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Abstract

Ever since Galois theory emerged, there has been an open problem called The
inverse Galois problem. It states whether or not any finite group G can occur
as the Galois group of a finite extension over a fixed base field k. This depends
on the base field k. For k = C(t) the problem has a positive answer and a proof
will be provided with the help of Riemann surfaces. When k = Q the problem
remains open.

In this project, a promising approach will be presented concerning the al-
gebraic fundamental group, which will allows us to turn a finite group G with
trivial center and a rigid system of rational conjugacy classes into a Galois group
over Q. To obtain the algebraic fundamental group we will present the theory
in the following way: In the first chapter the Galois theory for both finite and
infinite extensions will be presented and also Groethendieck‘s reformulation of
the main Galois theorem will be stated and proved. The latter serves as an
abstraction and will allow us to draw analogies between the two central ob-
jects of the project, namely the Galois groups and the Fundamental groups. In
the second chapter, the focus will be on covers and the fundamental group of
a space and the analogy between them with field extensions and the absolute
Galois group. The third chapter is about Riemann surfaces for which we will
obtain a link between the Galois theory of fields and that of covers. It will be
proven that finite etale algebras over the field of meromorphic functions of a
fixed Riemann surface corresponds up to isomorphism to finite branched covers
of Riemann surfaces. The last chapter will be dedicated to obtaining the alge-
braic fundamental group via the theory of algebraic curves by relating it to the
theory presented in the third chapter.
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Sammanfattning

Ända sedan Galoisteorin uppstod har det funnits ett öppet problem som kallas
Det inversa Galoisproblemet. Det handlar om huruvida varje ändlig grupp G
kan uppträda som Galoisgruppen för en ändlig utvidgning över ett fixerat basfält
k. Detta beror p̊a basfältet k. För k = C(t) har problemet ett positivt svar,
och ett bevis kommer att presenteras med hjälp av Riemannytor. När k = Q
förblir problemet öppet.

I detta projekt kommer en lovande metod att presenteras som berör den
algebraiska fundamentalgruppen, vilket gör det möjligt att omvandla en ändlig
grupp G med trivialt centrum och ett stelt system av rationella konjugatklasser
till en Galoisgrupp över Q. För att erh̊alla den algebraiska fundamentalgruppen
kommer vi att presentera teorin p̊a följande sätt: I det första kapitlet kommer
Galoisteorin för b̊ade ändliga och oändliga utvidgningar att presenteras, och
även Grothendiecks reformulering av den huvudsakliga Galoissatsen kommer att
anges och bevisas. Den senare fungerar som en abstraktion och gör det möjligt
för oss att dra analogier mellan de tv̊a centrala objekten i projektet, nämligen
Galoisgrupperna och fundamentalgrupperna. I det andra kapitlet kommer fokus
att ligga p̊a överlagringar och fundamentalgruppen för ett rum och analogin
mellan dessa och fältextensioner samt den absoluta Galoisgruppen. Det tredje
kapitlet handlar om Riemannytor, där vi kommer att upprätta en koppling mel-
lan Galoisteorin för kroppar och teorin för överlagringar. Det kommer att be-
visas att ändliga etaleska algebror över fältet av meromorfa funktioner p̊a en fix
Riemannyta motsvarar upp till isomorfism ändliga förgrenade överlagringar av
Riemannytor. Det sista kapitlet kommer att ägnas åt att erh̊alla den algebraiska
fundamentalgruppen via teorin om algebraiska kurvor genom att relatera den
till teorin som presenterades i det tredje kapitlet.
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1 Introduction

The Galois theory originally emerged for studying roots of polynomials over
fields. A root a of a polynomial f over a field k defines an extension of finite
degree L. For each such finite field extension k ⊆ L we can define the group
of automorphisms Aut(L|k) of L that fixes the base field k elementwise. This
group sends a root of a polynomial to another root of a polynomial. It is said to
be Galois if the field that gets fixed by the action of is exactly the base field k.
This gives a correspondence between Galois groups and Galois extensions. It is
natural to extend this notion to infinite extensions, but then we fail to have a
bijection between groups and fields because the groups end up to be too many.
Hopefully, we can remedy this case by setting a topology on the groups and then
we get a correspondence. This correspondence allow us then to formulate the
main Galois theorem in purely categorical terms which depends on the choice of
a separable closure ks of a field k and the group Gal(ks|k). In this situation we
get a correspondence between finite separable field extensions L of k and sets
with left Gal(ks|k)-action . A parallel construction is developed for covering
spaces and we get a similar correspondence which depends on the base point
x of a space X and the fundamental group π1(X,x) and the correspondence is
between covering spaces over X and sets with continuous right π1(X,x) action.
This right π(X,x)-action will be shown that is equivalent to a left Aut(X̂|X)
action, where X̂ is the universal covering ofX. The Riemann surfaces in Chapter
3 are naturally endowed with a field M(X) of meromorphic functions and with
covering maps coming from proper holomorphic maps. This structure will allow
us to combine both theories to get a correspondence between covers and field
extensions of a fixed field. This will enable us to describe the Galois groups
from the fundamental groups. Though this is the analogy we want, it restrict
us to describe only field extensions over the complex numbers C. In order to
extend this correspondence over the rational numbers Q, we introduce algebraic
curves and relate them to Riemann surfaces by endowing them with a Riemann
structure. We will conclude with an interesting result that finite groups G with
trivial center and a rigid system of rational conjugacy classes can arise as a
Galois group over Q.
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2 Galois Theory for Fields

2.1 Field Theory

In this section we will present the theory of fields needed to develop the results
of Galois Theory.

Recall that a field extension L of k is such that k is a subfield of L and we
denote it as L|k.

Definition 2.1. Let k a field and an extension L of k.

1. An element a ∈ L is said to be algebraic over k if there exists a non-zero
polynomial f ∈ k[t] such that f(a) = 0.

2. An extension L of k is algebraic if every element a ∈ L is algebraic over k.

3. If the polynomial f is monic and irreducible we call it the minimal poly-
nomial of a over k.

Remark 1. A field extension L over k can be viewed as a vector space over the
field k. A finite extension L|k is such that L is a finite dimensional vector space
over k. For a finite extension L|k we have that L is also algebraic over k. That
comes from the fact that if a ∈ L, then the powers of a a, a1, ..., an can not
be linearly independent over k and thus must be the root of a polynomial with
coefficients in k. In this situation denote the degree of L over k as [L : k] . If
we have a tower of finite field extensions M |L|k then we have that [M : k] =
[M : L][L : k], because if {a1, ..., an}, {b1, ..., bm} are two basis for the extensions
M |L and L|k respectively then {aibj} forms a basis for M |k.

A monic polynomial is a univariate polynomial (a polynomial in one variable)
such that the leading coefficient of the polynomial is 1. We note that k being a
field implies that we can assume that a univariate polynomial is monic (otherwise
we multiply the leading coefficient with its multiplicative inverse). Also we note
that an algebraic extension L|k is a k-algebra that is generated by algebraic
elements over k. We write for a k-algebra generated by elements a1, ..., an

L = k(a1, ..., an)

If L = k(a) is generated by one algebraic element over k, then we have that
[L : k] = n , where n is the degree of the minimal polynomial of a. In fact ,
when L is a finite extension over a field k of characteristic 0, then we have that
L = k(a1, .., an) and by the next proposition we can see that there exists γ ∈ L
such that L = k(γ).

An embedding of a field k into another field L is a ring homomorphism

σ : k → L

And for such a homomorphism we have that σ(1) = 1 and σ(0) = 0. Also
because xx−1 = 1 then we have that σ(x)σ(x)−1 = 1 and therefore if x ̸= 0,
then xx−1 = 1 so σ(x) ̸= 0. Therefore we get that σ(x) = 0 ⇒ x = 0 so σ
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is injective. The image σ(k) ⊆ L and is clearly a subfield of L, thus we can
identify k with its image. We also have that if p is an irreducible polynomial
over k[t] then σ(p) is also irreducible in σ(k)[t]. This follows easily from if σ(p)
is not irreducible then

σ(p) = gh⇒ p = σ(g)−1σ(h)−1

and thus p has a factorization in k[t],contradiction. We also have that if a ∈ k
is a root of a polynomial f ∈ k[t] then we have that σ(a) is a root of σ(f) ∈
σ(k)[t]. Lastly, if E|L|k is a tower of extensions then we say that an embedding
τ : L→ E is an extension of σ : k → E if τ(x) = σ(x),∀x ∈ k.

Proposition 2.1. Primitive Element If L is a finite extension over k and k
is of characterisic 0 then we have that ∃γ ∈ L such that L = k(γ).

A proof of the proposition will be given in the more general form of seperable
extension.

Definition 2.2. A field k is algebraically closed if it has no proper algebraic
extension. An algebraic closure of k is an algebaic extension that is algebraically
closed.

The next proposition states that given a field k , there exists an algebraic
closure of k and gives some properties of the algebraic closure. Recall that a
k-embedding is an injective homomorphism that leaves k-elementwise fixed.

Proposition 2.2. Let k a field.

1. There exists an algebraic closure k̂ of k.

2. For a finite extension L over k, we have that there exists an embedding
L→ k̂ that leaves k elementwise fixed.

3. For two algebraic closures k̂1, k̂2 we have that there is a non-unique iso-
morphism k̂1 ∼= k̂2.

4. For L algebraic extension of k we have that there exists an k-isomophism
of algebraic closures L̂ ∼= k̂ which extends the k-embedding L→ k̂.

Proof. 1. A proof is given in the book [7], Theorem 7.4.

2. Proof in [7] Theorem 2.3 [VII].

3. Proof in [7] Theorem 7.5.

Thus henceforth when speaking of an algebraic extension of k, we can think
of it as a subfield in a fixed algebraic closure k̂.

For a finite extension as given in Proposition 1.2.2 we have that if k is of
characteristic 0 we can prove that the number of embeddings L→ k̂ that leaves
k elementwise fixed is equal to [L : k] , i.e the degree of the extension. But for
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positive characteristic, let that be p ∈ N we have the following situation:
Let F be a field of characteristic p and a ∈ F . Then for the polynomial tp−a ∈
F [t] suppose we have a root b ∈ E where E is an algebraic extension of F,

(t− b)p = tp − bp = tp − a

so b ∈ E = F (b) is the only root of the polynomial and therefore any embedding

F (b)→ k̂ that fixes F pointwise must map b to b and thus the only choice is the
identity on F (b), but the degree of the algebraic extension is n. Therefore to
preserve this important property together with the primitive element property
over any characteristic we introduce the notion of separability.

Definition 2.3. A polynomial f(x) ∈ k[x] is separable if it has no multiple
roots in an algebraic closure. An element a ∈ L inside an algebraic extension
L|k is separable over k if its minimal polynomial is separable. The algebraic
extension L|k is separable over k if every element in L is separable over k.

Definition 2.4. A splitting field of a polynomial f ∈ k[x] is the smallest finite
extension S|k in which the polynomial f splits into linear factors.

Remark 2. A splitting field of a polynomial f exists, and any two splitting fields
of the same polynomial are isomorphic. These are the contents of Theorems 3.1
and 3.2 [VII] in [7]. Thus we can speak of the splitting field of a polynomial
f.Also, if L is the splitting field of a polynomial f ∈ k[t] then we can see that it
is generated by its roots over k ,i.e L = k(a1, .., an) with a1, ..., an roots of f.

Remark 3. When k is of characteristic 0 we see that separability holds,because
of the fact that an irreducible polynomial f ∈ k[x] has no multiple roots if
and only if f ′ is nonzero. In fact, if f has multiple roots then f and f ′ have a
common root in the splitting field of f, thus a common factor h = x − a, from
the irreducibility of f we and because f, f ′ ∈ k[t] we get f |f ′, which is absurd
as f ′ has a smaller degree than f, so f ′ = 0. The other direction is trivial over
characteristic 0.

Proposition 2.3. Let L|k be a finite extension of degree n. Then L has at

most n distinct k-algebra homomorphism to k̂, with equality if and only if the
extension is separable.

Proof. Let L be a finite extension of k, then there exist a1, a2, ..., am ∈ L such
that L = k(a1, ..., am). If m = 1 then we have that L = k(a1) and a k-

algebra homomorphism σ : k(a1) → k̂ is characterized by the image of a1 in

k̂ (k is fixed elementwise by such a homomorphism). The image of a1 has to
be a root of the image of the minimal polynomial f of a1 as was mentioned
in the discussion about the embeddings. Because the homomorphism fixes the
coefficients of the polynomial then we have that the image σ(a1) is a root of
the polynomial f. The number of the roots of f is at most n with equality if
and only if the polynomial is separable. Because of the multiplicativity of the
degree of the extension discussed above inductively we have that [L : k] = [L :
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k(a1, ..., am−1][k(a1, .., am−1) : k] for L = k(a1, .., am) has at most n k-algebra

homomorphisms to k̂ with equality if all ai are separable. To prove the ”only if”
part assume that we have a non separable element in the extension , i.e a ∈ L ,
then we proved that the number of distinct k-algebra homomorphisms k(a)→ k̂
is strictly less than [k(a) : k] and the number of k(a)-algebra homomorphisms

L → k̂ is at most [L : k(a)] . Then the number of k-algebra homomorphisms

L→ k̂ is strictly less than [L : k(a)][k(a) : k] = [L : k] = n.

From the proof of the proposition above we immediately get the following

Corollary 2.3.1. For a tower of finite extensions L|M |k we have that L|k is
separable if and only if both L|M and M |k are separable.

Corollary 2.3.2. A finite extension L|k is separable if and only if there exist
separable elements a1, ..., an ∈ L such that L = k(a1, ..., an).

We will now construct the biggest separable extension of a field k inside
of a closure k̂ of it. For that we recall that the compositum LM of two field
extensions L and M of k which both lie inside a fixed algebraic closure k̂ of k,
is the smallest subfield of k̂ which contains both L and M.

Corollary 2.3.3. If L and M are two finite separable extensions of k inside k̂,
then their compositum LM is also a separable extension of k inside k̂.

Proof. As L,M are both finite separable extensions then from corollary 1.3.2,
both are of the form L = k(a1, .., an) and M = k(b1, ..., bm) for separable ele-
ments {ai, bi}. Then LM = k(a1, .., an, b1, .., bm) =M(a1, .., an) and because ai
are separable over k, i.e their minimal polynomial has no multiple roots in an al-
gebraic closure, then they are separable over M too. Then we have that LM |M
is separable and also M |k is separable by assumption . Thus from corollary
1.3.1 we have that LM |k is also separable.

By the above 3 corollaries we have that the compositum kS of all finite sep-
arable extensions of k in an algebraic closure k̂ is a separable extension with the
property that for each a ∈ ks we have that k(a)|k is a finite separable extension

of k inside k̂. Also each finite separable subextension of k̂|k is contained inside
ks by definition. The compositum ks is said to be the separable closure of k
inside the algebraically closed k̂. All subextension of ks|k (even infinite) will be
called separable.
We will now prove the theorem of the primitive element for separable extensions.

Proposition 2.4. A finite separable extension L|k can be generated by one
element.

Proof. If k is a finite field then so is L = k(a1, .., am) and we also have that the
multiplicative subgroup of non-zero elements of L is a cyclic group, thus it is
generated by an element γ ∈ L∗. Then we have that k(γ) contains at least as
many elements as (γ) ⊆ L∗ which are |L|−1. Also k(γ) contains the zero which
is not contained in (γ),as it is a k-vector space,thus |k(γ)| = |L| and because
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k(γ) is a subfield of L then we have that k(γ) = L and thus we have a primitive
element.
If k is an infinite field then it is enough to prove the statement for L = k(α, β)
then for the general case induction applies. Let L = k(α, β) and c ∈ k − {0}
and consider γ = α + cβ. We will show that γ is a primitive element for some
choice of c ∈ k. We have that k(γ) ⊆ k(α, β) and if β ∈ k(γ) then we are done
as α = γ − cβ ∈ k(γ),thus k(α, β) = k(γ). So we may assume that β ̸∈ k(γ) .
As β is algebraic over k then it is also algebraic over k(γ) and because β ̸∈ k(γ)
we get that the algebraic extension k(γ, β) has at least degree 2 over k(γ)(and
by separability distinct roots). Then by Proposition 1.2 we have that there
exists an embedding σ that sends σ(β) = β′ ,where β′ is the other root of the
minimal polynomial of β over k(γ), and that fixes k(γ). So we have σ(γ) = γ
therefore from γ = α+ cβ, we get that σ(α) + cσ(β) = α+ cβ which implies

c =
σ(a)− a
β − σ(β)

(1)

because there are only finitely many such embeddings σ and each one sends
α, β to different roots of their minimal polynomial, then we have that there are
finitely many c satisfying equation (1). So we have that if β ̸∈ k(γ), then there
exists finitely many c so that this happens, but because the field is infinite we
choose any c different from those of relation (1) and we get that β ∈ k(γ) which
then implies that our extension is generated by one algebraic element.

2.2 Galois Theory for Finite Extensions

In this section we will present the Galois theory for finite extensions. Let L an
extension of k, we denote as Aut(L|k) the group of automorphisms of L that
fixes the field k. The elements fixed by the group Aut(L|k) acting on L is an
extension of k by definition.

Definition 2.5. An algebraic extension L|k is called Galois extension if the
elements of L that get fixed by Aut(L|k) is exactly the field k. In this case we
denote Aut(L|k) = Gal(L|k) and call it the Galois group of the extension L|k.

Lemma 2.5. A separable closure ks of k is always a Galois extension.

Proof. Let a ∈ kS − k, we want to prove that a is not fixed by all elements
of Aut(ks|k). So a is a separable element and the extension k(a) is a separa-
ble, algebraic extension of k. Any σ ∈ Aut(L|k) sends a root of the minimal
polynomial f ∈ k[t] of a to σ(a) which is again a root of f.Assume a′ ̸= a is an-
other root of the minimal polynomial of a (exists as a is separable). Then from

Proposition 1.2 we have that there exists embeddings k(a)→ k̂ and k(a′)→ k̂
that leave k elementwise fixed and we also have an isomorphism k(a) → k(a′)

by sending a to a′. Thus the isomorphism extends to an automorphism of k̂.
So there exists an element σ̂ ∈ Aut(k̂|k) that does not fix a. It remains to
show that the restriction of σ̂ to ks defines an element of Aut(ks|k). Indeed, let
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b ∈ ks a separable element , then σ̂ maps b to another root of the same minimal
polynomial b’, which is separable. Therefore only k is fixed by the action of
Aut(ks|k) on ks.

The Galois group Gal(ks|k) is called the absolute Galois group of k.

Lemma 2.6. A Galois extension L|k is a separable extension and the minimal
polynomial of every element splits in linear factors in L .

Proof. Let a ∈ L − k and consider the polynomial f =
∏
(x − σi(a)), where

σi ∈ Gal(L|k) and σi(a) ̸= σj(a) for all i ̸= j. Then, because every σi(a) is a
root of the minimal polynomial g of a, we get that the product is finite. Also,
we have that L is the splitting field of f and because every σi(a) is a root of
g then we have that L′ is an extension of L , where L′ is the splitting field of
g. We thus have that f |g inside L′[t] thus we have g = hf for h ∈ L′[t]. We
note that f ∈ k[t]. Indeed, the coefficients of f are the elementary symmetric
polynomials in its roots and any σ ∈ Gal(L|k) acting on those fixes them, thus
by assumption that the extension is Galois we have that f ∈ k[t]. Thus we
have that f |g and that f, g ∈ k[t] and g is irreducible over k[t] as the minimal
polynomial of a. Thus the extension is separable by definition of f and the
minimal polynomial g splits in linear factors in L.

Now we state a proposition that characterizes Galois extensions.

Proposition 2.7. Let k a field , ks a separable closure and L ⊆ ks a finite field
extension of k. The following are equivalent:

1. L|k is a Galois extension.

2. L|k is separable extension and the minimal polynomial for every a ∈ L
splits in linear factors in L.

3. For every σ ∈ Aut(ks|k) we have that σ(L) ⊆ L.

Proof. The proof (1) ⇒ (2) was given in Proposition 2.2. Assume (2) then L
contains all the roots of each minimal polynomial ga for all a ∈ L and because for
every σ ∈ Aut(ks, k) we have that σ(a) is a root of ga, thus we have σ(L) ⊆ L.
For (3) ⇒ (1),we pick a ∈ L − k and by Lemma 2.1 we have that ks|k is
Galois,thus ∃σ ∈ Gal(ks|k) with σ(a) ̸= a.Now, σ(L) ⊆ L by assumption implies
that σ|L ∈ Aut(L|k) and σ(a) ̸= a implies that only k is fixed by Aut(L|k), thus
L|k Galois.

We now proceed with stating the Galois Theorem for finite extensions. We
will denote LH to be the subfield of L that is fixed under the action of the
subgroup H ⊂ Gal(L|k) on L.

Theorem 2.8. Galois Theorem for finite extensions Let L|k be a finite
Galois extension with Galois group G. Then the maps

M → H
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H → LH =M

yield an inclusion reversing bijection from the subfield k ⊆ M ⊆ L to the sub-
groups H ⊆ G. The extension L|M is always Galois. The extension M |k is
Galois if and only if H is a normal subgroup of G and in this case we have
Gal(M,k) ∼= G/H.

Proof. Let L|k be a Galois extension with Gal(L|k) = G and ks a separable clo-
sure of k that contains L as a subfield and M ⊆ L. Then any σ ∈ Aut(ks|M) =
Gal(ks|M) (Lemma 2.1) that fixes M, must also fix k , thus σ ∈ Gal(ks|k) and
because L|k is Galois we get from Proposition 2.3 that σ(L) ⊆ L and there-
fore L|M is a Galois extension. Denoting thus H = Gal(L|M), we have that
LH = M and H ⊆ G. Conversely if H ⊆ G then L|LH is Galois by definition
with Galois group Gal(L|LH) = H.

To prove the second statement assume first thatH ⊆ G is a normal subgroup,
thus we can define the quotient G/H. Any non-zero representative σ̂ ∈ G/H
comes from an automorphism of L that fixes k but does not fix M elementwise.
Therefore each such element σ̂ acts on M = LH ,as any σ ∈ Aut(L|k) acts on
M and the action is determined by the class of σ modulo H, therefore MG/H is
defined and also the equality MG/H = LG holds and because G Galois group
then LG = k so MG/H = k thus M |K is Galois extension with Galois group
Gal(M |k) = G/H.

Conversely, let M |k be a Galois extension . Let σ ∈ G = Aut(L|K) and let

k̂ an algebraic closure of k that contain L. Then σ : L → L ⊆ k̂ extends to
a σ′ : k̂ → k̂ by Proposition 1.2 (4) that fixes k-elementwise and restricting
to ks by Lemma 1.5 we have that for any σ ∈ G there exists an extension o
σ′
|ks ∈ Gal(ks, k) and because M |k is Galois then we have from Proposition

1.7 (3) that σ′
|ks(M) = σ(M) ⊆M . Thus the restriction to M defines a natural

homomorphism G→ Aut(M |k) = Gal(M |k) (σ 7→ σ|M ), and the kernel of that
map are the automorphisms in G that map to the identity on Gal(M |k), i.e
that fixes M, but those are Aut(L|M) . Thus the kernel is equal to Aut(L|M)
and the kernel of a group homomorphism is always a normal subgroup of the
domain. Thus H = Aut(L|M) = Gal(L|M) is in fact normal.

The most common characterization of a Galois extension is the following,
which also gives a constuctive way to get a Galois extension.

Lemma 2.9. Let L|k a finite extension, then L|k is Galois if and only if it is
the splitting field of an irreducible separable polynomial.

Proof. Let L|k finite Galois extension, then by Proposition 1.7 L|k is separa-
ble and the minimal polynomial of each a ∈ L splits in linear factors. By the
primitive theorem for separable extensions we get that L = k(a) and by assump-
tion we have that the minimal polynomial fa splits in linear factors and this is
an irreducible, separable polynomial. Conversely, if L is the splitting field of an
irreducible separable polynomial then it is generated by all the distinct roots of
the polynomial and every root a ∈ L must be mapped to another root σ(a) by
σ ∈ Gal(ks, k) and therefore by Proposition 1.7 the extension is Galois.
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Corollary 2.9.1. For a finite Galois extension L|K we have that [L : k] = |G|
where G is the Galois group of the extension.

Proof. By the previous proposition, we have that L is the splitting field of
an irreducible and separable polynomial f and let deg(f) = n. Then L =
k(a1, .., an) and [L : k] = n and every element σ ∈ Gal(L|k) is a homomorphism

of k-algebras to k̂ as in Proposition 1.3 and thus we have |G| = n.

Remark 4. Generally for any finite algebraic extension L|k we have |Aut(L|k)| ≤
[L : k] with equality if and only if the extension is Galois. When equality holds,
we note that the automorphism group Gal(L|k) acts transitively on the roots
of the minimal polynomial. Thus, if the extension is of degree n we have a
natural injection Gal(L|k) → Sn. This implies that |Gal(L|k)| ≤ n! and more
interestingly that any splitting field of a separable irreducible polynomial has
at most [L : k] ≤ n!.

2.3 Infinite Galois Extensions

In this section we will extend the main Theorem of the Galois Theory (Theorem
1.8) to infinite Galois extensions. In order to do so, we first have to describe
what an infinite Galois extension is. Extending Definition 1.5 to the infinite
case, we see that a Galois extension L|k arises as a k-algebra of infinite degree,
i.e. L = k(ai|i ∈ I) where ai are algebraic elements and I any set of indices
(even uncountable). The problem with infinite extensions, though we have that
there are maps from subgroups of the Galois groups to field extensions of a base
field and vice versa, is that it is no longer a bijection, because there are too
many subgroups and at least two of them can have the same fixed field. To
overcome this fact we will use topology.

A first property that follows from the definition is that any infinite Galois
extension arises as a union of finite Galois extensions. Indeed by the following
proposition we get that any finite subextension of K|k can be embedded in a
Galois extension and thus taking the compositum of those Galois extensions
gives us the result.

Proposition 2.10. Let K|k an infinite Galois extension. Any finite subexten-
sion of K|k can be embedded in a finite Galois extension.

Proof. Any finite subextension of a Galois extension is separable , therefore by
the primitive element theorem for separable extension we have that L = k(a)
with minimal polynomial fa ∈ k[t]. Therefore taking the splitting field of the
irreducible, separable polynomial f gives us a Galois extension in which L can
be embedded.

