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Abstract

In the rapidly evolving field of data analytics, Principal Component
Analysis (PCA) remains a fundamental technique for dimensionality
reduction, particularly in high-dimensional datasets common in ma-
chine learning and signal processing. The performance of PCA is crit-
ically influenced by its stopping criterion, which determines the extent
of dimensionality reduction. Building upon the work of Ubaru et al.
(2018)—who introduced a randomized algorithm based on Krylov sub-
space methods and the Lanczos algorithm, employing an information
criterion as the stopping rule—this study explores an alternative strat-
egy: Spectral Density Estimation. We demonstrate that this approach
yields lower approximation error compared to the original criterion, re-
duces the risk of overfitting, and improves computational efficiency by
decreasing runtime. These results position Spectral Density Estimation
as a promising stopping criterion and pave the way for the development
of adaptable, domain-specific dimensionality reduction techniques in
deep learning and related fields.

Sammanfattning

Principalkomponentanalys är en grundläggande metod för att redu-
cera dimensionalitet i datamängder med många variabler. Resulta-
tet p̊averkas starkt av vilket konvergenskriterium som används för att
avgöra när extraktion av antalet faktorer är optimalt. I ett tidigare ar-
bete av Ubaru med flera (2018) föreslogs en slumpmässig algoritm base-
rad p̊a Krylov-delrum och Lanczos-metoden, där ett informationsmått
styr konvergensen. I denna studie undersöker vi ett alternativt sätt:
att använda skattningar av spektral täthet. Det leder till mindre fel,
minskad risk för överanpassning och snabbare analys. Metoden framst̊ar
därmed som ett lovande konvergenskriterium och kan anpassas till olika
tillämpningar inom djupinlärning och annan högdimensionell dataana-
lys.
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1 Introduction

High-dimensional data are becoming increasingly ubiquitous in the digital age,
and effectively analyzing these datasets has become a pressing concern across
numerous fields, from machine learning and signal processing to image pro-
cessing and data analysis.

Covariance matrices have emerged as a reliable means of encapsulating in-
teractions within high-dimensional data, with Principal Component Analysis
(PCA) being a favored method for identifying the dominant subspace within
these matrices to reduce multicollinearity and orthogonalize the data set. [1]

However, the efficacy of PCA is contingent upon the stopping criterion used, a
feature often overlooked despite its pivotal role.

This study seeks to cast light upon this dimensionality reduction process by
investigating alternative stopping criteria based on the theoretical underpin-
nings of a recently published Ubaru. The researchers have proposed an inno-
vative approach that combines dimensionality estimation and approximation
in one cost-effective package. [2]

Their method, utilizing the Krylov subspace methodology, diverges from tra-
ditional PCA by operating on a model selection framework, employing a selec-
tion criterion derived from random matrix perturbation theory.[2]

This paper will begin by diving into PCA and its stopping criterion—which
determines when the algorithm has extracted enough information from the
dataset—and then proceed to explore Krylov subspace methodologies and
their unique features. We will then review the literature on existing stopping
criteria, weighing the strengths and weaknesses of each.

By centering the study on a groundbreaking Ubaru that merges dimensional-
ity estimation and approximation using a novel selection criterion, the inten-
tion is to bring forth a nuanced understanding of the stopping criterion’s role
within PCA.

This exploration will not only contribute to the broader academic discourse
on dimensionality reduction but also provide practical insights that could
guide researchers and data scientists in their quest to effectively analyze high-
dimensional data. This study ultimately strives to illuminate the path to-
wards more efficient and versatile dimensionality reduction algorithms.
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2 Variational Characterizations of Eigenvalues

In this section we examine symmetric matrices and their eigenvalues—a topic
that plays a central role both in establishing optimal low-rank approximations
and in the analysis of PCA. We derive the well-known minimax and maximin
characterizations (the Courant–Fischer theorem) and then deduce several use-
ful consequences, including Weyl’s inequality and Cauchy’s interlacing theo-
rem. Our exposition follows the approach outlined in [3].

Let
Sn := {A ∈ Rn×n : A⊤ = A},

and define the inner product ⟨x, y⟩ = y⊤x for x, y ∈ Rn. For any A ∈ Sn, all
eigenvalues are real and there exists an orthogonal matrix Q and a diagonal
matrix D such that

A = QDQ⊤,

with the eigenvalues (the diagonal entries of D) ordered as

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

A direct consequence is the Rayleigh quotient bound: for any x ∈ Rn,

λ1(A)∥x∥22 ≤ ⟨Ax, x⟩ ≤ λn(A)∥x∥22. (1)

In particular, if ∥x∥2 = 1 then

λ1(A) = min
∥x∥2=1

⟨Ax, x⟩ and λn(A) = max
∥x∥2=1

⟨Ax, x⟩.

2.1 Courant–Fischer Theorem

Theorem 1 (Courant–Fischer). For A ∈ Sn and any k = 1, . . . , n,

λk(A) = min
V⊂Rn

dim(V )=k

max
x∈V

∥x∥2=1

⟨Ax, x⟩ = max
W⊂Rn

dim(W )=n−k+1

min
x∈W

∥x∥2=1

⟨Ax, x⟩. (2)

Proof. Let q1, . . . , qn be an orthonormal eigenbasis of A with corresponding
eigenvalues λ1(A), . . . , λn(A). First, set

U = span{q1, . . . , qk}.

For any unit vector x ∈ U , writing x =
∑k

j=1 cjqj (thus
∑
c2j = 1) yields

⟨Ax, x⟩ =
k∑

j=1

λj(A)c
2
j ≤ λk(A).
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Thus,
max
x∈U

∥x∥2=1

⟨Ax, x⟩ ≤ λk(A),

and hence
min

dim(V )=k
max
x∈V

∥x∥2=1

⟨Ax, x⟩ ≤ λk(A).

Conversely, for an arbitrary k-dimensional subspace V , consider the subspace

W = span{qk, qk+1, . . . , qn},

which has dimension n−k+1. Since dim(V ∩W ) ≥ 1, there exists a unit vector
x ∈ V ∩W satisfying ⟨Ax, x⟩ ≥ λk(A). Taking the minimum over all such V
completes the proof. The second equality can be obtained by considering the
eigenvalues of –A.

2.2 Weyl’s Inequality

Theorem 2 (Weyl’s Inequality). For any A,B ∈ Sn and every k = 1, . . . , n,

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

Proof. Using the Courant–Fischer representation, for any k-dimensional sub-
space V we have

λk(A+B) = min
dim(V )=k

max
x∈V

∥x∥2=1

⟨(A+B)x, x⟩.

Since for each unit vector x it holds that

⟨(A+B)x, x⟩ = ⟨Ax, x⟩+ ⟨Bx, x⟩ ≤ ⟨Ax, x⟩+ λn(B),

it follows that
λk(A+B) ≤ λk(A) + λn(B).

A similar argument, applied to −B (and noting that λn(−B) = −λ1(B)),
yields the lower bound.

2.3 Cauchy’s Interlacing Theorem

Theorem 3 (Cauchy’s Interlacing Theorem). Let A ∈ Sn and let As be an
s × s principal submatrix of A, obtained by deleting n − s rows and the corre-
sponding n− s columns, where 1 < s < n. Then, for k = 1, . . . , s,

λk(A) ≤ λk(As) ≤ λk+n−s(A).
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Proof. Let S be the index set of the rows and columns retained in As. For
any x ∈ Rs, define x̃ ∈ Rn by

x̃i =

{
xi, i ∈ S,

0, otherwise.

For any k-dimensional subspace V ⊂ Rs, define

Ṽ = {x̃ | x ∈ V }.

Since dim(Ṽ ) = dim(V ), we apply the Courant–Fischer theorem. For any
linear subspace V of Rs with dimV = k, we obtain

max
x∈V

∥x∥2=1

⟨Asx, x⟩ = max
x∈V

∥x∥2=1

⟨Ax̃, x̃⟩ = max
x̃∈Ṽ

∥x̃∥2=1

⟨Ax̃, x̃⟩ ≥ λk(A).

Taking the minimum over all k-dimensional subspaces V yields λk(As) ≥
λk(A).

Similarly, for any linear subspace V ⊂ Rs with dimV = s − k + 1 = n − (k +
n− s) + 1,

min
x∈V

∥x∥2=1

⟨Asx, x⟩ = min
x∈V

∥x∥2=1

⟨Ax̃, x̃⟩ = min
x̃∈Ṽ

∥x̃∥2=1

⟨Ax̃, x̃⟩ ≥ λk+n−s(A).

Taking the maximum over all (s − k + 1)-dimensional subspaces V gives
λk(As) ≤ λk+n−s(A), proving the theorem.

The variational characterizations discussed above not only establish a rigorous
mathematical foundation for eigenvalue behavior but also directly motivate
the practical applications in data reduction. In the next section, we leverage
these theoretical insights to explain how PCA transforms high-dimensional
data into a more tractable form.

3 Theoretical Foundations of Principal Com-
ponent Analysis (PCA)

Principal Component Analysis (PCA) serves as a cornerstone statistical method-
ology for reducing dimensionality, enhancing data visualization, and miti-
gating noise within datasets. At its core, PCA seeks to reconstitute a poten-
tially correlated set of variables into a new ensemble of uncorrelated variables,
termed principal components. These components are essentially linear amal-
gamations of the original variables, strategically chosen to encapsulate the
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maximum variance present within the dataset. Such a transformation not
only simplifies the data structure but also aids in uncovering the underlying
patterns by focusing on the most significant features.[4]

From a mathematical standpoint, PCA’s objective is to diagonalize the covari-
ance matrix associated with the dataset. This process entails calculating the
eigenvectors (principal components) and eigenvalues of the covariance matrix,
where the eigenvectors delineate the directions of the newly defined space, and
the eigenvalues quantify the variance captured by each principal component.
Conventionally, the eigenvalues are arranged in descending order, with the se-
lection of principal components being based on the largest eigenvalues. This
approach ensures that the retained components account for a substantial por-
tion of the dataset’s total variance. The eigenvalue criterion for stopping typi-
cally involves retaining those components whose eigenvalues surpass a defined
threshold, often set to represent a desired proportion of the total variance (for
instance, 95%), thereby achieving an efficient dimensionality reduction while
preserving essential data characteristics[5]

3.1 Evolution of Krylov Subspace Methods: From Krylov
to Lanczos

Krylov subspace methods, developed from the foundational work of Krylov
and later refined by Hessenberg, Arnoldi, and Lanczos, offer an elegant and
efficient framework for solving large-scale linear systems and eigenvalue prob-
lems. Rooted in projection techniques such as the Galerkin approach, these
methods have become central in computational mathematics. In this section
we present an historic expose and thereafter give proofs of central facts.

The Krylov Subscpace methodolgy was published 1931. In the article, Krylov
describes a new procedure for computing the characteristic polynomial of an
arbitrary square matrix.[6]

Given a matrix A ∈ Rn×n with characteristic polynomial:

pn(t) = tn − µn−1t
n−1 − · · · − µ1t− µ0,

and a nonzero vector v1 of grade n, the vectors v1, Av1, . . . , A
n−1v1 are lin-

early independent, whereas v1, Av1, . . . , A
nv1 are linearly dependent, satisfy-

ing:

Anv1 − µn−1A
n−1v1 − · · · − µ1Av1 − µ0v1 = 0.

This relationship relies on the generic property that a randomly chosen vec-
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tor v1 ∈ Rn is of grade n, meaning the Krylov sequence v1, Av1, . . . , A
n−1v1

is linearly independent, while v1, Av1, . . . , A
nv1 is linearly dependent. This

property holds for almost all v1, as the set of vectors generating a sequence
of lower.grade has measure zero, ensuring the Krylov subspace Kn(A, v1) =
span{v1, Av1, . . . , An−1v1} achieves dimension n. This establishes the basis for
forming the Krylov sequence:

vj+1 = Avj , j = 1, . . . , n.

This sequence leads to the equation:

µ0v1 + µ1v2 + · · ·+ µn−1vn = vn+1,

where solving for the coefficients µi involves an ill-conditioned linear system
with the matrix [v1, v2, . . . , vn] and right-hand side vn+1.

A critical insight from Krylov’s method is reducing A to a companion form H
via a similarity transformation, expressed as:

AV = V H, with V −1AV = H,

where V = [v1, v2, . . . , vn] is an invertible matrix composed of column-vectors
vi, and H is the companion matrix:

H =


0 0 · · · 0 µ0

1 0 · · · 0 µ1

0 1 · · · 0 µ2

...
...

. . .
...

...
0 0 · · · 1 µn−1

 .

This transformation was groundbreaking in 1931, offering a novel way to com-
pute eigenvalues and eigenvectors at a time when such tasks were daunting
for even small matrices, marking a significant departure from the Leverrier
method established in 1840. [6]

The near linear dependence of the vi’s in Krylov’s method will cause numeri-
cal difficulties in most practical circumstances.[6]

A solution to this problem was offered by Hessenberg in 1942.
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The essence of the Hessenberg method, developed to address numerical diffi-
culties due to near linear dependence in Krylov sequences, can be mathemati-
cally condensed as follows:

Hessenberg proposed a technique to transform a matrix A into an upper Hes-
senberg form H, characterized by hij = 0 for i > j + 1, modifying the Krylov
sequence generation to enhance numerical stability. For each vector vj in the

sequence, compute vj+1 = Avj−
∑j

i=1 hijvi, where hij are coefficients ensuring
vj+1 is orthogonal to a selected set of vectors g1, g2, ..., gj , and normalize vj+1

with a scaling factor hj+1,j .

