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Abstract

The theory of symmetric polynomials is one that has applications in
several branches of mathematics, and in this paper we will begin to see
what a symmetric polynomial means and how they are built by first look-
ing at the monomial, elementary and power sum symmetric polynomials
before moving onto proving Newton’s identities and the fundamental the-
orem of symmetric polynomials. We will also look at the transformation
matrix from the elementary symmetric polynomials to the power sum
symmetric polynomials and vice versa.

Sammanfattning

Teorin om symmetriska polynom har många applikationer för olika
grenar av matematiken, och i denna uppsats s̊a utforskar vi vad som menas
med ett symmetrisk polynom och hur dessa är uppbyggda genom att först
titta p̊a monomial, elementära och power sum symmetriska polynomen
innan vi sedan g̊ar in p̊a beviset för Newtons identiteter och fundamental-
satsen för symmetriska polynom. I slutet s̊a täcker vi transformationsma-
trisen fr̊an elementär symmetriska polynomen till power sum polynomen
och vice versa.
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1 Introduction

The following paper is a study into the world of symmetric polynomials. These
symmetric polynomials is something that I had never heard of before writing this
paper, but that I now see in the mathematics that I work with on a regular basis.
First, to get a basic understanding of what makes a polynomial symmetric, let
us observe the polynomial

f(x, y, z) = x2(y + z) + y2(x+ z) + z2(x+ y).

We can see that for any permutation of x, y, z we will receive an identical poly-
nomial, just written in a different order, for example

f(y, x, z) = y2(x+ z) + x2(y + z) + z2(y + x)

f(z, x, y) = z2(x+ y) + x2(z + y) + y2(z + x).

In each permutation we can see that we receive the same polynomial, this is
what makes a polynomial symmetric.

Now to explore an example of where we can find these symmetrical polyno-
mials in the mathematics that we are already familiar with, let us observe the
polynomial f(x) = x3 + ax2 + bx+ c for any coefficient a, b, c ∈ C. As this is a
polynomial of degree three we know that

I this has exactly three roots in the complex numbers

II it can be written as a product of its factors.

So let us see what happens if we rewrite the polynomial as a product of factors
based on the roots x1, x2, x3, and then expand it.

f(x) = x3 + ax2 + bx+ c (1)

f(x) = (x− x1)(x− x2)(x− x3)

f(x) = (x2 − xx2 − xx1 + x1x2)(x− x3)

f(x) = x3 − x2x3 − x2x2 + xx2x3 − x2x1 + xx1x3 + xx1x2 − x1x2x3.

The given expression might at a first glance seem messy but let us reorganize it
into something more comfortable.

f(x) = x3 − x2x1 − x2x2 − x2x3 + xx1x2 + xx1x3 + xx2x3 − x1x2x3
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f(x) = x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3. (2)

We can now see in (2) that the polynomial is written in such a way that we can
make an easy comparison to the polynomial that we wrote in (1). The coeffi-
cients a, b and c can be explained in terms of the polynomial’s roots x1, x2, x3.−a = x1 + x2 + x3

b = x1x2 + x1x3 + x2x3

−c = x1x2x3

.

Looking at each of these it is clear that each permutation of the variables results
in an identical polynomial, hence these are symmetrical. These three polynomi-
als are also very special in the field of symmetric polynomials as these are the
elementary symmetric polynomials and this paper will prove that every sym-
metric polynomial can be written as a unique combination of these.

The field of symmetric polynomials is vast. It has applications in several
different branches of mathematics. In this introduction we made a connection
between the roots of a polynomial of degree 3 and the elementary symmetrical
polynomials. This connection can be broadened to show this connection for a
polynomial of any degree d. The theory of symmetric polynomials is also the
entryway to Galois theory, has application in enumerative combinatorics, Lie al-
gebra, algebraic geometry and group theory. [4][2][3][1] The history of this field
reaches back hundreds of years and include discoveries made by one of the most
brilliant people to have ever walked this earth, Sir Isaac Newton. He made the
discovery of what we call Newton’s identities around 1666. Though to say that
he discovered these is misnomer as Albert Girard had come to the same finding
earlier, in 1629, unbeknownst to Newton. For this reason Newton’s identities is
also known as the Girard-Newton formulae.[2]

We will begin our journey by looking at some of the different symmetric
polynomials that we have at our disposal. First we will get a broader overlook
of what it means that a polynomial is symmetric and then move on to three
specific types of symmetric polynomials. For this we will be working with the
book written by Stanley. [4] The first one we will be looking at is called the
monomial symmetric polynomials, denoted as mλ, we will prove that this con-
stitutes a basis for the symmetric polynomial ring. The second is the power
sum symmetric polynomials, denoted as pλ. At last we have the elementary
symmetric polynomials, denoted as eλ. After this we will move onto proving
Newton’s identities by working through the paper written by Zeilberger. [5]
The proof in this paper follows Zeilbergers proof, but is more comprehensive to
help the reader understand it and also includes an example to help the reader
follow along, as well as expand the proof to show that this relation between
the power sum symmetric polynomials and the elementary symmetric polyno-
mials works in both directions. We will then prove the fundamental theorem
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of symmetric polynomials, following the proof written by Lang. [3] The reader
will once again be given an example to more easily follow the proof. With both
these proofs completed we can then move onto proving that the elementary
symmetric polynomials and power sum symmetric polynomials are bases for the
symmetric polynomial ring. We finish the paper with the transformation ma-
trices from the elementary symmetric polynomials to the power sum symmetric
polynomials and vice versa.

2 Prerequisite knowledge

To fully understand this paper about symmetric polynomials there are a few
concepts that I would like to highlight as important.

2.1 Rings

With symmetric polynomials we will be interested in looking at the ring of all
symmetric polynomials and therefore to ensure that the reader can follow the
notation used in this paper we will define what these. We will follow the axioms
given by Dummit. [1]

Definition 1. A ring R[x1, ..., xn] is a set with the operations addition and
multiplication that satisfies the three axioms called ring axioms.

I (R,+) is an abelian group.

(a) (a+ b) + c = a+ (b+ c) for any a, b, c ∈ R (Associative).

(b) a+ b = b+ a for any a, b ∈ R (Commutative).

