SJALVSTANDIGA ARBETEN I MATEMATIK

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Parking functions and their applications in combinatorics

av

Selma Mohamed

2025 - No L11

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Parking functions and their applications in combinatorics

Selma Mohamed

Sjalvstindigt arbete i matematik 15 hogskolepodng, grundniva

Handledare: Per Alexandersson

2025

Abstract

Parking functions are intriguing combinatorial objects originally introduced to
model linear probing in hashing and data storage. A parking function is a se-
quence of integers that encodes the preferences of n cars attempting to park in
n spots along a one-way street. The sequence is valid if each car can success-
fully park by proceeding to its preferred spot or the next available one. This
paper investigates parking functions from multiple perspectives, including their
definition, enumeration, and bijective relationships with other mathematical
structures such as rooted labeled trees, Dyck paths, and hyperplane arrange-
ments. It also explores generalizations of parking functions and presents Python
code for generating both sorted and unsorted variants.

Abstrakt

Parkeringsfunktioner ar fascinerande kombinatoriska objekt som ursprungligen
introducerades for att modellera linjar probing inom hashing och datalagring.
En parkeringsfunktion &r en heltalsféljd som representerar preferenserna hos n
bilar som forscker parkera pa n platser langs en enkelriktad gata. Foljden &r
giltig om varje bil lyckas parkera genom att bérja vid sin ¢nskade plats eller
fortsdtta till nasta lediga. Denna uppsats undersoker parkeringsfunktioner ur
flera perspektiv, inklusive deras definition, upprakning och bijektiva samband
med andra matematiska strukturer sasom rotade mérkta trad, Dyck-stigar och
hyperplansarrangemang. Vidare behandlas generaliseringar av parkeringsfunk-
tioner och Python-kod presenteras for att generera bade sorterade och osorter-
ade varianter.

Contents

1

Introduction
1.1 Background
1.2 Hashing

Proof of the Number of Parking Functions

Proof of Parking Functions
3.1 Sorted parking functions Lo

Bijection Between Parking Functions and Dyck Paths
4.1 Dyck Path and Rooted Labeled trees
4.2 Figureso

Bijection between Rooted Labeled Trees and Parking Func-
tions

5.1 Another bijection using Breadth-first search (BFS)
Hyperplanes
6.1 Figures

Generalizations of Parking Functions
7.1 Conclusion

Python codes
8.1 Code for parking functions L.
8.2 Code for sorted parking functions

AT Statement

13
17

19
22

23
26

27
27
28

29

1 Introduction

What is a parking function? Imagine a one-way street with n parking spaces
assigned numbers ranging from 1 to n, n cars arrive at the street one by one.

Definition 1. A parking function refers to a sequence of preferences for n cars,
each looking to park in one of n designated parking spots, numbered 1,2, ..., n,
situated along a one-way street. FEwvery car has a particular parking spot it
prefers, and the parking process follows these rules:

1. Initially, each car attempts to park in its preferred spot.

2. If the preferred spot is already occupied, the car continues along the one-
way street to the next available spot.

3. If a car cannot find any available spot before reaching the end of the street,
the sequence is invalid.

A sequence of preferences (ai,az,...,a,) is called a parking function if all n
cars can successfully park following these rules.

Example 1.1. An example of a parking function is (1,1,2). Car 1 preferred
parking space is spot 1 and parks there, car 2 preferred parking space is also 1
so the car continues down the street to park in the first unoccupied spot which
is spot 2, car 3 prefers spot 2 but it is occupied so the car parks in spot 3,
which concludes all cars, so it is indeed a parking function. An example of a
preference list that is not a parking function is (1,3,8). Car 1 prefers spot 1 and
parks there, car 2 prefers spot 3 and parks there, lastly car 3 prefers spot 3 but
it is occupied by car 2 so it cannot park, which means (1,3,3) is not a parking
Sfunction.

The mathematical significance of parking functions resides in their combinatorial
characteristics and their links to various other structures [9].

Example 1.2. For example, consider the sequence (3,1,7,3,1,4,1,7) represent-
ing the preferences of eight cars attempting to park in spots labeled 1 through 8.
The parking process works as follows:

Car 1 prefers spot 3 and parks there.

Car 2 prefers spot 1 and parks there.

Car 3 prefers spot 7 and parks there.

Car 4 prefers spot 8 which is occupied so it goes to spot 4 and parks there.
Car 5 prefers spot 1 (occupied), goes to 2 (free), and parks.

Car 6 prefers spot 4 (occupied), goes to 5 (free), and parks.

Car 7 prefers spot 1 (occupied), then goes to 2 (occupied), 3 (occupied), 4
(occupied), 5 (occupied), 6 (free), and parks.

Car 8 prefers spot 7 (occupied), then 8 (free), and parks.

Since all cars successfully find a spot, the sequence is a valid parking function.

1.1 Background

Parking functions were originally introduced by Konheim and Weiss [11] during
their study of computer storage systems. They demonstrated, using analytical
methods, that the number of parking functions of length n is given by the
formula (n + 1)"~1. We denote by PF(n) the set of all parking functions of
length n, so the number of parking functions is

[PF(n)| = (n+1)"".