This fact has a crucial consequence, that Gal(K|k) can be turned into a
profinite group. From the main Galois correspondence we have that if M |L|k
is a tower of finite Galois extensions contained in an infinite Galois extension
K|k, then Gal(L|k) ∼= Gal(M |k)/Gal(M |L), where Gal(M |L) is the kernel of

13



the surjective map ϕML : Gal(M |k) → Gal(L|k) which was build in the proof
of Theorem 1.8 and if N |k is another Galois extension such that M ⊆ N then

ϕNL : Gal(N |k)→ Gal(M |k)→ Gal(L|k)

We have that the kernel of the ϕNM is Gal(N |M) and the kernel of ϕML is
Gal(M |L) and because any automorphism fixing M also fixes L, thus we have
that ϕNM (Gal(N |M)) ⊆ Gal(M |L) and therefore we have that the map indeed
factors as above, i.e ϕNL = ϕML ◦ ϕNM . We will generalize this construction
by the following definition.

Definition 2.6. A (filtered) inverse system of groups (Ga, ϕa) consists of:

1. A partially order set (Λ,≤) which is directed in the sense that for all
(α, β) ∈ Λ there exists γ ∈ Λ such that α ≤ γ and β ≤ γ.

2. For each α ∈ Λ a group Gα.

3. For each α ≤ β a homomorphism ϕαβ : Gβ → Gα such that we have
equalities ϕαγ = ϕαβ ◦ ϕβγ for α ≤ β ≤ γ.

Definition 2.7. 1. The inverse limit of an inverse system of groups is defined
to be a subgroup of the product

∏
aGa constisting of sequence (ga) ∈∏

aGa such that ϕαβ(gβ) = gα for all α ≤ β.We denote it as lim←−(Ga)

2. A profinite group is the inverse limit of an inverse system of finite groups.

We will now prove that Gal(K|k) can be turned into a profinite group.

Proposition 2.11. Let K|k be a Galois extension of fields. Then the Galois
groups of the finite Galois subextensions of K|k together with ϕNM : Gal(N |k)→
Gal(M |k) can be turned into an inverse system of groups with the inverse limit
being isomorphic to Gal(K|k). Thus Gal(K|k) is profinite group.

Proof. Let the partially ordered set be the finite Galois subextensions of K|k
together with the partial order L ≤ M if and only if L ⊆ M . From Theorem
1.8 we have that for each such finite Galois sub-extension we have a group
Gal(L|k) and the third property of the definition follows from the preceding
discussion. Thus indeed we have an inverse system of groups.We denote GL to
be the Galois group corresponding to the finite Galois extension L|k.
We now prove the isomorphism of Gal(K|k) with the inverse limit of the system.
Let ϕ be

ϕ : Gal(K|k)→
∏
L

GL

σ 7→ (σ|GL
)

The fact that a restriction of an automorphism in Gal(K|k) defines an auto-
morphism on L|k when L|k is Galois follows from Proposition 1.7.
We want to prove that ϕ is bijective. First, we find that ϕ is injective. Indeed,
if σ is nontrivial, then there exists a ∈ K such that σ(a) ̸= a and there exists a
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finite Galois extension containing a, which is the splitting field of the minimal
polynomial of a, which is also separable as a subextension of K|k. Therefore,
in order for a sequence (σGL

) to be trivial, we must have σ to be trivial as
an automorphism of Gal(K|k). We also note that ϕ(Gal(K|k)) ⊆ lim←−Gal(L|k)
because we have ϕML(σ|M ) = σ|L for all σ ∈ Gal(K|k) for finite Galois exten-
sions M |L|k. On the other hand, if (σL) ∈ lim←−Gal(L|k) then we can construct
σ ∈ Gal(K|k) by setting σ(a) = σL(a) for a finite Galois extension L|k that
contains a, for all a.The fact that σ ∈ Gal(K|k) is a well defined element
comes from the fact that σL form a compatible system of automorphisms, as
(σL) ∈ lim←−Gal(L|k) and by consturction we have that σ 7→ (σL). Thus infact
we have Gal(K|k) ∼= lim←−Gal(L|k).

Corollary 2.11.1. Projections to the components of the inverse limit yields
natural surjections Gal(K|k)→ Gal(L|k) for all finite Galois subextensions L|k
of K|k.

Having this proposition, we can demonstrate an example of what means
that the Galois subgroups are too many for them to be in a bijection with field
extensions.

Example 1 Let L = Q(
√
2,
√
3,
√
5, ..) be an infinite extension over Q by

adjoining the square roots of all prime numbers.Then we have the countable
sequence of field extensions

Q(
√
2) ⊆ Q(

√
2,
√
3) ⊆ ...

the irreducible polynomial of
√
p remain irreducible over any extension not

containing it and thus the extension M(
√
p)|M is of degree 2 for any finite

subextension of L and is also Galois. That L is Galois follows from the fact that
L is the compositum of finite Galois extensions. For each extension M(

√
p)|M

we have two choices for an element in the automorphism group, either the
identity or the automorphism mapping

√
p 7→ −√p. Therefore

Gal(K|k) ∼= lim←−Gal(L|k)
∼=

∏
p

{−1, 1} ∼=
∏
n∈N
{−1, 1}

The number of subgroups of order 2 in Gal(K|k) is thus 2N which is uncount-
able and the number of field extensions is countable. Therefore, a bijection can
not exist between the two.

We will now define the topology on Gal(K|k) that will ”fix” our correspon-
dence. We will get a correspondence between closed subgroups of Gal(K|k)
and intermediate fields K|L|k. We endow the profinite group Gal(K|k) with
a topology as follows: we endow each finite Galois subextension Ga with the
discrete topology, the product

∏
aGa with the product topology and then the

subgroup Gal(K|k) = lim←−Ga ⊆
∏
aGa with the subspace topology. The pro-

jections to the components
∏
aGa → Ga are continuous, thus also the natural

projections Gal(K|k)→ Ga are continuous(subspace topology).
We now state two properties of the above topological construction.
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Lemma 2.12. Let (Gα, ϕαβ) be an inverse system of groups endowed with the
discrete topology as above. Then the inverse limit lim←−Gα is a closed topological
subgroup of the product

∏
αGα.

Proof. Let (gα) ∈
∏
αGα. We want to prove that if (gα) ̸∈ lim←−Gα then there

exists an open set containing (gα) which has empty intersection with lim←−Gα.
If (gα) ̸∈ lim←−Gα, then exists ϕαβ such that ϕαβ(gβ) ̸= gα. We pick the set
U consisting of all the points that have their α − th and β − th components
equal to gα and gβ respectively. The set U is open as the product of opens in
the product topology (the points are open because of the discrete topology).
By construction U can not a non-empty intersection with the inverse limit, it
contains the point (gα) and it is open. Thus the complement of lim←−Gα in

∏
αGα

is open.

Recall that a topological group is called totally disconnected if the only
connected subsets are the one point subsets.

Corollary 2.12.1. A profinite group G is compact and totally disconnected.
Moreover, the open subgroups are precisely the closed subgroups of finite index.

Proof. A finite discrete subgroup is compact as the singleton sets form a basis
for the topology and they are finitely many. Therefore by Tychonoff‘s theorem
the product

∏
aGa is compact and thus the inverse limit is also compact as it

is a closed subset(Lemma 1.12) of the compact space
∏
aGa. If a subset U of

the inverse limit contains two distinct elements (ga), (g
′
a) ∈ lim←−Ga then they

differ at one component Gβ , i.e gβ ̸= g′β therefore forming the open subsets
containing those points as we did in Lemma 1.12 we get that U can be written
as a union of two disjoint open subsets, thus it is disconnected. So the only
connected subsets are indeed the one point subsets. For the second statement,
let U be an open subset of G. We then have that G = ∪g∈GgU , and every
set gU is open (being homeomorphic to U) thus the complement of U in G is a
union of opens and because of compactness of G we have that there are finitely
many of those, thus U is indeed a closed subgroup of finite index. Conversely,
for a closed subgroup V of finite index we have G = ∪g∈GgV which are finitely
many, so V is the complement of a finite union of closed subgroups gV , so V is
open.

We now state the Galois correspondence for infinite Galois groups.

Theorem 2.13. Let L be a subetension of the Galois extension K|k. Then
Gal(K|L) is a closed subgroup of Gal(K|k). Moreover, in this way we get
a bijection between subextensions of K|k and closed subgroups of Gal(K|k),
where open subgroups correspond to finite extensions of k contained in K. A
subextension L|k is Galois over k if and only if Gal(K|L) is normal in Gal(K|k);
in this case there is a natural isomorphism Gal(L|k) ∼= Gal(K|k)/Gal(K|L).

Proof. First we assume that L|k is a finite separable extension contained in K.
By Proposition 1.10 we embed it in a finite Galois extension M |k contained
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in K. Then we have the group Gal(M |k) by Theorem 1.8, which also contains
Gal(M |L) as a subgroup. Let UL be the inverse image of Gal(M |L) by the
natural projection Gal(K|k) → Gal(M |k) that was discussed at the beginning
of this subsection. The projection is continuous and Gal(M |k) is finite with the
discrete topology , therefore its finite subgroup Gal(M |L) is open and so is UL.
We will prove that UL = Gal(K|L). Clearly, UL ⊆ Gal(K|L) as any element
in UL fixes L and is contained in Gal(K|k). On the other hand, the image of
Gal(K|L) by the projection Gal(K|k) → Gal(M |k) is contained in Gal(M |L),
because of Proposition 1.7 (3).

Let L|k be an arbitrary subextension of K|k, then we saw that it can be
written as a union of finite subextensions La|k. From what we have proven each
Gal(K|La) is an open subgroup of Gal(K|k), hence it is also a closed subgroup
of finite index by Corollary 1.12.1. The infinite intersection ∩aGal(K|La) is
equal to Gal(K|L) and it is also a closed subgroup of Gal(K|k).

Conversely, let H ⊆ G a closed subgroup of G, then it fixes an extension
L|k and therefore is contained in Gal(K|L), thus H ⊆ Gal(K|L). To show
equality, let σ ∈ Gal(K|L) and UM be the kernel of the map Gal(K|L) →
Gal(M |L) where M |L is a finite Galois extension. The kernel UM is open as
the preimage of an open set (the identity on Gal(M |L)) and it also contains
the identity of Gal(K|L). By the projection Gal(K|L) → Gal(M |L) we note
that Im(H) ⊆ Gal(M |L). In fact we have Im(H) = Gal(M |L), as otherwise
according to Theorem 1.8 we would have that the image fixes an extension
strictly larger than L, which would contradict that L is fixed by H. Therefore
we have that Im(h) = Im(σ) for some h ∈ H, which implies that σ−1h ∈ UM ,
i.e h ∈ σUM . Therefore, as UM was chosen arbitrarily we have that for each
UM there exists h ∈ H such that h ∈ σUM . Because σUM is open and it also
contains σ, then σUM is an open neighborhood of σ and because UM form an
open neighborhood basis of 1 ∈ Gal(K|L) , so does σUM for σ ∈ Gal(K|L).
Therefore by the characterization of the topological closure: a ∈ H̃ if and only
if every open neighborhood of a contains a point in H , we get that σ ∈ H̃. By
assumption H is closed, thus σ ∈ H, so H = Gal(K|L).

By Corollary 1.12.1 we have that the open subgroups of Gal(K|k) are
precisely the closed subgroups of finite index and the closed subgroups of finite
index fix an extension L|k, which has to be finite .

Finally, if we have that H ⊆ G is a normal subgroup then like in the proof
of Theorem 1.8 we let M = KH and we get that M |k is Galois with Galois
group Gal(M |k) = G/H.Conversely, if the extension M |k is Galois, then as in
the proof of Theorem 1.8 we have the natural projection map Gal(K|k) →
Gal(M |k) with kernel Gal(K|M) = H which is a normal subgroup of Gal(K|k)
and M = KH .

2.4 Category Theory

In this subsection we will define basic notions of Category theory,which we will
vastly use throughout this project to prove equivalence between Categories.
Once we have equivalence of categories, we can ”draw” properties from one
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category to the other and that will lead to intresting results. We first start with
the definition of a category.

Definition 2.8. A category consists of objects and morphisms between pairs
of objects; given a pair of objects A,B in the category C the morphisms from
A to B form a set, denoted Hom(A,B). These are subject to the following
constraints:

1. For any object A, the set Hom(A,A) contains a distinguished element
idA, the identity morphism on A.

2. Given two morphisms ϕ ∈ Hom(B,C) and ψ ∈ Hom(A,B), there exists
a canonical morphism ϕ ◦ ψ ∈ Hom(A,C), the composition of ϕ and ψ.
The composition satisfies:

• Given ϕ ∈ Hom(A,B) the relation ϕ ◦ idA = idB ◦ ϕ = ϕ holds.

• For λ ∈ Hom(A,B), ψ ∈ Hom(B,C) and ϕ ∈ Hom(C,D) the equal-
ity (ϕ ◦ ψ) ◦ λ = ϕ ◦ (ψ ◦ λ) holds (Associativity).

We continue with more definitions:
A morphism ϕ ∈ Hom(A,B) is an isomorphism if there exists ψ ∈ Hom(B,A)

such that ψ◦ϕ = idA and ϕ◦ψ = idB ; we denote the set of isomorphism between
A and B by Isom(A,B).

The opposite category Cop contains the same objects with C but with the
arrows reversed, i.e for every pair of objects (A,B) of C, there is an elementwise
bijection between the sets Hom(A,B) of C and Hom(B,A) of Cop preserving
the identity morphism and the composition.

Definition 2.9. A (covariant) functor F between two categories C1 and C2 is
a rule A 7→ F (A) on objects and a map Hom(A,B) → Hom(F (A), F (B)) on
morphisms which sends the identity to the identity and preserves composition.
A contravariant functor from C1 to C2 is a covariant functor from C1 to Cop2 .

Definition 2.10. If F and G are two functors with the same domain C1 and
target C2, then we define a morphism of functors Φ between F and G to be a
collection of morphisms ΦA : F (A) → G(A) for each object A ∈ C1 such that
for any morphism ϕ : A→ B in C1 the diagram

F (A) G(A)

F (B) G(B)

ΦA

F (ϕ) G(ϕ)

ΦB

commutes. The morphism Φ is an isomorphism if each ΦA is an isomorphism
for every object A; in this case we write F ∼= G.

Now we give the most important definition of this section.
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Definition 2.11. Two categories C1 and C2 are equivalent if there exist two
functors F : C1 → C2 and G : C2 → C1 and two isomorphisms of functors
Φ : F ◦ G → idC2

and Ψ : G ◦ F → idC1
. Two categories are isomorphic if

we can find F ◦ G = idC2
and G ◦ F = idC1

. Finally, we say that C1 and
C2 are anti − equivalent (resp. anti − isomorphic) if C1 is equivalent (resp.
isomorphic) to Cop2 .

From the definition it follows that in order to prove equivalence of two cat-
egories we have to define two functors F and G. We will now give a characteri-
zation of category equivalence that requires only the construction of one of the
two functors. To do so, we give a definition.

Definition 2.12. 1. A functor F : C1 → C2 is faithful if for any two ob-
jectsA andB of C1 the map of sets FAB : Hom(A,B)→ Hom(F (A), F (B))
induced by F is injective; it is fully faithful if the maps FAB are bijec-
tive.

2. The functor F is essentially surjective if any object of C2 is isomorphic
to an object of the form F (A).

We now have the equivalent characterization of category equivalence using
only a functor in one direction.

Lemma 2.14. Two categories C1 and C2 are equivalent if and only if there
exists a functor F : C1 → C2 which is fully faithful and essentially surjective.

Proof. Lemma 1.4.9 of [10].

Remark 5. The notion of equivalence of categories means that ”up to isomor-
phism the categories have the same objects and morphisms”, but that does not
mean that there are bijections between objects and morphisms. That comes
from the fact that by essentially surjective property there exists an isomor-
phism F (A) ∼= B for A ∈ C1, B ∈ C2, but there could be more that one choices
such that F (A′) ∼= B. To demonostrate this situation more explicity we will
consider the following example:

Consider C1 to be a category with one object c and one morphism 1c : c→ c
and the category C2 with two objects a, b and four morphisms 1a, 1b the idenity
morphisms and two isomorphisms ia : a → b and ib : b → a. Let F be the
functor F : C1 → C2 that maps c 7→ a and 1c 7→ 1a. Then F is essentially
surjective as every object of C2 is isomorphic to F (c) = a. Also F is fully
faithful as 1c 7→ 1a. Therefore we have an equivalence of the two categories,
but we do not have a bijection between elements nor morphisms. If we were to
drop the isomorphisms from the category C2 then it would no longer be true
that the two categories are equivalent.

We will now close this section with the notion of representability of a functor.

Definition 2.13. A functor F from a category C to the category of Sets
is representable if there is an object A ∈ C and an isomorphism of functors
F ∼= Hom(A, ).
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The functor Hom(A, ) defined above sends an object B ∈ C to Hom(A,B)

which is a set. The object A is called the representing object. If we have two
objects B and D of C then every morphism D → B induces a morphism of sets
Hom(B, )→ Hom(D, ) via composition, i.e if we have an object A ∈ C with a

morphism B → A, then D → B → A defines a morphism from D → A.
Yoneda‘s Lemma empowers us with the fact that the representing object of

each functor is unique up to unique isomorphism.

Lemma 2.15. Yoneda Lemma If F and G are functors C → Sets represented
by objects C and D respectively, then every morphism Φ : F → G of functors is
induced by a unique morphism D → C as above.

Proof. Lemma 1.4.12 of [10].

Corollary 2.15.1. The representing object of a representable functor F is
unique up to unique isomorphism.

Proof. Assume C and D are both representing objects of F then by Yoneda‘s
lemma the morphism Id : F → F is induced by a unique morphism D → C ,
but also by a unique morphism C → D. The composition of those must be the
identity on C or D and therefore there exists a unique isomorphism between
the two representing objects.

2.5 Groethendieck‘s Reformulation of Galois Theory

In this section we will give a variant of the Galois‘ main theorem.
We first start with a base field k. We fix an algebraic closure k̂ and construct

the separable closure ks of k, as we did in the second section. We proved in
Lemma 1.5 that the separable closure is always a Galois extension, thus we
have the group Gal(ks|k). We let L be a finite separable extension of k; not nec-
essarily a subextension of ks. From Proposition 1.2 2) and Proposition 1.3

we have there exist [L : k] embeddings L → k̂ that leaves k elementwise fixed.
The images of those homomorphisms must be contained in the subextension ks
of k̂ (separable elements map to separable elements under injective homomor-
phisms that fix k elementwise). Therefore we can endow the set Homk(L, ks),
which is defined to be the set of homomorphisms from L to ks that fix k ele-
mentise, with a left action by Gal(ks|k) defined to be

a : Gal(ks|k)×Homk(L, ks)→ Homk(L, ks)

(σ, ϕ) 7→ σ ◦ ϕ

The two groups above have also a natural topology defined on them, so our
action must respect this topology. We saw that Gal(ks, k) is a profinite group
by Proposition 1.11 and Homk(L, ks) carries the discrete (finite) topology.
We recall the definition:
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Definition 2.14. A topological group G acts continuously on a topological
space X if the multiplication map m : G×X → X is continuous.

We have the following characterization of a topological group G acting on a
discrete space X.

Lemma 2.16. If G is a topological group acting on a discrete topological space
X then the action is continuous if and only if the stabilizer Gx = {g ∈ G|gx = x}
is open for all x ∈ X.

Proof. Let the action be continuous, i.e the multiplication map is continuous.
The restriction of the multiplication map on G × {x} is continuous, {x} is an
open subset of X in the discrete topology and thus the preimage of {x} is open
and because it is equal to the stabilizer of x we get that the stabilizer of x is
open for all x ∈ X.

Now assume that the stabilizer of x is open for all x. For each x ∈ X we
have that the preimage under the multiplication map is equal to Ux = {(g, y) ∈
G × X|gy = x}. Clearly Gx ⊆ Ux. If y ∈ Ux − Gx then there exists h ∈ G
such that hy = x, therefore y ∈ h−1Gx ⊆ Ux. The sets Gx and h−1Gx are
homeomorphic and thus open by assumption. Therefore for each y ∈ Ux there
exists an open subset hGx for some h ∈ G that contains y and lies inside Ux,
thus we conclude that Ux is open.

We will now state a lemma that gives some properties of the action of
Gal(ks|k) on Homk(L, ks). We still work under the assumption that L is a
finite separable extension of k. We recall that a group action is called transitive
if for every pair x, y ∈ X there exists an element g ∈ G such that gy = x.

Lemma 2.17. The above left action of Gal(ks, k) on Homk(L, ks) is continuous
and transitive, hence Homk(L, ks) as a Gal(ks|k)-set is isomorphic to the left
coset space of some open subgroup in Gal(ks|k). If L is Galois over k then this
coset space is in fact a quotient by an open normal subgroup.

Proof. By the above proposition we need to show that the stabilizer of each
point is open and that will imply that the action is continuous. Let U be the
stabilizer of an element ϕ ∈ Hom(L, ks). Then for every σ ∈ U we have that
σ(ϕ(L)) = ϕ(L) and ϕ(L) is a finite subextension of the Galois extension ks|k
and therefore applying Theorem 1.13 we have that U is an open subgroup of
Gal(ks|k), thus the action is continuous. By assumption we have that L is a
finite separable extension of k and thus applying the primitive element theorem
(Proposition 1.4) we have that L = k(a). Let fa be the minimal polynomial
of a. As we saw in the course of the proof of Proposition 1.3 a k-algebra
homomorphism from L = k(a) to k̂ (and thus to ks) is characterized by the
image of a, which also has to be a root of fa. Let ϕ, ψ ∈ Homk(L, ks), then
we have a k-isomorphism of fields k(ϕ(a)) ∼= k(ψ(a)) by sending ϕ(a) 7→ ψ(a),
which extends to an automorphism σ on ks. Then for this σ we have σϕ = ψ, so
the action is transitive. This implies that we can regard a fixed ϕ ∈ Homk(L, ks)
and write any ψ ∈ Homk(L, ks) as σϕ = ψ for an element σ ∈ Gal(ks|k).
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We define the following map by using the previous argument:

gϕ : Homk(L, ks)→ U\Gal(ks|k)

σ ◦ ϕ 7→ σU

Which is immediately seen to be an open, surjective and continuous map. In-
jectivity follows from

σU = σ′U ⇒ σ−1σ′U = U ⇒ σ−1σ′(ϕ) = ϕ⇒ σ(ϕ) = σ′(ϕ)

Thus it is a homeomorphism and so Homk(L, ks) ∼= U\Gal(ks|k), which the left
coset space of the open subgroup U of Gal(ks|k). If U is a normal subgroup,
then we obtain Gal(ks|k)/U and by Theorem 1.13 this happens if and only if
L is Galois over k.

If we now have another finite separable extensionM of k, any k-homomorphism
µ : L → M induces a map ϕ : Homk(M,ks) → Homk(L, ks) via composition
with µ ( a 7→ a◦µ). Both are Gal(ks|k)-sets and we recall that a G−equivariant
map f : X → Y between two G−sets X and Y is such that f(gx) = gf(x) for all
g ∈ G and all x ∈ X. For ϕ we have that ϕ(σa) = (σa) ◦µ = σ ◦ (a ◦µ) = σϕ(a)
and thus it is a Gal(ks|k) equivariant map. So we have obtained a contravariant
functor from the category of finite separable extensions to the category of finite
sets with continuous transitive left Gal(ks|k)-action. We will now prove that
this gives an anti-equivalence between the two categories.

Theorem 2.18. Let k be a field with fixed separable closure ks. Then the
contravariant functor defined above mapping a finite separable extension L|k
to the finite Gal(ks|k)-set Homk(L, ks), gives an anti-equivalence between the
category of finite separable extensions of k and the category of finite sets with
continuous, transitive left Gal(ks|k)-action. Here Galois extensions give rise to
Gal(ks|k)-sets isomorphic to some finite quotient of Gal(ks|k).

Proof. We will prove that Homk(−, ks) satisfies the fully faithful and essentially
surjective properties given in Lemma 1.14. For essentially surjective we have
to show that any continuous transitive left Gal(ks|k)-set S is isomorphic to some
Homk(L, ks) for some L finite separable extension. We pick a set S as above
and a point s ∈ S and because S has the discrete topology and Gal(ks|k) acts
continuously then by Lemma 1.16 the stabilizer of s denoted as Us is an open
subgroup of Gal(ks|k) and thus by Theorem 1.13 it fixes a finite separable
extension L|k. We want to show that Homk(L, ks) ∼= S. We define a map of
Gal(ks|k)-sets

p : Homk(L, ks)→ S

σ ◦ i 7→ σs

where i is the inclusion L → ks and σ ∈ Gal(ks|k) (the action is transitive on
both sets, so any element of both sets can be written as σ ◦ i and σs for some
σ ∈ Gal(ks|k)). This map is well defined. Indeed pick σ1 ◦ i = σ2 ◦ i, then
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σ−1
1 σ2 ∈ Stab(i) = {σ ∈ Gal(ks|k)|σ(L) = L}, but L was picked as the fixed

field under the action of Us, therefore Stab(i) = Us and therefore σ−1
1 σ2 ∈ Us

implies that σ1s = σ2s. Injectivity follows from the previous argument in the
reverse direction and surjectivity follows from the action on both sets being
transitive. Therefore the map is in fact an isomorphism of Gal(ks|k)-sets.

For the fully faithful property we have to show that given two finite separable
extensions L and M of k, the set of k-homomorphisms L → M corresponds
bijectively to the set of Gal(ks|k)-maps Homk(M.ks) → Homk(L, ks). Let
f : Homk(M.ks) → Homk(L, ks) be a Gal(ks|k)-map. Both Homk(M.ks)
and Homk(L, ks) are transitive Gal(ks|k)-sets and therefore we can fix ϕ ∈
Homk(M.ks) which will generate the whole set Hom(M,ks) by writing any
element as σϕ for σ ∈ Gal(ks|k). We saw that f is Gal(Ks|k)-equivariant and
thus f(σϕ) = σf(ϕ), so f(ϕ) will be our choice for the generator ofHomk(L, ks).
If we pick Uϕ to be the stabilizer of ϕ then we have σϕ = ϕ for any σ ∈ Uϕ, thus
applying the map f we must have

f(σϕ) = σf(ϕ) = f(ϕ)

Thus the stabilizer Uϕ is contained in the stabilizer of f(ϕ) which we will denote
Uf(ϕ). Taking the fixed subfields of the action of Uϕ and Uf(ϕ) on ks, then
because of the inclusion reversing correspondence, we have that f(ϕ)(L) ⊆ ϕ(M)
as subfields of ks and both are finite and separable because the stabilizers are
open (apply Theorem 1.13). Denoting ψ : ϕ(M)→ M to be the inverse to ϕ
(ϕ is injective and thus an isomorphism on its image) then we have that ψ◦f(ϕ) :
L → M which is an homomorphism that fixes k. So ψ ◦ f(ϕ) ∈ Homk(L,M)
and by composition with ϕ we see that this map induces f , therefore we have
checked surjectivity, i.e having a map f we found ψ ◦ f(ϕ) ∈ Homk(L,M)
inducing it. Injectivity follows from the fact that if g ∈ Homk(L,M) is another
map inducing f we must have that ϕ◦g = f(ϕ) (both ϕ and f(ϕ) are generators
of their Gal(ks|k)-sets as we mentioned), but that means g = ψ ◦ f(ϕ). Thus
the fully faithful property holds.