(c) R has an element 0 such that a + 0 = a for any a ∈ R (Additive
identity).

(d) For each a ∈ R there exists an element such that a + (−a) = 0
(Additive inverse).

II R is a monoid.

(a) (a · b) · c = a · (b · c) for any a, b, c ∈ R (Associative).

(b) R has an element 1 such that a · 1 = a for any a ∈ R (Multiplicative
identity).

III Multiplication is distributive with respect to addition.

(a) a · (b+ c) = a · b+ a · c for any a, b, c ∈ R (Left sided distribution).

(b) (b+ c) · a = b · a+ c · a for any a, b, c ∈ R (Right sided distribution).

We will also define what a subring is.

Definition 2. A subring is a subset of R which is itself a ring as it is closed
under addition and multiplication, and shares the same multiplicative identity
as R.
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Let us apply these axioms to polynomials to see if they form a ring. It should
be clear that if the polynomials form a ring, then the symmetric polynomials
forms a subset of this ring which then has the potential to be its own ring, a
subring.

Proposition 1. Polynomial functions with complex coefficients form a ring,
the polynomial ring.

Proof. Given three polynomials f , g and h, where f, g, h ∈ R it should be
easy to see that it is an abelian group as it is associative and commutative
under addition. R also has an additive identity and additive inverse. It should
also be clear that R is a monoid as it is associative under multiplication and
has a multiplicative identity. Multiplication is also distributive with respect to
addition, and with that we know that polynomials form a ring.

With that we can move on to our goal, proving that the symmetric polyno-
mials forms a subring.

Proposition 2. The symmetric polynomials form a subring to the ring of poly-
nomials.

Proof. Given two symmetric polynomials f and g of degree d, we know right
away that these are a subset of the polynomials. It is also clear that if we
add two symmetric polynomials, the result is another symmetric polynomial of
degree d. It should also be easy to see that if we using multiplication, the result
is yet another symmetric polynomial of degree 2d. This subset also shares the
same multiplicative identity as the ring R, which is the last requirement. With
that we have proved that the subset of symmetric polynomials forms a subring
to the ring of polynomials. We will denote this subring as Λd

R, where d is the
degree of the symmetric polynomial.

2.2 Partitions and orders

When it comes to symmetrical polynomials we will naturally run into partitions.
In this paper we will be using Stanley’s[4] description of partitions and orders
to ensure that the reader can follow along the notation that is used.

Definition 3. A partition λ of d where d ∈ N, also called an integer partition,
is a sequence of integers (λ1, ..., λk) ∈ Nk that satisfies the conditions

I λ1 ≥ · · · ≥ λk,

II
∑

λi = d.

We will consider any λi = 0 as irrelevant, then we are left with the infinite
sequence (λ1, ..., λk, 0, 0, ...). We will use the notation Par(d) to describe the set
of all partitions λ of nd, with Par(0) being an empty partition with the sequence
(0,0,...). We define this as

Par :=
⋃
n≥0

Par(d).
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Worth to note is that there is a shorthand for writing sequences that is used,
so 11111 would be equal to the sequence (1,1,1,1,1,0,0,...). This would mean
that the results of the Par(d) would be written as

Par(1) = {1}

Par(2) = {2, 11}

Par(3) = {3, 21, 111}

and so on. If λ ∈ Par(d) then this will be denoted as λ ⊢ d, or |λ| = d. Each
sequence will also have a length where the number of elements where λi ̸= 0 is
the length of λ, denoted as ℓ(λ).

Definition 4. A weak composition is a vector of non-negative integers with the
sum of each entry equaling d.

A partition λ can be described as λ = 1m12m2 ...kmk where mi describes how
many parts of λ is equal to i. So if we have a partition 44333221 this would be
written as 11223342.

In this paper we will be looking at different partial orderings on partitions.
The first one is called ”dominance order” and is denoted with ≤. Given that
we have a µ and λ such that |µ| = |λ|, then we define µ ≤ λ if for all i ≥ 1 we
have that

µ1 + ...+ µi ≤ λ1 + ...+ λi.

This is defined only on Par(d) for d ∈ N.

The second and last order that we will define is any linear order that is
compatible with the dominance order, in this paper we will use both reverse
lexicographic order and lexicographic order. For reverse lexicographic order,

denoted
R
≤, given |µ| = |λ| we define µ

R
≤ λ if µ = λ, or for some i

µ1 = λ1, · · · , µi = λi, µi+1 < λi+1.

So what does this mean? This mean that we have a way of sorting the order of
our partitions. If we sort Par(4) with reverse lexicographic order we get

4
R
> 31

R
> 22

R
> 211

R
> 1111.

If we were to look at the same set of partitions in lexicographic order, we would
get the exact opposite direction.
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3 Symmetric polynomials

We will now start to dive into the world of symmetric polynomials. First we will
go through what these symmetric polynomials are and what shapes they come
in and discover the connections between them, look at their building blocks in
the power sums (pλ), elementary symmetric polynomials (eλ) and monomial
symmetric polynomials (mλ). This paper will prove that these are bases for the
ring of Λd

R by providing proofs for both Newton’s identities and the fundamental
theorem of symmetric polynomials.

3.1 General about symmetric polynomials

So how do we define our symmetric polynomials? There are several types of
symmetric polynomials, we will begin by stating a general definition of a sym-
metric polynomial following Stanley. [4]

Definition 5. Let x = (x1, x2, ..., xn) be a set of indeterminates where n ∈ N.
A homogeneous symmetric polynomial of degree d over a commutative ring R is
written as the summation

p(x) =
∑
α

cαx
α, (3)

that fulfills

I α ranges over all the weak compositions α = (α1, α2, ...) of d where d ∈ N,

II cα ∈ R,

III xα is the monomial xα1
1 xα2

2 ...,

IV p(xw(1), xw(2), ..., xw(n)) = p(x1, x2, ..., xn) for every permutation w of the
positive integers.

We will denote the set of all homogeneous symmetric polynomials of degree d
over the ring R as Λd

R.

For many of the proofs in this paper, it would be beneficial to prove that λd
R

is a vector space. To provide a proof for that we will use what Stanley writes
on page 286-287. [4] I have not written this proof myself, but rely on Stanley.