This insight was later simplified by Pollak [8]. Parking functions are combina-
torial structures that first arose during research on linear probing methods for
resolving collisions in hash tables. Since then, they have been widely studied
and found to be closely connected to other combinatorial objects, such as forests
and hyperplane arrangements [7].

There are precisely 16 valid parking functions for 3 cars. These can be outlined
as follows:

(1L,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3),

(1,3,1), (1,3,2), (2,1,1), (2,1,2), (2,1,3), (2,2,1),
(2,3,1), (3,1,1), (3,1,2), (3,2,1).

1.2 Hashing

A common and efficient technique used in computer science for storing and re-
trieving data is called hashing or the scatter storage technique. It uses a hash
function h that assigns a specific hash value h(K) to each item K. However,
when two or more items receive the same hash value, a collision occurs. To
handle such collisions, a method known as linear probing and insertion is used.
This algorithm searches the hash table sequentially for the next available posi-
tion. It assigns n items into m > n empty cells labeled 0,1,...,m — 1, items
are inserted one by one. For the k-th item, we attempt to place it in the first
available cell in the sequence:

hi,hi +1,hg +2,... (mod m),

where hy is the hash value of the k-th item and 0 < hy < m.

In this setup, the sequence (hq, ..., hy,) defines the hash function. It is said to
be confined if, after inserting all items, the final cell m — 1 remains unoccupied.
Notably, when m = n + 1, the confined hash functions correspond exactly to
parking functions of length n. If an item is inserted into position pg, then the
total displacement is defined as:

n

D(h) = Z(Pk — hy) mod m,
k=1

which represents the total number of steps that the items have shifted from
their original hash addresses. This displacement serves as a key statistic in the
study of parking functions [9].

2 Proof of the Number of Parking Functions

Theorem 1. The number of parking functions of length n, denoted by PF(n),
1s given by the formula
) = (n+ 1)L,

The following proof is given in [2], though it is commonly attributed to Pollak
(see [9]).

Proof 1. The proof for the number of parking functions uses a circular street
analogy and exploits symmetry to reveal the relationship between generic choice
function and parking functions. Now, imagine a circular one-way street with
n + 1 parking spots, and n cars entering the street. Each car has a preferred
parking spot, chosen from the n 4+ 1 available spots. This setup creates a total
of (n 4 1)™ possible arrangements since each car can select from n + 1 spots.
The cars enter the street one at a time, starting with car 1. Each car parks in
its preferred spot if it is available, and if the spot is occupied, the car continues
driving clockwise until it finds an open spot. Because the street is circular,
every car will eventually find a parking space, leaving exactly one spot empty
at the end.

A generic choice function is considered a parking function if the empty spot
happens to be parking spot n + 1. The key idea is that, due to the symmetry
of the circular street, the probability of any particular spot being the one left
empty is equal for all n+ 1 spots. Since the empty spot could equally be any of
the n+ 1 spaces, the number of parking functions is the total number of generic
choice functions, (n+1)", divided by the number of possible empty spots, n+1.
Thus, the number of parking functions is:

(n+1)"

_ 1n—1.
mori i Rk

O

Interestingly, this value, (n + 1)"~1, is also known to represent the number of
rooted, labeled trees with n + 1 vertices, where the root is labeled as vertex 0.
In summary, the proof uses the circular street model to link all possible parking
choices, referred to as generic choice function, with successful parking outcomes
known as parking functions [2].

3 Proof of Parking Functions

Theorem 2. A sequence (a1, as,...,a,) of positive integers is a parking func-
tion if and only if, when rearranged in non-decreasing order (by < by < -+ < by,),
it satisfies

b; <i foralli=1,2,...,n.

Proof 2. We prove both directions of the equivalence.

Forward direction: Assume that (ai,...,a,) is a parking function. Then it
must hold that b; < i for each ¢. For any index k, there must be at least k cars
that prefer one of the parking spots in {1,2,...,k}. This directly leads to the
inequality by < k for all k.

Reverse direction: Now suppose that b; < i holds for every i = 1,...,n. We
aim to show that (aq,...,a,) is then a parking function. Assume instead that
this is not the case. Then we may assume, by choosing a minimal counterexam-
ple, that the first n — 1 cars successfully find parking, but the last car fails. This
would imply that there exists a smallest index j such that all parking spots in
{j,7+1,...,n} are taken after the first n — 1 cars have parked, and the last
car has a,, > j. Because the parking spot j — 1 remains unoccupied, it follows
that a total of (n — 7+ 1) + 1 cars attempted to park in spots > j. As a result,
only j — 2 cars were left wanting spots in {1,2,...,5 — 1}, which leads to the
conclusion that b;_; > j — 1, contradicting our assumption [12]. O

3.1 Sorted parking functions

To enhance understanding of the concept, let’s examine all the potential parking
functions involving 4 cars. When it comes to 4 cars, there are precisely 14 sorted
valid parking functions. These can be outlined as follows:

1,1,1,1

)))

), (1,1,1,2), (1,1,1,3), (1,1,1,4),
1,1,2,2),

)

)

1,17273)’ (1’]‘7274)’ (1727272)7
17272’4)’ (17273’3)’ (17273’4)’
1,1,3,4).

)

1,2,2,3),

(
(
(
(1,1,3,3),

P

Each of these meets the requirement that, the k-th element is no greater than
k. This guarantees that all vehicles can park successfully, as established in
Theorem 2.