Here we ensure that vj+1 ⊥ g1, g2, ..., gj by setting gTj+1vj+1 = 1, where gi
typically represents the i-th column of the identity matrix. Now let us state
this in algorithmic terms.

Given a Matrix A ∈ Rn×n where m = n − 1, we can compute the Hessenberg
matrix. For each j = 1 to m, follow these steps:

1. Compute hij = eTi (Avj), for i = 1 to j.

2. Update v as v = Avj −
∑j

i=1 hijvi.

3. Normalize vj+1 by setting hj,j+1 = eTj+1v and vj+1 = v/hj+1,j .

This procedure results in V = [v1, v2, ..., vn] and an upper Hessenberg matrix
H, where H contains the nonzero entries hij as specified. The transformation
AV = V H effectively reduces A to Hessenberg form via a similarity transfor-
mation when V is invertible, improving numerical stability for eigenvalue and
eigenvector computations.[6]

The realization came that Hessenberg’s method for matrix transformation
might result in numerical instability, rendering the calculations for eigenvalues
and eigenvectors unreliable. This instability arises because the transformation
matrix V can become ill-conditioned, potentially causing significant errors in
the computational results. To address this issue, the Arnoldi process was de-
veloped, employing an orthogonal matrix V to ensure numerical stability.[6]

The Arnoldi method transforms a matrix A into Hessenberg form by con-
structing an orthonormal basis of the Krylov subspace:

• for each j = 1, 2, . . . ,m:

– Compute the scalar products: hij = vTi Avj for i = 1 to j.

– Update the vector v: v = Avj −
∑j

i=1 hijvi.

– Compute the norm of v: hjj+1 = ∥v∥2.

12



– Normalize and obtain the next vector: vj+1 = v/hjj+1.

Arnoldi’s major contribution was introducing a new perspective: viewing
Lanczos’s methods for solving linear systems and eigenvalue problems as types
of projection methods. This innovative approach significantly advanced the
field at the time.[6]

Building on Arnoldi’s pivotal realization that Lanczos’s methods could be
seen through the lens of projection techniques for both linear systems and
eigenvalue problems, we can directly connect this insight to the Galerkin pro-
jection approach. Arnoldi’s work laid the groundwork for appreciating the
power of projection methods in simplifying complex computational tasks. By
employing an orthonormal basis V = [v1, v2, . . . , vm] for a chosen subspace K,
Arnoldi’s method effectively demonstrates a practical application of projection
principles to approximate solutions to linear systems, embodying the essence
of the Galerkin condition.[6]

The Galerkin method, which seeks approximate solutions x̃ = V y within the
subspace K, echoes Arnoldi’s emphasis on projection’s utility by enforcing the
condition V TAV y = V T b. This not only achieves a dimensionality reduction
in solving Ax = b but also provides a more computationally feasible pathway
to accurate approximations. Thus, Arnoldi’s conceptual contribution serves as
a bridge to the Galerkin approach, highlighting a unified strategy of leverag-
ing projections to tackle both linear and eigenvalue problems with increased
efficiency and insight.[6]

To solve a linear system Ax = b, where A ∈ Rn×n, b ∈ Rn, and x ∈ Rn,
and given a subspace K of dimension m ≤ n with an orthonormal basis
V = [v1, v2, . . . , vm], we aim to find an approximate solution x̃ ∈ K. The
approximation x̃ is obtained by projecting onto K such that x̃ = V y, where
y ∈ Rm, and ensuring the Galerkin condition V TAV y = V T b. This leads to
solving a smaller system to find x̃ = V y.[6]

For eigenvalue problems (Ax = λx), a similar approach finds an approximate
eigenvalue λ̃ ∈ C and an eigenvector ũ = V y by satisfying V H(A − λ̃I)ũ = 0,
resulting in a reduced dimension eigenvalue problem (V HAV − λ̃I)y = 0.[6]

The Galerkin method can also employ a different subspace L for an oblique
projection, leading to a non-orthogonal projection method. In essence, Krylov
subspace methods apply the Galerkin approach within Krylov subspaces Km,
initiated by a vector v, to efficiently approximate solutions to linear and eigen-
value problems.[6]

Arnoldi’s adaptation of Lanczos’s work lays the foundational bridge to the
symmetric Lanczos algorithm. In both the Arnoldi method and Lanczos’s ap-
proach, Krylov subspaces serve as the crucial subspace K for the Galerkin
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projection. These methods effectively generate an orthonormal basis for Km

through a Gram-Schmidt-like process. A pivotal insight emerges when dealing
with Hermitian matrices (A): the matrix V HAV is also Hermitian, render-
ing the Hessenberg matrix Hm, derived via Arnoldi’s procedure, tridiagonal.
This observation streamlines the Arnoldi process into the symmetric Lanczos
algorithm, showcasing a transition and simplification pivotal for algorithmic
efficiency.[6]

In 1950, the Lanczos algorithm was introduced, building on the foundational
concepts of the time.

Lanczos approached solving Ax = b, with A ∈ Rn×n, b ∈ Rn, and x as
the solution vector in Rn, by initiating the formation of a Krylov subspace
Km(A, v) = span{v,Av,A2v, . . . , Am−1v}, where v is an initial non-zero vector
and m ≤ n.[6]

He proposed forming an orthonormal basis V = [v1, v2, . . . , vm] for Km via a
process akin to Gram-Schmidt, aiding the projection onto Km.[6]

Lanczos then aimed to find an approximate solution x̃ = V y, where y ∈ Rm,
by minimizing the residual r = b − Ax̃ within the subspace defined by V .
This approximation x̃ was to meet the Galerkin condition, thereby suggesting
V TAV y = V T b, which leads to a manageable m×m system.[6]

Significantly, he observed that for a Hermitian matrix A, V HAV would yield
a tridiagonal matrix, thus simplifying the process. Accordingly, the Hessen-
berg matrix Hm becomes tridiagonal when A is Hermitian.[6]

The Lanczos method is particularly effective for symmetric (or Hermitian)
matrices, such as the covariance matrix Σ = 1

n−1XX
T in PCA, because it

generates an orthonormal basis V = [v1, v2, . . . , vm] for the Krylov subspace
Km(A, v1), where the projection Hm = V TAV is a tridiagonal matrix:

Hm =


α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

 .

This tridiagonal structure enables efficient eigenvalue computation, making
Lanczos ideal for PCA. For non-symmetric matrices, the Arnoldi method is
used, which generates a Hessenberg matrix, requiring more computational ef-
fort.

Lanczos’s method employs iterative refinement of x̃ through a one-dimensional
projection technique, updating x̃ := x + αd, where d is the direction of search
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and α is determined such that b−Ax̃ is orthogonal to a constraint direction e,
fulfilling (r, e)/(Ad, e) = α.[6]

This iterative mechanism applies a polynomial of A to the initial residual,
rk+1 = pk+1(A)r0, where pk+1 denotes the residual polynomial. This process
encapsulates the core of Krylov subspace optimization.[6]

By leveraging Krylov subspaces, projection techniques, and polynomial itera-
tions, the Lanczos method offers an efficient solution to linear and eigenvalue
problems, marking a crucial development in the computational methods of
numerical linear algebra.

3.2 Krylov Subspace Methods and Its Application in
PCA

The utilization of Krylov subspace methods within Principal Component Anal-
ysis (PCA) is primarily driven by the need for efficient computation of the
principal components, especially when dealing with large-scale datasets. Tra-
ditional eigendecomposition methods become computationally intensive as the
size of the data matrix increases. Krylov subspace methods offer a scalable al-
ternative by focusing on the computation of a few dominant eigenvalues and
their corresponding eigenvectors.

A Krylov subspace generated by a matrix A and a nonzero vector u is defined
as

Km(A,u) = span{u,Au,A2u, . . . ,Am−1u}.

Thus, every vector x in Km(A,u) can be written as a linear combination

x = α1u+ α2Au+ · · ·+ αmAm−1u = Kmz,

where z ∈ Rm contains the coefficients and Km is the matrix whose columns
are u,Au, . . . ,Am−1u. Note that by definition, if x ∈ Km(A,u), then triv-
ially x ∈ Km+1(A,u); furthermore, multiplication by A yields

Ax = α1Au+ α2A
2u+ · · ·+ αmAmu ∈ Km+1(A,u).

Theorem 4 (Properties of the Krylov Subspace). Let A be an n × n matrix,
and let u ∈ Rn be a nonzero vector. Let m be an integer such that 0 < m < n.
Then the Krylov subspace of order m generated by A and u is defined as

Km(A,u) = span{u,Au,A2u, . . . ,Am−1u}.

Then, any vector x in Km(A,u) satisfies the following properties: first, x can
be expressed in the form x = Kmz for some z ∈ Rm; second, x automatically
belongs to Km+1(A,u) ; and thirdAx lies in Km+1(A,u).
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Proof. Assume that x ∈ Km(A,u). Then there exist coefficients α1, α2, . . . , αm

such that
x = α1u+ α2Au+ · · ·+ αmAm−1u.

Let z =
[
α1 α2 · · · αm

]T
, so that by definition x = Kmz. Moreover, by

appending a term 0 ·Amu, it follows that x ∈ Km+1(A,u). Finally, multiply-
ing by A gives

Ax = α1Au+ α2A
2u+ · · ·+ αmAmu,

which by definition lies in Km+1(A,u). This completes the proof.

In many applications, Krylov subspace methods are employed to solve the lin-
ear system Ax = b or to compute dominant eigenvalues and eigenvectors.
For instance, when solving Ax = b, one starts with an initial guess x0 and
computes the residual r0 = b−Ax0.

Note that the Krylov subspace is typically generated from the initial residual
r0 = b−Ax0, not from the initial guess x0 itself. Therefore, the Krylov-based
iterate xm is expressed as

xm = x0 + v, where v ∈ Km(A, r0).

It is not required that x0 ∈ Km(A, r0); rather, the method constructs a cor-
rection to x0 within the Krylov space. A correction vector z is then sought
from the Krylov subspace generated by r0, that is,

Km(A, r0) = span{r0,Ar0, . . . ,A
m−1r0}, such that the improved approxima-

tion x = x0 + z minimizes the norm ∥b−A(x0 + z)∥. Similarly, for eigenvalue
problems Av = λv, one generates the Krylov subspace from an initial vector
v0 and then constructs an orthonormal basis (using methods such as Arnoldi
or Lanczos) to project A onto a smaller subspace, where the eigenvalue prob-
lem is easier to solve.

In the context of PCA, the covariance matrix Σ of a zero-mean dataset X is
given by

Σ =
1

n− 1
XXT .

The eigenvectors of Σ represent the principal components, while the corre-
sponding eigenvalues quantify the variance along these directions. For large-
scale problems, computing a full eigendecomposition of Σ is often compu-
tationally prohibitive. Krylov subspace methods offer an efficient alterna-
tive by approximating the dominant eigenvectors through iterative matrix–
vector products [7]. These methods begin with a randomly chosen initial vec-
tor v ∈ Rn, and construct the Krylov subspace of order k as

Kk(Σ,v) = span{v,Σv,Σ2v, . . . ,Σk−1v}.
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This subspace captures increasing amounts of spectral information as k grows
and is especially effective for approximating the leading eigenvectors when the
spectrum of Σ is dominated by a few large eigenvalues. An orthogonalization
procedure, such as the Arnoldi or Lanczos algorithm (for symmetric matrices),
is used to form an orthonormal basis for this subspace. The covariance ma-
trix Σ is then projected onto this subspace, yielding a smaller matrix whose
eigendecomposition provides approximate principal components and their cor-
responding variances. This process is especially attractive for large, sparse
matrices where full eigendecomposition is computationally prohibitive.

It is worth noting that numerical challenges can arise in Krylov subspace
methods when the generated vectors become nearly linearly dependent. Such
near-dependencies, due to loss of orthogonality or poor conditioning of the
matrix, can hinder the accurate computation of eigenvalues and eigenvectors.
These issues are discussed in detail in [6].

Theorem 5 (Error Bound under Finite Precision in Krylov Subspace Meth-
ods). Let A be an n × n symmetric matrix with condition number κ(A) =
|λmax|/|λmin|, and suppose an orthonormal basis Q = [q1, q2, . . . , qm] for the
Krylov subspace Km(A, u) is computed via the Lanczos algorithm in finite pre-
cision arithmetic, so that:

∥Im −QTQ∥2 ≈ ϵ,

where ϵ denotes machine precision and ∥ · ∥2 is the spectral norm. If λ̃ is an
eigenvalue of the computed tridiagonal matrix T = QTAQ and λ is the cor-
responding true eigenvalue of A, then there exists a constant C, depending on
eigenvalue separation and algorithm specifics, such that:

|λ̃− λ| ≤ Cϵκ(A).

The spectral norm ∥Im − QTQ∥2 measures the loss of orthogonality in Q,
which is critical for the accuracy of eigenvalue approximations in PCA. Re-
orthogonalization techniques, such as Gram-Schmidt, are often used to ensure
∥Im −QTQ∥2 remains small, improving numerical stability.