Proposition 3. Λd
R is a vector space.

Proof. It should be clear that if f, g ∈ Λd
R, meaning that f and g are symmetric

polynomials of degree d and a, b ∈ R then it naturally follows that af+bg ∈ Λd
R.

This means that if you use scalar multiplication with a symmetric polynomial,
the resulting polynomial will be symmetric as well. It also means that if you add
two symmetric polynomials of the same degree d, the resulting polynomial will
also be symmetric of degree d. With this we can state that Λd

R is an R-module
and if R = Q we get that Λd

Q is a Q-vector space. Given f ∈ Λm
Q and g ∈ ΛQ⋉ ,

then it is easy to see that fg ∈ Λm+n
Q . So if we define
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ΛQ = Λ0
Q ⊕ Λ1

Q ⊕ · · ·
then our ΛQ has structure of a Q-algebra and is therefore a ring with operations
compatible with vector space structure. For simplicity we will in the future
denote Λd

Q as Λd instead.

To put this to the test we will take the example where d = 3 for the two
functions f and g. If f(x, y, z) = x2yz+xy2z+xyz2 then 2f(x, y, z) = 2x2yz+
2xy2z +2xyz2 which we can clearly see is still symmetric as every permutation
of x, y, z will result in an identical polynomial. Now to handle the case where
we add a symmetric polynomial of degree 3 to f . Let g be g(x, y, z) = x2y2 +
x2z2 + y2z2 then

f(x, y, z) + g(x, y, z) = x2yz + xy2z + xyz2 + x2y2 + x2z2 + y2z2

which is clearly a homogeneous symmetric polynomial as well. Lastly, if we were
to take the multiplication we get

f(x, y, z) · g(x, y, z) = 2xyz(x2y2 + x2z2 + y2z2)(x+ y + z),

which we also can see is a homogeneous symmetric polynomial of degree 6.

3.2 Monomial symmetric polynomials

We will begin our journey into the different forms of symmetric polynomials by
introducing the monomial symmetric polynomials. We will follow the definition
given by Stanley. [4]

Definition 6. Let λ = (λ1, λ2, ...) ⊢ d, we then define the monomial symmetric
polynomial mλ(x) ∈ Λd by the summation

mλ =
∑
α

xα, (4)

where the sum covers all the distinct permutations of α = (α1, α2, ...) from our
vector λ.

Now what does this mean? For example

m0 = 1,

m1 =
∑
i

xi,

m2 =
∑
i

x2
i ,

m111 =
∑

i<j<k

xixjxk.
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We can see that the notation in mλ represents which permutations of the
monomials that we are looking for. So in the case of m111 we are looking for all
the permutations where we have the monomial of three variables where all are of
degree one. So to put this into a case. Given that we have a monomial symmetric
polynomial of three variables x, y, z then our m11 would be all permutations of
x, y, z where they all have degree one and the combination of two variables.
This would give us

m11 = xy + xz + yz.

To be able to say that the monomial symmetric polynomials make a building
block to the symmetric polynomials we have to prove that it constitutes a basis
of Λd, so that will be our next objective.

Proposition 4. {mλ : λ ∈ Par(d)} is a basis for Λd.

Proof. To prove that such a proposition is true we have to fulfill the normal
criteria of what a basis for a vector space is, that it spans the entire vector
space and that it is linearly independent. To formalize it we write this as

I For all f ∈ Λ there exists a cλ such that f =
∑

λ⊢d cλmλ. This means
that there is a linear combination of monomials that spans Λ.

II
∑

λ⊢d cλmλ = 0 must mean that for all λ ⊢ d we get that cλ = 0. This
would give us linear independence.

Let f be the homogeneous symmetric polynomial given by (3)

f =
∑
α

cαx
α.

So we set out to prove both of these criteria for f of n variables and of degree d.
If α = (α1, α2, · · · , αn) then

∑n
i=1 αi = d. Since this is a symmetric polynomial

we get that cα = cλ(α). To see this more clearly we take the example of the
symmetric polynomial in two variables, g(x, y) = c20x

2 + c11xy + c02y
2, clearly

for this to be symmetric c20 = c02. So with this we get that

f =
∑
λ⊢d

cλ
∑

λ(α)=λ

xα. (5)

We can see that the second sum in (5) is something that we recognize from (4)
so we can rewrite this as

f =
∑
λ⊢d

cλmλ

and with that we have verified the first criterion, the linear combination and we
can move on to proving linear independence.

To prove linear independence we have to prove that if
∑

λ⊢d cλmλ = 0, then
cλ = 0. Let us begin by stating that if there is a µ ∈ Par(d) then the monomial
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xµ occurs only in the term mµ, and its coefficient has to be cµ. With this we
know that cµ = 0. This means we have found that it is linearly independent
and therefore makes a basis for Λ.

3.3 Power sums

We will introduce another form of symmetric polynomials, the power sum sym-
metric polynomials. We follow the definition given by Stanley. [4]

Definition 7. We define the power sum symmetric polynomials pλ by the sum-
mation

pd = md =
∑
i

xd
i , n ≥ 1, (6)

pλ = pλ1pλ2 · · · if λ = (λ1, λ2, ...) and λ ∈ Par.

We can see that the power sum symmetric polynomial is defined by the
summation of the monomial with one variable of degree d. So to give a case to
put this into perspective, if we have a power sum of 3 variables x, y, z then we
would get

p0 = m0 = 1

p1 = x+ y + z

p2 = x2 + y2 + z2

and so on. I would invite the reader to consider for a moment the thought that
these rather simple polynomials could form a building block for the symmetric
polynomials. Let us stay in three variables for simplicity and consider the case
p12. What we would get is

p12 = x3 + x2y + x2z + xy2 + y3 + y2z + x2z + y2z + z3,

= x3 + y3 + z3 + x2y + x2z + xy2 + xz2 + y2z + yz2.

We can see that the result is p12 = p3 +m21 which is an interesting result that
we will build upon in the next subsection.