Definition 2. A sorted parking function is a parking function whose entries are
in non-decreasing order. That is, a parking function (a1, az,...,a,) s sorted if
it satisfies the characterization in Theorem 2, where a1 < as < --- < ay,.

4 Bijection Between Parking Functions and Dyck
Paths

Parking functions can also be constructed geometrically from Dyck paths. A
Dyck path of order n is a lattice path from (0,0) to (n,n), composed of unit
steps East and North, that never passes below the diagonal y = x. A labeled
Dyck path is a Dyck path where the n north steps are labeled with the numbers
1 through n (representing cars). We draw the label immediately to the right of
each North step along the Dyck path. These labels are arranged so that each
column strictly decreases from top to bottom.

Theorem 3. The total number of Dyck paths of order n is given by the Catalan

number
C - 1 <2n) .
n+1\n

It is a classical exercise in combinatorics to show that the total number of unique
Dyck paths of length 2n is given by the Catalan number formula [5].

8]

A parking function can be represented as a preference function f : {1,...,n} —
{1,...,n}, where f(i) = j means that car i prefers parking spot j. For f to
define a valid parking function, it must satisfy:

YL, i) >0 forall 1 <i<n,

meaning that at least ¢ cars prefer parking spots numbered from 1 to ¢ as
established in Theorem 2, which guaranteed since the path is Dyck path [2].

Given a labeled Dyck path, the corresponding parking function can be read
by identifying the column in which each label appears. If label ¢ appears in
column j, this means that car ¢ prefers parking spot j, so we define f(i) = 5. If
f (i) = j, meaning car i prefers spot j, then there is a North step labeled 7 in the
jth column of the Dyck path diagram. Conversely, given a parking function f,
we place label ¢ in column f(4), arranging the labels in each column in strictly
decreasing order from top to bottom to satisfy the Dyck path conditions [9]

To recover the parking function from the labeled Dyck path in Figure 1, we scan
the diagram from left to right, column by column. In each column, we look for
the labels written to the right of the North steps. The label 1 appears in the
first column, which means car 1 prefers parking spot 1. The label 2 appears in
the fifth column, so car 2 prefers parking spot 5. The labels 3 and 4 both appear
in the second column, which means cars 3 and 4 both prefer spot 2. The label
5 appears in the third column, so car 5 prefers spot 3. Putting this together,
the parking function is:
f=(1,5,2,2,3).

This is how the Dyck path encodes the preferences of each car in the form of a
parking function. To construct the labeled Dyck path from the parking function
f=1(1,5,2,2,3), we proceed as follows: We place one North step for each car
(from car 1 to car 5), and we label each North step with the number of the car it
represents. Since car 1 prefers spot 1, we place a North step labeled 1 in column
1. Car 2 prefers spot 5, so its label is placed in column 5. Cars 3 and 4 both
prefer spot 2, so we place two North steps in column 2, labeled 3 and 4. The
larger label (4) goes above the smaller one (3), to maintain strictly decreasing
order from top to bottom. Car 5 prefers spot 3, so we place label 5 in column
3. Once all North steps are placed in their respective columns, in decreasing
order within each column, we connect them with East steps in between to form
a Dyck path, a path that never goes below the diagonal. The resulting diagram
is the labeled Dyck path shown in Figure 1.

Figure 1: The labeled Dyck path of the parking function f = (1,5,2,2,3).

4.1 Dyck Path and Rooted Labeled trees

As mentioned before Thereom 1 hints at a connection with rooted, labeled
trees. We shall now explore this connection. The first step in this process is to
associate each car with a node in a tree structure, where car ¢ corresponds to a
node labeled i. Next, we determine the children of each node, beginning with
the root. The root node, labeled 0, is connected to the cars in the first column
in the Dyck diagram. These cars serve as the children of the root node.

To identify the children of any other node labeled i, start at car ¢ in the Dyck
diagram and trace a path northeast at a 45-degree angle along the grid’s diago-
nal. If this path intersects with another car at the bottom of a column, then all
cars in that column become children of node . If the path exits the grid without
intersecting another car, then node ¢ has no children (see Figures 3 and 4 for a
concrete example) [2].

This bijective process leverages the geometric properties of parking functions
represented through Dyck paths to establish a one-to-one correspondence with
rooted labeled trees, thereby providing a concrete visual framework for under-
standing the structure of parking functions.

Figure 2: The rooted labeled tree corresponding to the parking function f =
(1,5,2,2,3) via the Dyck path in Figure 1.

Example 4.1. To construct the rooted labeled tree from the Dyck path shown
in Figure 3, we proceed as follows:

Step 1. Place cars along the Dyck path. Each number in the parking function
sequence (e.g., (3,1,7,3,1,4,1,7)) represents a car’s preferred parking spot. For
each car i, place its label in the column corresponding to its preference f(i),
positioning the label to the right of a morth step in that column. Multiple cars
can appear in the same column if they share the same preference, and each
column thus groups together the cars that prefer the same spot.

10

Step 2. Identify the root’s children. All cars in the first column of the Dyck
diagram (i.e., column 1) are connected to the root node labeled 0. These form
the initial children of the root. In our example, cars 2, 5, and 7 appear in the
first column, so:

Children of 0: 2, 5, 7.