Proof. In exact arithmetic, the Lanczos algorithm constructs an orthonor-
mal basis Q for Km(A, u) satisfying QTQ = Im, and the tridiagonal matrix
T = QTAQ has eigenvalues (Ritz values) approximating those of A. In finite
precision, rounding errors result in ∥Im−QTQ∥ ≈ ϵ, yet T is still computed as
tridiagonal.

Since QTQ = Im +G with ∥G∥ ≈ ϵ, write Q = US where S = (QTQ)1/2 ≈ Im
and U = QS−1 is orthonormal. Thus, T = QTAQ = SUTAUS. Approximat-
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ing S = Im +K with ∥K∥ ≈ ϵ, we get:

T = (Im +K)UTAU(Im +K) = UTAU + E,

where E = KUTAU + UTAUK +KUTAUK, and:

∥E∥ ≤ 2ϵ∥A∥+ ϵ2∥A∥ ≈ 2ϵ∥A∥.

For symmetric matrices, if λ̃ is an eigenvalue of T and µ an eigenvalue of
UTAU , perturbation theory gives:

|λ̃− µ| ≤ ∥E∥ ≈ 2ϵ∥A∥.

Since U is orthonormal and spans Km(A, u), µ approximates some eigenvalue
λ of A, with error |λ−µ| typically small in exact arithmetic. In finite precision
with ∥Im − QTQ∥ ≈ ϵ, subspace accuracy is maintained, suggesting |λ − µ| ≤
cϵ∥A∥. Thus:

|λ− λ̃| ≤ |λ− µ|+ |µ− λ̃| ≤ cϵ∥A∥+ 2ϵ∥A∥.

The relative error is:
|λ− λ̃|
|λ|

≤ (c+ 2)ϵ∥A∥
|λ|

.

Since ∥A∥ ≈ |λmax| and |λ| ≥ |λmin|, we have ∥A∥/|λ| ≤ κ(A), so:

|λ− λ̃|
|λ|

≤ (c+ 2)ϵκ(A).

Defining C = c + 2, where c depends on eigenvalue separation and subspace
quality, the bound holds. This completes the proof.

Overall, the use of Krylov subspace methods in PCA provides an efficient and
robust framework for approximating the principal components while signifi-
cantly reducing computational costs.

3.3 Relationship between Lanczos Algorithm and The
Conjugate Gradient Method

In order to elucidate the equivalence between the Lanczos algorithm and the
Conjugate Gradient (CG) method for solving Ax = b with A ∈ Rn×n sym-
metric positive definite, we decompose the argument into two key lemmas fol-
lowed by a corollary.
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Lemma 1 (Construction of the Krylov Subspace via Lanczos). Let A ∈ Rn×n

be a symmetric positive definite matrix and let r0 = b − Ax0 be the initial
residual for some initial guess x0. Define the Krylov subspace of order k as

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0}.

If we set q1 = r0/∥r0∥ and apply the Lanczos algorithm, then for j = 1, . . . , k,
the process generates an orthonormal basis

Qk = [q1, q2, . . . , qk]

for Kk(A, r0) and a tridiagonal matrix Tk ∈ Rk×k such that

AQk = QkTk + βkqk+1e
T
k ,

where ek is the k-th canonical unit vector, and the recurrence is given by

βj+1qj+1 = Aqj − αjqj − βjqj−1, j = 1, . . . , k,

with αj = qTj Aqj, β1 = 0, and βj chosen to normalize qj+1.

Proof. The Lanczos algorithm begins with q1 = r0/∥r0∥ and iteratively con-
structs an orthonormal basis for Kk(A, r0) using a three-term recurrence. For
each j, it computes v = Aqj and orthogonalizes v against the previous vectors.
Due to the symmetry of A, it suffices to orthogonalize against only qj−1 and
qj :

• Compute αj = qTj Aqj , the projection of Aqj onto qj .

• Subtract this projection: v′ = Aqj − αjqj .

• If j > 1, subtract the component along qj−1: v
′′ = v′ − βjqj−1, where

βj = qTj−1Aqj (and β1 = 0 for j = 1).

• Normalize the result: qj+1 = v′′/βj+1, where βj+1 = ∥v′′∥.

This recurrence, βj+1qj+1 = Aqj − αjqj − βjqj−1, ensures that qj+1 is orthog-
onal to all previous vectors q1, . . . , qj , since A’s symmetry implies qTi Aqj = 0
for |i− j| > 1. Thus, Qk is orthonormal, and Kk(A, r0) = span{q1, . . . , qk}.

Writing the recurrence for all vectors in matrix form, we have:

AQk = QkTk + βkqk+1e
T
k ,

where Tk is tridiagonal with diagonal entries α1, . . . , αk and off-diagonal en-
tries β1, . . . , βk. The term βkqk+1e

T
k accounts for Aqk’s component outside

Kk(A, r0). This construction is standard; see [8] or [9] for details.
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Lemma 2 (Representation of CG Iterates in the Krylov Subspace). For the
same system Ax = b and initial residual r0, the Conjugate Gradient method
generates an approximate solution xk in the affine space

x0 +Kk(A, r0).

Specifically, there exists yk ∈ Rk such that

xk = x0 +Qkyk.

Projecting the system onto the Krylov subspace via QT
k , we obtain

QT
kAQkyk = QT

k r0.

Since QT
kAQk = Tk and QT

k r0 = ∥r0∥e1 (with e1 the first canonical unit vec-
tor), this becomes

Tkyk = ∥r0∥e1.

Additionally, in CG, the search directions pj are A-conjugate, satisfying pTi Apj =
0 for i ̸= j, and are updated via

pj+1 = rj+1 + βjpj ,

starting with p0 = r0. The residuals satisfy rTi pj = 0 for i < j, ensuring the
Krylov subspace aligns with that from Lanczos.

Proof. The CG method minimizes the A-norm of the error, ∥xk − x∗∥A, over
x0+Kk(A, r0), where x

∗ = A−1b. Thus, xk = x0+Qkyk, with Qk an orthonor-
mal basis for Kk(A, r0). This minimization implies the residual rk = b − Axk
is orthogonal to Kk(A, r0):

QT
k rk = 0.

Since rk = r0 −A(xk − x0) = r0 −AQkyk, we compute:

QT
k rk = QT

k r0 −QT
kAQkyk = 0.

Given r0 = ∥r0∥q1 and QT
k q1 = e1, we have QT

k r0 = ∥r0∥e1. Since QT
kAQk =

Tk (from Lemma 1), this becomes:

Tkyk = ∥r0∥e1.

In CG, search directions pj are constructed to be A-conjugate, satisfying pTi Apj =
0 for i ̸= j. Starting with p0 = r0, the update pj+1 = rj+1 + βjpj (with βj
chosen to enforce conjugacy) ensures p0, . . . , pk−1 span Kk(A, r0). The residu-
als rj = b − Axj are orthogonal, rTi rj = 0 for i ̸= j, and rTi pj = 0 for i < j,
aligning with the orthogonality of Lanczos vectors qj (up to scaling).
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Corollary 1 (Equivalence of Lanczos and CG for Positive Definite A). For a
symmetric positive definite matrix A, the Conjugate Gradient (CG) method is
equivalent to solving the reduced tridiagonal system

Tkyk = ∥r0∥e1,

obtained from the Lanczos process. The normalized CG search directions are
equivalent, up to scaling, to the Lanczos vectors. Moreover, CG’s convergence
is bounded by:

∥xk − x∗∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x0 − x∗∥A,

where κ(A) = λmax(A)/λmin(A) is the condition number of A.

Proof. From Lemma 1, the Lanczos process constructs an orthonormal basis
Qk and a tridiagonal matrix Tk such that:

AQk = QkTk + βkqk+1e
T
k .

From Lemma 2, the CG method produces the iterate xk = x0 + Qkyk, where
yk satisfies the reduced system:

Tkyk = ∥r0∥e1.

Since both methods operate within the same Krylov subspace Kk(A, r0) and
solve the same reduced system, they are equivalent for symmetric positive def-
inite A.

The CG search directions pj are A-conjugate (i.e., pTi Apj = 0 for i ̸= j) and
span Kk(A, r0). These directions correspond to the Lanczos vectors qj , up to
scaling, because both sets form bases for the same subspace, with qj being
orthonormal and pj satisfying A-orthogonality. The convergence bound:

∥xk − x∗∥A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

∥x0 − x∗∥A,

arises from CG’s minimization of the A-norm of the error over Kk(A, r0),
leveraging Chebyshev polynomials, and depends on the condition number
κ(A); see Greenbaum (1997) for details.

Remark. If A is symmetric positive semi-definite rather than positive definite
(i.e., xTAx ≥ 0, with possible zero eigenvalues), the equivalence and conver-
gence guarantees no longer hold universally. Specifically: - The Lanczos pro-
cess remains valid, producing an orthonormal basis Qk and a tridiagonal Tk.
However, Tk may have zero eigenvalues corresponding to those of A, reflecting
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A’s singularity. - In CG, the step size involves terms like pTj Apj , which must

be positive for the algorithm to proceed. If A has zero eigenvalues, pTj Apj = 0
can occur for nonzero pj , causing the algorithm to break down due to unde-
fined steps. - The convergence bound becomes meaningless as λmin(A) = 0,
making κ(A) → ∞, which eliminates the guaranteed geometric error reduc-
tion.

Thus, while the Lanczos process can still function, the direct equivalence with
CG is lost, and CG may fail to converge or terminate prematurely. For semi-
definite systems, alternative methods like MINRES, which handle singularity,
are more appropriate.

3.4 The Best Low-Rank Matrix Approximation
(Eckart–Young–Mirsky Theorem)

Theorem 6 (Eckart–Young–Mirsky Theorem). Let A ∈ Rm×n have the sin-
gular value decomposition

A = UΣV T , with Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0),

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r = rank(A). For any k < r, define the
truncated SVD of A by

Ak = UΣkV
T , with Σk = diag(σ1, . . . , σk, 0, . . . , 0).

Then Ak is the best rank-k approximation to A in both the Frobenius norm
and the spectral norm, meaning that

∥A−Ak∥F =

√√√√ r∑
i=k+1

σ2
i and ∥A−Ak∥2 = σk+1,

and no other matrix B with rank(B) ≤ k satisfies ∥A − B∥ < ∥A − Ak∥ for
these norms.

Proof. The goal is to prove that Ak, the truncated SVD of A, minimizes the
approximation error ∥A − B∥ over all matrices B of rank at most k under
both the Frobenius norm (∥ · ∥F ) and the spectral norm (∥ · ∥2).

Both norms are unitarily invariant, meaning that for any orthogonal matrices
U and V , and any matrix X,

∥X∥ = ∥UTXV ∥.

This property, detailed in [10, 11], simplifies the problem significantly.

22



Consider the SVD of A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are
orthogonal, and Σ ∈ Rm×n is diagonal with entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0,
and σi = 0 for i > r. Let B be any matrix with rank(B) ≤ k. Since U and V
have full column rank, we can express B = UCV T , where C ∈ Rm×n satisfies
rank(C) ≤ k.

The approximation error is:

∥A−B∥ = ∥UΣV T − UCV T ∥ = ∥U(Σ− C)V T ∥.

By unitary invariance, this equals ∥Σ−C∥. Thus, we need to minimize ∥Σ−C∥
over all C with rank(C) ≤ k.

Since Σ is diagonal, we first justify why the optimal C can be taken as diago-
nal. For the Frobenius norm,

∥Σ− C∥2F =

min(m,n)∑
i=1

min(m,n)∑
j=1

(Σij − Cij)
2.

As Σij = 0 for i ̸= j, any non-zero off-diagonal Cij contributes positively
to the sum without reducing the diagonal terms (σi − Cii)

2. Hence, setting
Cij = 0 for i ̸= j minimizes the norm, making C diagonal. Similarly, for
the spectral norm (the largest singular value), off-diagonal elements in C can
increase ∥Σ − C∥2, and the optimal low-rank approximation to a diagonal
matrix is achieved with a diagonal C, as established in [11].

Thus, let C = diag(c1, c2, . . . , cp), where p = min(m,n), and ci are to be
determined, with at most k non-zero entries due to the rank constraint.

Then, for the Frobenius norm,

∥Σ− C∥2F =

p∑
i=1

(σi − ci)
2,

where σi = 0 for i > r. To minimize this, each ci should be as close as possi-
ble to σi, but since rank(C) ≤ k, at most k of the ci can be non-zero. Given
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, the optimal choice is ci = σi for i = 1, . . . , k, and
ci = 0 for i > k. Then:

• For i = 1, . . . , k: (σi − ci)
2 = (0)2 = 0,

• For i = k + 1, . . . , r: (σi − 0)2 = σ2
i ,

• For i > r: (0− 0)2 = 0.

Thus:

∥Σ− Σk∥2F =

r∑
i=k+1

σ2
i ,
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so ∥A − Ak∥F =
√∑r

i=k+1 σ
2
i , matching the theorem and consistent with

[12, 13].

The spectral norm ∥Σ− C∥2 is the largest singular value of Σ− C. By a stan-
dard result (e.g., Weyl’s inequalities in [11]), for any C with rank(C) ≤ k,

∥Σ− C∥2 ≥ σk+1.

When C = Σk, Σ − Σk = diag(0, . . . , 0, σk+1, . . . , σr, 0, . . . , 0), whose largest
singular value is σk+1. Thus, ∥A−Ak∥2 = σk+1, achieving the lower bound.