For the last statement, let L be a Galois extension, then by Lemma 1.17
Homk(L, ks) ∼= Gal(ks|k)/U where U is the stabilizer of an element ϕ ∈
Hom(L, ks), which indeed is a finite quotient of Gal(ks|k).

If we wish to extend the above anti-equivalence to Gal(ks|k)-sets with not
necessarily transitive action, then we have the natural replacement of finite
separable extension by finite etale k-algebras.

Definition 2.15. A finite dimensional k-algebra A is etale over k if it is isomor-
phic to a finite direct product of finite separable extensions of k,i.e A ∼=

∏n
i=1 Li

with Li finite separable extensions.

We have the following characterisation of finite etale k-algebras.

Proposition 2.19. Let A be a finite dimensional k-algebra. Then the following
are equivalent:
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1. A is etale.

2. A⊗k k̂ is isomorphic to a finite direct sum of copies of k̂ (algebraic closure
of k).

3. A⊗k k̂ has no nonzero nilpotent elements.

Proof. Proof in [10] Proposition 1.5.5.

We now state the version of Groethendieck‘s reformulation of the Galois
main theorem. We note that the Gal(ks|k) action on ks, gives an action on
Homk(A, ks) as above.

Theorem 2.20. Let k be a field and ks a fixed separable closure. Then the
functor that maps a finite etale k-algebra A to the finite set Homk(A, ks) gives
an anti-equivalence of categories between the category of finite etale k-algebras
and the category of finite sets with continuous Gal(ks|k) action. Here separable
field extensions give rise to sets with transitive Gal(ks|k) action and Galois
extensions to Gal(ks|k) sets isomorphic to finite quotients of Gal(ks|k).

Proof. The last part of the theorem is exactly the content of Theorem 1.18.
Let A =

∏n
i=1 Li with Li finite separable extensions. For essentially surjective

property we have to show that any continuous finite Gal(ks|k)-set S is isomor-
phic to some Homk(A, ks) for a finite etale k-algebra A. Following the proof of
Theorem 1.18 for each point s ∈ S, we consider its stabilizer Us which is open
by assumption of the continuity of the action and therefore applying Theorem
1.13 we have that it fixes a finite separable extension which we will denote Ls|k.
We define the same map of Gal(ks|k)-sets

p : Homk(Ls, ks)→ S

σ ◦ i 7→ σs

For which injectivity and the well defined property hold for the same reason as
previously, but surjectivity fails because S is no longer a transitive set. Thus
we have injections pi : Homk(Li, ks) → S for each stabilizer Us of each point
s ∈ S. Because of the assumption of S being finite then there are at most finite
such injections. Actually, they are equal to the orbits of S under the action of
Gal(ks|k) (as seen immediately from the image of those injections). Thus, each
pi is an isomorphism between Hom(Li, ks) and an orbit Si of S.Therefore

S = ∪ni Si ∼=
n∏
i

Homk(Li, ks) = Homk(

n∏
i

Li, ks)

The second isomorphism comes from (p1, ..., pn) and the last equality holds
because clearly

∏n
i Homk(Li, ks) ⊆ Homk(

∏n
i Li, ks) as any (ϕ1, ..., ϕn) defines

a homomorphism from
∏n
i Li to ks. For the inverse consider ϕ :

∏n
i Li → ks

if ϕ(Li) ̸= 0 (because ϕ is a non-trivial homomorphism from a field to another)
then ϕ is injective and we can not have a homomorphism being non-trivial on the
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product Li×Lj , because the later contains zero divisors (consider (1, 0)×(0, 1))
but ks does not as it is a field. Thus we have proved the essentially surjective
property, as

∏n
i Li is a finite etale k-algebra.

For the fully faithful property consider two finite etale k-algebras A =
∏
i Li

and A′ =
∏
j L

′
j . Then a map f :

∏
iHomk(Li, ks)→

∏
j Homk(L

′
j , ks) identi-

fies with a family of maps

fi : Homk(Li, ks)→ Homk(L
′
j , ks)

one for each i, which correspond bijectively to maps Li → L′
j by Theorem 1.19

and thus f is in one-to-one correspondence with a family of maps Li → L′
j , one

for each i, which define uniquely a map
∏
i Li →

∏
j L

′
j .

This last theorem will be our passage from the Galois theory of fields to the
Galois theory of covering spaces, which we will introduce in the next chapter.
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3 Galois Theory for Covers

3.1 Covers

In this section we will give some basic definitions and propositions about covers.

Definition 3.1. 1. Let X be a topological space. A space over X is a topo-
logical space Y together with a continuous map p : Y → X.

2. A morphism between two spaces pi : Yi → X (i=1,2) over X is given by a
continuous map f : Y1 → Y2 making the diagram

Y1 Y2

X

f

p1
p2

commute, i.e p2 ◦ f = p1.

3. A cover of X is a space Y over X, where the continuous map p : Y → X
is subject to the following condition: each point of x of X has an open
neighborhood U for which p−1(U) decomposes as a disjoint union of open
non-empty subsets Vi of Y such that the restriction of p on each Vi is a
homeomorphism onto U . We say that U in the above situation is evenly
covered.

4. A morphism of two covers Y1, Y2 of X is a morphism of spaces over X.

Remark 6. From the definition of the cover of X it is an immediate result that
p : Y → X is surjective, as every point x ∈ X has an open neighborhood which
is homeomorphic to an open subset V of Y and thus there exists y ∈ V such
that p(y) = x for all x ∈ U . We call set p−1(x) = {y ∈ Y |p(y) = x} the fibre of
x.

A first example of a cover is the following: Let X be a topological space and
I a set with the discrete topology. Then the projection p : X×I → X is a cover,
because for every open subset U of X we have p−1(U) = U × I = ∪i(U × {i}),
which are open (product topology) and disjoint because of the discreteness of I.
This cover is called trivial cover of the topological space X. The next proposition
shows that in fact every cover is locally the trivial cover.

Proposition 3.1. A space Y over X is a cover if and only if each point x of X
has an open neighborhood U such that the restriction of the projection p : Y → X
to p−1(U) is homeomorphic (as a space over U) to a trivial cover.

Proof. For the ”if” part, if each point has such a neighborhood U then we
have that p−1(U) ∼= U × I for some discrete set I. Then from the previous
example we have that p−1(U) is a union of open,disjoint subsets of Y which map
homeomorphically onto U and therefore p is a cover. For the other direction
we have from the definition of the cover that every x ∈ X has a neighborhood
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U for which p−1(U) decomposes as a disjoint union of open subset Vi mapping
homeomorphically onto U . Let p−1(U) = ∪i∈IVi be such a decomposition, then
the map

f : ∪i∈IVi → U × I

vi 7→ (p(vi), i)

where I is endowed with the discrete topology is a homeomorphism. Indeed
for every (p(vi), i) there exists a unique vi ∈ Vi (the restriction of p on Vi is
a homeomorphism) and the continuity of f and its inverse are also immediate
from the discreteness of I.

Remark 7. We note from the previous proof that for any x ∈ X we have a one to
one correspondence between the discrete set I and the set p−1(x) of the fibers of
x. Thus the cardinalities satisfy |I| = |p−1(x)|. If we set an equivalence relation
on X by declaring two points x ∼ x′ if and only if they have the same cardinality
of their fibers, then we see that any open evenly covered neighborhood U of x
is in the equivalence class of [x]. In particular each such class [x] is open and
thus X can be partitioned in disjoint open subsets. If X is connected then it
can not be partitioned into two or more disjoint open subsets and thus there is
only one class [x]. Thus we get the following corollary:

Corollary 3.1.1. If X is connected then the cardinality of the fibers is the same
for every x in X.

In this chapter we will be mostly interested with covers coming from group
actions. If we have a topological group G acting continuously on a topological
spaceX, then we can form the quotient map q : X → X\G which is a continuous
surjective map. Here G\X denotes the set of the equivalence classes of X under
the identifications x ∼ y if and only if there exists g ∈ G such that gx = y and
the topology on it is defined by declaring a set U ∈ G\X to be open if and only
if q−1(U) is open. To turn the quotient map into a cover we must be sure that
the open subsets gU of X which all map homeomorphically to U in G\X are
disjoint. That will be given by the next definition.

Definition 3.2. Let G be a group acting from the left on a topological space
X. The action of G is even (or properly discontinuous) if each point x ∈ X has
an open neighborhood U such that the open sets gU are pairwise disjoint for all
g ∈ G\{1}.

Therefore we get that:

Lemma 3.2. If G is a group acting evenly on a topological space X then the
quotient map q : X → G\X is a cover of G\X.

Proof. Let [x] ∈ G\X and choose an open neighborhood V = q(U) where U is
an open neighborhood of x ∈ X satisfying the property of Definition 2.2(V
is open from quotient topology). Then q−1(V ) = ∪g∈GgU is the union of open
(homeomorphic to U), disjoint subsets of X that map homeomorphically on to
V by the restriction of the quotient map to each gU .
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Remark 8. For the converse we also need that G acts freely (gx = x only if
g = 1), but this will follow from Lemma 2.4 when X is connected by noting
that multiplication by g defines an automorphism of the cover q : X → G\X.
Then if G acts freely and the quotient map q is a cover then G is acting evenly
on X. Indeed, assume that q : X → G/X is a cover. Then by definition every
x ∈ G\X has an open neighborhood U ⊆ G\X, such that q−1(U) = ∪iVi where
Vi are disjoint opens mapping homeomorphically to U under the restriction of
q to each Vi, i.e q(Vi) ∼= U for all i. If xi ∈ Vi then by definition of q we have
that there exists g ∈ G such that gxi = x. If we assume that gVi ∩ Vi ̸= ∅,
then y ∈ gVi ∩ Vi and thus q(y) = [y] = [g−1y] and both y and g−1y are in
Vi. Because the restriction of q on Vi is a homeomorphism then y = g−1y in X.
Here is where we need that G acts freely to say that g = 1 and so the action is
even.

3.2 Galois Covers

In this section we will prove an analogue of Theorem 1.8 for covers. From
now on we will fix a base field X which will be assumed to be locally connected
(each point x has a basis of open neighborhoods consisting of connected open
subsets). First we need an analogue for the automorphism group of an extension
defined in Section 1.2 .

Definition 3.3. Given a cover p : Y → X its automorphism group denoted
Aut(Y |X) are the automorphisms of Y as a space over X, i.e automorphisms
σ : Y → Y such that the following diagram

Y Y

X

σ

p
p

commutes, which means pσ(y) = p(y) for all y ∈ Y .

Remark 9. Because of the commutativity of the diagram we note that if y ∈
p−1(x) for some x ∈ X, then σ(y) ∈ p−1(x) , so σ preserves the fibers for a given
point x, i.e the restriction to the fiber gives σ : p−1(x)→ p−1(x). Therefore we
have an action of Aut(Y |X) on the fiber of any given point.

A key technical tool for working with covering spaces is the following propo-
sition called unique lifting property.

Proposition 3.3. Let p : Y → X a covering map. Suppose Z is a connected
topological space and f, g : Z → Y are two continuous maps such that p◦f = p◦g.
If there is a point z ∈ Z with f(z) = g(z), then f = g.

Proof. Suppose z ∈ Z is as above, that is, y = f(z) = g(z). Let V be a
connected open neighborhood of p(y) = p(f(z)) satisfying the condition in the
definition of the cover (such a V exists, because X is locally connected) and let
Ui ∼= V be the component of p−1(V ) containing y. Due to the continuity of
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f and g the preimages of Ui under those maps are open neighborhoods of the
point z ∈ Z, therefore, taking the intersection of the two preimages we have
an open neighborhood W of z that maps to Ui under both f and g. Because
p ◦ f = p ◦ g and because p is a homeomorphism restricted to Ui we have
f(W ) = g(W ), which shows that if f and g agree on a point, then they agree
on a whole neighborhood, implying that the set A = {z ∈ Z|f(z) = g(z)} is
open. Also, if we have z′ ∈ Y such that f(z′) ̸= g(z′), then because p ◦ f = p ◦ g
we must have that f(z′) and g(z′) are in two different open subsets Ui and Uj ,
whose preimages are again open neighborhoods of z′ and thus their intersection
W ′ is an open neighborhood of z′ for which f(W ′) ̸= g(W ′), implying that the
set B = {z ∈ Z|f(z) ̸= g(z)} is also open (note that B is the complement of A).
Therefore the set A = {z ∈ Z|f(z) = g(z)} is non-empty by assumption and
also open and closed in Z and because of the connectedness of Z it is the whole
set Z, i.e A = Z and so f(z) = g(z) for all z ∈ Z.

We are now able to prove the following result immediately. We call a cover
p : Y → X connected, if Y is a connected topological space.

Lemma 3.4. An automorphism ϕ of a connected cover p : Y → X such that
ϕ(y) = y for a y ∈ Y is the identity automorphism on Y.

Proof. Applying Proposition 2.3 for Z = Y , f = id and g = ϕ we have that
ϕ = id on Y.

This lemma immediately implies the following important proposition:

Proposition 3.5. If p : Y → X is a connected cover, then the group Aut(Y |X)
acts evenly on Y.

Proof. Let y be a point of Y and x = p(y). Because X is assumed to be locally
connected then there exists a connected neighborhood V of x such that p−1(V )
is a disjoint union of open sets Ui as in the definition of a cover. Let Ui be the
one that contains y. We will prove that Ui is a neighborhood of y such that
gUi are pairwise disjoint for all g ∈ G\{1} as in Definition 2.2. Indeed, a
non-trivial ϕ ∈ Aut(Y |X) maps Ui homeomorphically onto some Uj , because
p ◦ ϕ(Ui) = p(Ui) = V and so ϕ(Ui) is one of the sets Uj . Since Y is connected,
Lemma 2.4 applies and shows that for ϕ ̸= IdY we must have i ̸= j.

Conversely, by using the fact that by Lemma 2.2 we have that if G acts
evenly on X then the quotient map q : X → G\X is a cover of G\X we get :

Proposition 3.6. If G is a group acting evenly on a connected space Y , then
the automorphism group of the cover q : Y → G\Y is precisely G.

Proof. We note that we can naturally view G as a subgroup of Aut(Y |(G\Y ),
as any g ∈ G defines a homeomorphism hg

hg : Y → Y

y 7→ gy
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which is also compatible with the projection as y and gy map to the same class
in G\Y under q, i.e q(y) = q(gy) = [y] for any g ∈ G. Now let ϕ ∈ Aut(Y |(G\Y )
and y ∈ Y . Since the fibers of q are precisely the orbits of G we may find g ∈ G
such that ϕ(y) = gy and thus as we view G as a subgroup of Aut(Y |(G\Y ) we
have g−1ϕ(y) = y, thus g−1ϕ is an automorphism fixing the point y and because
Y is connected then Lemma 2.4 implies that g−1ϕ = id, i.e ϕ = g for some
g ∈ G and so Aut(Y |(G\Y ) ⊆ G giving Aut(Y |(G\Y ) = G.

Now let p : Y → X be a connected cover. Then by letting Aut(Y |X) act
on Y we can form the quotient space Aut(Y |X)\Y coming from the quotient
map q : Y → Aut(Y |X)\Y . If q(y1) = q(y2) for y1, y2 ∈ Y then ϕ(y1) = y2
for an element ϕ ∈ Aut(Y |X) and because of the compatibility of ϕ with the
covering map p we get p(ϕ(y1)) = p(y1) = p(y2), so by passing to the quotient
( Theorem 3.73 in [9]) we get that p factors as p = p̂q for a unique continuous
map p̂ : Aut(Y |X)\Y → X. So

Y
q−→ Aut(Y |X)\Y p̂−→ X

Definition 3.4. A cover p : Y → X is Galois if Y is connected and the above
induced map p̂ is a homeomorphism.

Remark 10. Here we note the analogy between a Galois cover and a Galois
field extension. In the situation of a Galois extension we had a base field k
and we characterized an algebraic extension L|k to be Galois if the fixed field
from the action of Aut(L|k) on L was exactly k. Here the analogy is we start
with a locally connected topological base space X and then every connected
cover p : Y → X over X is Galois if the action of Aut(Y |X) on Y induces an
isomorphism p̂ : Aut(Y |X)\Y → X.

The next proposition gives us another analogy between the two categories.
We recall that an algebraic extension L|k was Galois if and only if Aut(L|k)
acted transitively on the roots of the minimal polynomial (Remark 4). We state
now the analogue for Galois covers.

Proposition 3.7. A connected cover p : Y → X is Galois if and only if
Aut(Y |X) acts transitively on the fibers p−1(x) of p for all x ∈ X.

Proof. Assume first that Aut(Y |X) acts transitively on the fibers of p, then for
any two y1, y2 ∈ Y such that p(y1) = p(y2) there exists ϕ ∈ Aut(Y |X) such that
y1 = ϕ(y2), but then [y1] = [ϕ(y2)] = [y2] by definition of Aut(Y |X)\Y and thus
p̂ is injective. It is also surjective and continuous by its definition and also p̂ is
an open map as both p and q are and so indeed it is a homeomorphism.

For the converse if p̂ is a homeomorphism then any x ∈ X can be uniquely
identified with [y] ∈ Aut(Y |X)\Y by p̂([y]) = x, and [y] contains all the elements
of the form ϕ(z) = y for ϕ ∈ Aut(Y |X) and z ∈ Y . Then indeed for any
x ∈ X we have that p−1(x) = q−1(p̂−1(x)) = q−1([y]) = {z ∈ Y |ϕ(z) = y} so
Aut(Y |X) acts transitively on the fibers.
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Remark 11. In fact it is enough for Aut(Y |X) to act transitively on one fiber
p−1(x), because p being a continuous map and Y being a connected topological
space implies that X is also connected by the main theorem of connectedness
(Theorem 4.7 , [9]) and so is Aut(Y |X)\Y , which becomes a connected cover of
X. If Aut(Y |X) acts transitively on one then for this x ∈ X there exists a unique
[y] ∈ Aut(Y |X)\Y and from Corollary 2.1.1 it follows that the cardinality of
the fibers are the same, i.e p̂ becomes a homeomorphism.

We need one more proposition to be able to give the analogue of Theorem
1.8 for covering space.

Proposition 3.8. Let X be a locally connected space, q : Z → X a connected
cover and f : Y → Z a continuous map. If the composite q ◦ f : Y → X is a
cover, then so is f : Y → Z.

Proof. What we need to show is that every point z ∈ Z has an open neigh-
borhood W such that the preimage f−1(W ) decomposes as a disjoint union of
opens Vi ⊆ Y which map homeomorphically to W by f . Let q(z) = x ∈ X, be-
cause both q and q◦f are covers then we choose a connected open neighborhood
U of x that satisfies the property of the covering space for both maps (exists
because of X being locally connected), therefore we get disjoint opens Vi ⊆ Y
andWj ⊆ Z that map homeomorphically to U by q◦f and q respectively. So we
have q ◦ f(Vi) = q(Wj) = U for all i and j. Because Vi ∼= U and U is connected,
then Vi is connected and so is f(Vi) and because it maps homeomorphically
to U by q then we have that f(Vi) ⊆ Wj for some j and in fact f(Vi) = Wj

because of the fact that q(f(Vi)) = q(Wj). Therefore f is an open map, as every
point y ∈ Y has an open neighborhood that maps homeomorphically to an open
neighborhood of Z. In particular, f(Y ) is open.

We will now show that f is surjective. From the fact that Z is connected
it is enough to check that the complement of the image f(Y ) is open. To that
extend, let z ∈ Z such that there does not exist y ∈ Y that maps to it. Let
Wj be the neighborhood that contains z and maps homeomorphically to U ,
then Wj must be disjoint from the image of f(Y ), otherwise we saw that there
exists Vi connected open of Y such that f(Vi) = Wj and thus we would have
contradiction by the assumption that z is not in the image. So in fact we have
that the complement of f(Y ) is indeed open and therefore f(Y ) is both open and
closed subspace of connected Z, so f(Y ) = Z and thus f is surjective. It remains
to justify that f−1(Wj) is a disjoint union of opens mapping homeomorphically
to Wj . By surjectiveness of f we have that there exists at least one Ui ⊆ Y . If
there are more than one then by the constuction of the sets Vi ⊆ Y they are
disjoint, open and map homeomorphically onto Wj which contains z. We thus
conclude that f is a covering map.

We are now ready to prove the Theorem

Theorem 3.9. Let p : Y → X be a Galois cover, H a subgroup of G =
Aut(Y |X). Then p induces a natural map p̂H : H\Y → X which turns H\Y
into a cover of X.
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Conversely if Z → X is a connected cover fitting into a commutative diagram

Y Z

X

f

p
q

then f : Y → Z is a Galois cover and actually Z ∼= H\Y for some H subgroup
of G. In this way we get a bijection between subgroups of G and intermediate
covers Z as above. The cover q : Z → X is Galois if and only if H is a normal
subgroup of G and in this case Aut(Z|X) ∼= G/H.

Proof. Let H be a subgroup of G, then by passing to the quotient we get that
p factors as the composite

Y
pH−−→ H\Y p̂H−−→ X

where the first map is the natural quotient map. Because G acts evenly, then
any subgroup of it acts also evenly on Y and therefore applying Lemma 2.2
we have that the map pH is a cover of H\Y . Now let x ∈ X and U a connected
open neighborhood (X locally connected) of it which is evenly covered by p, we
want to show that U is an evenly covered neighborhood under the map p̂H . As
U is evenly covered by p then we have disjoint opens subsets Vi ⊆ Y that map
homeomorphically to U under p. Because pH is a covering map then it is a local
homeomorphism, open and a quotient map (Proposition 11.1, [9]), in particular
each Vi is a connected open subset (homeomorphic to U) and so pH(Vi) is also a
connected open subset of H\Y . Suppose pH(Vi) and pH(Vj) are two such sets,
then if their intersection is not empty then there exists an element [y] for which
pH(y1) = pH(y2) = [y] for two different elements y1 ∈ Vi and y2 ∈ Vj , but then
by definition of the quotient map we have that there exists ϕ ∈ H such that
ϕ(y1) = y2, but ϕ is an automorphism of the cover p : Y → X and so we get
ϕ(Vi) = Vj and so pH(Vi) = pH(ϕ(Vi)) = pH(Vj). This shows that any pH(Vi)
and pH(Vj) are either disjoint or equal. Since pH is surjective, then p̂−1

H (U) is
equal to the disjoint union of the opens pH(Vi). It remains to show that pH(Vi)
map homeomorphically to U by p̂H . As p = p̂H ◦ pH and p is injective on each
component Vi then so is pH and because pH is surjective as the quotient map
and also open it follows that pH is a homeomorphism on each component Vi.
Therefore p̂H is a homeomorphism on each pH(Vi) and also it maps to U . Thus
we showed that p̂H is a cover.

Conversely, suppose q : Z → X is a connected cover fitting into the com-
mutative diagram above. We want to show that f : Y → Z is Galois. From
Proposition 2.8 we have that f : Y → Z is a connected cover. By Proposi-
tion 2.7 we need to prove that H = Aut(Y |Z) acts transitively on the fibers
f−1(z) (by Remark 11 checking for one fiber is enough). By the assumption that
p : Y → X is Galois we have that Aut(Y |X) = G acts transitively on the fibers
p−1(x) (Proposition 2.7). Because of the commutativity of the diagram we
have p = q ◦ f , so if y1, y2 ∈ f−1(z), then y1, y2 ∈ p−1(q(z)), so there exists an
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element ϕ ∈ Aut(Y |X) = G such that ϕ(y1) = y2, as p : Y → X is Galois and
thus G acts transitively on the fibers. We want to show that ϕ ∈ H = Aut(Y |Z),
which is equivalent to saying that the set S = {y ∈ Y : f(ϕ(y)) = f(y)} (by
definition Aut(Y |Z) is the set of automorphisms compatible with the cover f).
We note that q : Z → X is a connected cover, Y a connected topological space,
f and f ◦ϕ two continuous maps satisfying q◦f = q◦(f ◦ϕ) (because p = pϕ) and
there is a point y1 such that f(y1) = f(ϕ(y1) = f(y2), therefore Proposition
2.3 applies and gives that f(y) = f ◦ ϕ(y) for all y ∈ Y and so the set S = Y ,
implying that ϕ ∈ H = Aut(Y |Z) and therefore Aut(Y |Z) acts transitively on
the fibers and we get f : Y → Z is Galois. It is clear that Z ∼= H\Y , as the two
maps f and the quotient map Y → H\Y make the same identifications and so by
the uniqueness of the quotient (Theorem 3.75, [9]) we get the homeomorphism.
The fact that H = Aut(Y |Z) is a subgroup of G = Aut(Y |X) is immediate
because any ϕ ∈ Aut(Y |Z) such that fϕ = f , implies that q ◦ (fϕ) = q ◦ f and
so pϕ = p.

Assume now that H is a normal subgroup of G = Aut(Y |X). Then we form
the quotient G/H which acts naturally on H\Y = Z (this is a general statement
about group actions and we will prove it in the following remark) and this action
preserves the projection q : H\Y → X, because any element g ∈ G/H preserves
the map p. So we obtain a group homomorphism G/H → Aut(Z|X) which is
injective, as any non-trivial element in G/H acts non-trivially on Z. We get
(G/H)\Z ∼= G\Y ∼= X, where the first isomorphism comes from noting that
the quotient maps Y → H\Y → G/H\(H\Y ) and Y → G\Y make the same
identifications (both maps identify elements that differ by an element g ∈ G,
i.e gy1 = y2) and the second isomorphism comes from the assumption that p is
Galois. By the injection of G/H → Aut(Z|X), it can be viewed as a subgroup
and therefore Aut(Z|X)\Z ∼= X so indeed we get a Galois cover q : Z → X and
also Aut(Z|X) ∼= G/H.