3.4 Elementary symmetric polynomials

We have now been introduced to the monomial and power sum symmetric poly-
nomials. We have also seen that mλ is a solid building block of the symmetric
polynomials as they are a basis for Λ. Now we will introduce the elementary
symmetric polynomials. We will follow the definition given by Stanley. [4]

Definition 8. We define the elementary symmetric polynomials eλ by the sum-
mation

ed = m1d =
∑

i1<···<id

xi1 · · ·xid (7)

eλ = eλ1
eλ2

if λ = (λ1, λ2, ...) and λ ∈ Par.
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We can see that the elementary symmetric polynomials is a subset of the
monomial symmetric polynomials mλ for λ = (λ1, λ2, ...) where λ1 ≤ 1. In three
variables this gives us

e0 = m0 = 1

e1 = x+ y + z

e2 = xy + xz + yz

e3 = xyz

e4 = 0.

As our case is the case where d = 3, once we reach e4 we simply have no
permutations in λ that fulfills this, making this 0. I would again invite the
reader to consider the possibility to use this new set of symmetric polynomials
as a building block. If we consider the case e12 in three variables we would get

e12 = x2y + x2z + xyz + xy2 + xyz + y2z + xyz + xz2 + yz2,

= 3xyz + x2y + x2z + xy2 + xz2 + y2z + yz2 (8)

Let us do the same thing as in the last case and take a moment to observe the
result. We then see that e12 = 3e3 +m21 which is a very interesting finding. So
if we use this result with the result at the end of §3.3 we get{

p12 = p3 +m21

e12 = 3e3 +m21
,

{
p12 − p3 = m21

e12 − 3e3 = m21
,

p12 − p3 = e12 − 3e3,

p3 = −e12 + 3e3 − p12.

We can see that now we have an equation in terms of only power sums and
elementary symmetric polynomials. We will in the next subsection look further
into this relationship and develop this interesting result further.

3.5 Newton’s identities

Now that we have explored different types of symmetric polynomials we will be
moving our focus over to Newton’s identities. This identity forms a connection
between the power sums and the elementary symmetric polynomials in such a
way that we can rewrite them in terms of each other. We will focus on rewriting
the power sums in terms of the elementary symmetric polynomials. Let us first
explore this relationship with a case and then move on to put it into terms of
a concrete proof. If we begin by exploring how we would find p2 in terms of
the elementary symmetric polynomials, where would we start? Let us constrain
ourselves to three variables x, y, z to make it a bit easier to follow. This would

12



mean that our p2 = x2 + y2 + z2 so a natural first step would be to find a way
to introduce a power of two with ek. So let us start it off by taking

e11 = (x+ y + z)(x+ y + z)

= x2 + xy + xz + yx+ y2 + yz + zx+ zy + z2

= x2 + y2 + z2 + 2xy + 2xz + 2yz.

If we compare this result with our knowledge about elementary symmetric poly-
nomials we see that the result that we got can be rewritten as

e11 = p2 + 2e2

p2 = e11 − 2e2.

So with this we have proved that for three variables, p2 can be written in terms of
the elementary symmetric polynomials. Let us take it a step further and take a
look at p3. It would feel natural to begin in a similar way to find p3 = x3+y3+z3

so we start off by doing just that and find

e111 = (x+ y + z)(x+ y + z)(x+ y + z)

= (x2 + xy + xz + yx+ y2 + yz + zx+ zy + z2)(x+ y + z)

= x3 + y3 + z3 + 6xyz + 3(x2y + x2z + xy2 + xz2 + y2z + yz2). (9)

We can see that we find the p3 that we were looking for as well as 3e3 and a
monomial that we recognize from (8). Using this relation we get that

e12 = x2y + x2z + xyz + xy2 + xyz + y2z + xyz + xz2 + yz2

e12 − 3e3 = x2y + x2z + xy2 + xz2 + y2z + yz2.

With this we can simplify the monomial in (9) to find the solution to our problem
and get that

e111 = p3 + 6e3 + 3(e12 − 3e3)

p3 = e111 − 3e12 + 3e3.

This proves that for at least three variables we can write the power sum sym-
metrical polynomials in terms of the elementary symmetric polynomials. It
should be easy to see that we can expand the number of variables and produce
the exact same result. Now that we have an understanding of what Newton’s
identities are about, we will move on to tackle the general case. This proof
follows the work of Zeilberger[5] who has written a short and dense article on
it. We will make it easier to understand as we break it down and also apply it
to a specific case at the same time.
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Proposition 5. A combinatorial way to write Newton’s identities is given by

k−1∑
r=0

(−1)rer · pk−r + (−1)kekk = 0 (10)

where k is a positive integer. [5]

Proof. We will start by rewriting this in another way as we have defined the
power sum symmetric polynomials in §3.3 and the elementary symmetric poly-
nomials in §3.4. So let us handle each of the components to get that

ek =
∑

1≤i1<···<ik≤n

xi1 · · ·xik ,

er =
∑

1≤i1<···<ir≤n

xi1 · · ·xir ,

pk−r =

n∑
j=1

xk−r
j ,

where n and k are positive integers. We can now rewrite the equation as

k−1∑
r

(−1)r
∑

1≤i1<···<ir≤n

xi1 · · ·xir

n∑
j=1

xk−r
j + (−1)k

∑
1≤i1<···<ik≤n

xi1 · · ·xikk = 0

where n and k are positive integers and x1, ..., xn are commuting indeterminates.
Now we have a grasp of what it is that we are working with and can move on to
solving the problem. Zeilberger[5] gives us a set to consider. Consider the set
A = A (n, k) of pairs (A, jl) for which

I A ⊆ {1, ..., n},

II j ∈ {1, ..., n},

III |A|+ l = k where |A| is the length of A,

IV l ≥ 0 and if l = 0 then j ∈ A.