For any B with rank(B) ≤ k, ∥A − B∥F ≥ ∥A − Ak∥F and ∥A − B∥2 ≥
∥A − Ak∥2, with equality only if B matches Ak’s action on the top k singu-
lar directions (up to unitary transformations). Hence, Ak is the best rank-k
approximation.

4 The Ubaru algorithm

Building on the mathematical and computational foundations established
in Sections 2 and 3, we now introduce the Ubaru Algorithm. This novel ap-
proach synergizes PCA with Krylov subspace methods, aiming to improve
both computational efficiency and accuracy in high-dimensional settings.

The algorithm, from now labelled as the Ubaru algorithm[2], under investi-
gation introduces a randomized approach to the PCA and Krylov subspace
methodology, merging both techniques to obtain an efficient solution.

Randomization in this context refers to the use of random vectors in the ini-
tial stages of the method, offering a probabilistic guarantee of capturing dom-
inant features of the data.What sets this algorithm apart is its unique stop-
ping criterion. Instead of relying solely on traditional eigenvalue thresholds, it
employs a model selection framework derived from random matrix perturba-
tion theory. In essence, this stopping criterion assesses the significance of each
principal component by considering its inherent randomness, thus providing a
more nuanced and potentially robust decision on when to halt the dimension-
ality reduction process.[7]

This approach not only offers a potential speedup over traditional PCA meth-
ods but also provides a deeper understanding of the inherent structure of the
data, thanks to the insights from random matrix theory and Krylov subspaces.[7]

In conclusion, by merging traditional PCA techniques with Krylov subspace
methodologies and incorporating a randomized approach, the algorithm offers
an innovative way to tackle the challenges of high-dimensional data analysis.
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Its unique stopping criterion, grounded in random matrix perturbation theory,
promises a fresh perspective on dimensionality reduction and its implications.

4.1 Theoretical Advancements and Mathematical Inno-
vations behind the Ubaru Algorithm

This section aims to bridge the gap between the conceptual introduction of
the Ubaru Algorithm and its detailed operational framework.

Leveraging the foundational principles of the Lanczos algorithm 4.1, particu-
larly its efficient use of Krylov subspaces for projection, the Ubaru Algorithm
advances the field of dimensionality reduction by incorporating these concepts
with an innovative iterative refinement and selection process. This approach
employs an Information Criterion (IC) to determine the optimal number of di-
mensions, ensuring an efficient balance between dimensionality reduction and
the preservation of significant data characteristics.

The Ubaru Algorithm:[14]

1. Initialize IC = zeros(p, 1); Q = [ ]; k = 1; m = log(p)/
√
ϵ.

2. For k = 1 to p do

(a) Generate a random vector vk with ∥vk∥2 = 1.

(b) K = 1
n [Xvk; (XX

T )Xvk; . . . ; (XX
T )m−1Xvk].

(c) Q = orth([Q;K]), Q = Q(:, 1 : k).

(d) T = 1
nQ

TXXTQ.

(e) [V,Θ] = eig(T ).

(f) IC(k) = n
(
∥X∥2F −

∑k
i=1 Θi

)
− Cn

(p−k)(p−k+1)
2 .

(g) If (k > 1 and IC(k) > IC(k − 1)) then break.

3. End for

4. q = k − 1. Output q and Y = QV .

This approximation hinges on several critical parameters: the noise variance
denoted by σ, a regularization or penalty parameter Cn, and an error toler-
ance ϵ. The goal is to distill the essence of the data into a lower-dimensional
space, encapsulated by a dimension q and the corresponding principal sub-
space approximation Yq.

The journey begins with the initialization of several key components. An In-
formation Criterion vector, IC, is set to zero for each feature dimension, pro-
viding a basis for evaluating the efficacy of the dimensionality reduction at
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each step. An empty matrix Q is prepared to store orthogonal vectors that
will span the principal subspace. The iterative process is kick-started with a
counter k = 1, and a parameter m = log(p)/

√
ϵ is calculated to govern the

number of power iterations, a reflection of the balance between accuracy and
computational efficiency. Furthermore, a formula Φ combines norms of the
data matrix, noise variance, and a parameter ρ, setting the stage for the itera-
tive optimization process.

The Ubaru algorithm unfolds in a loop, iterating over each dimension from
1 to p. Within each iteration, a random unit vector Vk is generated to initi-
ate the exploration of the data’s structure. This vector undergoes a series of
matrix-vector products involving X and its transpose, enhancing its alignment
with the principal directions of the data. The algorithm then orthogonal-
izes a temporary matrix K against the current basis Q, refining the subspace
spanned by Q. Following this, the projection T of the data onto the orthogo-
nal vectors in Q is computed, from which the eigenvectors V and eigenvalues
Θ are extracted. These eigenvectors and eigenvalues encapsulate the principal
components of the data in the current iteration. The Information Criterion IC
is updated to reflect the contribution of the current dimension, incorporating
the eigenvectors, eigenvalues, and noise variance into its calculation. A pivotal
decision point arrives when the Information Criterion suggests that adding
more dimensions no longer enhances the model, marked by IC(k) > IC(k − 1)
for k > 1, prompting a break from the loop.

Upon completion of this iterative exploration, the algorithm settles on an op-
timal dimensionality q = k − 1, signifying the identification of a subspace that
balances dimensionality reduction with the retention of significant data char-
acteristics. The output of this process is not just the dimension q but also the
approximation to the principal subspace Y = QV , marking the culmination of
a sophisticated yet efficient approach to uncovering the underlying structure
of high-dimensional data. Through this meticulous algorithmic journey, in-
formed by the insights of Ubaru et al., we navigate the complexities of dimen-
sionality reduction, achieving a nuanced understanding of the data’s principal
components.

After outlining the operational steps of the Ubaru Algorithm, we now focus
on a critical component of its design—the stopping criterion. This next sec-
tion details how the Information Criterion is integrated into the algorithm to
balance dimensionality reduction with information retention.

4.2 Stopping Criteria of the Ubaru Algorithm

Continuing with the exploration of dimensionality reduction and principal
component analysis, a critical component in determining the optimal num-
ber of dimensions to retain is the Information Criterion (IC). IC is designed
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for a specific purpose: to balance model complexity and accuracy in determin-
ing the optimal number of dimensions. While other criteria like the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) also
aim to balance fit and complexity, they do so through different mathematical
formulations and penalization approaches.

The IC is mathematically defined as:

IC(k) = n

(
Φ−

k∑
i=1

(θi − σ)
2

)
− Cn

(p− k)(p− k − 1)

2
, (3)

where Φ is a composite measure that incorporates the data matrix X, its
noise variance σ, and the dimensionality p of the feature space, given by:

Φ =
1

n2∥X∥4F
− 2σ

∥X∥2F
+ pσ2. (4)

encapsulating the balance between the magnitude of the data, as measured by
the Frobenius norm |X|F , and the inherent noise variance. Let us prove the
strong strong consistency of k.

Theorem 7 (Strong Consistency of k̂). Let k̂ be the estimator defined as

k̂ = argmin
k

IC(k),

where IC(k) denotes the information criterion evaluated at model dimension

k. Then, under the conditions specified in [2], k̂ converges almost surely to the
true parameter k0 as the sample size n tends to infinity.

Proof. The proof proceeds by contradiction, by considering two cases.

Case 1: k̂ > k0.

Assume k̂ > k0. Consider the difference between the information criteria at k̂
and k0:

IC(k̂)− IC(k0) =
n

2σ2
0

 p∑
i=k̂+1

(λi − σ)2 −
p∑

i=k0+1

(λi − σ)2


− Cn

(
(p− k̂)(p− k̂ − 1)

2
− (p− k0)(p− k0 − 1)

2

)

= − n

2σ2
0

k̂∑
i=k0+1

(λi − σ)2 − Cn

(
(k̂ − k0)(k̂ + k0 − 2p+ 1)

2

)
.
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Normalizing by n and applying the law of the iterated logarithm to the λi, we
deduce that as n → ∞ the difference IC(k̂) − IC(k0) becomes negative. This

contradicts the assumption that k̂ minimizes the information criterion. Hence,
k̂ > k0 cannot occur for large n almost surely.

Case 2: k̂ < k1.

Now, assume k̂ < k1, for some k1 with k0 < k1. The difference between the
information criteria at k̂ and k1 is given by

IC(k̂)− IC(k1) =
n

2σ2
0

 p∑
i=k̂+1

(λi − σ)2 −
p∑

i=k1+1

(λi − σ)2


− Cn

(
(p− k̂)(p− k̂ − 1)

2
− (p− k1)(p− k1 − 1)

2

)

=
n

2σ2
0

(k1 − k̂)O

(√
log log n

n
σ

)
− Cn

(
(k̂ − k1)(k̂ + k1 − 2p+ 1)

2

)
.

Normalizing by Cn and letting n increase, the above difference also becomes
negative, contradicting the assumption that k̂ minimizes the information crite-
rion. Therefore, k̂ < k1 cannot hold for large n almost surely.

Since both k̂ > k0 and k̂ < k1 lead to contradictions, it follows that k̂ must
converge almost surely to k0 as n tends to infinity.

This establishes the strong consistency of the estimator k̂, ensuring that the
probability of k̂ diverging from k0 is zero in the limit.

For an example, let’s consider a sports analytics dataset where X represents
various performance metrics of athletes, such as speed, endurance, and strength,
across different sports, with p being the number of these metrics and n the
number of athletes. The noise variance σ captures variability in performance
due to factors like equipment quality, weather conditions, and day-to-day ath-
lete condition.

Applying Φ to this dataset, the term 1
n2|X|4F

could undervalue the dataset

when the performance metrics are inherently varied and high. The component
− 2σ

|X|2F
attempts to adjust for noise, but might not fully account for the com-

plex ways in which external factors influence performance metrics. Lastly, the
term pσ2 suggests that adding more performance metrics linearly increases
the complexity of the dataset, which may not accurately reflect the nuanced
way in which different metrics interact to explain athlete performance.

Further dissecting the IC formula, the summation
∑k

i=1 (θi − σ)
2
aggregates

the squared deviations of the eigenvalues θi from the noise variance σ for the
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first k principal components. This summation effectively captures the total
variance explained by these components, adjusted for the noise, thus quantify-
ing the data representation’s fidelity up to the k-th dimension.

The regularization term −Cn
(p−k)(p−k−1)

2 introduces a nuanced penalty mech-
anism. Through the parameter Cn, it imposes a cost on the model’s complex-
ity, growing as the number of retained components decreases. This design in-
herently discourages the retention of superfluous components, aligning the
model towards simplicity and robustness against overfitting.

The algorithm employs this IC as a critical decision-making tool. By evaluat-
ing the IC at each iteration and comparing it with the previous step’s value,
the algorithm identifies the moment when the inclusion of additional compo-
nents ceases to yield proportional benefits in terms of explained variance, after
accounting for the complexity penalty. This decision point marks the optimal
balance between model simplicity and explanatory power, where each compo-
nent’s inclusion is justified by a tangible improvement in data representation.

In essence, the IC encapsulates a comprehensive evaluation of the trade-offs
involved in principal component selection. It harmonizes the insights drawn
from the data’s inherent structure, the impact of noise, and the penalties asso-
ciated with model complexity. Through this criterion, the algorithm navigates
the intricate landscape of dimensionality reduction, stopping at the juncture
where extending the model no longer aligns with the principles of parsimony
and effectiveness in capturing the essence of the data. This methodology,
rooted in a deep understanding of the data and its characteristics, ensures
that the derived subspace is both representative and efficient, embodying the
core objectives of principal component analysis.

4.3 Comments and Insights

Exploring the algorithm’s design reveals its grounding in sophisticated statis-
tical theories and its adaptation to practical scenarios. This exploration un-
covers a series of insights and considerations that are pivotal for understand-
ing and implementing the algorithm effectively.

The Ubaru algorithm builds on classical multivariate statistics, using the sam-
ple covariance matrix Sn as a consistent estimator for the true covariance ma-
trix Σ. This approach, grounded in foundational results from Muirhead [4],
highlights the importance of statistical consistency for reliable dimensionality
reduction and principal component analysis.

Further, the algorithm employs eigendecomposition and perturbation tech-
niques to dissect the covariance matrices. The reliability of the top q eigenvec-
tors Gq, as assured under specific conditions, is a testament to the method’s
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robustness, drawing on principles from Saad’s research [15]. This step is cru-
cial for isolating significant components of the data’s variance structure, pro-
viding a clear pathway to dimensionality reduction.

Central to the algorithm’s decision-making process is the Information Crite-
rion (IC), which synthesizes the estimated noise variance, eigenvalues of the
sample covariance matrix, and a regularization parameter Cn. This criterion,
detailed by Ubaru et al. [2], guides the algorithm to halt when further im-
provements in IC do not justify the inclusion of additional principal compo-
nents, thus identifying the optimal dimensionality for the data representation.

Employing Krylov subspace methods enhances the algorithm’s efficiency in
computing the partial spectrum of large matrices. This technique, pivotal for
managing computational resources, is guided by the error tolerance ϵ and the
number of power iterations m, reflecting Saad’s contributions to numerical
linear algebra [16].