We assume now that q : Z → X is Galois and we also have p : Y → X to
be Galois. We pick an element y ∈ Y with image q ◦ f(y) = x in X and let
ϕ ∈ Aut(Y |X). Then q ◦ f ◦ ϕ(y) = q ◦ f(y) = x and therefore both f ◦ ϕ(y)
and f(y) lie in the fiber of x over q, i.e q−1(x). Because q is Galois then there
exists ψ ∈ Aut(Z|X) such that ψ(f(y)) = f(ϕ(y)). Then each ϕ ∈ Aut(Y |X)
induces an automorphism ψ ∈ Aut(Z|X). We claim that it is unique. Indeed if
λ ∈ Aut(Z|X) such that λ(f(y)) = f(ϕ(y)), then λ(f(y)) = ψ(f(y)) and thus
ψ−1λ fixes f(y) and by Lemma 2.4 we have that ψ−1λ = Id , i.e ψ = λ. Both
ψ◦f and f ◦ϕ are continuous functions from the connected Y (the cover p being
Galois) to Z and they agree on y, therefore ψ ◦ f = f ◦ ϕ by Proposition 2.3.
We thus get a group homomorphism g : Aut(Y |X) → Aut(Z|X) by mapping
ϕ 7→ ψ, because g(ϕ1ϕ2)f(y) = (ψ1ψ2)(f(y)) = (f(ϕ1ϕ2)(y)) = ψ1(f(ϕ2(y)) =
ψ1(ψ2(f(y))) = g(ϕ1)(g(ϕ2)(f(y))) and because both agree on f(y) we thus get
g(ϕ1ϕ2) = g(ϕ1)g(ϕ2). It is clearly surjective, because Z ∼= H\Y for the sub-
groupH = Aut(Y |Z) ⊆ G = Aut(Y |X). Now we claim that Aut(Y |Z) = ker(g)
which will give us the result that Aut(Y |Z) = H is normal. Let ϕ ∈ ker(g),
then g(ϕ) = idZ and therefore f ◦ ϕ = f and so ϕ ∈ Aut(Y |Z). Conversely, if
ϕ ∈ Aut(Y |Z) then f ◦ ϕ = f = ψ ◦ f and because of the uniqueness we stated
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above we get ψ = idZ , therefore g(ϕ) = ψ = idZ and we get that ϕ ∈ ker(g).
We now have the assertion: ker(g) = Aut(Y |Z) , so Aut(Y |Z) is a normal sub-
group of Aut(Y |X) and because the group homomorphism is surjective we also
have Aut(Y |X)/Aut(Y |Z) ∼= Aut(Z|X)

Remark 12. Let G be a group acting on a topological space Y and H a normal
subgroup of G. Then the actions of G on Y induces an action of G/H on
H\Y ,i.e

G/H ×H\Y → H\Y

(gH, [y]) 7→ gH[y] = [gy]

Well defined: let [x], [y] ∈ H\Y , then there exists h ∈ H such that hx = y,
multiplying by g we get ghx = gy but H is normal subgroup so gH = Hg and
thus exists h′ ∈ H such that gh = h′g. It follows that h′gx = gy and therefore
[gx] = [gy] as classes of H. Also, if gH = kH then by normality there exists
n ∈ H such that g = nk and so gx = nkx so [gx] = [kx] as classes of H, i.e
gH[x] = [gx] = [kx] = kH[x].
Continuity follows from the continuity of G×Y → Y by noting that the diagram
q ◦m : G × Y → H\Y and m′ ◦ (p, q) : G × Y → H\Y commutes, i.e q ◦m =
m′ ◦ (p, q) where q : Y → H\Y , p : G → G/H are the canonical quotient
maps, then because (p, q) is a quotient map as a product of quotients and q ◦m
is continuous as composition of continuous the characteristic property of the
quotient topology (Theorem 3.70,[9]) gives m′ : G/H × H\Y → H\Y is
continuous.
At last eH[x] = [ex] = [x] and ((g1H)(g2H))[x] = (g1g2)H[x] = [g1g2x] =
(g1H)[g2x] = (g1H)(g2H)[x].

3.3 Monodromy Action

Our goal is now to prove an analogue of Theorem 1.20. Instead of the absolute
group Gal(ks|k) of a given base field k we had there, now we will have the
fundamental group on a given base topological space X acting on the fibers of
a given point. This is called the monodromy action. We will now recall basic
definitions and facts about the theory of the fundamental groups.

Let X be a topological space. A path in X is a continuous function f : I → X,
where I = [0, 1] is the closed interval. The endpoints of f are the points f(0)
and f(1) in X; if they coincide then the path is called a closed path or a loop.

Let f, g : X → Y be two continuous functions. A homotopy from f to g is
a continuous function H : X × I → Y such that for all x ∈ X

H(x, 0) = f(x), H(x, 1) = g(x)

A path − homotopy between two paths f, g : [0, 1] → X in X is a continuous
function H : [0, 1]× [0, 1]→ X such that for all x ∈ X

H(s, 0) = f(s),∀s ∈ [0, 1]
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H(s, 1) = g(s),∀s ∈ [0, 1]

H(0, t) = f(0) = g(0),∀t ∈ [0, 1]

H(1, t) = f(1) = g(1),∀t ∈ [0, 1]

we see here that a path-homotopy fixes the endpoints (f(0) = g(0), f(1) = g(1)).
It is an easy fact that path-homotopy is an equivalence relation for two fixed
points p, q which are the endpoints of the paths. We are mostly interested when
p = q, so that we have a closed path. We define [f ] to be the path-homotopy
class of f , where f is a path in X.

Given two paths f, g : I → X we say they are composable if f(1) = g(0). For
two composable paths we define their product f ·g : I → X to be f ·g(s) = f(2s)
if 0 ≤ s ≤ 1

2 and f · g(s) = g(2s − 1) if 1
2 ≤ s ≤ 1. The condition f(1) = g(0)

guarantees that the f · g is continuous. The product of paths is well defined on
path classes (Proposition 7.10, [9]).

We now define the fundamental group of X based at p to be the set of path
classes of loops based at p with the product of paths defined above, i.e

π1(X, p) = {[f ] |f is a loop based at p}

the fact that it is a group follows from Theorem 7.11 in [9], its identity element
is the class of the constant map at the point p denoted [cp] and the inverse of a
class [f ] is the class [f−1] where f−1(s) = f(1− s).

Under the assumption that X is path connected, then any two points p, q can
be connected via a path g and that gives an isomorphism on the fundamental
groups Φg : π1(X, p)→ π1(X, q) by the rule [f ] 7→ [g−1][f ][g]. Thus we get that
the fundamental group in this case does not depend on the base point. If in
this case we have that the fundamental group is trivial (i.e contains only the
constant path class [cp]) then we say it is simply connected.

Our goal now is to give the action of the fundamental group on the fibers,
which is called the monodromy action. Let p : Y → X be a cover, pick a
point x ∈ X and let π1(X,x) be the fundamental group on this base point. In
order to define such an action we will have to ”lift” paths from X to Y . The
following proposition enables us to do so.

Proposition 3.10. Let p : Y → X a cover, y a point in Y and x = p(y).

1. Given a path f : [0, 1] → X in X starting at x(i.e f(0) = x), there exists

a unique path f̂ : [0, 1]→ Y such that f̂(0) = y and p ◦ f̂ = f .

2. Assume moreover given a second path g : [0, 1]→ X homotopic to f . Then
the unique lift ĝ : [0, 1] → Y with ĝ(0) = y and p ◦ ĝ = g has the same

endpoints with f̂ , i.e we have f̂(1) = ĝ(1)

Proof. Lemma 2.3.2,[10]

Let y ∈ p−1(x) a point in the fiber of the base point x, [f ] ∈ π1(X,x) a
path class represented by a path f : [0, 1] → X with f(0) = f(1) = x and
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f̂ : [0, 1] → Y its unique lift to Y , given by the previous proposition, such

that f̂(0) = y. We define the monodromy action to be the right action of

π1(X,x) on y to be y[f ] = f̂(1). Because of the second part of the proposition,
we note that the action does not depend on the representative f , as any two
representatives of a given class have the same endpoints and that f̂(1) ∈ p−1(x).
So in fact we have an action on the fibers p−1(x).

When X is connected and locally simply connected, then we have that there
exists a simply connected cover of it called universal cover and we will denote
it X̂. Its existence is guaranteed by the following construction:
Let X be connected and locally simply connected and x0 ∈ X a base point. We
define the space X̂x0

to be the set that contains all the path classes [f ] that starts
at x0 and we define q : X̂ → X to be q([f ]) = f(1). This gives a well defined
map because homotopic paths have the same endpoints by definition. We set
a topology on X̂ as follows: for each U simply connected neighborhood of each
points f(1) ∈ X, we define [fU ] = {[f · a] : a is a path starting at f(1) in U}.
The fact that q then becomes a covering map comes from Theorem 11.43, [9].
The universal cover comes equipped with a universal point x̂0 ∈ X̂x0

which is the
unique lift of the constant path cx0

based at x0. We summarize the properties
of the universal covering in the following proposition.

Proposition 3.11. Let X be a connected and locally simply connected space.
The following statements hold:

1. The universal cover defined above is unique up to isomorphism, i.e any
two simply connected covers of X are isomorphic.

2. The universal cover X̂x0 is connected.

3. There is an isomorphism of groups Aut(X̂x0
|X) ∼= π1(X,x0) .

4. The cover π : X̂x0
→ X is Galois, i.e Aut(X̂x0

|X) acts transitively on the
fibers of π.

Proof. 1) follows from Proposition 11.41, [9].
2) follows from Theorem 11.43, [9].
3) follows from Corrolary 12.9, [9].
4) follows from 3) by noting that the fundamental group π1(X,x0) acts transi-
tively on the fibers (Theorem 11.22, [9]).

Remark 13. In part 3) the automorphism Aut(X̂x0
|X) ∼= π1(X,x0) is given by

the map ϕγ(e) = eγ where γ ∈ π1(X,x0) and e ∈ p−1(x). So we note that the
automorphism group acts from the left, whereas the fundamental group acts
from the right on a fiber.

We will now construct a functor that will be the analogue of theHomk(−, ks)
functor defined in Theorem 1.18 which was seen to send a finite separable
extension L|k to the finite Gal(ks|k)-set Homk(L, ks). Given a space X and a
base point x ∈ X define the functor Fibx from the category of covers of X to
the category of sets equipped with a right π1(X,x)-action which sends a cover
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p : X → Y to the fiber p−1(x). To see that this indeed defines a factor we note
that a homomorphism of covers of X, i.e q : Y1 → Y2 by definition respects the
fibers over x so we get a map q : p−1

1 (x) → p−1
2 (x), where p1, p2 are the two

covering maps p1 : Y1 → X and p2 : Y2 → X, which is a homomorphism of sets
equipped with a right action of π1(X,x) and this right action is respected as the
unique lift of a closed path at the point x, starting from a point y1 in Y1 gets sent
to the unique lift of the same path in Y2 starting at q(y1). The next proposition
will justify that this functor is indeed the analogue of the Homk(L, ks).

Proposition 3.12. Given a space X and a point x ∈ X the functor Fibx is
representable by the universal cover X̂x → X, i.e Fibx(Y ) ∼= Hom(X̂x, Y ) for
a cover Y → X.

Proof. We want to show that given a cover p : Y → X and a point x ∈ X, a point
y ∈ p−1(x) corresponds in a canonical and functorial manner to a morphism of
covers πy from π : X̂x → X to the cover p : Y → X. Let y ∈ p−1(x), then
for any path based at x there exists a unique lift of the path to Y starting
at y, i.e if f is a path based at x then there exists unique f̂ in Y such that
f̂(0) = y. The space X̂x contains all the path classes starting at x and so it

contains any [f ]. We define πy : X̂x → Y to be the map [f ] 7→ f̂y(1), where

f̂y denotes the unique lift of f in Y starting at y. This is well defined as path
homotopic paths have the same endpoints by Proposition 2.10 2). We note
that π = p ◦πy and therefore the continuity of πy follows from the continuity of
π and p. Then πy becomes a covering map via Proposition 2.8. So we proved
that a point y ∈ p−1(x) defines a covering homomorphism πy from the universal
cover to any cover Y of X. To construct an inverse to the map y 7→ πy we send
a homomorphism f of coverings to f(x̂) where x̂ = [cx] the universal element of
X̂. Thus we get a point y in the fiber p−1(x). It is an easy verification that

y 7→ πy 7→ πy(x̂) = πy([cx]) = ĉy(1) = y

f 7→ f(x̂) 7→ πf(x̂) = f

Finally we have obtained an isomorphism between the functors Y → Fibx(Y )
and Y → Hom(X̂x, Y ), since given a homomorphism of covering spaces q :
Y1 → Y2 between two cover q1 : Y1 → X and q2 : Y2 → X mapping y1 ∈ Y1
to some y2 ∈ Y2, the induced map Hom(X̂x, Y1) → Hom(X̂x, Y2) maps πy1 to
πy2 . Indeed we saw that a morphism is uniquely determined by where it sends
the universal element x̂ and we have that if q(y1) = y2 then q(πy1(x̂)) = πy2(x̂)
and therefore q ◦ πy1 = πy2 .

We next recover the monodromy action. Let ϕ : X̂x → X̂x be a cov-
ering automorphism, then composition from right with ϕ yields a bijection
Hom(X̂x, Y )→ Hom(X̂x, Y ), so we get a right action ofAut(X̂x|X) onHom(X̂x, Y ) ∼=
Fibx(Y ) by the left action of Aut(X̂x|X) on X̂x. This is exactly the mon-
odromy action on the fibers. To see this, by Proposition 2.12 each point
y ∈ p−1(x) corresponds to a morphism of covers πy : X̂x → Y . The map πy is
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the map [f ] 7→ f̂y(1) where f̂ is the unique lift of f to Y with f̂(0) = y and
πy([cx]) = ĉy(1) = y[cx]. Any automorphism acting from the right on πy gives

πy ◦ ϕ : X̂x → Y for which ϕ(x̂) = x̂′ and so πy ◦ ϕ(x̂) = πy(x̂
′). By Remark 12

we have ϕ(x̂) = x̂γ for γ ∈ π1(X,x) and so ϕ(x̂) = [cx]γ = [cxγ] and from this
it follows that

πy ◦ ϕ(x̂) = πy[cxγ] = ( ˆcxγ)y(1) = y[cxγ] = y[γ]

Which is indeed the monodromy action on the fiber y. Now we are ready to
state the promised theorem.

Theorem 3.13. Let X be a connected and locally simply connected topological
space and x ∈ X a base point. The functor Fibx induces an equivalence of
categories from the category of covers of X with the category of non-empty right
π1(X,x)-sets. Here connected covers correspond to π1(X,x)-sets with transitive
action and Galois covers to cosets of spaces of normal subgroups.

Proof. We saw that X under these conditions has a simply connected universal
cover X̂x and Fibx(−) ∼= Hom(X̂x,−). For fully faithfulness we have to show
that given two covers p1 : Y → X and p2 : Z → X any map f : Fibx(Y ) →
Fibx(Z) of π1(X,x)-sets comes from a unique homomorphism of covers Y → Z.
We may assume that Y and Z are connected, as otherwise we can split Y =
∪iYi into its disjoint connected components, define covering homomorphisms
from each Yi to a connected component Zj of Z and then take their disjoint
union to form a covering homomorphism from Y to Z. Applying Proposition
2.12 and Theorem 2.9 we get that both πy : X̂x → Y and πz : X̂x → Z

(for y ∈ Fibx(Y ), z ∈ Fibx(Z)) are Galois covers and that Y ∼= H1\X̂x and
Z ∼= H2\X̂x, where H1, H2 ⊆ Aut(X̂x|X) and specifically H1 = Aut(X̂x|Y ) and
H2 = Aut(X̂x|Z). Let y 7→ f(y) = z where y is the image of the universal
element x̂ under the map πy, i.e y = πy(x̂), and the map f is an arbitrary map
on the fibers. Both πy and πz are quotient maps and we have for two path loops
g, h based at x

πy([g]) = πy([h])⇒ ĝy(1) = ĥy(1)⇒ y[g] = y[h]⇒ f(y)[g] = f(y)[h]

⇒ z[g] = z[h]⇒ πz([g]) = πz([h])

so passing to the quotient we get a unique p : Y → Z such that p ◦ πy = πz for
z = f(y). This is a covering homomorphism as

π = p1 ◦ πy = p2 ◦ πz = p2 ◦ p ◦ πy ⇒ p1 = p2 ◦ p

We note that the above homomorphism of covers is determined uniquely by
where the map f sends y = πy(x̂). So we start with πy, construct πf(y) = πz
and find a unique covering homomorphism p as above. We note also that if f
was bijective then by the uniqueness of the quotient we would get Y ∼= Z.

To prove the essential surjectivity we have to show that each right π1(X,x)-
set S is isomorphic to the fiber of some cover of X. Let S be a transitive set,
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then there exists only one orbit. This means that there exists s ∈ S such that
for every other element s′ ∈ S there exists a [f ] ∈ π1(X,x) such that s[f ] = s′,
where [f ] is a closed loop. We fix a point s ∈ S and we denote its stabilizer as
Us ⊆ π1(X,x). We want to show that Hom(X̂x, Y ) ∼= S for some Y connected
cover of X. Pick Y = Us\X̂x. We define

h : S → Hom(X̂x, Y )

s[f ] 7→ [x̂][f ] = q(x̂)[f ]

where [x̂] denotes the class of x̂ in Y = Us\X̂x. Here we note that Aut(X̂x|X) ∼=
π1(X,x) acts transitively on Hom(X̂x, Y ) because it is exactly the monodromy
action as remarked by the discussion preceeding Theorem 2.13, so any such
homomorphism can be written as q◦ϕ, where q : X̂x → Us\X̂x the standard quo-
tient map and ϕ an automorphism corresponding to an element [f ] ∈ π1(X,x)
under the isomorphism and because any homomorphism is uniquely determined
by the image of x̂ so infact every homomorphism is of the form defined in the
map h (q(ϕ(x̂)) = q(x̂[f ]) = q(x̂)[f ]). Thus the map h is surjective. Injectivity
follows because we chose Y = Us\X̂x, so we get that h is a bijective map be-
tween transitive π1(X,x)-sets and also Y is connected as the continuous image
of X̂x under q. If S is not transitive then we separate it to its disjoint orbits
S = ∪iSi and we define isomorphisms

hi : Si → Hom(X̂x, Yi)

as above. Then we get an isomorphism

h : ∪iSi → ∪iHom(X̂x, Yi) = Hom(X̂x,∪iYi)

where the last equality holds because the image of the connected X̂x via a contin-
uous homomorphism of covers must lie inside one connected component.Lastly
the statement about the Galois covers follows from Theorem 2.9 in view of
Y = Us\X̂x defines a Galois cover if and only if Us is a normal subgroup of
π1(X,x).

Remark 14. We now compare the above theorem with Theorem 1.20. The
role of the separable closure ks is played by the universal cover X̂x. Here the
universal cover constructed is depended on the point x which we had to fix,
whereas Theorem 1.20 depended on choosing an algebraic closure k̂ in which
ks lies. In either case, choosing another algebraic closure k̂′ or another point
y ∈ X yields non-canonical isomorphisms k̂ ∼= k̂′s and X̂x

∼= X̂y, the first one is
justified by Proposition 1.2 3) and the second one is justified because X being
connected and locally simply connected implies that X is path-connected and
thus we get an isomorphism on the fundamental groups for any two points and
an isomorphism on the two universal coverings by a choice of a path connecting
x and y. The fundamental group π1(X,x) ∼= Aut(X̂x|X) plays the role of
the absolute Galois group Aut(ks|k) = Gal(ks|k) and the functor inducing the
equivalence is A 7→ Hom(A, ks) (a contravariant functor) and here it is Y 7→
Fibx(Y ) ∼= Hom(X̂x, Y ).
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The above remark shows us that there is a strong analogy between the two
Theorems, but it does not address the finiteness condition that Theorem 1.20
has. To solve this problem first we will construct the profinite completion of

the fundamental group π1(X,x) , which is denoted as ̂π1(X,x). As the name
indicates it arises as a profinite group.

Remark 15. Given a group G, the set of its finite quotients can be turned into
an inverse system as follows. Let Λ be the index set formed by the normal
subgroups of finite index of G and we set a partial order on the index set by :
Ua ≤ Ub if and only if Ub ⊆ Ua for a, b ∈ Λ. If Ua ≤ Ub are two such normal
subgroups ofG, then we have a natural quotient map ϕab : G/Ub → G/Ua, which
is immediately seen to have the third property of Definition 1.6. In this way,
by taking the inverse limit of the system we obtain the profinite completion of
G, denoted Ĝ. There is also a natural homomorphism G → Ĝ by sending an
element g ∈ G to its class in each quotient.

By the above remark we turn the set of the finite quotients of π1(X,x) to

its profinite completion ̂π1(X,x). We call a cover p : Y → X finite if it has
finite fibers for all points. If X is connected, Corollary 2.1.1 implies that the
cardinality of the fibers is the same for all points. We now state a Corollary of
Theorem 2.13 that bears a closer resemblance to Theorem 1.20.

Corollary 3.13.1. Let X a connected and locally simply connected topologi-
cal space and x ∈ X a base point. The functor Fibx induces an equivalence
of the category of finite covers of X with the category of finite continuous

right ̂π1(X,x)-sets. Connected covers correspond to finite ̂π1(X,x)-sets with
transitive action and Galois covers to coset spaces of open normal subgroups.

Proof. Everything follows from the previous Theorem, except from the fact that
we have a continuous action by the profinite completion of the fundamental
group. We assume again that the covers are connected, otherwise we handle it
exactly in the same fashion as previously. Let p : Y → X a finite connected cover
and X connected then the fibers have the same cardinality for every point. The
action of π1(X,x) on the fiber p−1(x) factors via a finite quotient of π1(X,x),
as there are only finitely many points in the fiber, that is, because π1(X,x)
acts transitively on connected covers then we set an equivalence relation on
π1(X,x) for which [f ] ∼ [g] if and only if y[f ] = y[g] for a fixed point in
the fiber y ∈ p−1(x) or equivalently if [fg−1] is in the stabilizer of y. The
stabilizer Hy of y is thus a subgroup of finite index and hence contains a normal
subgroup of finite index, the kernel of the natural map ρHy : G→ Hy, g 7→ gUy
which we denote N. Then N is open as the preimage of the identity element
on Hy which carries the discrete topology and thus is open and we also have

that Hy = ∪gNg as g runs through all elements of ̂π1(X,x). All Ng sets are
homeomorphic to N and thus they are open and that implies Hy is open. So
the stabilizer Hy of every point is open (the point was chosen arbitrarily) and

applying Lemma 1.16 yields that the action of ̂π1(X,x) on the discrete fibers

is indeed continuous. Conversely, a continuous action of ̂π1(X,x) on a finite set
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S factors though a finite quotient as previously, which is also a finite quotient
of π1(X,x) ( G → Ĝ → Ĝ/H) and that gives rise to a cover p : Y → X by
Theorem 2.13 which has to be finite.

3.4 Sheaves

In this section we will introduce sheaves which will be used in the following
two chapters. We will also give a reformulation of the Galois theory is terms of
locally constant sheaves. First we start with some basic definitions.

Definition 3.5. Let X a topological space. A presheaf of sets (or any category)
F is a rule which assigns to each open subset U of X, a set (or any other object)
F(U) and to each inclusion of open subsets U ⊆ V of X, a map ρV U : F(V )→
F(U) which has the following two properties:

1. ρUU : F(U) → F(U) is the identity morphism in the category for any
U ⊆ X.

2. For any tower of opens U ⊆ V ⊆W we have that ρWU = ρV U ◦ ρWV .

The elements of F(U) are called sections of F over U and the maps ρV U are
often referred to as restriction morphisms.

Remark 16. Similarly we can define a presheaf of abelian groups, groups, rings
or any other category by requiring the rule to send the open subsets of X to
abelian groups, groups or rings, that is F(U) is an object of the category of
choice.

Definition 3.6. A morphism of presheaves Φ : F → G is a collection of maps
ΦU : F(U) → G(U) such that for each inclusion U ⊆ V the following diagram
commutes.

F(V ) G(V )

F(U) G(U)

ΦV

ρvu ρ′vu

ΦU

The most basic example of a presheaf is the one that assigns to each open
subset U of a topological space X the set F(U) of continuous functions f :
U → R. Here the restriction map ρV U for two open subsets of X with U ⊆ V
is just the restiction of the continuous function f : V → R to f |U : U → R.
Motivated by this, for any s ∈ F(V ) we will denote ρV U (s) to be s|U ∈ F(U),
the restriction of the section to the smaller open subset. The continuous maps
have also another important property, that they can be glued together (Lemma
3.23, [9]). That means that if we have two continuous maps f1 : U1 → R
and f2 : U2 → R with the property that they agree on the intersection, i.e
f1(x) = f2(x),∀x ∈ U1 ∩ U2 then we can uniquely define the continuous map
f : U1 ∪ U2 → R by setting f(x) = fi(x) if x ∈ Ui. This property leads us to
the definition of sheaves.
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Definition 3.7. A sheaf over a topological spaceX is a presheaf F that satisfies
the two following axioms:

1. Given a non-empty U ⊆ X and an open cover {Ui}i∈I of U , if two sections
s, t ∈ F(U) satisfy s|Ui

= t|Ui
for all i ∈ I, then we have that s = t.

2. For an open covering of U as above, given a family of sections {si ∈ F(Ui) :
i ∈ I} with the property that si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I, whenever
Ui ∩ Uj ̸= ∅, then there exists a section s ∈ F(U) such that s|Ui

= si for
all i ∈ I. By the previous property such an s ∈ F(U) is unique.

The first axiom is referred to as the identity axiom and that is because any
two sections agreeing on the restrictions to all open subsets are identified. The
second axiom is referred to as the gluing axiom and it states that any family
of sections defined on the open subsets, which agree on the overlaps Ui ∩ Uj ,
can be glued together to a unique section over the whole U ; just as in the case
of continuous functions. We will now demonstrate two important examples of
sheaves that will be used in this thesis.

Example 1. Let C be the complex numbers with the euclidean topology. It
is a connected and locally connected space. Let {Ui}i∈I be a cover of C by
open connected subsets. We define the sheaf of holomorphic functions on a
connected open subset D to be the sheaf of rings whose sections over some open
subset U ⊆ D are the complex functions holomorphic on U . The restriction
maps are given by the restriction of the holomorphic maps to connected open
subsets, which are again holomorphic maps. The identity property of sheaves
is immediately seen to hold, as any holomorphic map such that f |Ui = 0 for
every Ui open connected is f = 0 on the whole space. The second property
comes from gluing holomorphic maps. This example carries on to any complex
manifold and we shall see examples in the next chapter about Riemann surfaces.