So if l ≥ 0 we get the relationship that l = k−|A| ≥ 0 which means that k ≥ |A|,
and if k = |A| then j ∈ A. Now what would this look like if we applied numbers
to it? Consider the set A (3, 2) and we would get that our set A can be ∅, {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}. The set {1, 2, 3} is left out since k ≥ |A| and for
this set |A| = 3 while our k = 2. Our j has to be 1, 2, 3. So to form these pairs
we combine these

(∅, 12) (∅, 22) (∅, 32)
({1}, 11) ({1}, 21) ({1}, 31)
({2}, 11) ({2}, 21) ({2}, 31)
({3}, 11) ({3}, 21) ({3}, 31)
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({1, 2}, 10) ({1, 2}, 20)
({1, 3}, 10) ({1, 3}, 30)
({2, 3}, 20) ({2, 3}, 30)

We can note that for the second set of sets where |A| = 2 we need j to be a
member of A and therefore pairs like ({1, 2}, 30) have to be excluded. Now if
we define the weight of our pair (A, jl) as w(A, jl) = (−1)|a|(

∏
a∈A xa)x

l
j given

by Zeilberger[5] we can get the weight of each of our pairs to be

w(∅, 12) = x2
1 w(∅, 22) = x2

2 w(∅, 32) = x2
3

w({1}, 11) = −x2
1 w({1}, 21) = −x1x2 w({1}, 31) = −x1x3

w({2}, 11) = −x1x2 w({2}, 21) = −x2
2 w({2}, 31) = −x2x3

w({3}, 11) = −x1x3 w({3}, 21) = −x2x3 w({3}, 31) = −x2
3

({1, 2}, 10) = x1x2 ({1, 2}, 20) = x1x2

({1, 3}, 10) = x1x3 ({1, 3}, 30) = x1x3

({2, 3}, 20) = x2x3 ({2, 3}, 30) = x2x3.

Now if we were to take the sum of these weights we would get the l.h.s. of (10).
Let us compare for our case to see what we get

2−1∑
r=0

(−1)rer · p2−r + (−1)2e22 = p2 − e1p1 + 2e2

∑
(A,jl)∈A (3,2)

w(A, jl) = x2
1 + x2

2 + x2
3 − (x2

1 + x2
2 + x2

3+2(x1x2 + x1x3 + x2x3))

+2(x1x2 + x1x3 + x2x3)
(11)

= p2 − e1p1 + 2e2.

We can see that the both expressions are the same in this specific case. In (11)
we can also more easily see that the result is zero, which is what we stated in the
proposition. Now let us tackle the general case and prove that these expressions
are equal. ∑

(A,jl)∈A (3,2)

w(A, jl) =
∑

(A,jl)∈A (3,2)

(−1)|A| ·
∏
a∈A

xa · xl
j

Take a moment to consider what
∏

a∈A xa will produce. We can see that it will
create a monomial of |A| variables. So if we were to sum over all A ⊆ {1, ..., n}
we would get the different elementary symmetric polynomials from e0 to en so
therefore

er =
∑

1≤i1<···<ir≤n

xi1 · · ·xir =
∑

A⊆{1,...,n}

∏
a∈A

xa,
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where |A| = r. So we should necessarily be able to rewrite ek in the same
manner, where |A| = k. So with this knowledge at hand we can rewrite the
original equation as follows

k−1∑
r

(−1)r(
∑

1≤i1<···<ir≤n

xi1 · · ·xir )

n∑
j=1

xk−r
j + (−1)k(

∑
1≤i1<···<ik≤n

xi1 · · ·xik)k =

=

k−1∑
r

(−1)r
∑

A⊆{1,...,n}
|A|=r

∏
a∈A

xa ·
n∑

j=1

xk−r
j + (−1)k

∑
A⊆{1,...,n}

|A|=k

∏
a∈A

xa · k

=
∑

A⊆{1,...,n}
|A|<k

(−1)|A|
∏
a∈A

xa ·
n∑

j=1

xl
j

=
∑

A⊆{1,...,n}
|A|<k

n∑
j=1

(−1)|A|
∏
a∈A

xa · xl
j

=
∑

A⊆{1,...,n}
|A|<k

n∑
j=1

w(A, jl).

So with this we have proved that the sum of the weights of the elements of A
is equal to the l.h.s. of (10). Now we move on to proving that it equals 0. Let
us do so by using the mapping T : A (n, k) → A (n, k) [5] such that

T (A, jl) =

{
(A/j, jl+1), j ∈ A
(A ∪ j, jl−1), j /∈ A

If we apply this to A (3, 2) we would get

T (∅, 12) = ({1}, 11) T (∅, 22) = ({2}, 21) T (∅, 32) = ({3}, 31)
T ({1}, 11) = (∅, 12) T ({1}, 21) = ({1, 2}, 20) T ({1}, 31) = ({1, 3}, 30)

T ({2}, 11) = ({1, 2}, 10) T ({2}, 21) = (∅, 22) T ({2}, 31) = ({2, 3}, 30)
T ({3}, 11) = ({1, 3}, 10) T ({3}, 21) = ({2, 3}, 20) T ({3}, 31) = (∅, 32)

T ({1, 2}, 10) = ({2}, 11) T ({1, 2}, 20) = ({1}, 21)
T ({1, 3}, 10) = ({3}, 11) T ({1, 3}, 30) = ({1}, 31)
T ({2, 3}, 20) = ({3}, 21) T ({2, 3}, 30) = ({2}, 31).

Now if we were to apply the weight to each new transformed pairs and we get

w({1}, 11) = −x2
1 w({2}, 21) = −x2

2 w({3}, 31) = −x2
3

w(∅, 12) = x2
1 w({1, 2}, 20) = x1x2 w({1, 3}, 30) = x1x3

w({1, 2}, 10) = x1x2 w(∅, 22) = x2
2 w({2, 3}, 30) = x2x3

w({1, 3}, 10) = x1x3 w({2, 3}, 20) = x2x3 w(∅, 32) = x2
3
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w({2}, 11) = −x1x2 w({1}, 21) = −x1x2

w({3}, 11) = −x1x3 w({1}, 31) = −x1x3

w({3}, 21) = −x2x3 w({2}, 31) = −x2x3.

This result is similar to the previous result where we applied the weight of each
pair. In fact the only difference is that for each result the sign flipped, meaning
that

∑
(A,jl)∈A (3,2) T (w(A, jl)) =

∑
(A,jl)∈A (3,2) −w(A, jl). Let us move on to

prove the general case.