In dimensionality reduction, choosing the right noise variance (σ) and regu-
larization parameter (Cn) is crucial for making the algorithm work well, as
highlighted by Ubaru in his thesis. These parameters are key to balancing
how accurate and complex our model is. For example, in datasets with lots
of zeros (sparse data), a smaller σ helps to keep important details from being
lost, while the right Cn prevents the model from getting too complicated and
focusing on irrelevant data. Practically, finding the best values for σ and Cn

often involves using cross-validation, tapping into what experts know about
the data, and refining choices based on trial and error. This approach ensures
the model is both accurate and manageable.[14]

The algorithm’s utility in finite samples, despite its design for asymptotic ac-
curacy, is another vital aspect. Its performance in practical scenarios hinges
on the conditions for correctly estimating principal components, as evidenced
by foundational statistical theory [17]. This consideration ensures the algo-
rithm remains relevant and applicable across various data scales and condi-
tions.

Lastly, the computational cost, influenced by factors such as the sparsity of
the data matrix, the dimension q, and the number of iterations m, under-
scores the algorithm’s efficiency. Particularly for sparse data or when q is
small relative to the number of features p, this aspect becomes crucial, en-
suring the method’s applicability in large-scale data analysis scenarios [18].

These insights and considerations, derived from theoretical derivations and
practical applications, underscore the algorithm’s complexity and sophistica-
tion. They highlight the importance of statistical consistency, computational
efficiency, and careful parameter selection, ensuring the algorithm’s robustness
and reliability in extracting meaningful insights from high-dimensional data.
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4.4 Implementation of the Ubaru Algorithm in Matlab

Delving into the nuanced realm of dimensionality reduction, the Krylov subspace-
based dimension estimation algorithm emerges as a sophisticated tool de-
signed to distill the essence of a data matrix X into an estimated dimension
q and its corresponding principal subspace Yq. Initiated with inputs such as
the data matrix X, noise variance σ, and potentially augmented by a regu-
larization parameter Cn and an error tolerance ϵ, this algorithm is poised to
tackle the challenges posed by complex datasets [16].

The heart of this algorithm beats within the realms of a Krylov subspace
method, a choice that imbues the process with the precision and efficiency re-
quired for large-scale eigenvalue problems. This method, when intertwined
with an information criterion, provides a robust framework for navigating
the intricacies of dimension estimation. The methodology’s efficacy is fur-
ther demonstrated through the generation of outputs that not only quantify
the reduced dimension q but also articulate the structure of Yq, offering a lens
through which the data’s fundamental characteristics can be observed and an-
alyzed.

A hallmark of this algorithm’s design is its implementation using the Lanczos
method, a decision that underscores its adaptability to large datasets and its
resilience in the face of data variability. This implementation detail, coupled
with a conscientious incorporation of noise considerations, speaks volumes
about the algorithm’s robustness, ensuring its performance remains steadfast
across diverse data landscapes [19].

4.4.1 The Ubaru Algorithm Depiction

Below, I provide a concise discussion of the Ubaru Algorithm. For details on
the fully operationalized code, consult the appendix Details in Appendix.

Initially, a synthetic data matrix X is generated employing sparse matrix
techniques, with added noise to closely emulate real-world data scenarios. Es-
sential parameters such as the dimensions n and k, the noise level σnoise, and
the number of Lanczos steps msteps are specified to set the foundation for the
subsequent rank estimation process.

Rank Estimation via Krylov Subspace Method
The process begins by initializing the Information Criterion IC array along-
side parameters that include the Frobenius norm of X (∥X∥2F ), facilitating the
approximation quality monitoring.

An empty set for the orthonormal basis V and an empty tridiagonal matrix T
are prepared.

31



Throughout each iteration, from 1 to a predefined maximum rank, the algo-
rithm performs a Lanczos update to enrich the basis V with new vectors de-
rived from the data matrix X, simultaneously updating the matrix T to mir-
ror the structure of the Krylov subspace.

The eigenvalues θ of the updated tridiagonal matrix T are computed, and the
information criterion IC(k) is updated accordingly, based on these eigenvalues
and the norm of X.

The stopping criterion is evaluated based on the progression of the Informa-
tion Criterion; if IC(k) begins to increase, suggesting diminishing returns on
further rank estimation, the iteration is terminated. The estimated rank is
then determined as q = k − 1, where k is the iteration count at which the loop
was exited.

Output and Visualization
Finally, the singular values of X are computed and plotted to visualize the
results of the rank estimation. The estimated rank q is highlighted on the plot
to offer a visual confirmation of the algorithm’s effectiveness, providing an
insightful representation of the underlying data structure as perceived through
the lens of the Krylov subspace method.

4.4.2 Reproducing Results Using the Ubaru Algorithm

In this section, we present efforts to reproduce the results from the disserta-
tion titled Algorithmic ”Advances in Learning from Large Dimensional Matri-
ces and Scientific Data” by Shashanka Ubaru. The dissertation focuses on the
Krylov Subspace method, specifically the discussed algorithm, for numerical
rank estimation in large matrices. [14]

Experiment Setup
The experiment aims to replicate the findings in Table 4.1 of the dissertation,
detailing the performance of the Krylov Subspace method when applied to
synthetic sparse random matrices. The setup involves varying parameters
such as matrix size n, actual and estimated numerical rank q and q̃, signal
strength λq, noise level σ, Frobenius norm error, and runtime of the algo-
rithm. [14]

Methodology
We constructed synthetic sparse random matrices in the form X = AΛAT +N ,
where A is a sparse signal matrix, Λ a diagonal matrix, and N a Gaussian
sparse random matrix. The number of Lanczos steps per iteration was fixed
at m = 10. [14]

We compare the results to the reproduction efforts with those reported in the
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dissertation in the following table:

Table 1: Comparison of Dissertation and Reproduction Results

Parameter n Actual q λq Estimated q̃ ∥A− YqY
′
qX∥F Runtime (secs)

Dissertation 500 50 5 50 1.1e4 0.72 secs
Reproduction 500 50 5 50 879.51 1.66 secs

Dissertation 4000 100 2 100 5.0e4 20.56 secs
Reproduction 4000 100 2 100 5057 66.7 secs

Comparison and Discussion of Results
The operationalized algorithm in MATLAB does not fully replicate the disser-
tation’s results; however, it demonstrates noteworthy aspects:

The MATLAB-based implementation of the Krylov subspace dimension esti-
mation algorithm, juxtaposed with findings from the original dissertation, un-
folds a complex narrative. While it doesn’t perfectly echo the dissertation’s
outcomes, it elucidates several critical aspects. Notably, the algorithm ex-
hibits precision in rank estimation for synthetic sparse data matrices, aligning
with the dissertation’s findings and underscoring its adeptness at discerning
dimensionality in sparse scenarios.

However, an unexpected divergence surfaces in the Frobenius norm error met-
rics; the reproduction reports significantly lower errors—879.51 versus the
dissertation’s 11,000 for n = 500 and q = 50, and 5057 against 50,000 for
n = 4000 and q = 100. This discrepancy not only questions the initial hy-
pothesis but also hints at possible variances in data generation, algorithmic
implementation, or computational environments between the two studies.

This observation propels a reevaluation of the MATLAB implementation’s ef-
ficiency, particularly in handling errors for sparse synthetic data, suggesting
a potential edge in specific conditions or under certain optimizations. Addi-
tionally, despite a runtime uptick in larger-scale experiments, the consistent
performance reaffirms the algorithm’s scalability and operational reliability,
positioning it as a formidable tool for analyzing extensive datasets.

In essence, the MATLAB replication, despite its variance in error metrics,
reaffirms the algorithm’s rank estimation fidelity and opens new dialogues on
its error management efficacy. This divergence beckons further exploration
into algorithmic fine-tuning and methodological adaptations, promising to
deepen the collective grasp on the Krylov Subspace method’s applications in
sparse data analysis.
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5 Review of Stopping Criteria

In this section, we examine various stopping criteria and introduce a novel cri-
terion, which serves as a hybrid of existing ones. Consequently, we question
whether this new criterion offers greater efficiency compared to the Informa-
tion Criterion (IC) suggested by Ubaru.

5.1 Introduction

In the exploration [20] of dimensionality reduction techniques like Principal
Component Analysis (PCA), the strategy for halting the inclusion of compo-
nents, termed stopping criteria, plays a vital role. The scholarly landscape
offers a spectrum of these criteria, each designed to pinpoint the optimal com-
ponent count in a nuanced manner. For instance, the Eigenvalue Threshold
method advocates for retaining components whose eigenvalues exceed a cer-
tain benchmark, typically one, underlining the belief that such components
significantly contribute to the dataset’s variance. Conversely, the Percentage
of Total Variance approach opts for a cumulative variance coverage, such as
95% or 99%, as the determinant for component selection, ensuring a substan-
tial proportion of the data’s variability is encapsulated.

Furthermore, the Scree Plot introduces a visual tactic by plotting eigenvalues
in descending order, seeking the ’elbow’ where the slope flattens as a natural
demarcation for component relevance. Parallel Analysis, on the other hand,
benchmarks the dataset’s eigenvalues against those from randomly generated
datasets, a method that inherently incorporates randomness to guard against
overestimation of component count. The Minimum Average Partial (MAP)
Criterion delves into the correlations among variables, identifying the num-
ber of components to extract before the average squared partial correlation
reaches its nadir, thereby acknowledging the data’s underlying structure.

These criteria are not without their strengths and weaknesses, as outlined in
the literature [20]. The simplicity and ease of implementation of the Eigen-
value Threshold are balanced by its potential arbitrariness and possible de-
tachment from the data’s intrinsic structure. The intuitive appeal of the Per-
centage of Total Variance and Scree Plot methods is occasionally marred by
their subjective nature and reliance on arbitrary cutoffs. Parallel Analysis,
while robust against overestimation, demands considerable computational re-
sources, and its outcomes can be swayed by the choice of random datasets.
The MAP Criterion, although thorough in considering data structure, might
present complexities in understanding and application.

Selecting an apt stopping criterion hinges on a confluence of theoretical and
practical considerations, including the data’s nature, the analysis’s objectives,
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computational constraints, and the need for interpretability. The nature of the
data—whether it possesses a strong underlying structure—may favor methods
like Parallel Analysis, while the primary goal of the analysis, whether for visu-
alization or rigorous data reduction, could influence the choice towards more
intuitive or quantitative criteria.

In sum, the selection among these diverse stopping criteria necessitates a tai-
lored approach, harmonizing the analysis’s specific demands with both the
theoretical underpinnings and practical feasibilities. This balanced consider-
ation ensures the chosen criterion not only aligns with the dataset’s charac-
teristics but also with the broader objectives of the dimensionality reduction
endeavor.

In light of the limitations and challenges observed with the traditional stop-
ping criteria, this section proposes novel alternatives that potentially address
these issues. Each criterion’s theoretical underpinning and mathematical jus-
tification will be explored to provide a comprehensive understanding of its
potential benefits and application.

5.2 Information Theoretic Criterion

The Information Theoretic Criterion in PCA embodies a nuanced approach
towards balancing the maximization of information content against the inher-
ent loss entailed in dimensionality reduction. This methodology, rooted deeply
in the principles of information theory, pivots on the entropy of the data dis-
tribution to quantify the uncertainty or randomness inherent in a dataset X.
Entropy serves as a measure of this uncertainty, with its calculation in the
PCA context reflecting the variance of data projected along principal compo-
nents [21].

Given a dataset X, with its variance-covariance matrix having eigenvalues
λ1, λ2, . . . , λp, the goal of PCA is to select k principal components that max-
imize the retained information while minimizing the dimensionality of the
transformed data. The information content can be quantified by entropy, H,
which is calculated as:

H = −
k∑

i=1

λi∑p
j=1 λj

log

(
λi∑p
j=1 λj

)
,

where λi are the eigenvalues corresponding to the variance captured by each
principal component, and k is the number of principal components selected.

The optimization problem can then be stated as:

max
k

H = −
k∑

i=1

λi∑p
j=1 λj

log

(
λi∑p
j=1 λj

)
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subject to:
1 ≤ k ≤ p,

where p is the total number of principal components (or the dimensionality of
X) before reduction, and k is the number of principal components chosen to
represent the data after dimensionality reduction.[21]

This optimization problem seeks to find the value of k that provides the best
balance between information retention (as quantified by entropy) and dimen-
sionality reduction. It involves selecting the top k eigenvalues (and thus prin-
cipal components) that capture the most variance of the data, which corre-
sponds to maximizing the entropy H, reflecting the information content of the
reduced-dimensionality data. This selection process aims to keep the trans-
formed data as informative as possible while reducing its complexity.

5.3 Spectral Density Estimation Criterion

The spectral density estimation criterion excels in high-dimensional data anal-
ysis, offering insights into variance distribution across dimensions. It’s ideal
for dimensionality reduction, identifying informative features, and noise re-
duction in datasets where discerning signal from noise is crucial. This crite-
rion is most effective when linear relationships dominate, aiding in optimizing
data representation and enhancing machine learning models by focusing on
the most significant dimensions. It’s particularly useful in exploratory data
analysis and when preparing data for complex analyses, ensuring critical in-
formation is preserved while redundant details are minimized.. This criterion
delves into the eigenvalue spectrum of the covariance matrix C, leveraging the
distribution of eigenvalues λ1, λ2, . . . , λp to shed light on the data’s underlying
structure [22].