Example 2. Let X and S be two topological spaces. We define a sheaf FS on
X by mapping U ⊆ X to the set F(U) of continuous functions U → S for all
non-empty open U ⊆ X. Just as in the case of real valued functions, this defines
indeed a sheaf on X. If we now assume that S carries the discrete topology,
then we call FS the constant sheaf on X with value S. The name comes from
the fact that over connected subsets U ⊆ X of X, the sections of FS(U) are
constant, i.e if we have f : U → S continuous and U is connected, if f is not
constant then it maps U to at least two distinct points s1, s2 in S, which are
open in S and thus their preimages are open subsets of U and disjoint, thus
they disconnect U , contradiction. So we get FS(U) = S.

Given any open subset U of a space X with a sheaf F defined on it, we can
define a sheaf on U by taking the restriction of the sheaf on U , denoted F|U ,
by considering only the sections of F over open subsets of U . We can now give
the definition of a locally constant sheaf.

Definition 3.8. A sheaf F on a topological space X is locally constant if every
point x ∈ X has an open neighborhood U of X such that the restriction F|U is
isomorphic (in the category of sheaves) to a constant sheaf.
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We will see that the category of locally constant sheaf is isomorphic to the
category of covers. To this end, we will first turn a cover p : Y → X into a sheaf
over X. Henceforth we assume that all spaces are locally connected. The next
definition explains why we call elements of F(U) sections.

Definition 3.9. Let p : Y → X be a space over X and U ⊆ X an open subset.
A section of p over U is a continuous map s : U → Y such that p ◦ s = IdU .

We turn the space p : Y → X into a sheaf FY by mapping each open set
U ⊆ X to the set of sections of p over U and we define the restriction maps
ρV U (s) : FY (V )→ FY (U) to be the restriction of the sections s|U . This in fact
defines a presheaf on the space X, as the properties of Definition 2.5 easily
follows. The gluing property of Definition 2.7 follows from the gluing lemma
(Lemma 3.23, [9]) and the identity property follows from the continuity of
the sections, because if there exists a point x ∈ X such that s(x) ̸= 0, then
there exists an open neighborhood U of x such that s(y) ̸= 0 for all y ∈ U
contradicting the fact that s|Ui

= 0. Therefore, FY defines a sheaf on X.

Proposition 3.14. If p : Y → X is a cover then FY is a locally constant sheaf.
It is constant if and only if the cover is trivial.

Proof. Let p : Y → X be a cover, x ∈ X a point and U a connected open neigh-
borhood (X is locally connected) which is evenly covered, i.e p−1(U) = ∪iVi
where Vi are connected open and disjoint subsets of Y . Then by Proposition
2.1 we have that p−1(U) ∼= U × F where F is a discrete set. The image of a
section s : U → Y is connected because of the fact that images of connected
subsets under continuous maps are connected. From the definition of a section
it follows that p ◦ s(U) = U and therefore s(U) maps homeomorphically to U ,
so it has to be one of the connected components Vi. Therefore sections s are in
one to one correspondence with points of the discrete set F , so the restriction
of FY to U is isomorphic to the discrete set F , i.e FY |U ∼= F (because U is con-
nected any subset has the same cardinality on the fibers by Corollary 2.1.1,
i.e isomorphic to the same discrete space F ). Thus the restriction is a constant
sheaf and so FY is locally constant. The sheaf FY is constant if and only if
FY ∼= F which happens if and only if p−1(U) ∼= U ×F for all U open connected
neighborhoods which implies that Y ∼= X × F as covers of X, so p : Y → X is
a trivial cover.

Given a morphism ϕ : Y → Z of covers of a space X, there is a natural
map Φ : FY → FZ of the locally constant sheaves defined above, which comes
from sending a section s : U → Y to ϕ ◦ s : U → Z. This is a continuous map
as the composition of two continuous maps. To see that it defines a section of
FZ over U , we pick a connected open subset U ⊆ X that satisfies the evenly
covered property for both covers p1 : Y → X and p2 : Z → X. Then we have
p−1
1 (U) ∼= U × F1 and p−1

2 (U) ∼= U × F2 for two discrete sets F1, F2 and we
have turned both covers into their respective locally constant sheaves. By the
commutativity of the morphism of covers we have p2 ◦ϕ = p1 and for the section
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s we have p1◦s = idU . Thus p2◦(ϕ◦s) = idU . We construct an open cover of X
by choosing such open neighborhoods of each point of x ∈ X that satisfies the
property for both covers and now it follows that we get a morphism of locally
constant sheaves Φ : FY → FZ . Thus Y 7→ FY defines a functor.

Theorem 3.15. The above functor defines an equivalence between the category
of covers of X and the category of locally constant sheaves on X.

Though we can prove the theorem by showing the above functor is fully
faithful and essentially surjective, it is more informative to construct a functor
in the reverse direction. The functor that will be constructed will send a presheaf
F to a space over X and a locally constant sheaf to a cover of X. We will need
the notion of stalks of a presheaf.

Definition 3.10. Let F be a presheaf of sets on a topological space X and
let x ∈ X a point. The stalk of F on x, denoted Fx, is defined as the disjoint
union of the sets F(U) for all open neighborhoods U of x, modulo the following
equivalence relation: s ∈ F(U) and t ∈ F(V ) are equivalent (s ∼ t) if there
exists an open neighborhood W ⊆ U ∩ V such that s|W = t|W . That means

Fx = ⊔x∈UF(U)/ ∼

We denote sx ∈ Fx to be the class of a section in F(U) for an open neighborhood
U of x.

Remark 17. We note from the definition that giving a point sx ∈ Fx is the same
as giving a pair (U, s) such that s ∈ F(U) and that the equivalence relation then
becomes (U, s) ∼ (V, t) if and only if there exists W ⊆ U ∩ V such that t|W =
s|W . From this interpretation we get that for every U ⊆ X open neighborhood
of x, we have an induced map

F(U)→ Fx

s 7→ (U, s)

and of course this map is compatible with the restriction maps by definition
of the stalk, that is s|V 7→ (U, s|V ) = (V, s). So for a morphism of presheaves
ϕ : F → G we get an induced morphism on the stalks ϕx : Fx → Gx by (U, s) 7→
(U, ϕU (s)) for every open neighborhood U of x. Since ϕ is compatible with the
restriction maps, we get that this map is well defined, i.e if (U, s) ∼ (U ′, s′) then
there exists W ⊆ U ∩ U ′ such that s|W = s′|W and so

ϕU (s)|W = ϕW (s|W ) = ϕW (s′|W ) = ϕU ′(s′)|W

where the first and fourth equality hold from the commutativity of the diagram
in Definition 2.6 and thus (U, ϕU (S)) ∼ (U ′, ϕU ′(s′)).

We will now construct a functor that sends a presheaf F to a space pF :
XF → X over X. As a set XF is set to be equal to all disjoint stalks at every
point in X, i.e XF = ⊔x∈XFX . We set the natural projection pF (Fx) = {x} to
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be the constant map on each x and so p−1
F (x) = Fx. What remains is to define

a topology on XF that should also turn pF into a continuous map. Let U ⊆ X
be an open subset and s ∈ F(U) a section. We define a map is : U → XF by
x 7→ (U, s) and we define a topology on XF to be the coarsest topology such that
each set is(U) is open for each section s ∈ F(U) and each open U ⊆ X. To see
that this generates a topology for XF , we first note that Fx = ∪sis(U) for any
open neighborhood U of x. Taking the union over all open subsets of X thus
yields that XF = ∪U ∪s is(U). Now let p ∈ is(U)∩ it(V ), then p ∈ (U, s)∩(V, t),
so there exist open neighborhoods W,Q of p inside U, V such that p|W = s|W
and p|Q = t|Q, therefore W ∩Q ̸= ∅ and p|W∩Q = s|W∩Q = t|W∩Q and thus p ∈
(W ∩Q, p) = ip(W ∩Q) ⊆ is(U)∩it(V ). To see that pF becomes continuous it is
enough to note that for each open U ⊆ X, p−1

F (U) = ∪x∈UFx = ∪x∈U ∪s is(V )
which is union of opens.

In case F is locally constant, then the space XF becomes a cover of X.
Indeed if U is a connected subset of X such that F|U ∼= F becomes constant,
then for any connected subset V of U (a basis of those exists as X is locally
connected) we have that F|V ∼= F for the same discrete set F and thus Fx ∼= F
for all x ∈ U and that implies p−1

F (U) ∼= U ×F and from Proposition 2.1 XF
is a cover.

We saw that a morphism ϕ : F → G induces a morphism ϕx : Fx → Gx
on the stalks for every x ∈ X compatible with the projections and thus we get
a morphism Φ : XF → XG compatible with the projections. The next lemma
states that this morphism is a morphism of spaces over X.

Lemma 3.16. Let F ,G be two presheaves defined on X, then the map Φ :
XF → XG defined above is a morphism of spaces over X.

Proof. The map Φ is the result of gluing together the maps ϕx : Fx → Gx for
every x ∈ X. It is immediate that pF = pGΦ as for all x both map their stalk
on x to x. It remains to be proven that Φ is continuous. Pick U open subset
of X, a point x ∈ X and a section t ∈ G(U). The basic open set it(U) maps
x to tx ∈ Gx. Each preimage sx ∈ Φ−1(tx) lies in Fx by the construction of Φ
and comes from a section s ∈ F(V ) for V ⊆ U neighborhood of x which can
be chosen small enough so that ϕ(s) = t|V . Then sx ∈ is(V ) which is a basic
open subset of XF by construction and we also have that Φ(is(V )) ⊆ it(V ).
Thus Φ is open as any point sx in the preimage of it(U) contains a basic open
neighborhood is(V ) contained in the preimage of it(V ) ⊆ it(U).

From the lemma we get that F 7→ XF is a functor from the category of
presheaves on X to the category of spaces over X. When F is locally constant
we saw that XF becomes a cover of X. To get an equivalence of categories we
have to assume that we have a locally constant sheaf to utilize Proposition
2.14. We are ready to prove Theorem 2.15.

Proof. We have to show that F 7→ XF 7→ FXF is isomorphic to the identity
morphism on sheaves, i.e FXF

∼= F and for covers Y 7→ FY 7→ XFY
is isomor-

phic to the identity morphism on the covers, i,e XFY
∼= Y . For FXF

∼= F we
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consider the map F 7→ FXF which maps a section s ∈ F(U) to the local section
is : U → XF for every neighborhood U of x. This is immediately seen to be
an isomorphism on the induced maps on the stalks, as sx 7→ sx and therefore
we get an isomorphism of sheaves ( Proposition 1.1,Ch.[II], [4]). To show
XFY

∼= Y we choose an open connected cover {Ui}i of X such that FY is the
constant sheaf on its restriction to each Ui and each Ui satisfies the definition
of the covering of Y → X. We saw that in this case p−1

FY
(Ui) ∼= Ui × F , where

F ∼= FY |Ui
and from the proof of Proposition 2.14 we have p−1(Ui) ∼= Ui×F ,

thus XFY
∼= Y .
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4 Riemann surfaces

4.1 Basic Concepts

Let X be a Hausdorff space. We recall that a function f : C→ C is holomorphic
at a point z0 ∈ C if it is complex differentiable in an open neighborhood U
of z0 and it is holomorphic on an open set V if it is holomorphic on each
point z ∈ V . Holomorphicity is a strong condition and it implies that f is
infinitely differentiable in the neighborhood U of z0 and that f is analytic, that is

f(z) =
∑∞
n=1 an(z−z0)n for an = f(n)(z0)

n! and every point z in the neighborhood
U of z0 which is given by the definition of holomorphicity (Theorem 7.16,[5]).

Definition 4.1. A complex atlas (or smooth atlas) onX is an open covering U =
{Ui : i ∈ I} of X together with maps fi : Ui → C mapping Ui homeomorphically
onto an open subset of C and such that fj ◦f−1

i : fi(Ui∩Uj)→ fj(Ui∩Uj) ⊆ C
is holomorphic for every pair (i, j) ∈ I × I. The maps fi are called the complex
charts and the maps fj ◦ f−1

i are called the transition maps.

We now set an equivalence relation on the complex atlases of a space X by
declaring (U , fi) ∼ (U ′, f ′j) if (U ∪ U ′, fi ∪ f ′j) is a complex atlas on X. Here we
have that U ∪ U ′ is a cover, (fi ∪ f ′j) gives a family of complex charts and so
the condition left to be checked is that f ′j ◦ fi should be a holomorphic function
from fi(Ui ∩ U ′

j)→ f ′j(Ui ∩ U ′
j) for all pairs (i, j) ∈ I × J and Ui ∈ U , U ′

j ∈ U ′.
It is a simple verification that this defines an equivalence relation.

Definition 4.2. A Riemann surface is a Hausdorff space together with an
equivalence class of complex atlases. This equivalence relation is called complex
structure of the Riemann surface.

Example 3. A trivial example of a Riemann surface is any open subspace U of
C. We have the trivial open covering by the space U is self and the complex
chart is the inclusion map U → C which is an embedding and of course f(z) = z
is a holomorphic map.

The simplest non-trivial example is the projective line P1(C) which comes
from the extended complex plane C∗ = C ∪ {∞} with the following topology:
the open sets are the opens sets of C together with the sets of the form V ∪{∞}
where V is the complement of a compact set K in C. We have U0 = C and
U1 = C∗−{0} to be an open cover of C∗ and we define complex charts f0(z) = z
and f1(z) =

1
z . Those are both homeomorphisms f0(U0) = C and f1(U1) = C

and we also have f0 ◦f−1
1 : f1(U0∩U1) = f1(C\{0})→ f0(U0∩U1) = f0(C\{0})

which is given by f0 ◦ f−1
1 (z) = 1

z and the same goes for f1 ◦ f−1
0 (z) = 1

z
both being holomorphic functions. This space is connected because U1, U2 are
connected with a common point and compact.

We now turn our focus on holomorphic maps between Riemann surfaces.

Definition 4.3. Let Y and X be Riemann surfaces. A holomorphic (or ana-
lytic) map ϕ : Y → X is a continuous map such that for each pair Ui ⊆ X and
Vj ⊆ Y of open subsets satisfying ϕ(Vj) ⊆ Ui and complex charts fi : Ui → C
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and gj : Vj → C the functions fi ◦ ϕ ◦ g−1
j : gj(Vj)→ C are holomorphic for all

pair (i, j) ∈ I × J .

We note that the above definition is independent of the complex charts fi
and gj , because if we were to have other equivalent complex structures on X
and/or Y , then the functions f ′k ◦ ϕ ◦ g′−1

s would still be holomorphic.
We define a holomorphic function on an open subset U ⊆ X to be a holo-

morphic map ϕ : U → C between Riemann surfaces, where C has the natural
complex structure (Example 3). A complex chart is a holomorphic function.
Indeed for a complex chart f : U → C we have that the maps fi ◦ f ◦ g−1

j are
the transition maps which are holomorphic by definition (gj are the charts of
X and fi are the identity charts of C).

4.2 Finite Branched Covers

In this section we will study holomorphic maps ϕ : Y → X between Riemann
surfaces from a topological viewpoint. From now on we shall assume that the
maps under consideration are non-constant on all connected components, i.e
they do not map a whole component to a point. The next proposition states
that any holomorphic map of Riemann surfaces is locally of the form z → zk

for k ∈ Z

Proposition 4.1. Let ϕ : Y → X be a holomorphic map between Riemann
surfaces (non-constant) and a point y ∈ Y with image ϕ(y) = x ∈ X. There
exists open neighborhoods Vy ⊆ Y and Ux ⊆ X of y and x respectively such
that ϕ(Vy) ⊆ Ux and complex charts gy : Vy → C and fx : Ux → C satisfying
fx(x) = gy(y) = 0 such that the diagram

Vy Ux

C C

ϕ

gy fx

z→zey

commutes for an appropriate integer ey, which is independent of the choice of
complex charts.

Proof. Theorem 2.1, [3]

Definition 4.4. The integer ey above is called the ramification index or branch-
ing order of ϕ at y. The points y with ey > 1 are called branch points. We
denote the set of branch points of ϕ by Sϕ.

An immediate corollary to Proposition 3.1 is the following. We denote
pn(z) = zn

Corollary 4.1.1. A holomorphic map between Riemann surfaces is open.
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Proof. Because of the commutativity of the diagram in Proposition 3.1 and
because fx and gy are homeomorphisms, then we have ϕ = f−1

x pngy and all
three maps are open, so every point y ∈ Y has an open neighborhood Vy that
maps to an open neighborhood of ϕ(y) and therefore ϕ maps open sets to open
sets.

Corollary 4.1.2. The fibers of ϕ and the set Sϕ are discrete closed subsets.

Proof. Let y ∈ ϕ−1(x) then ϕ(y) = x and the proposition implies that there
exists an open neighborhood Vy of y such that the only element in the fiber
of x in Vy is y (zn 7→ 0 if and only if z = 0). Therefore, the fiber of a given
point is a discrete subset. They are also closed because ϕ is a continuous map
so the preimage of a closed is closed. For the set Sϕ let y ∈ Y with ey > 1,
then the derivative of ϕ is defined locally around y and it is non-constant and
holomorphic thus its set of zeroes is discrete and closed in Y .

We now consider proper holomorphic maps. We recall that a map is proper if
the preimage of each compact set is a compact set. The Riemann surfaces have
the property that they are locally compact, as locally they are homeomorphic
to open subsets of C. For locally compact spaces we have that a proper map
is closed (Theorem 4.95,[9]). Combining the fact that a proper holomorphic
map is open (Corollary 3.1.1) with the fact that it is closed, gives us that
the map is surjective under the assumption that X is a connected space. This
is an important fact as we want to view holomorphic maps between Riemann
surfaces as covering maps.

Remark 18. A finite cover p : Y → X is a proper map. Indeed, given a compact
set K ⊆ X we consider U to be an open cover of p−1(K), then because p is an
open map we have that p(Ui) form an open cover of the compact space K, thus
it can be refined to a finite cover. The preimage of each p(Ui) has to be finite
because our cover is finite, thus we have refined U to a finite cover of p−1(K).

Proposition 4.2. Let ϕ : Y → X a proper holomorphic map of Riemann
surfaces and X a connected space. Then ϕ is surjective with finite fibers and
the restriction of ϕ to Y \ϕ−1(ϕ(Sϕ)) is a finite topological cover of X\ϕ(Sϕ).

Proof. We saw that ϕ is surjective because it is an open and closed map mapping
to the connected X, i.e ϕ(Y ) both open and closed subset of X thus the whole
set. Finiteness of fibers follows from the fact that the preimage of the compact
set {x} is compact under the assumption that ϕ is proper and it is also discrete
and closed by Corollary 3.12 and thus finite. For the last statement, because
ϕ is a closed map then ϕ(Sϕ) is closed, thus X\ϕ(Sϕ) is open and so every point
has an open neighborhood disjoint from ϕ(Sϕ). Any such x is the image of a
y ∈ Y with ramification index ey = 1 and so locally it is a homeomorphism from
a neighborhood Vy to a neighborhood Ux. From the fact that {x} is compact,
then there exist finitely many yi in its preimage, thus also finitely many open
neighborhoods Vi. Taking the intersection ∩ϕ(Vi) = ∩Ui we get that ∩Ui is an
open neighborhood of x that satisfies the definition of a cover.
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Definition 4.5. A finite branched cover is a proper surjective map that restrict
to a finite cover outside a discrete closed subset S.

By the previous proposition a proper holomorphic map turns into a finite
branched cover. In fact, the next theorem states states that there is an equiva-
lence of categories between the category of Riemann surfaces Y equipped with
a proper holomorphic map Y → X where X is a connected Riemann surfaces
and S is a discrete closed subset of X such that all the branch points of Y lie in
S with the category of finite topological covers of X\S. We denote the category
of Riemann surfaces Y with a proper holomorphic map Y → X whose branch
points lie above S by HolX,S . A morphism f in this category is a holomorphic
map compatible with the projections onto X, i.e the following diagram

Y1 Y2

X

f

ϕ2

ϕ1

commutes.

Theorem 4.3. In the above situation mapping a Riemann surface ϕ : Y → X
over X to the topological cover Y \ϕ−1(S)→ X\S obtained by the restriction of
ϕ on Y \ϕ−1(S), induces an equivalence of the category HolX,S with the category
of finite topological covers of X\S.

We first prove that starting with a Riemann space X and a topological cover,
we can endow Y with a complex structure turning it into a Riemann surface.
For all the following propositions and lemma‘s we assume that the covers and
the Riemann surfaces are connected, if they are not we can split them into
their connected components and do the same construction for each connected
component.

Lemma 4.4. Let X be a Riemann surface and p : Y → X a connected cover
of X as a topological space. Then Y can be endowed with a unique complex
structure for which p becomes a holomorphic mapping.

Proof. The map p is surjective and for every point x ∈ X we have a evenly
covered neighborhood V of x and also a neighborhood W that satisfies the
complex chart definition. Taking the intersection of the two, we can assume that
each x ∈ X has an open neighborhood satisfying both properties. Therefore, for
each y ∈ Y there exists an open neighborhood, the component of the preimage
of the set V ∩W under p, that maps homeomorphically onto V ∩W and V ∩
W is homeomorphic through the complex chart f : W ∩ V → C to an open
subset of C. Therefore, we endow Y with a complex chart for each point by
composing f ◦ p. In this way we obtain a complex atlas on Y , because of
surjectiveness of p and the holomorphicity of the transition maps follow from the
holomorphicity of the transition maps ofX and the connectedness of Y . The fact
that p becomes a holomorphic map follows easily because fip(p

−1f−1
j ) = fif

−1
j
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are holomorphic, as they are transition maps. The uniqueness of the complex
structure follows from the fact that for any complex structure on Y we must
have that p is an analytic isomorphism when restricted to preimages of evenly
covered neighborhoods.

Now we will prove that the functor of Theorem 3.3 is essentially surjective.

Proposition 4.5. Assume given a connected Riemann surface X, a discrete
closed subset S of points of X and a finite connected cover ϕ′ : Y ′ → X ′, where
X = X\S. There exists a Riemann surface Y containing Y ′ as an open subset
and a proper holomorphic man ϕ : Y → X of Riemann surfaces such that
ϕ|Y ′ = ϕ′ and Y ′ = Y \ϕ−1(S).

Proof. We fix a point s ∈ S. Because X is a Riemann surface then we have
that s is inside an open neighborhood mapping homeomorphically to an open
neighborhood of C by a complex chart. As C is locally connected space then
we may take a connected neighborhood of the image of s in C, we pick an open
ball Bϵ(im(s)) of radiues ϵ and centered at im(s). Then the complex chart
maps homeomorphically a connected open neighborhood Us of s to the open
connected subset Bϵ(im(s)) of C. By performing affine linear transformation in
C (z 7→ 1

ϵ (z− im(s)) we may assume that Us is mapped homeomorphically onto
the open unit disc D ⊆ C. The restriction of ϕ′ on ϕ′−1(Us−{s}) is a finite cover
and thus ϕ′−1(Us−{s}) decomposes as a finite disjoint union of connected open
components V is which are all covers of Us and map homeomorphically to it. We
have Us−{s} ∼= D−{0} by the complex chart and thus each V is is a connected
cover of D − {0}. The fundamental group of D − {0} is π1(D − {0}) ∼= Z and
therefore by Theorem 2.9 V is is isomorphic to a cover D − {0} → D − {0} by
z 7→ zn for some n ∈ N (the universal cover here being L = {z ∈ C|Re(Z) < 0}
by the exponential map). Now we want to extend Y ′ and ϕ′ so that they have
the properties stated in the Theorem. We choose non-existing point in Y ′, one
for each i and s, we denote them yis and we take Y = Y ′ ∪i,s {yis} and we
define an extension of ϕ′ by setting ϕ(yis) = s. We also extend the holomorphic
isomorphisms V is

∼= D − {0} to ρis : V is ∪ {yis} ∼= D by mapping yis to zero for
each i and s and we define the topology on Y to be the one that turns these
isomorphisms to homeomorphism. We set a complex structure on Y by keeping
the same unique complex structure inherited by the cover ϕ′ on Y ′ (Lemma
3.4) and setting for each point of the new points yis the complex charts to be
the maps ρis. In this way we form a complex atlas on Y . Then the extension
ϕ of ϕ′ is a holomorphic map, since away from yis it is ϕ′ which is holomorphic
by Lemma 3.4 and in the neighborhood of yis it looks like z 7→ zn which is a
holomorphic map. Finally, by Remark 18 ϕ′ is proper and so the extension ϕ is
also proper as the compact sets of X = X ′∪S differ from those of X ′ by finitely
many points in S (because of compactness).

Now only the fully faithful property is left to be proven for Theorem 3.3.

Proof. To prove fully faithfulness we have to show that for two Riemann surfaces
Y and Z equipped with proper holomorphic maps ϕY : Y → X and ϕZ : Z → X
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with no branch points above S and a morphism of covers ρ′ : Y ′ → Z ′ over
X ′ = X\S, with Y ′ = Y \ϕ−1

Y (S) and Z ′ = Z\ϕ−1
Z (S), there exists a unique

holomorphic map ρ : Y → Z extending ρ′. Again we assume that Y and Z are
connected Riemann surfaces, as otherwise we can do the same for the connected
components and then take the disjoint union. From Proposition 2.8, because
ϕ′Z ◦ ρ′ = ϕ′Y from the assumption that ρ′ is a covering homomorphism, then
ρ′ : Y ′ → Z ′ becomes a connected cover (Y ′ = Y \S remains connected for S
closed and discrete subset as it can be seen that it is path-connected due to its
local complex structure). Applying Lemma 3.4 then Y ′ can be endowed with
a unique complex structure that turns ρ′ to a holomorphic map. This complex
structure must be compatible with that of Y because ϕY |Y ′ = ϕ′Y = ϕ′Z ◦ ρ′ =
ϕZ ◦ ρ′ is holomorphic with respect to both complex structures. It follows from
the definition of a cover that for each point y ∈ ϕ−1

Y (S) the map ρ′ must send a
sufficiently small neighborhood of y, which has been seen in Proposition 3.5
to be holomorphically isomorphic to D − {0}, homeomorphically to an open
neighborhood of a point z ∈ ϕ−1

Z (S) which is also holomorphically isomorphic
to D − {0}. We then extend ρ′ to ρ by setting ρ(y) = z for each such pair
and keeping ρ′ everywhere else. We end up with a unique holomorphic map ρ
extending ρ′ by similar arguments as in Proposition 3.5.