Proposition 6. w(T (A, jl)) = −w(A, jl)

Proof. We know that w(A, jl) = (−1)|A| ∏
a∈A xax

l
j and we have to consider

two cases. Case one being j ∈ A and case two being j /∈ A, so let us start with
case one and we get that

w(T (A, jl)) = w(A/{j}, jl+1)

= (−1)|A|−1
∏

a∈A/{j}

xax
l+1
j

= (−1)−1 · (−1)|A|
∏

a∈A/j

xaxjx
l
j

= −(−1)|A|
∏
a∈A

xax
l
j

= −w(A, jl).

With this we have proved case one and can move onto case two

w(T (A, jl)) = w(A ∪ {j}, jl−1)

= (−1)|A|+1
∏

a∈A∪{j}

xaxjx
l−1
j

= −(−1)|A|
∏

a∈A∪
xax

l
j

= −w(A, jl).

This proves that both cases fulfills the proposition and the proof is done.

From here it should be fairly easy to see that the mapping T : A (n, k) →
A (n, k) is an involution. Consider the case that j ∈ A then in the first trans-
formation j is removed from A and then in the next transformation it is added
right back. This holds true for the case where j /∈ A as well, where j is first
added to A and then removed once again. We know that any involution is also
a bijection which is key to solving this problem. We know that
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∑
(A,jl)∈A (n,k)

(w(A, jl) + w(T (A, jl))) = 0

∑
(A,jl)∈A (n,k)

w(A, jl) +
∑

(A,jl)∈A (n,k)

w(T (A, jl)) = 0. (12)

With the key observation that this is a bijection, we know that∑
(A,jl)∈A (n,k)

w(A, jl) =
∑

(A,jl)∈A (n,k)

w(T (A, jl)).

This means that we can rewrite (12) as

∑
(A,jl)∈A (n,k)

w(A, jl) +
∑

(A,jl)∈A (n,k)

w(A, jl) = 0

2 ·
∑

(A,jl)∈A (n,k)

w(A, jl) = 0

and with that we have proved that the l.h.s. of (10) is zero and therefore the
proposition holds true.

Now with our proof of Newton’s identities done we know that there exists a
relationship between the power sum symmetric polynomials and the elementary
symmetric polynomials in the form of a formula that gives us an expression of
only pλ and eλ. We will move on by providing proof that this formula lets us
write pλ in terms of eλ and vice versa.

Proposition 7. Newton’s identities work in both directions and can be used to
write the power sum symmetric polynomials, pλ, in terms of elementary sym-
metric polynomials, eλ, and vice versa.

Proof. Most of the work to prove this is already done as we have confirmed the
formula stated in (10), we will use this to prove this relationship. We will only
solve it for writing pλ in terms of eλ as the proof for the reverse relationship is
analogous. We start by calculating k = 1 and get

p1 − e1 =0

p1 = e1.

We move on to k = 2 and get
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p2 − e1p1 + 2e2 =0

p2 =− 2e2 + e1p1

p2 =− 2e2 + e21

By using induction on k we can prove the relationship. Having proved both
k = 1 and k = 2 and confirmed that it holds true we move on by assuming that
it holds true for any k = d and get that

d−1∑
r=0

(−1)rer · pd−r + (−1)dedd = 0.

We make a note of two things

I
∑d−1

r=0(−1)rer · pd−r will always provide us with a power sum symmetric
polynomial of degree d since the first iteration the elementary symmetric
polynomial will equal 0,

II
∑d−1

r=0(−1)rer ·pd−r any further iteration of this sum gives us a power sum
of a lower degree than d, which we can rewrite in terms of the elementary
symmetric polynomials,

III (−1)dedd will always provide us with an elementary symmetric polynomial
of degree d.

With this we have finished our proof and now know that each power sum sym-
metric polynomial can be written in terms of only elementary symmetric poly-
nomials, and we also consider the reverse relationship proved.

3.6 Fundamental theorem of symmetric polynomials

We have arrived at the main theorem of this paper, the fundamental theorem
of symmetric polynomials, which states that any symmetric polynomial can be
written in terms of the elementary symmetric polynomials. In §3.5 we proved
that any elementary symmetric polynomial can be written in terms of the power
sum symmetric polynomials, and therefore we also know that any symmetric
polynomial can be written in terms of the power sum symmetric polynomials
once we have proved the fundamental theorem of symmetric polynomials.

We will be working with the proof written by Lang in the book Undergrad-
uate Algebra, page 159-160. [3] Unlike the previous example where we worked
the proof and our case side by side we will this time work through the proof
and then complement it with a specific case after the proof is done.
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The monomial of n variables, Xk1
1 · · ·Xkn

n , has its weight defined as k1 +
... + nkn and the weight of the polynomial g(X1, ..., Xn) is then defined as the
maximum of the weights of monomials in g.

Theorem 1. Let f(x) ∈ R[x1, ..., xn] be a symmetric polynomial of degree d.
Then there exists a polynomial g(X1, ...Xn) of a weight ≤ d such that

f(x) = g(e1, ..., en). (13)

Proof. We begin by using induction on n. It is easy to see that the solution is
trivial for n = 1 since e1 = x1. We assume that our theorem is proved for n− 1
variables and move on. If we form a polynomial p(x) of n variables such that

p(x) =(x− x1)(x− x2) · · · (x− xn),

p(x) =xn − (x1 + x2 + ...+ xn)x
n−1 + ...+ (−1)nx1x2 · · ·xn,

we get a polynomial where the coefficients of x are all written as our symmetric
polynomials e1 to en. If we substitute xn = 0 in p(x) we get

p(x) = xn − (x1 + x2 + ...+ xn−1)x
n−1 + · · ·+ (−1)n−1 · x1x2 · · ·xn−1x.

We can see that each of the coefficients in xn−1 to x is exactly the elementary
symmetric polynomials from e1 to en−1 written in terms of x1, x2, ..., xn−1. So
we do not have the elementary symmetric polynomials of n variables, but n− 1
variables, and will write these as (e1)0, ..., (en−1)0. Let us rewrite it as

p(x) = xn − (e1)0x
n−1 + · · ·+ (−1)n−1(en−1)0.