Spectral density, in this scenario, encapsulates the eigenvalue distribution of
C, offering insights into the variance across different dimensions. The formula-
tion of spectral density f(λ) as

f(λ) =
1

p

p∑
i=1

δ(λ− λi),

where δ denotes the Dirac delta function, serves as a quantitative representa-
tion of how eigenvalues are dispersed, highlighting the empirical distribution
of these crucial markers of variance [22].

Estimation of spectral density can employ methodologies like kernel density
estimation or principles from random matrix theory, aiming to smooth out the
empirical distribution f̂(λ) to discern the data’s signal from noise. This esti-
mation seeks to pinpoint ’edges’ within the eigenvalue spectrum, zones where
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a significant shift from larger (signal) to smaller (noise) eigenvalues occurs,
thus identifying components that are truly informative [22].

The stopping condition for component selection, thus, revolves around analyz-
ing f̂(λ) to identify the largest eigenvalue λk that stands distinctly apart from
the spectrum’s bulk, marking the transition from signal to noise. Such a crite-
rion not only mathematically substantiates the bifurcation of signal and noise
within the dataset but also illuminates the intrinsic dimensionality critical for
PCA’s dimensionality reduction goals [22].

In essence, the Spectral Density Estimation Criterion introduces a methodical,
mathematically grounded approach to discerning significant principal compo-
nents within PCA. By focusing on the eigenvalue spectrum and its nuanced
interpretation, it delineates a path to differentiating meaningful components
from the superfluous, thus enhancing PCA’s efficiency and interpretability.
This criterion, anchored in the principles of statistical signal processing and
random matrix theory, ensures a principled analysis that profoundly respects
the data’s spectral properties, offering a clear vista into the dimensionality
and structure intrinsic to the dataset.

5.4 Matrix Perturbation-based Criterion

Within the framework of Principal Component Analysis (PCA), the Matrix
Perturbation-based Criterion introduces an advanced objective: to identify
orthogonal principal components that not only maximize the variance of the
projected data but also demonstrate resilience to data perturbations. This
dual focus acknowledges the inevitability of noise and minor alterations within
real-world datasets, aiming to ensure the derived components remain robust
under such conditions [23].

The essence of matrix perturbation lies in evaluating the stability of princi-
pal components against slight modifications to the original data matrix A,
yielding a perturbed variant A′. The stability measure δ, defined as the norm
difference ∥A − A′∥, quantifies the impact of these perturbations, with norms
like the Frobenius norm offering a practical measure of deviation [23].

Eigenvalue perturbation theory underpins this criterion by establishing that
minor adjustments to the matrix induce proportional shifts in its eigenval-
ues and eigenvectors. Since PCA’s principal components are directly derived
from the eigenvectors of the covariance matrix, the criterion prioritizes com-
ponents that exhibit minimal variation in their eigenvalues and eigenvectors in
response to perturbations [23].

Stability assessment hinges on monitoring the eigenvalues and eigenvectors’
responsiveness to changes, employing theoretical constructs such as the Davis-
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Kahan theorem for a precise quantification of stability. The algorithm identi-
fies an optimal stopping point by scrutinizing the stability measure δ, with a
significant uptick in δ signaling a component’s instability or susceptibility to
noise, thereby guiding the decision to exclude such components from the final
model[23].

This approach underscores the importance of robustness in the components
selected by PCA, positing that stability amidst perturbations signifies a com-
ponent’s authenticity in capturing the data’s inherent structure, rather than
mere artifacts or noise. Moreover, it emphasizes the generalizability of stable
components, positing that their consistency across varied conditions renders
them more reliable for depicting the true data structure[23].

In conclusion, the Matrix Perturbation-based Criterion enriches PCA with a
mathematically solid strategy for component selection, integrating eigenvalue
perturbation theory to safeguard against the inclusion of components that,
while potentially variance-maximizing, lack stability and might not accurately
represent the underlying data structure. This criterion thus elevates the gen-
eralizability and reliability of PCA, ensuring the model’s efficacy in capturing
genuine data characteristics amidst the omnipresent challenge of dataset per-
turbations.

5.5 Optimizing PCA with Cross-Validation: A Mathe-
matical Perspective

Theorem 8 (Optimality of the PCA Projection Matrix). Let X ∈ Rn×p be a
centered data matrix. Consider the optimization problem

max
W∈Rp×k

Tr(WTXTXW ) subject to WTW = I.

Then, a maximizer W ∗ exists and is given by the matrix whose columns are
the eigenvectors corresponding to the k largest eigenvalues of XTX. Moreover,
the gradient of the function

f(W ) = Tr(WTXTXW )

with respect to W is given by

∇W f(W ) = 2XTXW.

Proof. Since the set
{W ∈ Rp×k :WTW = I}

(i.e., the Stiefel manifold) is compact and f(W ) is continuous, the Weierstrass
theorem guarantees the existence of a maximizer.
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An alternative argument relies on matrix analysis. Extend the columns of W
to form an orthogonal matrix W̃ ∈ Rp×p. Then, the matrix

W̃⊤(XTX)W̃

has the same eigenvalues as XTX, and WT (XTX)W is a principal submatrix
of it. By the Cauchy Interlacing Theorem (see Proof), for each j = 1, . . . , k,

λj(X
TX) ≥ λj

(
WT (XTX)W

)
.

Summing these inequalities over j shows that

k∑
j=1

λj(X
TX) ≥ Tr

(
WT (XTX)W

)
.

Thus, the maximum of Tr(WTXTXW ) is attained when W consists of the
eigenvectors corresponding to the k largest eigenvalues of XTX.

Finally, because XTX is symmetric, standard results in matrix calculus yield

∇W Tr(WTXTXW ) = 2XTXW.

Constructing a Practical Solution. While this theorem identifies the op-
timal rank-k subspace (the one spanned by the top k eigenvectors of XTX),
it does not by itself specify how to compute those eigenvectors in practice.
In the next part, we present the steps and proofs that underlie a practical
method for obtaining W ∗. We then integrate cross-validation to choose the
number of principal components k.

Reconstruction Error and Cross-Validation. The reconstruction error in
PCA is defined as

E(k) = ∥X −XW WT ∥2F ,

which quantifies the loss incurred when projecting X onto the subspace spanned
by the columns of W . Cross-validation is then used to determine the optimal
number of principal components k∗ by partitioning the data and selecting the
k that minimizes the average reconstruction error over the validation sets [20].
This data-driven approach balances model complexity with reconstruction fi-
delity, thereby enhancing generalizability.

Hence, by leveraging the above theoretical result in tandem with a construc-
tive eigen-decomposition (or SVD) and a cross-validation scheme, we obtain
both a rigorous foundation for PCA and a practical strategy for model selec-
tion.
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5.6 Justification for the Use of Hybrid Spectral Density
Estimation Criterion

Historically, criteria such as the Eigenvalue Threshold, Percentage of Total
Variance, Scree Plot, Parallel Analysis, and the Minimum Average Partial
(MAP) Criterion have provided frameworks for determining the stopping
point in PCA. These methodologies range from heuristic to statistically rig-
orous approaches, each with its unique perspective on capturing the essence of
the data’s structure and variance.

While these criteria have proven effective in various contexts, they are not
without limitations. For instance, the Eigenvalue Threshold and Scree Plot
are somewhat subjective and may not consistently capture the underlying
data complexity across different scenarios. On the other hand, Parallel Anal-
ysis and the MAP Criterion, despite their robustness, might present computa-
tional challenges and interpretability issues.

Given these considerations, an alternative stopping criterion that seeks to ad-
dress these limitations, while harnessing the strengths of existing methods,
is justified. The criterion is inspired by the Information Theoretic Criterion
(IC), which utilizes entropy to balance information content against dimension-
ality reduction. However, the new approach diverges from the IC by incor-
porating insights from spectral density estimation and matrix perturbation
theories to enhance the criterion’s adaptability and robustness, particularly in
the face of high-dimensional and noisy datasets.

The motivation stems from the desire to offer a more dynamic and context-
sensitive criterion that adapts to the varying signal-to-noise ratios inherent
in real-world data, providing a more nuanced understanding of the dataset’s
structure. Furthermore, it ensures robustness by factoring in the stability of
principal components against data perturbations, thereby enhancing the relia-
bility of the dimensionality reduction process. Finally, using the spectral den-
sity estimation to systematically identify the transition from signal-dominant
to noise-dominant eigenvalues, offers a data-driven approach to determining
the number of components.Mathematical results for KDE

Compared to the Information Criterion proposed by Ubaru, the alternative
criterion offers several advantages. By integrating spectral density insights,
the criterion dynamically adjusts to the data’s inherent complexity, providing
a tailored approach to component selection. The incorporation of matrix per-
turbation analysis ensures that the selected components are not only informa-
tive but also stable, making the PCA outcome more reliable across different
applications.

In line with the above discussion, an outlined stopping criteria based on spec-
tral edge detection should be feasible. The principal aim of employing spec-
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tral edge detection is to accurately identify the inherent dimensionality of the
data. This method efficiently separates the significant eigenvalues that rep-
resent the true signal from the lesser ones dominated by noise. By doing so,
it ensures that dimensionality reduction focuses on retaining the most infor-
mative components of the data, which is crucial for applications like Princi-
pal Component Analysis (PCA), spectral clustering, or any task that benefits
from understanding the underlying structure of the dataset.[24], [25]

Traditional methods often rely on fixed thresholds or predetermined ranks,
which may not be suitable across different datasets or in scenarios where the
signal-to-noise ratio varies significantly. The proposed criteria adaptively es-
timate the rank based on the actual distribution of eigenvalues, making it a
more flexible and universally applicable approach. This adaptability is partic-
ularly beneficial in complex real-world applications where the data properties
are not known a priori.

Incorporating a noise threshold in the spectral edge detection process ad-
dresses one of the major challenges in automated rank determination—noise.
By setting a threshold, the criteria ensure that the identified spectral edge is
not merely a product of random fluctuations but a meaningful transition in
the eigenvalue spectrum. This robustness to noise is essential for applications
involving real-world data, which is invariably imperfect and noisy.

By determining an appropriate stopping point based on the spectral edge,
the algorithm can terminate early once the meaningful components have been
identified, thereby avoiding unnecessary computations. This efficiency is cru-
cial for handling large datasets or when the algorithm is part of a larger pipeline
where computational resources are shared among multiple tasks.

The stopping criteria also includes a fallback strategy that ensures that the
algorithm remains practical and produces a reasonable output even when the
data does not exhibit a clear spectral edge. This aspect of the criteria guards
against potential edge cases, ensuring the algorithm’s utility across a wide
range of datasets and scenarios.
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6 The Revised Ubaru Algorithm

Below, the Hybrid Spectral Density Estimation Criterion is incorporated into
the original Ubaru Algorithm framework. Consequently, the information crite-
rion previously employed by Ubaru is replaced with the newly proposed stop-
ping criterion.

Developed Algorithm [26], [16], [18], [24], [25] Details in Appendix

1. Initialize variables: Q = [ ] to store the orthonormal basis vectors; k = 1
to index the current iteration; m = log(p)/

√
ϵ to set the depth of Krylov

subspace; and all eigenvalues = [ ] to accumulate eigenvalues for spec-
tral edge detection. The input matrix X ∈ Rn×p represents the data.

2. For k = 1 to p do

(a) Generate a random vector vk with ∥vk∥2 = 1.

(b) K = 1
n [Xvk; (XX

T )Xvk; . . . ; (XX
T )m−1Xvk].

(c) Q = orth([Q;K]) to include orthogonal vectors up to the current
iteration, ensuring the matrix Q has orthogonal columns.

(d) T = 1
nQ

TXXTQ.

(e) [V,Θ] = eig(T ).

(f) Append the eigenvalues Θ to the list all eigenvalues for subse-
quent spectral edge detection. Note: Although new eigenvalues
are computed in each iteration, they are obtained from the small
matrix T (of size m × m), which is much more efficient than com-
puting all eigenvalues of the full matrix.

(g) Every 5 iterations, or at the end, evaluate the revised stopping cri-
teria for spectral edge detection:

i. If (k mod 5 == 0) or (k == p):

A. Use kernel density estimation (KDE) on the accumulated
all eigenvalues to identify their distribution.Appendix

B. Detect the spectral edge by finding significant changes in
the density of eigenvalues, indicative of the optimal rank q.

C. If a spectral edge is identified, set q based on this edge and
exit the loop.

3. End for.

4. If no spectral edge is found by the last iteration, choose q based on an
alternative criterion, such as the maximum k reached or a predefined
threshold.
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5. Output the optimal rank q, the dimensionality-reduced data representa-
tion Y = QV , and the orthonormal basis Q. Here, V corresponds to the
eigenvectors selected based on the identified spectral edge or alternative
criteria.

The algorithm leverages a series of steps to meticulously compute and analyze
the eigenvalues of the Krylov subspace approximation of matrix X, employing
the Lanczos update function. These eigenvalues, critical for discerning the
matrix’s rank, are systematically gathered in the array all eigenvalues. To
distill the essence of these eigenvalues, kernel density estimation is performed
at every fifth iteration, utilizing the ksdensity function to reveal the eigen-
value distribution’s landscape.