An immediate result we get from the above Theorem is that the automor-
phism group of ϕ : Y → X as an object of HolX,S is the same as the automor-
phism group of the cover Y ′ → X ′. Therefore we call Y a finite Galois branched
cover of X if Y ′ is Galois cover of X ′.

Proposition 4.6. Let ϕ : Y → X be a proper holomorphic map of connected
Riemann surfaces that is topologically a Galois branched cover. Then the fol-
lowing hold:

1. The group Aut(Y |X) acts transitively on the fibers of ϕ.

2. If y ∈ Y is a branch point with ramification index e, then so are all the
points in the fibre ϕ−1(ϕ(y)).

Proof. From the fact that ϕ′ : Y ′ → X ′ is Galois then we have that Aut(Y ′|X ′)
acts transitively on the fibers of ϕ′ (Proposition 2.7) and because of the con-
tinuity of the automorphisms we have that Aut(Y |X) acts transitively on the
fibers of ϕ. The second statement comes from the fact Aut(Y |X) acts transtively
on the fibers and that an element in Aut(Y |X) is a holomorphic homeomor-
phism, so locally they have the same ramification index e.

4.3 Relation with Field theory

In the previous subsection Theorem 3.3 gave us an equivalence of categories
between Riemann surfaces with proper holomorphic maps and finite topological
covers of a space X\S. This gives us a relation between the theories developed
in Chapter 2 and so far in Chapter 3. In this subsection, we will develop an
equivalence of categories between Riemann surfaces (under conditions) and field
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extensions of a fixed field. We begin with the notion of meromorphic functions
which will play the role of field extension.

Definition 4.6. Let X be a Riemann surface. A meromorphic function on X
is a holomorphic function on X\S, where S is a discrete closed subset of X
such that moreover for all complex charts ϕ : U → C of X the complex function
f ◦ ϕ−1 : ϕ(U)→ C is meromorphic.

The meromorphic functions on a Riemann surface X define a ring with
respect to the usual addition and multiplication of functions, we will denote it
M(X). On connected Riemann surfaces M(X) turns into a field.

Lemma 4.7. If X is a connected Riemann surface then the ring M(X) is a
field.

Proof. Lemma 3.3.2, [10]

It is easily seen that constant maps are meromorphic functions and therefore
M(X) contains a copy of C inside of it. In the previous subsection, we developed
the theory by using non-constant holomorphic map, so we want to continue with
this approach. On compact Riemann surfaces every holomorphic function is
constant (Corollary 2.8, [3]), so it is not clear that meromorphic functions on
compact Riemann surfaces can be non-constant. Conveniently, the next theorem
enables us to assume so, as it gives that there exist non-constant meromorphic
functions on compact Riemann surfaces.

Theorem 4.8. Let X be a compact Riemann surface, x1, ..., xn ∈ X a finite set
of points in X. Then for any c1, ..., cn ∈ C set of complex numbers, there exists
a meromorphic function f ∈ M(X) that is holomorphic on xi for every i such
that f(xi) = ci for all 1 ≤ i ≤ n.

Proof. Corollary 14.13, [3]

We consider now a non-constant holomorphic map ϕ : Y → X between Rie-
mann surfaces. For each f ∈M(X) we have that f is holomorphic away from a
discrete set S in X, i.e f is holomorphic on X\S. We have that the restriction
of ϕ to any open subset is holomorphic and therefore we get that f ◦ ϕ is holo-
morphic away from Y \ϕ−1(S) so it is a meromorphic function on Y as ϕ−1(S)
is a discrete closed subset of Y . We thus get an induced ring homomorphism
ϕ∗ : M(X) → M(Y ) by sending f 7→ f ◦ ϕ. Under the assumption that Y is
compact and X is compact and connected, we have that ϕ is a proper surjec-
tive map with finite fibers. From the compactness of Y , if Y is not connected
then it must be a finite union of its connected components Yi. In this case
M(Y ) = M(⊔iYi) ∼=

∏
iM(Yi). We will now prove that for X,Y connected

compact Riemann surfaces the field extension M(Y )|M(X) is finite and there-
fore even for non-connected Riemann surface Y we will get that M(Y )|M(X)
will be finite by the above discussion. The field extension M(Y )|M(X) has
meaning when both X,Y are connected, because ϕ∗ is a non-trivial field homo-
morphism (ϕ non-constant) and as such it must be injective and in the general
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case when Y is not connected we will realise M(Y ) as a finite etale algebra over
M(X).

Lemma 4.9. Let ϕ : Y → X be a proper holomorphic map of connected Rie-
mann surfaces which has degree d as a branched cover. Then each meromorphic
function f ∈ M(Y ) satisfies a (not necessary irreducible) polynomial equation
of degree d over M(X).

Proof. Let S denote the branch points of ϕ. For each x ̸∈ ϕ(S) there exists
an open neighborhood U of x such that ϕ−1(U) decomposes as a disjoint union
of V1, ..., Vd which are homeomorphic to U , because of Proposition 3.2. Let
si : U → Vi the inverse of ϕ : Vi → U , which is a biholomorphic map, and we
set fi = f ◦ si which is a meromorphic function defined on U (composition of
holomorphic function followed by meromorphic function is meromorphic). We
consider

F (T ) =
∏

(T − fi) = T d + ad−1T
d−1 + ...+ a0

where ai are the elementary symmetric polynomials of the fi, which are addi-
tions and multiplications between fi and thus meromorphic on U . For another
x1 ̸∈ ϕ(S), the same construction gives s′i : U

′ → V ′
i sections and f ′i = f ◦ s′i

meromorphic functions and a polynomial

F ′(T ) =
∏

(T − f ′i)

In the intersection U ∩U ′ we have that the sections agree and thus fi = f ′i and
that implies that the polynomials F ′(T ) = F (T ) agree. Therefore we can extend
the construction to ai being meromorphic functions on the whole X\ϕ(S). Our
goal is to extend them to the whole space X.

To that end, we pick x ∈ ϕ(S) and a coordinate chart fx : Ux → C, with Ux
an open neighborhood of x, such that fx(x) = 0. By composing with ϕ, we get
that fx◦ϕ is a holomorphic function on a neighborhood of each y ∈ ϕ−1(x), with
(fx◦ϕ)(y) = 0. Since f is a meromorphic function on every Y , then its poles have
some finite degree. By picking a sufficiently large k and because (fx ◦ϕ)(y) = 0
for each y ∈ ϕ−1(x), we have that (fx ◦ϕ)kf is holomorphic on every y ∈ ϕ−1(x)
and in particular, bounded in a punctured neighborhood of each y. We then get
that ((fx ◦ϕ)kf)◦si) = ((fx ◦ϕ)k ◦si)(f ◦si)) = ((fx ◦ϕ◦si)k(f ◦si)) = fkxfi is a
holomorphic map and thus also bounded in a punctured neighborhood Ux of x,
i.e fkxfi is bounded on Ux\{x}. That implies that fkdx ai is bounded on Ux\{x}
and by Riemann‘s singularity theorem we can extend fkdx ai to a holomorphic
function on all of Ux. Then we have that each ai extends to a meromorphic
function on the whole space X and thus F (T ) ∈ M(X)[T ]. Now it remains to
show that f satisfies ϕ∗(F (T )), which is the identification of F (T ) in M(Y ).
We have that

ϕ∗ ◦ F (f) = fd + (ad−1 ◦ ϕ)fd−1 + ...+ a0 ◦ ϕ

We note that for every si we have (ϕ
∗◦F (f))◦si = (ϕ∗◦F ◦si)(f◦si) = F (fi) = 0

and so we have that the function (ϕ∗ ◦ F (f)) ◦ si is identically zero on U and
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because si is biholomorphism we get that ϕ∗ ◦F (f) is identically zero on Vi for
each i. Thus f ∈ M(Y ) satisfies the polynomial equation F (more accurately
the image of it in M(Y )).

We will now prove that we can find an irreducible polynomial so thatM(Y )|M(X)
has exactly degree d.

Proposition 4.10. Let ϕ : Y → X a non-constant holomorphic map of compact
connected Riemann surfaces, which has degree d as a branched cover. Then the
induced field extension M(Y )|M(X) is finite of degree d.

Proof. We will show that in the case when X and Y are compact Riemann
surfaces, we can find f ∈ M(Y ) satisfying an irreducible polynomial equation
of degree d over M(X). The key theorem is Theorem 3.8. Let x ∈ X\ϕ(S)
and let y1, .., yd be the preimages of x under ϕ ( ϕ is branched cover of degree
d). By Theorem 3.8 we find f ∈ M(Y ) with f(yi) = ci such that ci ̸= cj
for all i ̸= j and such that f is holomorphic on yi for all i. By Lemma 3.9 f
satisfies a polynomial equation of degree d, thus it must satisfy an irreducible
polynomial equation of degree n ≤ d over M(X). Let ai ∈ M(X) be the
coefficients of the irreducible polynomial equation. If all ai are holomorphic on
x, then ai(x) ∈ C and so the polynomial an(x)t

n+...+a0(x) ∈ C[t] has d distinct
roots, namely the f(yi), because the polynomial F (t) is created by the product
of (t − f(yi)) and thus we get n = d. If one of the ai have a pole in x, then
we choose a point x′ in a neighborhood of x, which again is not the image of a
branch point, because of the discreteness of the branch points. Moreover, f is
holomorphic at its preimages and takes distinct values at all of their preimages.
So we can always find x′ such that all ai(x

′) are holomorphic at x′, because of
the discreteness of the poles. Finally, we have that M(Y ) ∼=M(X)(f), because
if there existed another g ∈ M(Y ) such that M(X)(f, g) ∼= M(Y ) then by the
primitive element theorem we would have that there exists h ∈M(Y ) such that
M(X)(f, g) = M(X)(h) , implying M(X)(f) ⊆ M(X)(h) and from the fact
that h would satisfy an irreducible polynomial of degree at most d over M(X)
then we would have that M(X)(f) = M(X)(h). Therefore f generates M(Y )
over M(X) and the degree of the extension is d.

By what we have mentioned in this subsection so far we have that the rule
Y 7→ M(Y ) gives a contravariant functor from the category of compact Rie-
mann surfaces mapping holomorphically onto a fixed connected,compact Rie-
mann surface X to the category of finite etale algebras over M(X), the field of
meromorphic functions of X. In fact, the next theorem states that this is an
anti-equivalence of categories.

Theorem 4.11. The above functor is an anti-equivalence of categories. In this
anti-equivalence, finite Galois branched covers of X correspond to finite Galois
extensions of M(X) of the same degree.

Proof. Theorem 3.3.7,[10]
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From the fact thatM(X) contains a copy of C inside it, we know thatM(X)
is of characteristic 0 and from Remark 3 we see that separability holds for any

extension of M(X). Thus the algebraic closure M̂(X) is a separable extension

and therefore the group Gal(M̂(X)|M(X)) is defined and it is also equal to Ga-
lois group of the separable closure of M(X). Therefore Theorem 1.20 applies
and states that the category of finite etale algebras overM(X) is anti-equivalent

with the category of finite sets with continuous left Gal(M̂(X)|M(X)) action.
Combining this with the above theorem yields:

Corollary 4.11.1. Let X be a connected compact Riemann surface. The cate-
gory of compact Riemann surfaces mapping holomorphically to X is equivalent

to the category of finite sets with continuous left Gal(M̂(X)|M(X)) action.

For the case when the base space X = P1(C) the above Theorem yields an
interesting result. First we have that M(P1(C)) ∼= C(t), because every mero-
morphic function on P1(C) is rational (Corollary 2.9, [3]) and any rational
function defines a unique meromorphic function on P1(C). We now have the
following proposition:

Proposition 4.12. Let Y be a connected compact Riemann surface. There
exists a non-constant holomorphic map Y → P1(C). Consequently, M(Y ) is a
field extension of C(t).

Proof. From Theorem 3.8 we have that there exists a non-constant f ∈M(Y ).
We define ϕf : Y → P1(C) to be

ϕf (y) = f(y), if y is not a pole of f.

ϕf (y) =∞, if y is a pole of f.

for each y ∈ Y we choose a complex chart g : U → C such that f is holomorphic
at U−{y}. From Example 3, we have that the two complex charts on P 1(C) are
f0(z) = z and f1(z) =

1
z where f0 is defined on U0 = C and f1 on U1 = C∗−{0}.

If f is holomorphic at y, then f0◦ϕf ◦g−1 is holomorphic on g(U). If not, then it
has a pole on y and then we have that f1 ◦ϕf ◦g−1 = 1

f(z) maps g(U −{y}) to a

bounded open subset of C and therefore from Riemann‘s removable singularity
Theorem we have that f1 ◦ ϕf ◦ g−1 extends to a holomorphic function on
g(U). Thus ϕf is holomorphic and non-constant. Combining with Proposition
3.10 we get that M(Y )|M(P 1(C)) is a finite extension and from the preceding
discussion we get that M(Y )|C(t) is a finite extension with degree same as the
degree of the degree of the holomorphic map as a branched cover.

Combining the above proposition with Theorem 3.11 we get the following
Corrolary:

Corollary 4.12.1. The contravariant functor Y 7→M(Y ), ϕ 7→ ϕ∗ induces an
anti-equivalence between the category of connected compact Riemann surfaces
with non-constant holomorphic maps and that of fields finitely generated over C
of transcedence degree 1.
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4.4 Absolute Galois Group of C(t)
We saw in Corollary 2.13.1 that for a connected and locally simply connected
topological space X and a base point x ∈ X, the functor Fibx induced an
equivalence between the categories of finite covers of X with the category of

finite sets with right continuous ̂π1(X,x) action. A connected Riemann space
is such a space X and we saw that a holomorphic map restricts to a finite
topological cover over X ′ = X\S, where S is a closed and discrete space. When
we restrict to compact connected Riemann surfaces, S becomes finite. So X ′

is a cofinite open subset of X and it also bears the properties of connectedness
and locally simply connectedness from the space X. In Corollary 3.11.1 we
saw that the category of compact Riemann surfaces mapping holomorphically
to X, which is equivalent to the category of finite topological covers over X ′

by Theorem 3.3, is equivalent to the category of finite sets with continuous

left Gal(M̂(X)|M(X)) action. So we expect to have an isomorphism between
̂π1(X ′, x′) with a base point x′ ∈ X ′, and a quotient of Gal(M̂(X)|M(X)). The

following Theorem confirms this intuition.

Theorem 4.13. Let X be a connected compact Riemann surface and let X ′

be the complement of a finite set of points in X. Let KX′ be the composite

in a fixed algebraic closure M̂(X) of all finite subextensions which arise from
holomorphic maps of connected compact Riemann surfaces Y → X that restrict
to a finite cover over X ′. Then KX′ is a Galois extension of M(X) and its

Galois group is isomorphic to ̂π1(X ′, x′) with a base point x′ ∈ X ′.

We need the following Lemma to prove the above Theorem.

Lemma 4.14. Every finite subextension of KX′ |M(X) comes from a connected
compact Riemann surface that restricts to a cover over X ′.

Proof. First we show that given two subextensions Li|M(X) for i = 1, 2 coming
from connected compact Riemann surfaces Yi → X that restricts to covers
pi : Y

′
i → X ′, their composite L1L2 comes from a connected compact Riemann

surface Y12. For this we introduce the fibre product of covers Y ′
1 × Y ′

2 → X ′,
which is the subspace of Y ′

1 × Y ′
2 that consists of points (y, y′) that satisfies

p1(y) = p2(y
′). It is equipped with natural projections πY ′

1
: Y ′

1 ×X′ Y ′
2 → Y ′

1

and πY ′
2
: Y ′

1 ×X′ Y ′
2 → Y ′

2 such that the following diagram

Y ′
1 ×X′ Y ′

2 Y ′
1

Y ′
2 X ′

πY ′
1

πY ′
2

p1

p2

commutes. It can be proven that the fiber product of covers of a space is itself a
cover of the space, thus Y ′

1 ×X′ Y ′
2 becomes a cover of X ′. From the equivalence

of Theorem 3.3, we get a proper surjective holomorphic map and a Riemann
surface Y12 with ϕ : Y12 → X and because X is compact then Y12 is compact
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by properness of ϕ. The projections are continuous map and the spaces Y ′
i are

connected, thus the projections become covering maps from Proposition 2.8
(note X ′ is locally connected being locally homeomorphic to an open subset of C
which can be chosen to be connected as C is locally connected). Applying now
Theorem 3.3 we get a commutative diagram of compact Riemann surfaces

Y12 Y1

Y2 X

and applying Theorem 3.11 we get a commutative diagram

M(X) M(Y1)

M(Y2) M(Y12)

i1

i2

Because of the universal property of the fiber product, which characterizes it
as a space S → X ′ over X ′ with a pair of morphisms (ϕ : S → Y ′

1 , ψS → Y ′
2)

such that p1ϕ = p2ψ and because of the equivalence of categories, this universal
property carries on to M(Y12) and characterizes it by pairs of morphisms in the
category ofM(X)- algebras (γ1 :M(Y1)→M(Y12), γ2 :M(Y2)→M(Y12)) such
that γ1i1 = γ2i2. But that is exactly the tensor product M(Y1)⊗M(X) M(Y2),
and thus M(Y12) ∼= M(Y1) ⊗M(X) M(Y2). We have from Theorem 3.11 that
M(Y1)⊗M(X) M(Y2) is a finite etale algebra over M(X). Let a decomposition
M(Y1)⊗M(X)M(Y2) = C1× ...×Cn as a product of finite separable extensions
of M(X) and let g : L1 ⊗M(X) L2 → L1L2 be the surjective map a⊗ b 7→ a · b.
Then ker(g) is a maximal ideal, because the compositum is a field and maximal
ideals of a finite product of fields are of the form C1 × ... × {0} × ..Cn, thus
M(Y1) ⊗M(X) M(Y2)/kerg = Ci ∼= L1L2 for some i. Because Y12 is compact,
we decompose it into its disjoint connected components Y12 = K1⊔K2⊔...⊔KM

and we getM(Y12) =
∏
iM(Ki), which are finite separable extensions ofM(X)

and so we may assumeM(Kj) = Ci = L1L2 for some j. Connected components
are closed subsets and closed subsets of compact spaces are compact, thus we
have that Kj is a compact and connected Riemann surface and M(Kj) = L1L2

.
From what we have proved we get that KX′ can be written as a union of

finite subextensions L1 ⊆ L1L2 ⊆ ... of M(X) coming from connected compact
Riemann surfaces that restrict to a cover over X ′. To conclude we have to show
that if L is a finite subextension KX′ |L|M(X) which comes from a connected
compact Riemann surface that restricts to a finite cover over X ′, then any
subextension L|K|M(X) has also this property. We have that L = M(Y ) for
a connected compact Riemann surface and K =M(Z) for a compact Riemann
surface Z → X (Theorem 3.11). We have holomorphic maps Y → X and Z →
X to the connected and compact space X and also we get that Y → X factors
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through Z → X because of the inclusions coming from M(X) → M(Z) →
M(Y ). Those maps are proper holomorphic maps and thus surjective, so we
get that the map Y → Z is surjective and so Z is connected, as the continuous
image of the connected Y . We want to show that Z → X restricts to a finite
cover over X ′. Indeed we get that Y ′ → X ′ factors via Y ′ → Z ′ → X ′ so
if Y → X contains its branch points over S, where S = X\X ′, then so does
Z → X and therefore by Theorem 3.3 Z → X restricts to a cover over X ′ and
it has to be finite, because of the finiteness of Y ′ → X ′.

We will now prove Theorem 3.13.

Proof. First we will prove that KX′ is a Galois extension of M(X). First we
note that for any finite extension L|M(X) coming from a connected Riemann
surface that restricts to a cover over X ′ there exists a finite Galois extension
M |L|M(X) and this corresponds to a finite Galois branched cover of X of a
compact Riemann surface (Theorem 3.11), thus is contained in KX′ . Let
L = M(Y ) be an arbitrary extension of M(X) that comes from a connected

Riemann surface that restricts to a cover overX ′ and let σ ∈ Gal(M̂(X)|M(X)),

then σ(L) ∼= L as field extensions of M(X) inside the algebraic closure M̂(X)
and therefore σ(L) corresponds to an isomorphic Riemann surface to Y by
Theorem 3.11, thus it corresponds to a connected compact Riemann surface
that restricts to a cover over X ′, so all the Galois conjugates of L are inside
KX′ which implies that KX′ is a Galois extension of M(X).

We will now show that Gal(KX′ |M(X)) ∼= ̂π1(X ′, x′). First we note that
by Lemma 3.14 and Proposition 1.11 we have that Gal(KX′ |M(X)) can be
turned into the inverse limit taken over all Galois subextensions, which come
from Galois branched covers by Theorem 3.11. Therefore we have that

Gal(KX′ |M(X)) ∼= lim←−
L Galois

Gal(L|M(X))

From the fact that Gal(L|M(X)) = Aut(L|M(X)) then we have from the equiv-
alence of the categories that

Gal(L|M(X)) ∼= Gal(Y |X)

Where the spaces Y are all finite Galois branched covers restricting to finite
covers over X ′. Thus we get from Theorem 3.3 that

Gal(Y |X) ∼= Gal(Y ′|X ′)

Combing we get

Gal(KX′ |M(X)) ∼= lim←−
Y’ Galois

Gal(Y ′|X ′)

From Corollary 2.13.1 we get that finite Galois covers correspond to finite
coset spaces of open normal subgroups, thus

Gal(KX′ |M(X)) ∼= lim←−
N normal open

π1(X
′, x′)/N
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The last inverse limit is the profinite completion of π1(X
′, x′) by Remark 15,

thus
Gal(KX′ |M(X)) ∼= ̂π1(X ′, x′)

We will now give an application to the ”inverse Galois problem” over the
field C(t). First we recall that the complex projective line (or Riemann Sphere)
P 1(C) is homeomorphic to the sphere S2 as a topological space and S2 −
{p} is homeomorphic to R2 by stereographic projection (Example 3.21,[9]).
From the fact that homeomorphic spaces have isomorphic fundamental groups
(Corollary 7.26, [9]) we have that

π1(P
1(C)− {p1, ..., pn}) ∼= π1(R2 − {r1, ..., rn−1)}

And the latter fundamental group can be seen to be a free group on n − 1
generators by covering R2 − {r1, ..., rn−1) with n − 1 open subsets Ui − {ri},
where each Ui is a connected open subset containing only one of the points ri.
Those opens are path-connected and their intersections are simply connected
spaces, thus applying inductively Seifert Van-Kampen theorem for simply con-
nected intersection (Corollary 10.4,[9]) we get that the fundamental group
π1(R2 − {r1, ..., rn−1) is isomorphic to the amalgamated free product of the
groups π1(Ui − {ri}) ∼= Z. Thus we get that

π1(P
1(C)− {p1, ..., pn}) ∼= Z ⋆ ... ⋆ Z ∼= Fn−1

We have also seen that C(t) =M(P 1(C)).

Theorem 4.15. Every finite group G arises as the Galois group of some Galois
extension L|C(t).

Proof. LetG be a finite group with cardinality |G| = n. Then we get a surjection
of the free group Fn on n elements to G, i.e p : Fn → G. By the preceding
discussion we get that there is a surjection

s : π1(P
1(C)− {p1, ..., pn+1})→ G

and let ker(s) = H which is a normal subgroup of π1(P
1(C)−{p1, ..., pn}). We

thus get
G ∼= π1(P

1(C)− {p1, ..., pn+1})/H

We set X ′ = P 1(C)− {p1, ..., pn} and apply Theorem 3.13 so we get

Gal(KX′ |M(X)) = Gal(KX′ |C(t)) ∼= ̂π1(P 1(C)− {p1, ..., pn+1})

We denote by S the last profinite completion group for simplicity. Then we get
a surjection by the definition of the profinite group

S → π1(P
1(C)− {p1, ..., pn+1})/H ∼= G
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Let H ′ be its kernel, so we get that S/H ′ ∼= G and that implies

Gal(KX′ |M(X))/H ′ ∼= G

If we set L to be the field fixed by the action of H ′ on KX′ , then Gal(KX′ |L) =
H ′ and from Theorem 1.13 we get that

Gal(L|M(X)) ∼= Gal(KX′ |M(X))/Gal(KX′ |L) = Gal(KX′ |M(X))/H ′ ∼= G

So far we have fromTheorem 1.13 thatGal(M̂(X)|M(X))/Gal(M̂(X)|KX′) ∼=
Gal(KX′ |M(X)) for X ′ = X\S where S is a finite set of points, which justifies

our initial intuition that ̂π1(X ′, x′) is a quotient of Gal(M̂(X)|M(X)). So we
have described the quotients of the absolute Galois group, but not the group it
self. We note that given a finite set of points T in X such that S ⊆ T , we get
X\T ⊆ X\S we denote those as XT and XS respectively, i.e XT ⊆ XS . For two
such open cofinite subsets of X we have that if XT ⊆ XS then KXS

⊆ KXT
,

as any connected compact Riemann surface restricting to a finite cover over the
larger space must restrict to a finite cover over the smaller space. The fields
KXS

are all Galois extensions of M(X) and they contain any finite Galois field

subextension of M̂(X) for a sufficiently large S. To see this, by Proposition
3.5 any holomorphic map Y → X of connected compact Riemann surfaces re-
stricts to a cover over a suitable X ′ = X\S (where S is the set of branch points
of the holomorphic map) and then Theorem 3.11 gives us that any finite Ga-

lois subextension of M̂(X) is contained in KX′ . So we can turn the absolute
Galois group over M(X) to the inverse limit

Gal(M̂(X)|M(X)) ∼= lim←−
S

Gal(KXS
|M(X)) ∼= lim←−

X’

̂π1(X ′, x)

With this in mind, we will describe the absolute Galois group of C(t). We first
give a definition and a proposition.

Definition 4.7. Let X be a set and let F (X) be the free group with basis X.

The free profinite group F̂ (X) with basis X is defined to be inverse limit formed
by the natural system of quotients F (X)/U , where U ⊆ F (X) is a normal
subgroup of finite index containing all but finitely many elements of X.

Proposition 4.16. Let X be a set and S the system of finite sets S ⊆ X
partially ordered by inclusion. Let (GS , λST ) be an inverse system of profinite
groups indexed by S satisfying:

1. The λST are all surjective for all S ⊆ T .

2. Each GT has a system {gt : t ∈ T} of elements such that the map F̂ (T )→
GT induced by the inclusion T → GT is an isomorphism and moreover for
every S ⊆ T we have λST (gt) = 1 for all t ̸∈ S.
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Then lim←−GS
∼= F̂ (X).