Step 3. Trace diagonals to find further children. For each non-root node i,
trace a 45° diagonal northeast from the position of car i in the Dyck diagram.
If the path intersects another car at the bottom of a column, then every car in
that column is assigned as a child of node 1.

Node 2: Its diagonal intersects boxes containing 3 and 8. These become
children of 2.
Children of 2 : 3, 8.

Node 5: Its diagonal intersects 1 and 4.

Children of 5: 1, 4.

Node 4: Its diagonal intersects 6.

Child of 4 : 6.

Node 7: Its diagonal exits the grid without intersecting another car.

Children of 7 : none.

Step 4. Assemble the tree. We now have the full tree:

0—=2,5,7,
2—3, 8,
5—1, 4,

4 — 6.

See Figure 4.
2]

11

4.2 Figures

123 45 6 7 8

Figure 3: (3,1,7,3,1,4,1,7). Adapted from [2].

Figure 4: (3,1,7,3,1,4,1,7). Adapted from [2].

12

5 Bijection between Rooted Labeled Trees and
Parking Functions

Theorem 4. The number of rooted labeled trees on n + 1 wvertices is equal to
the number of parking functions of length n, and is given by

(n+1)" 1.

This result follows from Cayley’s formula, which counts rooted labeled trees,
together with the enumeration formula for parking functions. Since both sets
are counted by the same formula, it provides the existence of yet another natural
combinatorial bijection between them, which will be constructed explicitly in
the following proof.

Proof 3. We describe an explicit construction of a bijection.

Denote the set of rooted labeled trees with n 4 1 vertices as 7,41 and the set of
parking functions of length n as PF(n). First, we define a function f : 741 —
PF(n) by the following algorithm:

1. Let T' € Tp41, with vertices labeled 0, 1, . .., n, where vertex 0 is considered
the root. Draw the tree so that the children of each vertex are ordered
increasingly from left to right.

2. Read the vertices level by level: first the children of the root from left
to right, then the grandchildren from left to right, and so on, creating a
permutation 7 of the non-root vertices 1,2,...,n.

3. For each vertex i, orient each edge to point from the child to its parent,
and define the set of arcs A.

4. Map T to the parking function p = (p1,...,pn) as follows:

L if i - 0is an arc in A,
pi= 144, ifi— m;is an arc in A.

Hence, each tree T' € 7,41 uniquely corresponds to a parking function p €
PF(n). Since both sets 7,11 and PF(n) have the same cardinality, namely
(n+1)"~1, this construction defines a bijection.

O

13

Proof 3.1. We confirm that p is a parking function because its weakly increasing
rearrangement p’ satisfies p; < i. Each value p/ is either equal to 1 or 1 + j,
where j is defined according to the construction method described earlier. There
will always be at least one vertex k connected to 0, which gives pr = 1, and so
p; < 1. Suppose p; = 1+ j. Then 1+ j > 4, meaning j > ¢ — 1. The value j
represents the index of the vertex to which the i*" vertex is a child. However,
this leads to a contradiction, because j would then be larger than the number of
existing vertices that can have children, which is exactly i — 1, i.e., the number

of earlier values in the sequence. Therefore, p; < ¢ must hold [10].
0

Example 5.1 (Recovering a parking function from a tree). We can derive a
parking function from a labeled tree T using the function T,y1 < f': PF(n).

We begin by constructing the permutation © by reading the children and grand-
children of the root 0 from left to right. Thus, we have:

T =(3,1,2).
Next, we identify the directed arcs by pointing every child to its parent:
A = {306,23,13).
Following the rule to map T to a parking function p = (p1,p2,p3):

For py, the next number is 1. From arc ﬁ, vertex 1 points to 3, which is
the first element in w, so j = 1. Therefore, we apply p; =1+ j:

For ps, the last number is 2. From arc ﬁ, verter 2 points to 3, which s
the first element in w, so again j = 1. Thus:

pp=14+1=2.

For ps3, the first number in w is 3. Since 3 points to 0, according to the
rule p; = 1 if i — 0, we have:

p3 = 1.

14

Thus, the tree T is mapped to the parking function:
p=1(221)

which satisfies the parking function conditions.

To construct the inverse f': PF(n) — Tpa1, follow this procedure:

1. Given p € PF(n), sort it into weakly increasing order p’. Start with a 0
vertez.

2. Fori=1,...,n, create a child of vertex p, — 1. This gives the tree struc-
ture.

3. Use the original order of p to label the children. For each i, label the child
of the (p; — 1)™ vertex “i” from left to right.

Example 5.2 (Constructing a tree from a parking function). We apply the
map f': PF(n) = Tpa1 to obtain a labeled tree on n + 1 wvertices from a given
parking function.

Let p=(2,2,1). Thenp = (1,2,2).
py = 1: add a child to vertex 0.
ph = 2: add a child to vertex 1.

ps = 2: add another child to vertex 1.

This gives the unlabeled rooted tree:

O O
Now label using p = (2,2,1):
p1 = 2: label first child of vertex 1 as 1.

po = 2: label second child of vertex 1 as 2.
p3 = 1: label child of 0 as 3.

We get the relabeled rooted tree:

15

This matches the original tree. Thus, [’ is the inverse of f, confirming the
bijection [10].