Intriguingly, the algorithm employs the findpeaks function on the inverted
density estimate to identify spectral edges—valleys within the density plot
that signify the transition from signal to noise in the eigenvalue spectrum.
This edge detection is pivotal, marking the threshold beyond which eigenval-
ues are predominantly associated with noise. An essential step involves ad-
justing the detected spectral edge (edge index) against a noise threshold,
ensuring the edge is not underestimated in the presence of noise characterized
by sigma.

Rank estimation, denoted as qspectral, hinges on quantifying eigenvalues that
surpass the noise-adjusted threshold, thereby encapsulating dimensions that
rise above noise. An early stopping mechanism is incorporated, halting further
iterations once a spectral edge is detected, signifying a reliable rank estima-
tion based on spectral analysis.

Subsequent to determining qspectral, the algorithm computes the cumulative
variance from the eigenvalues, aiming to identify qvariance—the count of eigen-
values necessary to satisfy a predefined variance threshold. The final rank q
emerges from comparing qspectral and qvariance, selecting the maximum as the
definitive estimate to ensure a robust account of both spectral and variance
information.

The algorithm’s stopping criterion transcends mere variance threshold attain-
ment; it opts for the higher rank estimate between qspectral and qvariance, en-
suring a comprehensive and accurate rank determination. This methodology
presupposes the matrix’s rank is inferable from its eigenvalues and hinges on
an accurate estimation of the noise level (sigma) for effectiveness. It acknowl-
edges potential limitations in matrices lacking a clear spectral edge or those
with slowly decaying eigenvalues, alongside computational efficiency concerns
tied to matrix size and Lanczos iteration count m.

By integrating spectral analysis with variance estimation, this function un-
veils a nuanced approach to rank estimation, especially apt for large or noise-
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afflicted datasets, underscoring its utility in extracting meaningful dimensions
that genuinely reflect the underlying data structure.

6.1 Experiments

In this section, the results of the four experiments that compare the algorithm
proposed in the Ubaru with the hybrid Spectral Density Estimation Criterion
is analyzed. The experiments aim to assess the effectiveness of rank estima-
tion and approximation methods on primarily synthetic data.

6.1.1 Experiment Setup

Before delving into the comparative analysis, it is crucial to understand the
parameters that define the synthetic data generation and the metrics used for
algorithm evaluation. These parameters not only influence the behavior and
performance of the algorithms but also frame the context for interpreting the
results:

• Synthetic data parameters:

1. n: Number of samples (5000, 5000, 10000)

2. qactual: Actual rank (50, 100, 100)

3. λq: Signal strength (5)

4. Bandwidth: 2% (used in ksdensity)

5. Sparsity: 0.1

6. Sigma: σ (0.1 for synthetic data generation, 1 for noise level in
Krylov dimension estimation)

7. m: Number of Lanczos steps per singular value (10)

With these parameters set, we proceed to the empirical evaluation of the algo-
rithms. The table below presents a comprehensive comparison based on com-
putational efficiency, accuracy, and the ability to explain the variance within
the data.

6.2 Results of Experiments

The results from the table 2 offer a quantitative perspective on the perfor-
mance of the two algorithms. Notably, the Revised Ubaru Algorithm con-
sistently exhibits lower computational times across both synthetic and real
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Table 2: Comparison of Algorithm Performance on Synthetic and Real Data
Experiment Method Total Time (secs) Estimated Rank (q̂) Frobenius Norm Error Variance Explained (%)

Synthetic Data (n = 5000, qactual = 50)
Ubaru’s Algorithm 50.86 51 3222.10 -

Revised Ubaru Algorithm 4.34 50 217.79 99.9462

Synthetic Data (n = 5000, qactual = 100)
Ubaru’s Algorithm 119.81 100 4742.54 -

Revised Ubaru Algorithm 4.50 50 2441.46 91.7998

Synthetic Data (n = 10000, qactual = 100)
Ubaru’s Algorithm 356.43 101 9345.43 -

Revised Ubaru Algorithm 15.20 50 5022.06 91.3146

Real Data (lpi ceria3d)
Ubaru’s Algorithm 1.19 100 141.42 -

Revised Ubaru Algorithm 0.18 50 93.24 61.8404

datasets. For instance, on the synthetic dataset with n = 5000 and qactual =
50, the Revised Ubaru Algorithm completes in 4.34 seconds as opposed to
50.86 seconds required by the Ubaru’s Algorithm. Furthermore, the Revised
Ubaru Algorithm demonstrates remarkable accuracy, with a Frobenius Norm
Error of 217.79 compared to 3222.10 by the Ubaru’s Algorithm for the same
dataset.

The estimated rank q̂ provided by the Revised Ubaru Algorithm aligns pre-
cisely with the actual rank in the first case, while the Ubaru’s Algorithm over-
estimates slightly with q̂ = 51. This pattern of efficient estimation by the
Revised Ubaru Algorithm and slight overfitting by the Ubaru’s Algorithm per-
sists across the other datasets as well.

The variance explained by the Revised Ubaru Algorithm is notably high, es-
pecially in the case of synthetic data where it reaches up to 99.9462%. This
indicates a high retention of meaningful data characteristics despite the method’s
computational efficiency.

These numerical observations lay the foundation for the subsequent commen-
tary, which delves into the implications of these findings.

6.3 Comment

Building on the numerical analysis, the series of experiments conducted to
compare the algorithm proposed in the Ubaru with the hybrid Spectral Den-
sity Estimation Criterion reveal insightful contrasts.

The algorithm from the Ubaru, while robust in its dimensionality reduction
capabilities, appears to exhibit a tendency towards overfitting. This is char-
acterized by higher Frobenius norm errors, which suggest an excessive fit to
the noise within the data rather than the underlying signal. Additionally,
the computational time is significantly longer, indicating a more complex and
resource-intensive process.

Conversely, the hybrid Spectral Density Estimation Criterion shows a predilec-
tion for efficiency and parsimony. It achieves lower approximation errors and
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faster computation times, indicating a focus on capturing the most influential
data components. This method seems to prioritize marginal utility, emphasiz-
ing the extraction of the most pertinent features of the data while discarding
the rest as noise.

The implications for practical application are straight forward: if the objective
is to capture the fullest extent of the data’s variability and computational re-
sources are not a limiting factor, the Ubaru’s algorithm may be the preferred
choice. However, in scenarios where time efficiency and avoidance of overfit-
ting are paramount, the hybrid Spectral Density Estimation Criterion offers a
compelling advantage. It facilitates quicker, more streamlined data processing,
which could be particularly beneficial in real-time analytics or when operating
under computational constraints.

Ultimately, the selection of an algorithm should be aligned with the specific
needs of the task at hand, balancing the trade-offs between complexity, com-
putation time, and the level of detail required in the data representation.

7 Discussion and Conclusions

Reflecting on the exploration of alternative stopping criteria in Principal Com-
ponent Analysis (PCA), several avenues for future research emerge as partic-
ularly promising. First, there’s a clear opportunity for refining the Spectral
Density Estimation approach, especially for high-dimensional datasets, with
the aim of boosting computational efficiency and minimizing approximation
errors. Developing customizable stopping criteria that adapt to the unique
characteristics of different datasets, especially in rapidly evolving domains like
bioinformatics and quantum computing, presents another fertile ground for in-
vestigation. Additionally, the potential integration of these advanced stopping
criteria within deep learning frameworks could revolutionize training efficiency
and model accuracy, marking a significant leap forward in machine learning
methodologies.

The comprehensive analysis, juxtaposing traditional PCA with the innovative
hybrid Spectral Density Estimation Criterion, has unveiled critical insights.
Traditional PCA, despite its prowess in dimensionality reduction, tends to ex-
hibit a propensity for overfitting, as evidenced by elevated Frobenius norm
errors, suggesting an undue emphasis on noise. This is coupled with increased
computational demands. Conversely, the Spectral Density Estimation Crite-
rion distinguishes itself through enhanced efficiency and a parsimonious ap-
proach, characterized by lower approximation errors and expedited processing
times, indicating a strategic focus on distilling the most impactful data com-
ponents.
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These findings have profound implications for practical application, suggest-
ing that algorithm selection should be contextually driven. In scenarios where
capturing the full spectrum of dataset variability is paramount and resources
are plentiful, traditional PCA might be preferable. However, in contexts where
minimizing overfitting and maximizing time efficiency are crucial, the Spectral
Density Estimation Criterion emerges as the superior choice, especially suit-
able for real-time analytics and environments with constrained computational
resources. This underscores the importance of aligning algorithm choice with
the specific demands of each analytical task, carefully weighing computational
complexity against the necessity for timely and accurate data representation.

In conclusion, the strategic selection of a dimensionality reduction algorithm
in PCA transcends mere technicality, embodying a critical decision that pro-
foundly impacts data analysis outcomes. This research underscores the neces-
sity of a thoughtful, context-sensitive approach to choosing between different
algorithms, aiming to harness their respective strengths in accordance with
the objectives and constraints of each unique data analysis endeavor. As we
navigate the complexities of data science, the insights gleaned from this study
promise to illuminate the path toward more informed, effective applications of
dimensionality reduction techniques, thereby enhancing the quality and utility
of data-driven insights.
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A Matlab code

A.1 The Ubaru Algorithm

1 function main

2 % Synthetic Data Generation

3 % Define the dimensions of the synthetic matrix and sparsity

4 n = 4000; % Samples

5 k = 100; % Features

6 % Generate a sparse random matrix A

7 A = sprand(n, k, 0.1);

8 % Create a diagonal matrix L with linearly increasing values

9 L = diag (5:0.5:54.5);

10 % Define the noise level for the synthetic data generation

11 sigma_noise = 0.001;

12 % Generate the synthetic data matrix X with added noise

13 X = A * L * A’ + sigma_noise * sprand(n, n, 0.1);

14

15 % Setting Parameters for rank estimation

16 % Define the number of Lanczos steps to be performed

17 msteps = 10;

18 % Define the noise level parameter for the Krylov_dimension

function

19 sigma_noise_level = 0.01;

20

21 % Computing Rank using the Krylov subspace method

22 % Call Krylov_dimension function to estimate the rank (q) and

get the principal components (Y)

23 [Y, q] = Krylov_dimension(X, msteps , sigma_noise_level , min(k,

n));

24

25 % Analyzing and Visualizing Results

26 % Compute the singular values of matrix X

27 d = svd(X);

28 % Plot the singular values

29 figure ();

30 plot (1:min(n, k), d, ’bo-’);

31 hold on;

32 % Highlight the estimated rank on the plot

33 stem(q, 1.1 * d(1), ’r*-’);

34 legend(’Singular values ’, ’Estimated rank’);

35 xlabel(’i’);

36 ylabel(’\sigma_i ’);

37 title(’Rank estimation using Krylov method ’);

38 hold off;

39 end

40

41 function [Y,q] = Krylov_dimension(X, m, sigma , max_rank)

42 % Initialize variables and compute the Frobenius norm of X

43 [p,n] = size(X); % Dimensions of the input matrix

44 IC = zeros(min(p,n) ,1); % Information criterion values

45 Xfro = norm(X,’fro’)^2; % Frobenius norm squared of X

46 Snfro = (Xfro^2 - 2* sigma*Xfro + p*sigma ^2); % Adjusted norm

for covariance estimation

47 Cn = 1*log(n); % Scaling factor based on the size of X

48

48



49 % Initial random vector for Lanczos iterations

50 v = randn(p,1); V = v/norm(v);

51 T = []; % Initialize tridiagonal matrix

52

53 % Iteratively perform Lanczos steps and estimate rank

54 for k = 1: max_rank

55 [U, V, T, Theta] = Lanczos_update(X, V, T, m); % Perform a

step of the Lanczos update

56

57 k1 = min(k,length(Theta)); % Adjust for the actual number

of steps performed

58 % Calculate the information criterion for rank estimation

59 IC(k) = (n/(2* sigma ^2))*( Snfro - sum(Theta (1:k1))) - Cn*(p-

k)*(p-k-1) /2;

60

61 % Break loop if the information criterion increases ,

indicating optimal rank found

62 if (k > 1 && IC(k) > IC(k-1))

63 break;

64 end

65 end

66

67 q = k-1; % Estimated rank

68 % Compute the principal components based on the estimated rank

69 if size(V,2) > q

70 Y = V(:,1:q)*U(1:q,1:q);

71 else

72 Y = V*U; % Return all computed components if q exceeds the

dimensions

73 end

74 end

75

76 function [U, V, T, theta] = Lanczos_update(X, V, T, msteps)

77 % Initialize variables for Lanczos update

78 n = size(X,2); % Number of columns in X

79 m = msteps +1; % Adjust for MATLAB indexing

80 V1 = zeros(n,m); % Placeholder for new Lanczos vectors (not

used , to be removed for clarity)

81 Tmat = zeros(m,m); % Placeholder for tridiagonal matrix updates

(not used , to be removed for clarity)

82 k1 = size(V,2); % Current size of V

83 v = V(:,end); % Last computed Lanczos vector

84 beta = 0; % Initialization for the off -diagonal elements of T

85 vold = v; % Placeholder for the previous Lanczos vector

86 orthTol = 1.e-08; % Orthogonality tolerance for

reorthogonalization

87 wn = 0.0; % Norm tracking for orthogonality test

88

89 % Perform msteps Lanczos iterations

90 for k=1: msteps

91 w = X*(X’*v); % Matrix -vector product

92 w = w - beta*vold; % Subtract the previous vector scaled by

beta

93 alpha = w’*v; % Diagonal element of T

94 wn = wn + alpha*alpha; % Update norm

95 T(k1+k-1,k1+k-1) = alpha; % Update T

96 w = w - alpha*v; % Orthogonalize w with respect to v
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97

98 % Full reorthogonalization

99 t = V’*w; % Project w onto the space spanned by V

100 w = w - V*t; % Subtract the projection

101 beta = w’*w; % Compute the new beta

102 % Break if the vector is almost orthogonal to the subspace

103 if (beta*k < orthTol*wn)

104 break;

105 end

106 wn = wn+2.0* beta; % Update norm

107 beta = sqrt(beta); % Take the square root for the next

iteration

108 vold = v; % Update old vector

109 v = w/beta; % Normalize w for the next vector

110 V(:,k1+k) = v; % Append the new vector to V

111 T(k1+k-1,k+k1) = beta; % Update off -diagonal elements of T

112 T(k+k1,k1+k-1) = beta; % Symmetric update

113 end

114

115 [U,theta] = eig(T(1:k1+k-1,1:k1+k-1)); % Compute eigenvalues

and eigenvectors of T

116 [theta , ~] = sort(diag(theta),’descend ’); % Sort eigenvalues in

descending order

117 end
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A.2 The Revised Ubaru Algorithm

1 function [Y, q] = Krylov_dimension_spectral_sigma(X, m, sigma ,

max_rank , variance_threshold)

2 % Krylov_dimension_spectral: Estimates the rank of a matrix

using the

3 % Krylov subspace method with spectral density estimation.