Proof. Proposition 3.4.9 ,[10]

We now describe the absolute Galois group of C(t).

Theorem 4.17. There is an isomorphism of profinite groups

Gal(Ĉ(t)|C(t)) ∼= F̂ (C)

of the absolute Galois group of C(t) with the free profinite group on the set C
of complex numbers.

Proof. Let S be a finite subset of C of cardinality |S| = m. We let X = P 1(C)
and define XS = P 1(C)\(S ∪ {∞}). From Theorem 3.13 we get that

Gal(KXS
|C(t)) ∼= ̂π1(XS , x) ∼= F̂m

If we have T finite subset of C of cardinality |T | = n such that S ⊆ T then by
the preceding discussion we have that KXT

⊆ KXS
, both being extensions of

M(X) = C(t) and therefore by Galois correspondence we get a surjection

λST : Gal(KXT
|M(X))→ Gal(KXS

|M(X))

The groups Gal(KXT
|C(t)) together with the maps λST form an inverse system

indexed by the finite sets S of C partially ordered by inclusion. From the
inclusion KXT

⊆ KXS
we get an induced map on the fundamental groups µST :

π1(XT , x) → π1(XS , x) which gives an induced map ̂π1(XT , x) → ̂π1(XS , x)
on the profinite completions which sends an element γx to 1 for x ∈ T\S, i.e
µST (γx) = 1 for x ∈ T\S. We note that the maps λST correspond to the maps

µST because of the isomorphisms Gal(KXT
|C(T )) ∼= ̂π1(XT , x) and therefore

λST (gx) = 1 for x ∈ T\S and because of the isomorphismsGal(KXS
|C(t)) ∼= F̂m

we get that the properties of Proposition 3.16 are satisfied and so

lim←−
S

Gal(KXS
|M(X)) ∼= F̂ (C)

from the discussion prior to Definition 3.7 we have that

Gal(M̂(X)|M(X)) ∼= lim←−
S

Gal(KXS
|M(X))

combining we get

Gal(Ĉ(T )|C(t)) ∼= F̂ (C)
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5 Fundamental Groups of Algebraic Curves

5.1 Background in Commutative Algebra

We begin with the basic definition of this chapter.

Definition 5.1. Given an extension A ⊆ B of rings, an element b ∈ B is said to
be integral over A if it is a root of a monic polynomial xn+an−1x

n−1+ ...+a0 ∈
A[x]. The integral closure of A in B constists of all elements in B that are
integral over A,i.e Ã = {b ∈ B|b is integral over A}. If Ã = B then we say that
the extension A ⊆ B is integral. Finally, A is integrally closed in B if Ã = A.
When A is an integral domain we can form the fraction field of A, denoted K(A)
and it is an extension of A. If A is integrally closed in K(A) then we say that
A is integrally closed.

Example 4. A unique factorization domain A is integrally closed. Indeed, let a
b

be an element of the fraction field with a,b coprime (can be assumed because
of UFD) such that a

b is an integral element over A. Then there exists monic
polynomial with coeffiecients in A such that

an

bn
+ cn−1

an−1

bn−1
+ ...+ c0 = 0

multiplying by bn we get

an + cn−1ba
n−1 + ...+ c0b

n = 0⇒ an = −b(cn−1a
n−1 + ...+ c0b

n−1)

so b divides an, but because they were chosen to be coprime be get that b is a
unit, thus a

b = a ∈ A.
We now state the basic properties of integral extensions.

Proposition 5.1. Let A ⊆ B be an extension of rings.

1. An element b ∈ B is integral over A if and only if the subring A[b] of B
is finitely generated as an A−module.

2. The integral closure Ã of A in B is a subring of B and moreover it is
integrally closed in B.

3. Given a tower of ring extensions A ⊆ B ⊆ C with A ⊆ B and B ⊆ C
being integral extensions, then A ⊆ C is an integral extension.

4. If B is integral over A and P ⊆ A a prime ideal of A, then there exists a
prime ideal Q ⊆ B in B such that Q∩A = P . Here P is a maximal ideal
in A if and only if Q is a maximal ideal in B.

Proof. 1) INT 2 ,[8], Ch. VII, §1, 2) Proposition 1.4 ,[8], Ch. VII, §1.
3)Proposition 1.3 ,[8], Ch. VII, §1, 4) Proposition 1.10-1.11 ,[8], Ch. VII, §1.
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For property 4 we say that a the prime ideal Q lies above P . Assume now
that A ⊆ B is an integral extension (Ã = B inB) of two integrally closed integral
domains, i.e A ⊆ K(A) with Ã = K(A) inK(A) and B ⊆ K(B) with B̃ = K(B)
inK(B). We have an induced field extensionK(A) ⊆ K(B) of the fraction fields
and let this extension be Galois with Galois group G = Gal(K(B)|K(A)). Then
B is invariant under the action of G on K(B), as every element of it is a root
of a polynomial over A and we have seen that a root gets sent to a root by
an element σ ∈ G. Given a maximal ideal P ⊆ A we denote by SP the set
of maximal ideals Q of B that lie over P , i.e they satisfy Q ∩ A = P . Then
for each Q ∈ SP and σ ∈ G we have that σ(Q) ∈ SP , because σ defines an
automorphism of B, thus sends maximal ideals in B to maximal ideals.

Let DQ be the stabilizer of Q in G. We denote κ(Q) and κ(P ) to be the
residue fields B/Q and A/P . For an element a ∈ A, we can naturally view it as
an element in B because of the inclusion A ⊆ B. We denote â ∈ κ(Q) to be its
class in the residue field. For each σ ∈ DQ ⊆ G we saw that σ : B → B defines

an automorphism, thus â 7→ σ̂(a) defines an automorphism σ̂ : B/Q → B/Q

for which σ̂(â) = σ̂(a), when σ ∈ DQ ( i.e σ(Q) = Q). Moreover, we get a map
σ 7→ σ̂ which defines a group homomorphism DQ → Aut(κ(Q)|κ(P )), because
σ̂1σ̂2(â) = ̂σ1σ2(a) = σ̂1σ2(â). We define the inertia subgroup of Q, denote IQ,
to be the kernel of this homomorphism (normal subgroup by definition). The
following are true about the inertia subgroup.

Proposition 5.2. 1. The group G acts transitively on the set SP ; in partic-
ular, SP is finite.

2. The subgroups DQ are conjugate for all Q ∈ SP . The same holds for the
subgroups IQ.

3. If the extension κ(Q)|κ(P ) is separable, then it is a Galois extension and
the homomorphism DQ/IQ → Aut(κ(Q)|κ(P )) defined above is an iso-
morphism.

Proof. 1) Proposition 2.1, [8], Ch. VII, §1.
2) Let σ ∈ DQ, then σ(Q) = Q. Let DR be another group, then from 1) we have
that there exists γ ∈ G such that γ(R) = Q = σ(Q), therefore σ−1γ(R) = Q and
composing by γ−1 yields γ−1σγ(R) = R, thus γ−1σγ ∈ DR so γ−1DQγ = DR.
The result about inertia subgroups follow now from the fact IQ being the kernel
of γDRγ

−1 and so is γIRγ
−1, thus they are conjugate.

3)Proposition 2.5, [8], Ch. VII, §1. The proof shows that the map DQ →
Aut(κ(Q)|κ(P )) is surjective, thus the result.

Now we move on to Dedekind rings. A Dedekind ring A is an integral domain
(no zero divisors), Noetherian (all ideals are finitely generated), integrally closed
ring and such that all non-zero prime ideals in A are maximal. Examples include
k[t] for k field, the integers Z and the integral closure of Z in a field K where
K is a finite extension of Q. We recall that the localization of a ring A at
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an ideal I is the subring S−1A of the fraction field of A, where S = A\I is a
multiplicatively closed subset. The following hold for Dedekind rings.

Proposition 5.3. Let A be a Dedekind ring, then:

1. Every non-zero ideal I ⊆ A decomposes uniquely as a product I = P e11 · · ·
P enn where Pi are prime ideals.

2. For each prime ideal P ⊆ A, the localization AP is a principal ideal do-
main.

Proof. 1) Corollary 9.4, [1].
2)Theorem 9.3, [1].

Lemma 5.4. The integral closure of a Dedekind ring A in a finite separable
extension L|K(A) of its fraction field is a Dedekind ring.

Proof. We want to show that Ã in L is a Dedekind ring. The integral closure Ã
in L is a subring of L and also integrally closed by Proposition 4.1 2). From
the same Proposition 4) we get that Ã has the property that every non-zero
prime ideal is maximal (because A has it and Ã integral over it) and that it
is an integral domain ( the 0 ideal is prime). The Noetherian property follows
from Facts 4.1.4 a), [10].

The following Proposition relates the degree of the extension L|K(A) with
the degrees of the induced extensions on the residue fields.

Proposition 5.5. Let A be a Dedekind ring with fraction field K(A) and let
B be the integral closure of A in a finite separable extension L|K(A). For a
non-zero prime ideal A we consider a decomposition PB = Qe11 · · · Qenn (B is
Dedekind).Then

r∑
i=1

ei[κ(Qi) : κ(P )] = [L : K(A)]

Proof. Proposition 4.1.6 , [10]

Corollary 5.5.1. Let A ⊆ B an integral extension of Dedekind rings such that
the induced extension of the fraction fields K(A) ⊆ K(B) is a finite Galois
extension with Galois group G and let P be a maximal ideal of A. Assume that
the extensions κ(Qi)|κ(P ) are separable for all Qi ∈ SP . Then the integers ei
in the formula of Proposition 4.5 are all same for all i and they are equal to
the order |IQi | of the intertia subgroups at Qi.

Proof. Let K1 be the field fixed by the action of DQ1
on K(B), so K1|K(A) is

an extension, A1 the integral closure of A in K1 and P1 = Q1 ∩ A1. We have
constructed P1 so that the only maximal ideal lying above it is Q1 and thus
from Proposition 4.5 we get e1[κ(Q1) : κ(P )] = [K1 : K(A)] = |DQ1 | (where
the last equality holds from finite Galois theory) . Also from Proposition
4.2 3) we have that |DQ1

| = |IQ|[κ(Qi) : κ(P1)], since the extension being
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Galois implies that [κ(Q1) : κ(P )] = Gal(κ(Qi)|κ(P )) by Corollary 1.9.1. So
we have that e1 = |IQ1 | and because all inertia subgroups are conjugate from
Proposition 4.2 2), so |IQ1

| = |IQi
| for all i, then the integers ei are indeed

the same.

Recall that a local ring A, is a ring that has only one maximal ideal. A local
Dedekind ring is called Discrete Valuation Ring. Equivalent definitions are that
A is a local principle ideal domain that is not a field or A is a Noetherian
local domain with non-zero principal maximal ideal (Fact 4.1.8,[10]). Discrete
valuation rings will be important in the theory we will develop in this chapter.
The next propostion gives some properties of such rings.

Proposition 5.6. Let A be a discrete valuation ring and t a generator of its
maximal ideal.

1. Every non-zero element a ∈ A can be written as a = utn for some unit
u ∈ A. Here n does not depend on the choice of the generator t.

2. If x is an element of the fraction field K(A) of A, then either x or x−1 is
contained in A.

3. if A ⊆ B and B is a discrete valuation ring with the same fraction field,
i.e K(A) = K(B), then A = B.

Proof. Proposition 4.1.9, [10]

5.2 Curves over Algebraically Closed Fields

In this Section we will introduce the main object of study in this Chapter, that
of affine curves, over algebraically closed fields. In the case of complex numbers
C we will obtain a relation with Riemann surfaces. In the next chapter we will
develop a theory over arbitrary fields. We begin with defining affine varieties.
Throughout this section we will assume that k is algebraically closed field.

We define the affine space over an algebraically field k to be

An(k) = {(a1, ..., an) : ai ∈ k}

Given an ideal I ⊆ k[x1, ..., xn] we define the affine closed set defined by I to
be

V (I) = {P = (a1, ..., an) ∈ An(k) : f(P ) = 0,∀f ∈ I}

From Hilbert‘s Basis Theorem (Theorem 4.1,[8],Ch IV, §4) we have that
any finitely generated polynomial ring is Noetherian, thus every ideal is finitely
generated, so I = (f1, ..., fk) and so

V (I) = {P = (a1, ..., an) ∈ An(k) : fi(P ) = 0, i=1,...,k}

The sets V (I) form a topology, when they are defined to be the closed sets,
called the Zariski topology. For an element f ∈ k[x1, ..., xn] we define the set
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D(f) = {P ∈ An(k) : f(P ) ̸= 0}, which is the complement of V (f) and we
call it distinguished open subset. The sets D(f) form a basis for the Zariski
topology when f runs through all polynomials. Recall that for an ideal I ⊆ R,
we define

√
I = {f ∈ R|fn ∈ I, for some n ∈ N∗}, called the radical ideal. We

define I(X) = {f ∈ k[x1, .., xn] : f(x) = 0,∀x ∈ X}. Then for an ideal I we
have that I(V (I)) =

√
I by Hilbert‘s Nullstellensatz strong form (Proposition

3.7, [6],Ch I).

Definition 5.2. 1. We call a set X = V (I) an affine variety if I =
√
I.

2. For an affine variety X = V (I) we define its coordinate ring to be the
quotient O(X) = k[x1, ..., xn]/I. The elements of O(X) are called regular
functions on X and the images of xi in O(X), denoted x̂i, are called
coordinate functions.

We may evaluate a function f ∈ O(X) at a point p = (a1, ..., an) ∈ X by

setting f(p) = f̂(a1, ..., an) with a preimage f̂ of f in k[x1, .., xn]. The value

does not depend on the choice of f̂ . To see this we use that I = I(X) and thus

for two representatives we have f̂1− f̂2 ∈ I(X), i.e (f̂1− f̂2)(p) = 0 for all p ∈ X
implying that f̂1(p) = f̂2(p).

By definition the coordinate ring O(X) has no nilpotent elements and such
a ring is called reduced. It becomes an integral domain if and only if I is a
prime ideal. In that case we get the following definition.

Definition 5.3. An affine variety X = V (I) is integral if I is a prime ideal.

Remark 19. The mappings X 7→ I(X) and I 7→ V (I) give mutually inverse
one-to-one inclusion reversing correspondenced between the following objects.
{Maximal ideals of k[x1, ..., xn]} ↔ {Points in An(k)}
{Prime ideals of k[x1, ..., xn]} ↔ {Integral affine varieties in An(k)}
{Radical ideals of k[x1, ..., xn]} ↔ {Affine varieties in An(k)}
{Maximal ideals of k[x1, ..., xn]/I}↔ {Points in V (I)}

We have created the objects of our category, i.e the affine varieties and
now we want to construct the morphisms of the category. We recall that a
polynomial map f : An(k) → Am(k), is a map f = (f1, ..., fm) such that each
fi is a polynomial in k[x1, ..., xn].

Definition 5.4. Let Y = V (J) ⊆ Am(k) and X = V (I) ⊆ An(k). A morphism
ϕ : Y → X is the restriction of a polynomial map to O(Y ), i.e ϕ = (f1, ..., fm)
with fi ∈ O(Y ), such that for all p ∈ Y , ϕ(p) = (f1(p), ..., fm(p)) ∈ X.

For a morphism ϕ : Y → X of affine varieties, there is an induced k-algebra
homomorphism on the coordinate rings ϕ∗ : O(X) → O(Y ) given by ϕ∗(f) =
f ◦ϕ. If f ∈ O(X) vanishes at a point p ∈ X, then ϕ∗(f) vanishes at the points
ϕ−1(p) ⊆ Y so the map is well defined sending f ∈ I to ϕ∗(f) ∈ J . A point of
ϕ−1(p) in Y corresponds to a maximal ideal Q and the point p ∈ X corresponds
to a maximal ideal P by Remark 19 and therefore (ϕ∗)−1(Q) = P . A morphism
of affine varieties is continuous with respect to the Zariski topology, because the
equality ϕ−1(D(f)) = D(ϕ∗(f)) holds.
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Proposition 5.7. The functor Y 7→ O(Y ), ϕ 7→ ϕ∗ is an antiequivalence be-
tween the category of affine varieties over the algebraically closed field k and
that of finitely generated reduced k-algebras.

Proof. Proposition 4.2.10,[10]

Let X be an integral affine variety, we saw that O(X) is an integral domain.
We define the fraction field K(X) of X to be the fraction field of the integral
domain O(X). By definition, any element in K(X) is represented by a quotient
of polynomials, f

g such that g ̸∈ I, i.e it is non-zero at the points of X. Two

fraction are identified, i.e f1
g1

= f2
g2

if f1g2 − f2g1 ∈ I.
Next, lets consider a point p = (a1, ..., an) in X, by Remark 15 we saw that it

corresponds to a maximal ideal P of k[x1, ..., xn]. In fact, P =< x1−a1, ..., xn−
an > and it is maximal because k[x1, ..., xn]/P ∼= k is a field. For an open subset
U ⊆ X we define the ring of regular functions on U to be

OX(U) = ∩p∈UO(X)P

where O(X)P is the localization of the coordinate ring of X on the maximal
ideal P corresponding to the point p ∈ X. For U = X we have that OX(X) =
∩p∈XO(X)P = O(X) ( Lemma 4.2.11,[10]), so our two definitions agree on
X.

For two integral affine varietiesX and Y and open subsets U ⊆ X and V ⊆ Y
we define a morphism ϕ : V → U to be an m-tuple ϕ = (f1, .., fm) ∈ O(Y )m

such that ϕ(p) ∈ U for all points p ∈ V .
We will now restrict our category further to integral affine curves instead of

integral affine varieties. We first give a definition.

Definition 5.5. The dimension of an integral affine k-variety X is the trance-
dence degree of its function field K(X) over k.

Definition 5.6. An integral affine curve is an integral affine variety of dimen-
sion 1.

For an integral affine curve X we have that any non-zero prime ideal in
O(X) is maximal(Corollary 4.1.11,[10]). It is also an integral domain and
Noetherian by construction. We are missing the integrally closed property for
X to be a Dedekind ring. This will be given by the following definiton.

Definition 5.7. A point p of an integral affine variety X is normal if the local
ring OX,p is integrally closed. We say that X is normal if and only if all points
are normal.

In fact X is normal if and only if O(X) is integrally closed. This comes
from the fact that K(O(X)) = K(O(X)P ), so if O(X) is integrally closed, then
so is every localization and if every localization is integrally closed then from
O(X) = ∩p∈XO(X)P we have that O(X) is integrally closed.

Therefore a normal integral affine curve is Dedekind. The localizations then
become local Dedekind rings and so OX,P are discrete valuation rings. We
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will now prove that over dimension 1, the normal property is equivalent to
smoothness property. We first give a motivating example.

Example 5. Let X = V (f) ∈ A2 be an integral affine variety. We write x and y
to be the coordinate functions on X and we assume that p ∈ X is a point such
that one of the partial derivatives ∂xf(p) or ∂yf(p) is non-zero; such a point is
called a smooth point. We will prove that OX,P is a discrete valuation ring, i.e
p is a normal point.

To see this let p = (a1, a2) with non-zero ∂yf(p) partial derivative (if ∂xf(p) ̸=
0 we compose (x, y) 7→ (y, x) with f ). After performing affine translation
(x, y)→ (x−a1, y−a2) we may assume that p = (0, 0) and the partial ∂yf(p) is
still non-zero. The point p = (0, 0) corresponds to the maximal idealMp = (x, y)
in k[x, y]/(f). Localizing atMp gives that the maximal idealM of the local ring
OX,P is the functions that vanish at p and thus M = (x, y). After regrouping
terms we write f = ϕ(x)x+ψ(x, y)y (note f vanishes on (0, 0) thus no constant
terms). Applying ∂y we get ∂yf = ∂yψy + ψ and evaluating at the point (0, 0)
gives ∂yf(p) = ψ(0, 0) and thus ψ has a constant term non-zero and equal to
the partial derivative of f evaluated at p. Thus in OX,p we get 0 = xϕ + yψ,

i.e y = x ϕψ (ψ non-zero in OX,p since ∂yf(p) ̸= 0) and therefore y = gx, where

g = ϕ
ψ . Therefore M = (x). We have that OX,p is a Noetherian local domain

with non-zero principal maximal ideal, therefore it is a local Dedekind ring
(Fact 4.1.8,[10]), which implies that OX,p is integrally closed an thus normal.

In characteristic 0 every normal integral affine curve is locally isomorphic to
an integral affine plane curve.

Proposition 5.8. Assume k is of characteristic 0 and let X be an integral affine
curve. Every normal point P of X has a Zariski open neighborhood isomorphic
to an open neighborhood of a smooth point on an affine plane curve.

Proof. Proposition 4.2.18, [10]

In the case of k = C we can equip a normal affine curve with a complex
structure of a Riemann surface. First we start with equipping the subset V (f) ⊆
C with a complex structure.

We can endow V (f) with a complex structure as follows: Let (x0, y0) a point
such that one of the partial derivatives is non-zero, let it be ∂yf(x0, y0) ̸= 0 then
from Theorem 1,[2] we can find discsD1, D2 centered at x0 and y0 respectively
and a holomorphic map ϕ : D1 → D2 such that X ∩ (D1 ×D2) = {(z, ϕ(z)) ∈
C : z ∈ D1}. We pick fi : X ∩ (D1 × D2) → D1 to be the restriction of the
projection D1 ×D2 → D1. Symmetrically, if (x1, y1) is a point where ∂xf does
not vanish, i.e ∂xf(x1, y1) ̸= 0 then we find open discs C1, C2 and a holomorphic
map ψ : C2 → C1 such that X ∩ (C1 × C2) = {(ψ(w), w) ∈ C : w ∈ C2} and
gi : X ∩ (C1 × C2)→ C2. The maps fi and gj are analytic isomorphisms, thus
complex charts. Over points with ∂yf ̸= 0 we can check that fif

−1
j = Id on the

intersection on the open discs. Indeed, z 7→ (z, ϕ(z)) 7→ z by the composition
fif

−1
j . The same holds for two points with ∂xf ̸= 0. If one point has non-zero

∂yf and the other has non-zero ∂xf then we get that gif
−1
j is z 7→ (z, ϕ(z)) 7→
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ϕ(z), thus it is holomorphic, since ϕ is and thus we have a complex structure on
V (f). We note here that the complex charts defined on V (f) are the projection
maps x : (x, y)→ x when ∂yf ̸= 0 and y : (x, y) 7→ y when ∂xf ̸= 0.

Now let X be an integral affine normal curve over C and P a point (normal
by assumption). Then we pick a generator t of the maximal ideal of OX,P
and Proposition 4.8 gives as an open neighborhood U of P and a function
u ∈ OX(U) such that the map (t, u) 7→ (x, y) yields an isomorphism ρ of U
to an open Zariski subset of V (f) satisfying ∂yf(ρ(P )) ̸= 0. We choose a
neighborhood V of ρ(P ), small enough to be contained in ρ(U), so that the
restriction to the first coordinate x : (x, y) 7→ x defines a complex chart on V (f)
when it is equipped with the subspace topology inherited from C. We now
define a topology on ρ−1(V ) by declaring its open subsets to be those that come
from open subsets W ⊆ V in the complex topology, so Q ⊆ ρ−1(V ) is open if
ρ(Q) ⊆ V is open in the complex topology and we declare x ◦ ρ to be a complex
chart in the neighborhood of ρ−1(V ). It can be proven that this construction
for all P ∈ X yields a well defined topology on X and a complex atlas.

5.3 Affine Curves over General Base field

We will now define an integral affine curve over a general base field k. To
motivate the definition, let A = O(X) the coordinate ring of an affine variety
X = V (I). Then by Remark 19 the points in X = V (I) correspond bijectively
to maximal ideals of A, therefore there is no loss of information if we replace
X by the set {m|m maximal ideal of A}. A point x ∈ X lies in a V (a) if and
only if a ⊆ mx, where mx is the maximal ideal corresponding to x. Indeed,
x ∈ V (a) if and only if f(x) = 0,∀f ∈ a if and only if a ⊆ mx. Therefore
under the identification of X with the set of maximal ideals of A, the Zariski
closed subsets become V (a) = {m|a ⊆ m,m maximal}. Thus the coordinate
ring A = O(X) determines both the set X and the Zariski topology on it.
Moreover, when X is an integral affine variety, the function field K(X), the
local rings OX,p and the ring of regural functions on an open subset U ⊆ X,
which is defined OX(U) = ∩p∈UOX,p are all constructed from the coordinate
ring A = O(X). Also for each pair of opens U ⊆ V , we have an inclusion
OX(V ) → OX(U) that is immediately seen to satisfy the presheaf axioms, so
we get a presheaf of rings on the space X. In fact, it defines a sheaf of rings
on X. To see this the set of regular functions on an open subset U is the set
OX(U) = { fg ∈ K(X)|g(p) ̸= 0,∀p ∈ U} and now it is immediate that the
gluing property and the identity property of the sheaf definition holds, just as
in the case of continuous functions.

Definition 5.8. A ringed space (X,OX) is a pair such that X is a topological
space and OX is a sheaf of rings on X.

We now construct the an integral affine curve over a general base field k.
We start by picking an integral domain A over a field k, such that A is finitely
generated over k and of transcendence degree 1. Then every non-zero prime
ideal is maximal (Corollary 4.1.11,[10]). We define the set Spec(A) = {p ⊆
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A|p is prime}, which in our setting is the set of non-zero maximal ideals together
with the zero ideal (0) which is prime as we are in an integral domain. We
equip Spec(A) with the topology such that the closed subsets are of the form
V (a) = {p ∈ Spec(A)|a ⊆ p} and again we get a basis on the topology by
distinguished open subsets D(f) = {p ∈ Spec(A)|f ̸∈ p}. It can be proven in
the above setting that a point p ∈ Spec(A) is closed if and only if p is a maximal
ideal. Thus all points in Spec(A) are closed, except the zero ideal (0), so every
open subset of Spec(A) must contain the zero ideal. Also that implies that all
open subsets in Spec(A) are those that their complement is a finite set of closed
points.

Given a point p ∈ Spec(A) = X we define the local ring OX,p to be the
localization Ap. For p = (0) we get that OX,(0) = A0 = K(A) the fraction field
of A. Finally for an open subset U ⊆ X we define

OX(U) = ∩p∈UOX,p = ∩p∈UAp

We note here that because every open contains (0), that implies that every
OX(U) is contained in the fraction field K(A). This again defines a sheaf of
rings on X.