We have established a bijective correspondence between rooted labeled trees
with n + 1 vertices and parking functions of length n. This construction not
only explains why both structures are enumerated by the same formula, but
also provides a combinatorial interpretation that connects parking preferences
directly to parent-child relationships within trees. The bijection confirms that
each rooted labeled tree can be uniquely transformed into a parking function,
and vice versa, thereby offering a deeper structural understanding of both com-
binatorial objects.

Example 5.3. This tree corresponds to the same parking function as in Fig-
ure 4, but here it is obtained using the bijection f': PF(n) — Tna1 -

Figure 5: (3,1,7,3,1,4,1,7).

16

5.1 Another bijection using Breadth-first search (BFS)

In addition to the bijection described in Section 4.1 and Section 5, there exists
another bijection between parking functions and rooted forests, based on the
breadth-first search (BFS) algorithm. This bijection is given in [4], and provides
a correspondence between rooted forests F' € F(m,n) and parking functions
f € PF(m,n).

From forest F' to parking function f € PF(m,n):

fi= i p; is a child of the root in the j:th tree (see Figure 6),
" l(n—=m+1)+0,(p;) otherwise.

where o, is the inverse BFS order on non-root vertices.
From parking function f € PF(m,n) to forest F:

oy fi=jforsomej=1,....,n—m+1,
pi= Tf_I(fi —(n—m+1)) otherwise.

go 6 f{

Figure 6: Forest F. Adapted from [4

Example 5.4. We apply the breadth-first search (BFS) to the forest F' and read
the vertices in BES order, beginning with the root vertices and then proceeding
level-wise to their children. At each level, vertices are ordered based on the label
of their parent. Applying this method to F', we obtain:

Vo1y.--5,004,V5,...,0U13 = 01, 02, 03, 04, 1, 4, 6, 2, 3, 9, 5, 8, 7.
Removing the root vertices, we obtain the permutation:
=(1,4,6,2,3,9,5,8,7),

and its inverse:
op=(1,4,5,2,7,3,9,8,6).

17

We define the forest specification t(p) = (r1,...,712), where each r; denotes the
degree of the vertex v; (from voy to v12), excluding the final leaf v15. This gives:

t(p) = (2707 17 17 Oa 2707 27 07 Oa 170)

The specification s(p) records how many times each parking spot is requested in
the function f € PF(9,12), and it matches the forest specification:

s(p) =t(p) = (2,0,1,1,0,2,0,2,0,0,1,0).
Using the non-decreasing rearrangement of s(p), we obtain the sequence:
12,3, 4% 6%,8%,111 = 1,1,3,4,6,6,8,8,11.

Before computing the parking function, we introduce the order permutation 7y,
which records the position of each entry in the non-decreasing rearrangement of
s(p), preserving the left-to-right order among equal values. More precisely, T¢ (%)
equals the position of s(p); among the sorted values of s(p).

In our example, we have 7'1?1 = (1,4,6,2,3,9,5,8,7). We now replace each
index i in Tf_l(i) with the ith smallest term in the sorted list:

Sorted list: 1, 1, 3, 4, 6, 6, 8, 8, 11.

Tf_l(l) =1= Firstentryis 1, so f1 =1
7171(2) =4 = Fourth entry is 4, so fo =4
7171(3) =5 = Fifth entry is 6, so f3 =06
7171(4) =2 = Second entry is 1, so fy =1
7171(5) =7 = Seventh entry is 8, so fs =8
71(6) =3 = Third entry is 3, so fo =3
(7)) = 9 = Ninth entry is 11, so f; = 11

7;1(8) = 8 = Eighth entry is 8, so fs =8

7;1(9) =6 = Sizth entry is 6, so fog =6
So we obtain:

f=1(1,4,6,1,8,3,11,8,6).
(4]

18

6 Hyperplanes

A hyperplane arrangement is a finite collection of affine hyperplanes in R™.
The regions of such an arrangement are the connected components that remain
after all hyperplanes are removed from R™. A classical example is the braid
arrangement Ap, which includes all hyperplanes of the form z; = z; for 1 <
i < j < m. These hyperplanes correspond to the reflecting hyperplanes of
the Coxeter group of type A,_1, and their regions are in bijection with the
permutations of the set [n] = {1,2,...,n}.

A deformation of A, is a hyperplane arrangement in which every hyperplane is
parallel to some hyperplane in the braid arrangement. One notable deformation
is the Shi arrangement, denoted S,,, which consists of the hyperplanes

zi—2;=0 and z;—z; =1 foralll <i<j<m,

dividing R™ into multiple regions. The Shi arrangement was introduced by
Shi in the study of the affine Weyl group of type A, _1, where group-theoretic
methods were used to derive combinatorial results about these regions [6].

Theorem 5. The number of regions of the Shi arrangement S,, is (n + 1)"~1.

Parking functions have profound links with hyperplane arrangements. Each
valid parking function coincides with a region in a hyperplane arrangement,
contributing a geometric interpretation of the combinatorial counting problem
[6].

Definition 3. Let o, be the map from the regions of the Shi arrangement of
type Sy, to parking functions on [n]. This map sends a region with diagram p to
a parking function f such that for each element i, the value f(i) is equal to the
position in p of the leftmost element in the chain that contains i.

Theorem 6. The map o, is a bijection between the regions of S,, and parking
functions on [n].

