I = {z1, z2, ..., zn},
with n members, z1, z2, ..., zn ∈ Z, and a target value, S. The question that creates
the associated decision problem is: "Is there a subset I ′ ⊆ I such that ∑

i∈I′ i = S?"
or more informally "Is there a subset of the set of integers, I, such that the sum of
all the members in that subset is equal to S?"

Because of the fact that Kakurasu only contains natural numbers we only focus on
a different version of the subset-sum problem, in which the set of numbers contains
only natural numbers. The version of subset-sum with only natural numbers is
also NP-complete, which is shown in Algorithm Design by Kleinberg and Tardos
[KT06]. We give a brief summary of their proof, which is a direct reduction from
the NP-complete problem of 3-dimensional matching to subset-sum.

Consider a set of natural numbers {w1, ..., wn} and a value W which a subset is
supposed to sum to. There is a solution to the problem if there exists such a subset:
{wi1 , ..., wik

}. The decision problem is thus created by asking the question: "Is there
a subset of {w1, ..., wn} such that the sum of its members is equal to W?"

Theorem: Subset-sum with natural numbers is NP-complete.

Proof : (A summary of the proof by Kleinberg and Tardos [KT06])
To see that this problem is in NP we note that the verification only requires the
numbers in the suggested subset to be summed, which can be done in polynomial
time.

For the reduction we take an instance of 3-dimensional matching, as described in
Section 2.4, with X, Y, Z all with cardinality n, a set T which is a subset of X×Y ×Z,
with cardinality m.

15

The first step is the construction of a special type of number that can represent any
ordered triple t = (xi, yj, zk) ∈ X × Y × Z. The number, denoted by wt, consists
of 3n digits, the first n digits in it each correspond to one unique element in X, the
middle digits, in positions numbering n + 1 to 2n, each correspond to one element
in Y , and the final digits, with positions numbering 2n + 1 to 3n, each correspond
to one element in Z. Then we can represent t by such a number, wt, with 0 in each
position except for a 1 in the positions corresponding to the elements in the ordered
triple.

So for any ordered triple (xi, yj, zk) we can represent it as wt = di+dn+j +d2n+k, with
the base d = m + 1. This is to make the operations addition and union correspond
to each other, so that if we sum multiple wt there is no risk of too many occurrences
of a certain element causing carry over to the next digit.

Now, given an instance of the perfect 3-dimensional matching problem, we can create
a corresponding subset-sum problem.

The first step is to create a corresponding wt, as was detailed above, for every
t = (xi, yj, zk) ∈ T . We also define a new number W = ∑3n−1

i=0 (m + 1)i, which,
because of us working in the base m + 1, is the number with 3n digits, all of which
are 1. The corresponding subset-sum problem is then to find a subset of {wt1 , ..., wtm}
such that the sum of that subset is equal to W .

To see that this problem has a solution if and only if the corresponding perfect 3-
dimensional matching problem has a solution, note that by summing different wti

the sum can only have a 1 in a certain position if that 1 occurs uniquely, in exactly
one wti

, due to the base being m + 1 and |T | = m. So for some subset to sum to
W is equivalent to there being a solution for the perfect 3-dimensional matching
problem. Thus we have that the subset-sum problem with natural numbers is NP-
complete.

With this completed we are ready for the result of this thesis.

16

3 Kakurasu is NP-complete

In this section we describe the main result of this thesis.

Before we describe the theorem and proof of Kakurasu being NP-complete, we define
a useful notational trick for Kakurasu. The rules of Kakurasu allow for the row and
column limits to be set to 0. Consider for example the following Kakurasu puzzle:

Since a row or column limit of 0 directly inhibits the filling of a tile in that row
or column we might as well consider the puzzle without these rows and columns.
So the Kakurasu puzzle to the left in Figure 8 can, without loss of information, be
represented as the right puzzle in Figure 8.

1

1

2

2

3

3

4

4

5

5

6

0

3

4

0

5 0 3 0 1

1 3 5

1

3

4

6

3

4

5 3 1

Figure 8: Left: a 5 × 5 Kakurasu puzzle with some row- and column sums set to 0.
Right: The reduced puzzle.

The setting of row- or column sums to 0 may be useful, because it prohibits the use
of a specific number in all columns or all rows respectively. In turn this makes it
possible to create a Kakurasu puzzle that only has a specific set of positive integers
as the tiles’ values, as opposed to the standard tile values of 1, 2, 3, ...

So this notational trick is useful because it allows for more concise representation
of such restricted versions of Kakurasu. Note that this also allows for rectangular
grids, since a different number of row- and column sums may be set to 0.