4 % Inputs:

5 % X - Data matrix whose rank is to be estimated

6 % m - Number of Lanczos steps per singular value

7 % sigma - Noise level

8 % max_rank - Maximum rank to consider for the estimation

9 % variance_threshold - Threshold for cumulative variance to

determine rank

10 %

11 % Outputs:

12 % Y - Matrix formed from the Krylov subspace

13 % q - Estimated rank of the matrix

14

15 % Initialization and parameter setup

16 [p, n] = size(X); % Get the dimensions of X

17 all_eigenvalues = []; % Initialize an empty array to store

eigenvalues

18 q = max_rank; % Start with q equal to max_rank

19 noise_threshold = sigma ^2 * p; % Assuming noise variance of

sigma^2 for each dimension

20

21 % Main routine

22 v = randn(p, 1); % Start with a random vector

23 V = v / norm(v); % Normalize the vector

24 T = []; % Initialize T, which will be used in Lanczos update

25

26 for k = 1: max_rank

27 % Perform Lanczos update to compute the Krylov subspace

28 [U, V, T, Theta] = Lanczos_update(X, V, T, m);

29 all_eigenvalues = [all_eigenvalues; Theta]; % Collect all

eigenvalues

30

31 % Spectral edge detection

32 if mod(k, 5) == 0

33 % Density estimation for eigenvalues

34 [f, xi] = ksdensity(all_eigenvalues , ’Bandwidth ’, 0.5);

35 [~, locs] = findpeaks(-f);

36 if ~isempty(locs)

37 % If spectral edge is found , update the rank

estimate

38 edge_index = xi(locs (1));

39 % Adjust edge_index by noise threshold

40 edge_index = max(edge_index , noise_threshold);

41 q_spectral = sum(all_eigenvalues > edge_index);

42 if ~isempty(q_spectral)

43 q = q_spectral;

44 end

45 break;

46 end

47 end

48 end
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49

50 % Default handling if no spectral edge is found

51 if isempty(locs)

52 q = q_spectral;

53 if isempty(q)

54 q = min(10, max_rank); % Set a default rank value

55 end

56 end

57

58 % Cumulative variance calculation for rank estimation

59 sorted_eigenvalues = sort(all_eigenvalues , ’descend ’);

60 cumulative_variance = cumsum(sorted_eigenvalues) / sum(

sorted_eigenvalues);

61 q_variance = find(cumulative_variance >= variance_threshold , 1,

’first’);

62

63 % Final q is the maximum of spectral and variance estimates

64 q = max(q, q_variance);

65

66 % Adjust the size of V to match U for matrix multiplication

67 if size(V, 2) > size(U, 1)

68 V = V(:, 1:size(U, 1));

69 end

70 Y = V * U; % Construct Y from the Krylov subspace

71 end
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B The Components and Reasoning Behind Spec-
tral Density Estimation Criteria

B.1 Kernel Density Estimation

Before delving into the technical details, we briefly lay the foundation for Ker-
nel Density Estimation (KDE), a non-parametric method used to approxi-
mate the probability density function of a random variable. In the following,
we derive KDE starting from the sample’s characteristic function, then ap-
ply Fourier inversion with a damping function to obtain a practical density
estimator. This exposition not only clarifies the theoretical underpinnings of
KDE but also sets the stage for its application in our spectral edge detection
method.

Characteristic Function Estimation: Given a sample (x1, x2, . . . , xn), the
characteristic function φ(t) = E[eitX ] is naturally estimated as [24], [25]:

φ̂(t) =
1

n

n∑
j=1

eitxj

This formula represents an estimator for the characteristic function of the
sample.

Probability Density Function Inversion: The corresponding probability
density function can be theoretically obtained by applying the Fourier trans-
form to φ̂(t). However, this direct inversion often leads to diverging integrals.

To address the divergence issue, the estimated characteristic function φ̂(t) is
multiplied by a damping function ψh(t) = ψ(ht), where ψ is typically a uni-
form or Gaussian function and h is the bandwidth parameter.

Density Estimator with Damping Function: The density estimator is
given by:

f̂(x) =
1

2π

∫ +∞

−∞
φ̂(t)ψh(t)e

−itx dt

This integral is the inverse Fourier transform of the product of φ̂(t) and ψh(t).

By transforming and simplifying the above integral, we obtain the Kernel
Density Estimator:

f̂(x) =
1

nh

n∑
j=1

1

2π

∫ +∞

−∞
e−i(ht)

x−xj
h ψ(ht) d(ht) =

1

nh

n∑
j=1

K

(
x− xj
h

)
where K is the Fourier transform of the damping function ψ. The scaled ker-
nel is defined as Kh(x) = 1

hK
(
x
h

)
. The choice of h affects the trade-off be-

tween the bias and variance of the estimator.
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The KDE, a widely used method for its practicality and effectiveness, is shown
to be derived from the characteristic function of a sample using Fourier analy-
sis and a damping function, illustrating its theoretical foundations.

Step 1: Standard KDE
As we have shown, the Kernel Density Estimation, is used to approximate the
probability density function (pdf) of a random variable. The KDE at a point
x is given by:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)

Here’s what each term represents:

• f̂h(x) is the estimated density at point x.

• x is the point at which to estimate the density.

• xi are the sample data points.

• n is the number of data points.

• K(·) is the kernel function, which is a non-negative function integrating
to one, and often symmetric. Common choices are Gaussian, Epanech-
nikov, and uniform kernels.

• h is the bandwidth, a parameter that controls the smoothness of the
density estimate.

Step 2: Reflection Method
To address boundary bias, data points are reflected around the lower and up-
per boundaries, L and U . The reflected points are computed as follows:

x−i = 2L− xi and x+i = 2U − xi

Step 3: Modified KDE with Reflections
The KDE is modified to incorporate the reflections:

f̂h(x) =
1

nh

n∑
i=1

[
K

(
x− xi
h

)
+K

(
x− x−i
h

)
+K

(
x− x+i
h

)]

Step 4: Cumulative Distribution Function (CDF)
To construct the CDF from the pdf, we integrate the density estimate. The
CDF at a point x using KDE is:

F̂h(x) =

∫ x

−∞
f̂h(t) dt

54



When including the reflection, the integral includes the original data points
and the reflected data:

F̂h(x) =
1

n

n∑
i=1

∫ x

−∞

[
K

(
t− xi
h

)
+K

(
t− x−i
h

)
+K

(
t− x+i
h

)]
dt

Step 5: Integration with Reflection
We integrate each term separately using the cumulative kernel function G(·):

G(z) =

∫ z

−∞
K(t) dt

The CDF estimate with reflections becomes:

F̂h(x) =
1

n

n∑
i=1

[
G

(
x− xi
h

)
+G

(
x− x−i
h

)
+G

(
x− x+i
h

)]

Step 6: Normalization over Interval [L,U ]
To normalize the CDF so that F̂h(L) = 0 and F̂h(U) = 1, we adjust the CDF
by subtracting the CDF value at L from the CDF at any point x:

F̂h(x)− F̂h(L) =
1

n

n∑
i=1

[
G

(
x− xi
h

)
+G

(
x− x−i
h

)
+G

(
x− x+i
h

)]

− 1

n

n∑
i=1

[
G

(
L− xi
h

)
+G

(
L− x−i
h

)
+G

(
L− x+i
h

)]
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B.2 Key Theoretical Results for Spectral Density Esti-
mation

The Spectral Density Estimation and Lanczos update use a stochastic sam-
pling and averaging technique to obtain an approximate of Spectral Density.
[27]

Theorem 9. Let A be a real symmetric matrix of dimension n×n with eigen-
decomposition A =

∑n
j=1 λjuju

T
j , where u

T
i uj = δij, δij being the Kronecker

delta symbol. Let v be a vector of dimension n, represented as the linear com-
bination of {ui}ni=1 as v =

∑n
j=1 βjuj. If each component of v is obtained

independently from a normal distribution with zero mean and unit standard
deviation, then E[βiβj ] = δij, and the trace of a matrix function f(A) can be
approximated by averaging vT f(A)v.

Proof. Let A be a real symmetric matrix of dimension n× n with eigendecom-
position:

A ∈ Rn×n, A =

n∑
j=1

λjuju
T
j

where λj are the eigenvalues, and uj are the corresponding orthonormal eigen-
vectors, satisfying uTi uj = δij . Vector v is defined as:

v =

n∑
j=1

βjuj

Each component of v follows a normal distribution with zero mean and unit
variance.

Properties of βj Expectation and Variance:

E[v] = 0, E[vvT ] = I

Here, I is the identity matrix. The coefficients βj are linear combinations of
normally distributed variables, thus βj ∼ N (0, 1).

Independence:
E[βiβj ] = δij

This indicates that the expectation of the product of different βi and βj is 0
for i ̸= j and 1 for i = j.

Computing the Trace of f(A):

Tr(f(A)) =

n∑
j=1

f(λj)

56



Averaging vT f(A)v expectation calculation:

E[vT f(A)v] = E

( n∑
i=1

βiu
T
i

)
f(A)

 n∑
j=1

βjuj


Expanding and simplifying:

E[vT f(A)v] = E

 n∑
i=1

n∑
j=1

βiβju
T
i f(A)uj


Due to the orthogonality of ui and uj , and E[βiβj ] = δij , this simplifies to:

E[vT f(A)v] =

n∑
j=1

E[β2
j ]f(λj)

Since E[β2
j ] = 1 for a normal distribution with zero mean and unit variance,

we have:

E[vT f(A)v] =

n∑
j=1

f(λj)

This sum is the trace of f(A), showing that the average of vT f(A)v converges
to the trace of f(A) under the given conditions.
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B.3 Real World Example: Image Processing

We have high-resolution images, and our goal is to compress these images ef-
fectively without significant loss of quality. Each image is represented as a
matrix.

Step 1: Eigenvalue Calculation
Eigenvalues of the matrix representing each image are calculated. These eigen-
values represent the variance captured by each principal component of the im-
age data.

Step 2: Spectral Edge Detection in Image Compression
After calculating the eigenvalues for each image matrix, we use KDE to iden-
tify the spectral knee, which is the point that separates significant eigenvalues
(representing important image features) from less significant ones (likely noise
or redundant information). Imagine an image with a lot of detail in certain
parts and less in others. The spectral knee helps us identify which eigenval-
ues (or features) are crucial to retain this detail and which can be considered
redundant or noise.

Step 3: Rank Estimation
Here, we count the number of eigenvalues greater than the spectral knee. In
our image, this would be akin to counting the number of features that are
above a certain threshold of importance. If the spectral knee is too low, pos-
sibly indicating that it’s picking up noise, we adjust it to a predefined thresh-
old. In the image, this means ensuring we don’t mistake unimportant details
(like minor color variations) as crucial features.

Step 4: Variance-Based Rank Estimation
We also calculate the cumulative variance from the eigenvalues and determine
the minimum number of eigenvalues needed to capture a substantial portion
of the image’s total variance. This method ensures we keep those features
(eigenvalues) that contribute most to the image’s overall structure and detail.

Step 5: Final Rank Determination
The final rank for image compression is determined by taking the maximum
of the ranks obtained from the spectral knee and variance-based method. This
ensures we don’t miss out on important features (high variance) while also not
including too many redundant features (beyond the spectral knee).

Step 6: Matrix Reconstruction
With the final estimated rank, the image is reconstructed using the princi-
pal components corresponding to the significant eigenvalues. This means we
rebuild the image using only the most important features, reducing its size
while maintaining as much of the original quality and detail as possible.
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Conclusion
In this image compression scenario, the algorithm effectively balances data
size reduction with quality preservation. By focusing on significant dimen-
sions, the compressed image retains essential features, making this method
suitable for efficient storage and processing of high-resolution images.
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