If we use induction over the degree d, then the case d = 0 is trivial. We assume
that our d > 0 and assume that this is proved for all polynomials of degree < d.
With this we know that there has to be a polynomial g1(X1, ...Xn−1) with a
weight ≤ d such that

f(x1, ..., xn−1, 0) = g1((e1)0, ..., (en−1)0) (14)

We can see that g1(e1, ..., en−1) has degree ≤ d in our variables (x1, x2, ..., xn),
so if we define a new symmetric polynomial of x1, ..., xn as

f1(x1, ..., xn) := f(x1, ..., xn)− g1(e1, ..., en−1). (15)

We know that the resulting polynomial f1 has a degree ≤ d and is symmetric
as well. If we apply the result that we got in (14) we get

f1(x1, ...xn−1, 0) = f(x1, ...xn−1, 0)− g1((e1)0, ..., (en−1)0)

= 0.
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We now know that our g1 removes all the terms in f(x1, ..., xn) that do not
include our xn, so this gives us that our f1 must contain the factor xn, and
since it is symmetric it will also therefor contain en as a factor. This must mean
that there is another symmetric polynomial f2(x1, ..., xn), such that

f1 = enf2(x1, ..., xn). (16)

It is clear that our f2 has to be symmetric as well and its degree be ≤ d−n < d.
By induction, there must exist a polynomial g2 in n variables such that

f2(x1, ..., xn) = g2(e1, ..., en). (17)

Let us use the results given to us in (15), (16) and (17) and we get that

f1(x1, ..., xn) = f(x1, ..., xn)− g1(e1, ..., en−1)

f(x1, ..., xn) = g1(e1, ..., en−1) + f1(x1, ..., xn)

= g1(e1, ..., en−1) + enf2(x1, ..., xn)

= g1(e1, ..., en−1) + eng2(e1, ..., en).

With this we have proved that for each symmetric polynomial f(x1, ..., xn) ∈
R there exists a g(e1, ...en) meaning that each symmetric polynomial can be
written in terms of elementary symmetric polynomials and through our proof
at the end of §3.5 that they also can be written in terms of the power sum
symmetric polynomials.

Now, with the general case proven, we can move onto a specific case and
apply the steps formulated in the proof. To make it more manageable, we will
limit ourselves to three variables, x1, x2, x3. Let our symmetric polynomial be
f(x1, x2, x3) = x2

1(x2 + x3) + x2
2(x1 + x3) + x2

3(x1 + x2). The first step is to
substitute x3 = 0 to get

f(x1, x2, 0) = x2
1x2 + x2

2x1

= x1x2(x1 + x2)

= (e12)0

= g1((e1)0, (e2)0)

where g1 is just a polynomial of elementary symmetric polynomials of two vari-
ables. We then use the definition in (15) and we know that

f1(x1, x2, x3) = f(x1, x2, x3)− g1(e1, e2)

= x2
1(x2 + x3) + x2

2(x1 + x3) + x2
3(x1 + x2)− e12

= x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2 − e12. (18)
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The monomial in (18) has been known to us since before from (8) and we can
apply it to our case to rewrite it as

x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2 − e12 = e12 − 3e3 − e12

= −3e3.

With this we can see that our solution for g2 is trivial and has to be the −3
infront of the en = e3. This gives us the solution for our symmetric polynomial
f(x1, x2, x3). We know that our solution can be written as

f(x1, x2, x3) = g1(e1, e2) + e3g2(e1, e2, e3)

x2
1(x2 + x3) + x2

2(x1 + x3) + x2
3(x1 + x2) = e12 − 3e3.

To move on from here and apply the knowledge that we have won from §3.5
and §3.6 to prove that both elementary symmetric polynomials and power sum
symmetric polynomials constitute bases for our Λ we have some work to do.

Proposition 8. Any homogeneous symmetric polynomial f of degree d can be
written in the terms of elementary symmetric polynomials and can therefore be
written as

f(x1, ..., xn) = g(e1, ..., en) =
∑
λ⊢d

cλeλ (19)

where cλ is a complex coefficient.

Proof. We already know what our g looks like as this is just a function of
elementary symmetric polynomials. This means that we can write it as

g(e1, ..., en) =
∑

cα1,...,αne
α1
1 · · · eαn

n .

We know a few things for certain, that

I nαn + (n− 1)αn−1 + · · ·+ α1 = d

II λ = (nα
n, ..., 1

α
1 ) ⊢ d.

With this we know that we can write it as
∑

λ⊢d cλeλ and our proof is done.

Proposition 9. {eλ : λ ∈ Par(d)} is a basis for Λd.

Proof. We now know from the fundamental theorem of symmetric polynomi-
als that we can write any symmetric polynomial f(x1, ..., xn) in terms of the
elementary symmetric polynomials. We also proved in proposition 8 that any
symmetric polynomial could be written as stated in (19). So given that we know
that
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f(x1, ..., xn) =
∑
λ⊢d

cλeλ. (20)

It also proves that we have a set E : {eλ : λ ∈ par(d)} that spans Λd where E
is a set of vectors in Λd. We know that dim(Λd) = the number of partitions of
d and therefore E has the size of dim(Λd) and such E must be a basis.

Proposition 10. {pλ : λ ∈ Par(d)} is a basis for Λd.

Proof. As we have previously stated we know that any symmetric polynomial
f(x1, ..., xn) can be written in terms of the elementary symmetric polynomials.
We proved in proposition 8 that these can be written as

∑
λ⊢d cλeλ. We also

know from proposition 7 that any elementary symmetric polynomial, eλ can be
written as a power sum symmetric polynomial, pλ. If we combine these two
bits of information we get a powerful combination and get that any symmetric
polynomial f(x1, ..., xn) can be written as

f(x1, ..., xn) =
∑
λ⊢d

cλpλ. (21)

It also proves that we have a set P : {pλ : λ ∈ par(d)} that spans Λd where P
is a set of vectors in Λd. We know that dim(Λd) = the number of partitions of
d and therefore P has the size of dim(Λd) and such P must be a basis.

4 Transformation matrices

In the field of symmetric polynomials there are transformation matrices that lets
us quickly transform a basis of all different partitions Par(d) to another basis
of the different partitions Par(d), meaning we can write any basis of degree d
as another basis of degree d. These transformation matrices have interesting
combinatorial implications, this paper will not provide a proof for these but will
lay the groundwork of proving that the matrices exists. We will look at the
matrices that takes us from the elementary symmetric polynomial basis to the
power sum symmetric basis, and vice versa.