3.1 Result

Theorem: Kakurasu is NP-complete.

Proof :
The first step is to confirm that Kakurasu is in NP. For this to be the case the
verification of a proposed solution for a Kakurasu puzzle must be possible to perform
in polynomial time. All that is required for the verification is to sum along all rows
and columns. This can be achieved in polynomial time, and thus Kakurasu is in NP.

Regarding the size of Kakurasu, for a k × k grid the Kakurasu puzzle is of size
O(k). We note that it is comparable to the size of the subset-sum problem, which
is |{n1, ..., nk}| + 1 = k + 1 for the set {n1, ..., nk} of positive integers.

The reduction is made from the subset-sum problem with positive integers to Kakurasu.
The subset-sum problem with positive integers consists of deciding if there is a sub-
set of a set of positive integers, S, such that the sum of that subset equals a certain
value, T .

So for any S = {n1, ..., nk} and T , where n1, ..., nk, T ∈ Z+, we need a polynomial-
time algorithm that translates the subset-sum problem to a Kakurasu problem, with
the property that it has a solution if and only if the subset-sum problem has one.

n1 n2 . . . nk

1

2

3

∑k
i=1 ni − T

∑k
i=1 ni − T

T

3 3 . . . 3

Figure 9: A representation of the general Kakurasu translation of a subset-sum
problem

Consider the 3×k Kakurasu puzzle, as seen in Figure 9. It is reduced from a nk ×nk

grid with all row sum limits, except for the first three ones, set to 0, and all column
limits for columns with indices i /∈ S set to 0. All remaining column sums are set to
three. The row sums for the first and second row are the same, namely ∑k

i=1 ni − T ,

18

while the row sum of the third row is T .

This setup is a reduction of subset-sum to Kakurasu, and the reduction is easily
done in polynomial time.

To understand why this reduction works, note that for each column either the first
two tiles are filled in, or the third tile is filled in. So to solve the puzzle is to decide
if each ni, for i = 1, ..., k, should contribute to T or ∑k

i=1 ni − T , which is the same
as deciding if it should be included in the subset, which is supposed to sum to T , or
if it is to be excluded, and thus included in the other, implied subset that sums to
the remainder of ∑k

i=1 ni − T .

It follows directly that this puzzle is solvable if and only if there is a subset of S

whose integers sum to T , if there is no such subset then it is impossible to fill out
the third row such that it satisfies the sum requirement, and by extension it is then
also impossible to satisfy the requirements on the first and second row.

To further illustrate the mechanics of the proof we translate two similar subset-
sum problems, one which is solvable, and another which is unsolvable. Take the
set {3, 5, 10, 12, 13, 17} and the target sum 21. This subset-sum problem is solvable
because 3 + 5 + 13 = 21.

We use the translation method from the proof, which only requires the calculation
3 + 5 + 10 + 12 + 13 + 17 − 21 = 39, as the sum limit for row 1 and 2. This allows
us to reduce a 17 × 17 grid into a 3 × 6 grid with the appropriate limits, see the left
grid in Figure 10. To the right, in Figure 10, we include the solution to the puzzle.

3 5 10 12 13 17

1

2

3

39

39

21

3 3 3 3 3 3

3 5 10 12 13 17

1

2

3

39

39

21

3 3 3 3 3 3

Figure 10: Left: the subset-sum problem translated to a Kakurasu puzzle. Right:
its solution.

19

Consider the similar subset-sum problem with the set {3, 5, 10, 12, 14, 17} and the
target sum of 21. This problem has no solution. Again we use the translation
method, calculating 3 + 5 + 10 + 12 + 14 + 17 − 21 = 40, and rendering the puzzle,
as seen in Figure 11.

3 5 10 12 14 17

1

2

3

40

40

21

3 3 3 3 3 3

Figure 11: Another subset-sum problem translated to a Kakurasu puzzle.

This puzzle contains the aforementioned subset-sum problem in the third row. As
anyone who attempts to solve this puzzle will therefore come to realize, it is as
impossible as the subset-sum problem that generated it.

20

4 Appendix

4.1 Minsesweeper is NP-complete

The classic computer game Minesweeper is shown to be NP-complete by Kaye
[Kay00]. His proof is a reduction from 3-SAT, which he represents with logical
circuitry to closer imitate the planar grid of Minesweeper.

Before the proof he includes an instructive discussion on the topic of NP-completeness.
We recommend this to the reader who has further interest in this topic; it is readable
without much prior knowledge and yet it manages to divulge ideas related to the
theoretical framework of the algorithms and computers that are presupposed in this
thesis.