Proof 4. We will explicitly describe the inverse of ¢,,. Given a parking function
f, we construct the partition 7 by grouping indices ¢ and j into the same block
whenever f(i) = f(j). To form the chains, we arrange the elements within
each block in increasing order from left to right. Next, we need to determine
the permutation. We do this by placing the chains in sequence, based on the
increasing order of their values under f. Let’s assume we have already positioned
the chains corresponding to values less than j, and now we focus on placing the
chain with value j. Since f is a parking function, there are at least j —1 elements
already positioned. We start by inserting the leftmost element of the chain into
the j-th position, counting from the left. There is a unique way to arrange the
remaining elements of the chain to the right, ensuring that no pair of arcs is
formed where one arc contains another. This arrangement creates a braiding

19

that gives rise to a diagram p, which corresponds to a specific region R within
Sy [6]. O

Example 6.1. Start with the parking function: f = (6,1,6,2,2,1,2,4,1).

Step 1: Group into chains (same value of f(i))

Step 2: Order the chains by increasing function value:

{2,6,9}, {4,5,7}, {8}, {1,3}.

Step 3: Place all elements from the chains left to right. The chains are posi-
tioned in increasing order of the function values f(i). Within each chain, ele-
ments are listed in increasing numerical order. When arranging the elements,
we ensure that no arc is nested within another; in other words, no arc lies en-
tirely beneath another in the final arc diagram. This condition is crucial for
building a valid braid diagram.

A walid left-to-right placement of the elements is:
2,4,6,8,5 1,9, 7, 3.

Step 4: Draw arcs between elements that belong to the same chain. These arcs
reflect the hierarchical structure of the chains. This arc configuration defines
the diagram of a Shi region. The inequality x; > x; holds whenever element i
lies to the left of j and they are connected by an arc.

Figure 7: Arcs corresponding to chains in the permutation. Adapted from [6].

20

TN T
2 6 9
2 4 6) 9 7

Figure 8: Constructing the region oy '(f). Adapted from [6].

Example 6.2. From Diagram to Parking Function

Given permutation:

2,4, 6,85 1,9 7, 3

With arcs:

{27 67 9}7

Find leftmost in each chain:
2 — position 1 — f(2)

4 — position 2 — f(4)

8 — position 4 — f(8)

(1)

1 — position 6 — f(1

{4,5,7}, {8}, {1,3}
f6)=f(9) =1
f6) = (1) =2

4

fB3)=6

Final reconstructed parking function: f = (6,1,6,2,2,1,2,4,1)

(6]

21

6.1 Figures

AV
VAV,
X

Figure 9: The Shi arrangement for n = 3. Reproduced from [6].

131
221\ 112 113 111

132 121
231 123 122

321 213 212
1 2 312 211

311

Figure 10: The bijection o3. Reproduced from [6].

22

7 Generalizations of Parking Functions

Parking functions, originating in combinatorics, transcend the traditional sce-
nario of cars parking in sequentially numbered spaces. Their generalizations
introduce innovative structures, including convoluted scenarios, leading to the
development of mathematical structures with profound implications. In this
section, we explore various generalizations of parking functions, highlighting
their mathematical significance.

Movement variations in Parking Functions

Backward and forward movement of cars: Parking functions traditionally
move forward along a one-way street until finding an available spot. How-
ever, one generalization allows cars to move backwards, this added flexibility
fundamentally alters the nature of valid parking functions and introduces new
combinatorial structures:

Single-step backward movement: If a car’s desired parking spot is occu-
pied, this generalization permits checking one spot behind before continuing
down the street. This approach generates a distinct set of valid parking func-
tions compared to the classical model and prompts questions about how limited
backward movement affects the total number of valid functions.

Multiple-step backward movement: A more general version allows cars
to move more than one spot backwards, following predetermined rules. For
example, the number of steps a car can move backwards might depend on its
position in the queue, or it could be permitted to jump a fixed number of spots
backwards. This generalization results in a more nuanced enumeration problem,
as it unlocks numerous possibilities for valid parking configurations.

Variable movement based on conditions: Another generalization allows
certain cars to move backward while others can only move forward. This re-
striction can be based on factors such as a car’s position in the parking sequence,
for example, cars in odd-numbered positions may move backward while those in
even-numbered positions cannot, or probabilistic rules, like a coin flip determin-
ing whether a car can move backward first. These variations create intricate
patterns in parking behavior, making the enumeration and categorization of
valid parking functions both demanding and mathematically stimulating [1].

23

Parking Functions with Cars of Different Sizes

In real-life scenarios, cars are not all the same size; some require more space
than others. This observation inspires a generalization of parking functions,
where cars can differ in length, reflecting their varying space requirements. Let
us observe the following setup:

Variable-length cars: Presume each car ¢; has a size s; € N, requiring s; con-
tiguous parking spots to park. If its preferred spot is available but the adjacent
spots needed are not, the car cannot park and must find an alternative arrange-
ment. This version of the parking function is considerably more elaborate, as it
introduces a spatial constraint that is absent in the traditional case.

Consecutive empty spots requirement: Discovering s; consecutive open
spots adds further complications to determining valid parking functions. This
generalization is applicable to resource allocation problems that require contigu-
ous resources to satisfy specific demands, making it a critical area of study in
optimization and theoretical computer science.