4.1 Elementary symmetric polynomials to power sum sym-
metric polynomials

Now having proved Newton’s identities and proposition 7 we have discovered
that we can describe any given power sum symmetric polynomial, pλ, in terms
of elementary symmetric polynomials. In proposition 8 we stated that any
symmetric polynomial can be written as

f(x1, ..., x2) =
∑
λ⊢d

cλeλ.
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Now, if we state that our f is the power sum symmetric polynomial we can
write this as

pλ =
∑
µ⊢d

cλµeµ (22)

where our cλµ are complex coefficients. It should be clear that for pλ and eµ
to have the same degree, we know that |λ| = |µ| = d, otherwise the different
symmetric polynomials would have different degrees and not be equal. We know
from proposition 3 that Λd is a vector space, V , and therefore we know that
there exists a transformation matrix A that takes us from one basis to another
such that x = Ay where x and y are column vectors of our different bases of
our vector space V , and A is a n × n matrix. These column vectors x and y
holds all different partitions of the degree d, Par(d), of both pλ and eµ. Normal
convention is that we sort these column vectors in opposite order, so for x we
will use lexicographic order and for y we will use reverse lexicographic order.
This gives us

x =


pλn

pλn−1

...
pλ1

 ,

y =


eµ1

eµ2

...
eµn

 .

Now we have to look at our matrix A. We know that it is a n×n matrix where
n is the number of different partitions of Par(d). We know that A holds all of
the coefficients, cλµ. Due to the orders we have chosen for x and y this would
mean that a11 · · · a1n

...
. . .

an1 ann

 =

cλn,µ1
· · · cλn,µn

...
. . .

cλ1,µn
cλ1,µn

.


With this we now have all the parts needed to finish our work with the trans-
formation matrix. We know that

pλn

pλn−1

...
pλ1

 =

cλn,µ1
· · · cλn,µn

...
. . .

cλ1,µn
cλ1,µn



eµ1

eµ2

...
eµn

 .

To put this into a specific case, let us look at the transformation matrix
for V = Λ3, meaning the vector space of the ring of symmetric polynomials of
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degree three. We know that Par(3) has three different partitions, (3), (21), (111)
so therefore we get p111p21

p3

 =

0 0 1
0 −2 1
3 −3 1

 e3
e21
e111

 ,

p111p21
p3

 =

 e111
−2e21 + e111

3e3 − 3e21 + e111

 .

4.1.1 Table for the transformation matrix: Elementary symmetric
polynomials to power sum symmetric polynomials

We can find the results in this table by using the formula in (10).

p1 =e1

p11 =e11

p2 =− 2e2 + e11

p111 =e111

p21 =− 2e21 + e111

p3 =3e3 − 3e21 + e111

p1111 =e1111

p211 =− 2e211 + e1111

p22 =4e22 − 4e211 + e1111

p31 =3e31 − 3e211 + e1111

p4 =− 4e4 + 4e31 + 2e22 − 4e211 + e1111

4.2 Power sum symmetric polynomials to elementary sym-
metric polynomials

Most of the work that we need to do is already done in §4.1, and we will closely
follow the same structure. If we use our equation from (22) and the knowledge
from proposition 7 we know that

eλ =
∑
µ⊢d

cλµpµ (23)

where our cλµ are complex coefficients. Just like before we know that |λ| =
|µ| = d. There exists a transformation matrix A that takes us from one basis
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to another such that x = Ay where x and y are column vectors of our different
bases of our vector space V , and A is a n× n matrix, just like previously. The
difference this time is that we will change our column vectors x and y to reflect
the same ordering that we had in the previous transformation matrix, where
the basis that we change to is in lexicographic order and the basis we change
from is in reverse lexicographic order. This gives us that

x =


eλn

eλn−1

...
eλ1

 ,

y =


pµ1

pµ2

...
pµn

 .

Our matrix A stays the same, but the coefficients will potentially take on dif-
ferent values from the one before. This gives us

eλn

eλn−1

...
eλ1

 =

cλn,µ1 · · · cλn,µn

...
. . .

cλ1,µn cλ1,µn



pµ1

pµ2

...
pµn

 ,

and our work is done.

If we apply this to a specific case, say V = Λ3, we know that partitions of
Par(3) is (3), (21), (111). That would mean that our solution would bee111e21

e3

 =

 0 0 1
0 −1/2 1/2
1/3 −1/2 1/6

 p3
p21
p111

 ,

e111e21
e3

 =

 p111
−p21+p111

2
2p3−3p21+p111

6

 .

26



4.2.1 Table for the transformation matrix: Power sum symmetric
polynomials to elementary symmetric polynomials

We can find the results in this table by using the formula in (10).

e1 =p1

e11 =p11

e2 =
−p2 + p11

2

e111 =p111

e21 =
−p21 + p111

2

e3 =
2p3 − 3p21 + p111

6

e1111 =p1111

e211 =
−p211 + p1111

2

e22 =
p22 − 2p211 + p1111

4

e31 =
2p31 − 3p211 + p1111

6

e4 =
−6p4 + 8p31 + 3p22 − 6p211 + p1111

24

5 Conclusion

We have now taken some time to really dig into different ways to express the
symmetric polynomials. Not only have we seen how to write a symmetric poly-
nomial but we have proved through propositions 4, 9 and 10 that mλ, eλ and pλ
make up bases for our ring of symmetric polynomials Λd. The proof of Newton’s
identities also gives us a way to rewrite any power sum symmetric polynomial
in terms of elementary symmetric polynomials. We can also rewrite any sym-
metric polynomial in terms of the elementary symmetric polynomials through
the proof of the fundamental theorem, though it might take some time for more
difficult symmetric polynomials, due to the induction steps.

This is just the beginning of the journey into the symmetric polynomials.
From here there are a multitude of areas which once could explore. One does
not have to stay solely in the realm of symmetric polynomials, but can move on
to different fields which are touched by this one. However, if one were interested
in staying in the symmetric polynomials, there are still other bases that were not
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covered in this paper, such as the Schur polynomials and complete homogeneous
symmetric polynomials. There are also interesting combinatorial implications
of the transformation matrices that could be interesting to go further into.
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