Minesweeper is played by revealing squares on a grid. If the player reveals a square
that hides a mine it looses. All revealed, non-mine squares display the number of
mines in the 8 adjacent squares. This is the information that is used to unravel
the puzzle square by square without revealing a mine. As an assisting function the
player can mark unrevealed squares which are sure to contain mines.

The decision problem he describes supposes a given a state of minesweeper, which is
partially completed – meaning that some cells have already been revealed and that
some mines may be marked. The yes/no-question arises by asking whether some
structure of mines in the unrevealed cells can satisfy the given situation, i.e. the
numbering of adjacent mines in the revealed squares. If it is the case that such a
structure can exist the answer is yes. On the other hand, if there is no possible
placing of mines in the unrevealed cells that could satisfy the given revealed cells
and their information, then the answer is no.

Like the proof of Kakuro being NP-complete, in Section 2.3, this proof relies on the
construction of gadgets. An interesting aspect of the proof is that it only creates
gadgets for conjunction and negation, and then use the logical properties of the two
operators to create the other gadgets.

We have that P ∨ Q ≡ ¬(¬P ∧ ¬Q). So that it suffices to have those two gadgets
to create the third.

21

The combination of the gadgets poses a problem for Kaye. Since he represents the
logic in circuitry and circuitry has the ability to cross itself, while the gadgets cannot
lay on top of each other, he comes up with a solution for combining gadgets in a
way that is equivalent to circuits crossing each other. With this completed he has
demonstrated that it is possible to create gadgets with all the necessary properties
to recreate any instance of 3-SAT in minesweeper. The proof is thus complete.

4.2 LaserTank is NP-complete

Alexandersson, who is the supervisor of this thesis, and a collaborator [AR19], have
written another proof of NP-completeness. This regards the puzzle game LaserTank,
which involves moving a tank on a grid and shooting in a straight line, which may
be manipulated by obstacles, to hit a a target.

An interesting aspect of this proof is that it originally considers a restricted version
of the game, and then shows that the proof can be extended to the non-restricted
version. Other than that the proof works in a similar way to the Kakuro proof we
have discussed in Section 2.3, by constructing gadgets that represent literals and
logic connections in the environment. This is done in such a way that the 3-SAT
problem can be formulated in LaserTank, and thus shows that LaserTank is NP-
complete.

22

References

[AR19] Per Alexandersson and Petter Restadh. Lasertank is np-complete. In
International Conference on Mathematical Aspects of Computer and In-
formation Sciences, pages 333–338. Springer, 2019.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfi-
ability, volume 185. IOS press, 2009.

[CLRS22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2022.

[Coo23] Stephen A Cook. The complexity of theorem-proving procedures. In
Logic, automata, and computational complexity: The works of Stephen
A. Cook, pages 143–152. 2023.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Inter-
national conference on theory and applications of satisfiability testing,
pages 502–518. Springer, 2003.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability,
volume 29. wh freeman New York, 2002.

[Kar75] Richard M Karp. On the computational complexity of combinatorial
problems. Networks, 5(1):45–68, 1975.

[Kay00] Richard Kaye. Minesweeper is np-complete. The Mathematical Intelli-
gencer, 22(2):9–15, 2000.

[KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education
India, 2006.

[RH10] Oliver Ruepp and Markus Holzer. The computational complexity of
the kakuro puzzle, revisited. In International Conference on Fun with
Algorithms, pages 319–330. Springer, 2010.

[Tak01] S Takahiro. The complexity of puzzles, cross sum and their another
solution problems (asp). Ph. D. Dissertation, 2001.

[Wik24] Wikipedia contributors. 3-dimensional matching — Wikipedia,
the free encyclopedia, 2024. [Online; accessed 6-May-2025]. URL:
https://en.wikipedia.org/w/index.php?title=3-dimensional_
matching&oldid=1261233801.

[YS03] Takayuki Yato and Takahiro Seta. Complexity and completeness of find-
ing another solution and its application to puzzles. IEICE transactions
on fundamentals of electronics, communications and computer sciences,
86(5):1052–1060, 2003.

24

https://en.wikipedia.org/w/index.php?title=3-dimensional_matching&oldid=1261233801
https://en.wikipedia.org/w/index.php?title=3-dimensional_matching&oldid=1261233801

	Introduction and description of Kakurasu
	Introduction
	Description of the game Kakurasu

	Theory and earlier results
	NP-completeness
	Method of proof: reduction
	Proof of Kakuro´s NP-completeness
	3-dimensional matching
	Subset-sum problem with natural numbers

	Kakurasu is NP-complete
	Result

	Appendix
	Minsesweeper is NP-complete
	LaserTank is NP-complete

	References