Multiple cars occupancy of a single spot

In select variations, a single parking spot can accommodate more than one
car. This generalization transforms the traditional parking functions into an
expansive model, commonly referred to as ”clown car functions”.

Multiple cars per spot: One spot can contain up to a specified number of cars,
say d. If a car’s preferred spot is occupied, it moves forward to locate another
available spot with sufficient space. This generalization is notably interesting
because it leads to combinatorial problems that resemble queuing systems and
resource-sharing models.

Variable capacities for spots: Building upon the concept further, one can
examine spots with contrasting capacities, leading to even more complex vari-
ations of parking functions. Comparable generalizations find applications in
distributed systems where resources differ in capacity and priority [1].

24

Obstructed and limited parking spots

Another interesting generalization emerges from introducing obstructions in the
parking lot.

Obstructed spots: Particular spots can be blocked or temporarily unavailable
due to external circumstances, such as roadblocks or maintenance work. The
presence of obstructions incorporates a dimension of unpredictability, and valid
parking functions must be reevaluated based on the available spots. This version
has been studied to mimic real-life circumstances, such as heavy traffic and
managing limited resources while following specific rules or restrictions.

Limited parking spots: There are instances where parking spots are fewer
than cars, and in such situations, the goal shifts to maximizing the number
of parked cars or finding ideal arrangements for parking. This scenario reflects
practical problems in logistics and urban planning, where limited resources must
be utilized effectively.

Randomness and probabilistic models in Parking Functions

Incorporating aspects of randomness to parking functions further cultivates their
mathematical structure and complexity:

Random decisions: In this model, when a car encounters its preferred spot
taken, it randomly decides whether to move backwards or forward (e.g., by flip-
ping a coin). The probability that all cars can park successfully under these cir-
cumstances results in intriguing probabilistic analyses and combinatorial count-
ing problems.

Probabilistic Parking Functions: Distinguishing the predicted behaviour of
cars under random movement rules offers insights into the average-case intricacy
of parking problems and has connections to probabilistic algorithms and Markov
chains.

Teleporting Cars

An unusual but mathematically compelling variant involves teleporting cars. If
a car’s preferred spot is taken, it can be “teleported” to a different position,
possibly based on a predetermined rule or randomly selected destination. This
variant presents new combinatorial challenges and can be used to study alloca-
tion problems and unconventional queuing [1].

25

Structural Properties: Peaks, Valleys, and Other Patterns

Parking functions can also be generalized by highlighting structural properties
within the list of preferences:

Peaks and Valleys: A peak occurs when a car’s preferred spot is numerically
greater than the spots preferred by its immediate neighbors in the preference list.
Conversely, a valley occurs when a car’s preferred spot is numerically smaller
than the spots preferred by its immediate neighbors. For example, a peak is
observed when a car prefers spot 4, while the cars before and after it prefer spots
2 and 3, respectively. The value 4 qualifies as a peak because it is greater than
both its neighbors. Similarly, a valley occurs when a car prefers spot 2, while
the cars before and after it prefer spots 4 and 3, respectively. The value 2 is
considered a valley because it is smaller than both its neighbors. Counting and
analyzing these features reveals deeper combinatorial structures and connects
parking functions to permutation patterns and sorting algorithms.

Ascents, Descents, and Ties: Another approach to studying parking func-
tions is counting the number of ascents, where a car prefers a higher spot than
the previous one; descents, where it prefers a lower spot; and ties, where prefer-
ences are equal. These attributes offer insight into the ordering and arrangement
properties of parking functions.

7.1 Conclusion

The generalization of parking functions outlined above showcases how an ele-
mentary combinatorial concept can evolve into a rich field of study with wide-
ranging applications. From flexible movement rules and spatial constraints
to unpredictability and structural arrangements, these variations enhance our
understanding of combinatorial configurations and reveal new approaches for
research. Exploring these generalizations not only amplifies theoretical com-
binatorics but also provides important insights for real-world applications in
optimization, resource allocation, and algorithmic complexity [1].

26

8 Python codes

8.1 Code for parking functions

1 from itertools import product

N

5 def is_parking_function(seq):

nimn

5 Check if a given sequence %s a parking function.
wnn

7 seq = sorted(seq)

8 for i, num in enumerate(seq, start=1):

9 if num > 1i:

10 return False

11 return True

13 def generate_parking_functions(n):
miumn

15 Generate all parking functions of length n.

16 e

17 parking_functions = []

18 # Generate all possible sequences of length n with
values between 1 and n

19 all_sequences = product(range(l, n + 1), repeat=n)

21 for seq in all_sequences:
22 if is_parking_function(seq):
23 parking_functions.append(seq)

25 return parking_functions

27 # Ezample usage

o8 if __name__ == "__main__":

29 n = int(input ("Enter the length of parking functions (
n): "))

30 parking_functions = generate_parking_functions(n)

31 print (£"Al1l parking functions of length {n}:")
32 for pf in parking_functions:
33 print (pf)

27

8.2 Code for sorted parking functions

1 from itertools import combinations_with_replacement

N

5 def is_sorted_parking_function(seq):

nmnn

5 Check %f a sorted sequence s a parking function.
nin

7 for i, num in enumerate(seq, start=1):

8 if num > i:

9 return False

10 return True

12 def generate_sorted_parking_functions(n):

nwmnn

14 Generate all sorted parking functions of length n.
15 nin

16 parking_functions = []

17 # Generate all mon-decreasing sequences uUsSing

combinations with replacement
18 all_sequences = combinations_with_replacement (range (1,
n + 1), n)

20 for seq in all_sequences:
21 if is_sorted_parking_function(seq):
22 parking_functions.append(seq)

24 return parking_functions

26 # Ezample usage

o7 if __name__ == "__main__":

28 n = int(input ("Enter the length of parking functions (
n): "))

29 parking_functions = generate_sorted_parking_functions(
n)

30 print (£"All sorted parking functions of length {n}:")

31 for pf in parking_functions:

32 print (pf)

28

9 Al Statement

During the work on this project, I used Al tools for the following purposes:
Language assistance: I used ChatGPT to help polish English explanations.

Mathematical clarification: I consulted ChatGPT to confirm certain bijec-
tions and to explain complex concepts.

Python code support: I used ChatGPT to verify the correctness of the
Python code and to improve code clarity and comments.

Typesetting: I used Al tools for help with KTEX formatting and structuring.

29

References

[1]

2]

[10]

[11]

[12]

Carlson, J., Christensen, A., Harris, P. E., Jones, Z., & Ramos Rodriguez,
A. (2020). Parking Functions: Choose Your Own Adventure.

Haglund, J. (2004). The q, t-Catalan Numbers and the Space of Diagonal
Harmonics with an Appendix on the Combinatorics of Macdonald Polyno-
mials. Department of Mathematics, University of Pennsylvania.

Liu, Y. (2024). Exploring Parking Functions: Poset and Polytope Perspec-
tives. arXiv preprint.

Yin, M. (2024). Statistics of Parking Functions and Labeled Forests. De-
partment of Mathematics, University of Denver.

Baracchini, G. (2016). Dyck Paths and Up-Down Walks. Undergraduate
final paper, Massachusetts Institute of Technology.

Athanasiadis, C. A., & Linusson, S. (1997). A simple bijection for the re-
gions of the Shi arrangement of hyperplanes. arXiv preprint.

Bruner, M.-L., & Panholzer, A. (2015). Parking Functions for Trees and
Mappings. arXiv preprint.

Li, Y., & Lin, Z. (2023). A Symmetry on Parking Functions via Dyck Paths.
Discrete Mathematics, 346, 113426.

Yan, C. H. (2015). Parking Functions. In M. Béna (Ed.), Handbook of
Enumerative Combinatorics (pp. 3-56). CRC Press.

Yang, E. (2024). Labeled Trees and Parking Functions. Directed Reading
Program, University of California, Berkeley, November 2024.

Konheim, A. G., & Weiss, B. (1966). An occupancy discipline and applica-
tions. SIAM Journal on Applied Mathematics, 14(6), 1266-1274.

Buczek, W. (2021). Parking Functions. Seminar talk, Theoretical Com-
puter Science Department, Jagiellonian University.

30

https://arxiv.org/pdf/2001.04817
https://www2.math.upenn.edu/~jhaglund/books/qtcat.pdf
https://www2.math.upenn.edu/~jhaglund/books/qtcat.pdf
https://www2.math.upenn.edu/~jhaglund/books/qtcat.pdf
https://arxiv.org/pdf/2412.10394
https://arxiv.org/pdf/2412.10394
https://www.math.aau.at/AofA2024/assets/slides/Yin.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gabriella_Baracchini_final_paper.pdf
https://arxiv.org/pdf/math/9702224
https://arxiv.org/pdf/math/9702224
https://arxiv.org/pdf/1504.04972
https://arxiv.org/pdf/1504.04972
https://www.sciencedirect.com/science/article/pii/S0012365X23001127
https://people.tamu.edu/~huafei-yan//Files/Yan-Final-Own-Copy.pdf
https://wp.math.berkeley.edu/drp/wp-content/uploads/sites/18/2025/01/2024_Fall_Yang.pdf
https://www.jstor.org/stable/2946240
https://www.jstor.org/stable/2946240
https://tcs.uj.edu.pl/documents/35126571/147009787/2021.12.16+-+Wojciech+Buczek+-+Parking+functions/dffbcb7a-6d17-476e-8126-f8100cd60bd9

Raittelse

“The following proof is due to Pollak, see [2]” dndras till “The following proof is given

in [2], though it is commonly attributed to Pollak (see [9])”.

“If p_i=0j for some...” dndras till “p i is a child of the root in the j:th tree (see Figure

6)” och “where p i is the parent of vertex i” dr borttagen.

. Kéllhdnvisning av figurerna.

. Referenserna ér felaktigt numrerade, och en uppdaterad version kommer att skickas till

Samuel senast pa tisdag.

	Introduction
	Background
	Hashing

	Proof of the Number of Parking Functions
	Proof of Parking Functions
	Sorted parking functions

	Bijection Between Parking Functions and Dyck Paths
	Dyck Path and Rooted Labeled trees
	Figures

	Bijection between Rooted Labeled Trees and Parking Functions
	Another bijection using Breadth-first search (BFS)

	Hyperplanes
	Figures

	Generalizations of Parking Functions
	Conclusion

	Python codes
	Code for parking functions
	Code for sorted parking functions

	AI Statement