Definition 5.9. An integral affine curve over an arbitrary k is a ringed space
(Spec(A),OX), where A is a finitely generated k-algebra and of trancedence
degree 1 and the sheaf of rings OX is defined as above.

Now we have to describe a morphism of ringed spaces.

Definition 5.10. Amorphism (Y,G)→ (X,F) of ringed spaces is a pair (ϕ, ϕ∗),
where ϕ is a continuous map of the underlying topological spaces ϕ : Y → X
and ϕ∗ : F → ϕ∗G is a morphism of sheaves on X. Here ϕ∗G denotes the sheaf
on X defined by ϕ∗G(U) = G(ϕ−1(U)).

For integral affine affine curves we have a continuous map ϕ : Spec(B) →
Spec(A) and the map ϕ∗ defined above as a rule that for each f ∈ OX(U)
defined over an open subset U , we get a map ϕ∗U (f) in OY (ϕ−1(U)). We should
think of ϕ∗U (f) as the composition f ◦ ϕ.

We want to establish now an anti-equivalence between the category of inte-
gral domains finitely generated over a field with transcendence degree 1 and the
category of integral affine curves. First we note that given an integral domain A
as above we can construct Spec(A) which by definition is an integral affine curve.
Also, given an integral affine curve, we set A = OX(X) = ∩p∈Spec(A)Ap and we
saw that all p ∈ Spec(A) except (0) are maximal ideals then A ⊆ A(0) = K(A)

and the intersection of Ap for p maximal ideal is given by elements f
g such that

g is not in any maximal ideal, but that implies that g is an invertible element
in A and therefore f

g ∈ A, so the equality A = ∩p∈Spec(A)Ap indeed holds for
X integral affine curve. So we have established a correspondence between the
objects of the two categories. For two integral affine curves X = Spec(A),
Y = Spec(B) we have that a morphism (ϕ, ϕ∗) with ϕ : Spec(B) → Spec(A)
gives a ring homomorphism ϕ∗X : OX(X) → OY (ϕ−1(X)) = OY (Y ) which is
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ϕ∗X : A→ B. The converse is a bit more involved and will be given by the next
proposition.

Proposition 5.9. Given a homomorphism ρ : A → B with A,B as integral
domains, finitely generated above a field k of transcendence degree 1, there
is a unique morphism Spec(ρ) : Spec(B) → Spec(A) such that Spec(ρ)∗X :
OX(X)→ OY (Y ) is equal to ρ.

Proof. For each prime ideal P ⊆ B, the subring ρ−1(P ) ⊆ A is a prime ideal,
since A/ρ−1(P ) → B/P is injective and B/P is a integral domain, thus the
subring A/ρ−1(P ) is a integral domain and so ρ−1(P ) is prime. Thus we get
a map Spec(ρ) : Spec(B) → Spec(A) by P 7→ ρ−1(P ), which is continuous
with respect to the Zariski topology because preimages of closed sets are closed.
There are two cases, either ρ is injective or not.

If ρ is injective then A can be considered as a subring of B and we have that
ρ−1(P ) = P ∩A is a maximal ideal by Proposition 4.1 4) and ρ−1((0)) = (0)
because of injectivity.

If ρ is not injective then we have that the kernel of the map,i.e ρ−1(0) is a
not equal to (0) and therefore it has to be a non-zero prime ideal in A, but that
implies that ker(ρ) is a maximal ideal M in A and so the preimage ρ−1(P ) =M
for all P prime ideals in B. That gives a constant morphism Spec(B)→ {M}.

In the first case we have A ⊆ B and also K(A) ⊆ K(B) and A(P∩A) =
Aρ−1(P ) ⊆ BP for each maximal P ⊆ B, so taking intersections over open
U ⊆ Spec(A) we get ∩Q∈UAQ ⊆ ∩P∈Spec(ρ)−1(U)BP which by definition are
inclusionOX(U)→ OY (Spec(ρ)−1(U)) and taken over the whole spaceX we get
the map ρ : A→ B. In the second case we define OX(U)→ OY (Spec(ρ)−1(U))
to be

OX(U)→ AM → AM/MAM ∼= A/M → B

if M ∈ U or OX(U) → 0 otherwise. This sheaf is called a skyscrapper sheaf.
The above is seen to be a morphism of sheaves, as it is compatible with the
projection maps (If U ⊆ V and M ∈ U , then M ∈ V ).

We note here that being finitely generated over the same field k had no
impact on any of the arguments given, thus the statements hold for any fields.
From the above discussion we get that

Proposition 5.10. The rules A 7→ Spec(A), ρ 7→ Spec(ρ) and X 7→ O(X),
ϕ 7→ ϕ∗X yield mutually inverse contravariant functors between the category of
integral domains finitely generated and of transcendence degree 1 over a field
and the category of integral affine curves.

Here we actually have a stronger result that the anti-equivalence of cate-
gories, because we have that there is a bijection between objects and morphisms
of the objects. Such categories are called anti-isomorphic.

We say that an integral affine curve is normal if its local rings are integrally
closed. Just as in the previous subsection, this is equivallent to OX(X) being
integrally closed.
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We will now prove an analogue to Theorem 3.11 for integral affine curves.
First we have to restrict our focus on morphisms of integral affine curves that
resembles the properness of the holomorphic map in Theorem 3.11. We say
that a morphism ϕ : Y → X of integral affines curves is finite if OY (Y ) becomes
a finitely generated OX(X)-module via the map ϕ∗X : OX(X) → OY (Y ). In
that case, ϕ has finite fibers. To see this, let assume ϕ : Spec(B)→ Spec(A) and
ϕ∗ : A→ B. We have that for any maximal ideal V (m) = m by definition and
also ϕ−1(V (a)) = V (ϕ∗(a)B), thus ϕ−1(m) = V (ϕ∗(m)B) ∼= Spec(B/ϕ∗(m)B).
From the fact that B becomes a finitely generated A-module via ϕ∗, we thus have
that B/ϕ∗(m)B becomes a finitely generated A/m module and because A/m if
a finite algebraic extension of k, thus B/ϕ∗(m)B becomes a finite dimensional
k-algebra ( dim=0 + Noetherian is equivalent to Artinian) and as such has only
finitely many maximal ideals and thus the fibers of a given maximal ideal m are
finitely many. This property is shared by proper holomorphic maps of Riemann
surfaces. We note that the zero ideal in A can not pullback to a maximal ideal q
in B, because for the same reason B/qB has only finitely many maximal ideals
and those correspond to maximal ideal V (qB) = V (ϕ∗((0))B) = ϕ−1(V ((0))) =
ϕ−1(Spec(A)) = Spec(B), thus Spec(B) finite and thus Spec(A) finite and so
(0) open in Spec(A) (as a complement of finite union of closed points) and the
preimage of (0) is a maximal ideal in B, i.e closed, contradiction. Thus ϕ∗ is
injective and so we are in the first case of Proposition 4.9 and that implies
that A ⊆ B and by Proposition 4.1 4) we have that there exists for every
prime ideal P ⊆ A a prime Q ⊆ B lying over it, so we get that ϕ is surjective.
Another property shared by proper holomorphic map.

Now assume we have a finite morphism of integral affine curves Y → X,
we saw that the induced OX(X) → OY (Y ) is injective and therefore we get
an inclusion of function fields K(X) ⊆ K(Y ). We are ready now to state the
analogue of Theorem 3.11.

Theorem 5.11. Let X be an integral normal affine curve. The rule Y 7→ K(Y ),
ϕ 7→ ϕ∗ induces an anti-equivalence between the category of normal affine curves
eqquiped with a finite morphism ϕ : Y → X and that of finite field extension of
the function field K(X).

Proof. Theorem 4.3.10, [10]

5.4 Proper Normal Curves

We will now obtain algebraically the case of Compact Riemann Surfaces. The
starting point is the study of the local rings OX,p of an integral normal affine
curve X over a field k. We have seen that they are discrete valuation rings
with the same fraction field K(X) and they all contain the the base field k (see
discussion after Definition 4.7, the same arguments extend to normal integral
affine curves over a general base field of Section 4.3). In fact, those properties
characterize the local rings of an integral normal affine curve by the next lemma.

Lemma 5.12. The local rings of an normal integral affine curve X are exactly
the discrete valuation rings R with fraction field K(X) that contain O(X).
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Proof. Let R be such a ring and let M its unique maximal ideal (R is local
Dedekind). Because of the inclusion O(X) ⊆ R we have that P =M ∩O(X) is
a prime ideal of O(X) and it has to be non-zero, for otherwise the restriction of
the natural projection R → R/M to O(X) would be injective (P is the kernel
of the map) and therefore O(X) ⊆ R/M . We have that R/M is a finite field
extension of the base field k and thus the inclusion O(X) ⊆ R/M would induce
an inclusion K(X) ⊆ R/M , but K(X) is of transcendence degree 1 over k while
R/M finite field extension of k, thus contradiction. Any non-zero prime ideal
in O(X) is maximal and therefore P is a maximal ideal. Then we have that
OX,P ⊆ RM but because R is local any element not in its maximal ideal M
is already invertible in R thus RM = R and so OX,P ⊆ R both being discrete
valuation rings with the same fraction field K(X), then Proposition 4.6 3)
applies and gives R = OX,P .

We will now analyze an easy example that will motivate our construction of
proper normal curves.

Example 6. Let X = A1
k = Spec(k[x]) be the affine line over k, with k alge-

braically closed. We have that k(x) is the fraction field of O(A1
k) = k[x], but

we also have that k(x) is the fraction field of k[x−1] which is another copy of
O(A1

k) with coordinate function [x−1]. Let R be a discrete valuation ring with
k ⊆ R with fraction field k(x), then by Proposition 4.6 2) we have that either
x ∈ R or x−1 ∈ R and hence by the previous Lemma R is the local ring of one
of the two copies of X. We know that the maximal ideals of k[x−1] are of the
form (x−1 − a) and localizing the ring by those we invert any function that has
not a zero on a. When a ̸= 0 we get that x ∈ k[x−1](x−a), but when a = 0
we have that x ̸∈ k[x−1](x−1). So there is only one discrete valuation ring R
that does not contain x in the k[x−1]. This corresponds to the point at infinity.
This whole construction is parallel to the construction of the Riemann surface
P−1(C), where we had to copies of C , one around 0 and the other around ∞
and we identified the two complex charts by the isomorphism z 7→ z−1 on the
intersection. Thus we may regard the discrete valuation rings R with fraction
fields k(x) as the local rings of the projective line over C. The same construction
holds for algebraically non-closed field k.

We now generalize the construction above. Let X be a normal integral
affine curve X = Spec(A) over a field k, pick f ∈ O(X) = A such that A is
a finitely generated module over k[f ] (it is possible because A is an integral
domain finitely generated over k of transcendence degree 1 and thus the result
holds from Noether‘s Normalization). LetX− be the normal integral affine curve
corresponding to the integral closure of k[f−1] in K(X) (the correspondence is
given by Proposition 4.10 and normality holds because we take the integral
closure). Then Lemma 4.12 gives us that the discrete valuation rings with
fraction field K(X) are either local rings of X or X−. Moreover, there are only
finitely many R that are not local rings of X, namely the localizations of O(X−)
at the finitely many maximal ideals lying above (f−1) ⊆ k[f−1]. To see that
they are finitely many, first we have that k[f−1] ⊆ O(X−) and the latter ring
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was constructed to be integrally closed over k[f−1] and thus by Proposition
4.1 4) every maximal ideal in k[f−1] has a maximal ideal in O(X−) lying
above it. The maximal ideals in k[f−1] that contain (f−1) are in one to one
correspondence with maximal ideals in k[f−1]/(f−1) which is a finite algebraic
extension of k (dim=0 over k and Noetherian if and only if Artinian , thus
only finitely many maximal ideals), therefore the maximal ideals in k[f−1] that
contain (f−1) are finitely many. Generally for an inclusion A → B of rings we
have an inclusion A/m → B/mb where mb lies above m ([8],Ch. VII,§1) and
thus indeed we get that there are finitely many maximal ideals of O(X−) that
lie above the maximal ideals containing (f−1). For the same reason, there are
only finitely many R that are not local rings of X−.

We now give a construction that is independent of the choice of f above,
which will lead us to the definition of an integral proper normal curve.

Let k be a field and K|k a finitely generated field extension of trancedence
degree 1. We define the set XK to be the set of discrete valuation rings with
fraction field K containing k. We define the topology on Xk to be such that
the proper closed subsets are the finite subsets and we define a sheaf of rings on
XK by the rule OK(U) = ∩R∈UR for an open set U ⊆ XK . We call the ringed
space (XK , OK) constructed an integral proper normal curve over k with
function field K.

Remark 20. From how we have defined the topology onXK , we see that because
there are only finitely many R that are not local rings of X, we get that the
set of local rings of X is an open subset of XK and for the same reason the set
of local rings of X− is an open subset of XK . From the fact that any discrete
valuation ring is either a local ring of X or X−, we get that the union of the
two defines an open covering of XK .

A morphism of proper normal curves Y L → XK is defined as a morphism
of ringed spaces. Note here that we must have that they are both defined the
same base field k. Given an integral proper normal curve XK we say that an
open subset UK ⊆ XK is affine if OK(UK) is a finitely generated k-algebra.
The ringed space (UK , OK |UK ) is the same as the integral affine curve corre-
sponding to OK(UK) via Proposition 4.10. Indeed, OK(UK) = ∩R∈UKR
by definition and it is also finitely generated k-algebra and of transcendence
degree 1, thus A = OK(UK) with K(A) = K and so we get the ringed space
(Spec(A),OSpec(A)), where OSpec(A)(U) = ∩p∈UAp which is an integral affine
curve. It is not very hard to verify that Spec(A) ∼= UK (p 7→ Ap) as topological
spaces and OK |UK

∼= OSpec(A) as sheaves (this is an abuse of notation, we should
really check that the pushforward of the sheaf gives an isomorphism, which is
equivalent to showing that the induced maps on the stalks are isomorphisms).
Conversely, we have seen that the set of local rings of an integral normal affine
curve with function field K is a non-empty open subset of XK (Remark 20).
Thus we have established an equivalence of categories.

Proposition 5.13. The category of integral affine normal curves is equivalent
to that of affine open subsets of integral normal proper curves.
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In particular, every integral affine normal curve X can be embedded as an
affine open subset in an integral proper normal curve XK and every morphism
Y → X of integral affine normal curves extends uniquely to a morphism Y L →
XK of proper normal curves.

Remark 21. The last statement holds because for every morphism of integral
affine normal curves Y → X, we can form a morphism Y − → X− of integral
normal curves and then we can glue them along their non-empty open intersec-
tion in Y L to form a morphism Y L → XK .

Given a surjective morphism Y L → XK of integral proper normal curves,
then L becomes a finite extension of K as both are finitely generated and of
transcendence degree 1 over k. Indeed, it is enough to check on affine open
subsets which are equivalent to integral normal affine curves by Proposition
4.13. So let Y → X be a surjective morphism of integral affine normal curves
then we get an injection on the corresponding rings O(X) ⊆ O(Y ), because of
the anti-isomorphism of categories given by Proposition 4.10 and that induces
an injection of the function fields,i.e K ⊆ L. That leads us to.

Proposition 5.14. The above functor induces an anti-equivalence between the
category of integral proper normal curves equipped with a surjective morphism
on XK and the finite field extensions of K.

Proof. Proposition 4.4.6, [10]

A morphism ϕ : Y L → XK of proper normal curves is said to be finite if
for all affine open subsets UK ⊆ XK the preimage ϕ−1(UK) ⊆ Y L is affine
and moreover ϕ∗O(UK) becomes a finitely generated OK(UK) module. The
restriction of ϕ to each open affine ϕ−1(UK) is identified with a morphism of
integral proper normal curves (Proposition 4.13), which is finite from the
condition given above and that implies that ϕ is surjective from the discussion
preceding Theorem 4.11. We have also that the converse holds, i.e every
surjective morphism of proper normal curves is always finite (Lemma 4.4.7,
[10]). So we get

Corollary 5.14.1. A morphism Y L → XK of proper normal curves is surjec-
tive if and only if it is finite.

Let X be an integral proper normal curve with function field K and an
element f ∈ K trancedental over k, then we have an inclusion k(f) ⊆ K. From
Example 6 we know we can realise P1(k) as a proper normal curve with function
field k(f). Then we get from Proposition 4.14 a surjective morphism of proper
normal curves XK → P1(k). We note the similarity with Proposition 3.12.
Just as in the case of Corolarry 3.12.1 we get the following corrolary here.

Corollary 5.14.2. Mapping an integral normal proper curve to its function
field induces an anti-equivalence between the categories of integral proper nor-
mal curves with finite surjective morphisms and that of finitely generated field
extensions of k of transcendence degree 1.
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5.5 Finite Branched Covers of Normal Curves

In this section we will get an analogue of the finite branched covers of Riemann
surfaces. We will first develop the theory for integral affine curves and then
extend it to proper normal curves. We begin with some definitions. Recall that
we showed that a finite morphism of integral affine curves Spec(B)→ Spec(A)
is surjective and that implies that there is an injection on the corresponding
rings A ⊆ B from the anti-isomorphism of categories given in Proposition
4.10 and so we get an inclusion K(A) ⊆ K(B) of fraction fields.

Definition 5.11. 1. A finite morphism of integral affine curves is separable
if the induced field extension of fraction field K(Y )|K(X) is separable.

2. We say that a finite separable ϕ is etale over a closed point P ∈ X, if
B/PB is a finite etale algebra over the residue field κ(P ) = A/P . It is
etale over an open subset U ⊆ X if it is etale over all P ∈ U .

Under the assumption that X and Y are also normal, then we saw in Section
3 that the induced rings are Dedekind rings and from Proposition 4.3 1), we
have that PB has a decomposition PB = P e11 · · · P enn where Pi are non zero
prime ideals in B and thus maximal. Also, B is a finitely generated A-module
(the morphism is finite) and therefore B/PB becomes a finitely generated A/P -
module and from the fact that A/P is a field, then B/PB becomes a finitely
generated κ(P )-algebra. We have then from the Chinese Remainder Theorem
(Proposition 1.7,Ch. II,[6])

B/PB ∼= B/P e11 ⊕ ...⊕B/P enn

From etaleness each summand B/P eii should be a finite separable extension of
κ(P ),i.e a field and if ei > 1 then B/P eii has nilpotents and thus fails to be a
field. Therefore that means that

B/PB ∼= B/P1 ⊕ ...⊕B/Pn

and the residue fields κ(Pi) are all finite separable extension of κ(P ), where
κ(Pi) = B/Pi. Also the Pi are the fiber of the map ϕ : Spec(B)→ Spec(A) on
P , i.e ϕ−1(P ) = {Pi : i ∈ {1, ..n}}. To see this, first consider the commutative
diagram where the two vertical arrows are surjective and the horizontal arrows
are injective

A B

A/p B/PB

taking the spectra gives a commutative diagram

{Pi} {P}

Spec(B) Spec(A)
ϕ
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Because the maximal ideals containing PB are exactly the Pi and the maximal
ideal in A containing P is P . Now it follows ϕ−1(P ) = {Pi}. We give a
characterization of a etale morphism in the next Lemma.

Lemma 5.15. The morphism ϕ is etale above a point P ∈ X if and only if a
generator of the maximal ideal of AP generates the maximal ideal of BPi

for all
i ∈ I and the field extensions κ(Pi)|κ(P ) are separable.

Proof. We saw that if ϕ is etale then the extension κ(Pi)|κ(P ) are separable.
Also, we have inclusions induced by ϕ at the localized rings AP ⊆ BPi

(which are
discrete valuation rings), which implies that the preimage of the maximal ideal
in BPi

is the maximal ideal in AP , so the generator of AP must get mapped to
the generator of BPi . For the converse we note that separability forces the ei = 1
in the decomposition of B/PB and the first condition turns each summand to
a finite algebra over A/P of trancedence degree 0,thus a finite extension and so
their direct sum is a finite etale algebra over A/P .

We will now give an example that resembles the local nature of a holomorphic
map as given in Proposition 3.1.

Example 7. Let C[xn]→ C[x] be the inclusion map for n > 0, then this induces a
surjective map on the spectra ρn : Spec(C[x]) → Spec(C[xn]) by Proposition
4.10. The prime ideals of C[xn] are of the form (xn − a) where a ∈ C (
C[xn] ∼= C[t]) and they pullback to prime ideals of the form (x− ai). The map
ρn is readily seen to be finite and separable (they have the same fraction field).
To check if it etale we consider the ideal C[x]/(xn−a)C[x]. When a ̸= 0 then as
we are in an algebraically closed field we factor it xn− a = (x− a1) · · · (x− an).
Then we get that

(xn − a)C[x] = (x− a1) · · · (x− an)

all of which are maximal ideals and so this is a decomposition and from the
Chinese Remainder Theorem we get

C[x]/(xn − a)C[x] ∼= C[x]/(x− a1)⊕ ...⊕ C[x]/(x− an) ∼= Cn

which is an etale algebra over C ∼= C[x]/(x−). If a = 0 then the decomposi-
tion is just (xn)C[x] = (x)n and so C[x]/(xn)C[x] ∼= C[x]/(x)n which contains
nilpotents and thus is not even a field. This shows that the map ρn is etale at
every point, except the one corresponding to 0. This is an analogue of the local
branching behavior of the morphism z 7→ zn of Riemann Surfaces.

We can extend the above example as follows. Let k be an algebraically closed
field and f ∈ k[x], then we get an inclusion k[f ] ⊆ k[x] (f is a polynomial so
it can be generated by x) corresponding to a surjection ρf on the spectra and
for the same reason as above we get that the maximal ideals in the spectrum
of k[f ] are of the form (f − a) and they pull back to (x− ai). We have that f
is a polynomial in the algebraically closed field and so the number of it roots is
equal to its degree n. The problem in the previous situation was that xn had
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multiple roots over 0. The same reasoning shows that (f−a)C[x] decomposes in
(x−a1)···(x−an), where n is the degree of f as a polynomial, if g = f−a has no
multiple roots (the ai are the roots of g). If it does, then it admits a nilpotent
function as previously and can not be etale over the point corresponding to a.
So we get that ρf is etale over a point P if and only if g has no multiple roots if
and only if g′(ai) ̸= 0 and the ai are the points that correspond to the maximal
ideals Qi which are the preimage of the point P that corresponds to a. Since
g′ = f ′, we get ρf is etale if and only if f ′(Q) ̸= 0.

Now we want to relate the theory developed so far with the theory developed
for finite branched covers of Riemann surfaces. Firstly, let ϕ : Y → X be a finite
morphism of normal integral affine curves over C. We saw in Section 2 that we
can endow the spaces Y and X with a complex structure of Riemann surfaces,
when the spaces are normal. With these complex structures ϕ can be viewed
as a holomorphic map as given in Definition 3.6(Remark 4.2.1,[10]). Let
P ∈ X a closed point and consider the decomposition PB = P e11 · · · P enn given
above. The next proposition states that the indexes ei in the decomposition are
the ramification indexes when ϕ is considered as a holomorphic map.

Proposition 5.16. The integer ei in the decomposition of PB is the same
as the ramification index of ϕ at Pi when considered as a holomorphic map. In
particular, ϕ as an algebraic map is etale above P if and only if as a holomorphic
map it restricts to a cover over a complex neighborhood of P .

Proof. Proposition 4.5.6,[10]

For the second statement, we recall from Chapter 3 that a holomorphic map
restricts to a cover over a complex neighborhood of P if and only if P is not
the image of a branch point (Theorem 3.3). The spaces X and Y with the
”complex” topology constructed in Section 2 are Hausdorff spaces as any two
points can be separated by disjoint opens. By the discussion above we have
that ϕ−1(P ) is finite, i.e ϕ has finite fibers for each point. Therefore we have
that ϕ becomes a finite cover when considered as a holomorphic map away from
its branch points. That implies from Theorem 3.3 that ϕ is proper when
considered as a holomorphic map. The next proposition resembles the property
that holomorphic maps have to restrict to a cover outside a discrete closed
subset.

Proposition 5.17. Let ϕ : Y → X be a finite separable morphism of integral
affine curves. Then there is a non-empty open subset U ⊆ X such that ϕ is
etale over U.

Proof. Proposition 4.5.9,[10]

Just like in the case of Riemann surfaces, we call a morphism ϕ : Y → X, as
given in the above proposition, a finite branched cover. Moreover, if the induced
finite separable extension on the function fields K(Y )|K(X) by ϕ is Galois, then
the above is called Galois branched cover. When the curves are normal, we have
that O(X) and O(Y ) are integrally closed and also we have an inclusion O(X) ⊆
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O(Y ) and from the finiteness condition on the morphism we have that O(Y ) is
an integral extension of O(X), because it is a finitely generated O(X)-module.
Then from Proposition 4.2 and the discussion preceding it we get that G =
Gal(K(Y )|K(X)) acts transitively on the set SP which was defined to be the
maximal ideals lying over P , which are exactly the fibers ϕ−1(P ). Therefore G
acts transitively on the fibers ϕ−1(P ) for all P ∈ X. From the characterization of
etaleness in Lemma 4.15 we have that the extensions κ(Pi)|κ(P ) are separable,
when ϕ is etale above P . Combining this with Corollary 4.5.1, we have that
ei = |IPi

| are all equal for all i and because for points P over which ϕ is etale
we saw that ei = 1, then the groups |IPi

| = 1 are trivial because they are
also normal subgroups of DPi

and the identity automorphism of G fixes Pi.
The other direction is also true when k is perfect as any finite extension is
separable, so κ(Pi)|κ(P ) is separable and the inertia groups being trivial means
PB = P1 · · · Pn, thus the generator of the maximal ideal of Ap generates each
maximal ideal of BPi

, so we get:

Proposition 5.18. Let ϕ : Y → X a finite Galois branched cover of normal
integral affine curves defined over a perfect field k. Then ϕ is etale over a point
P of X if and only if the inertia subgroups IPi

are trivial for all Pi of Y lying
above P.

The above notions can naturally be extended to integral proper normal
curves where we get the the next important Theorem. In what follows X(C)
denotes the proper normal curve X constructed in Chapter 4, together with a
complex structure by endowing each affine integral open curve of X with the
complex structure defined in Chapter 2.

Theorem 5.19. Let X be an integral proper normal curve over C with function
field K. Then the first two categories are equivalent and the third one is anti-
equivalent to the first two

1. Integral proper normal curves equipped with a finite morphism onto X.

2. Compact connected Riemann surfaces equipped with a proper holomorphic
map onto X(C).

3. Finite extension of K.

Moreover, a finite morphism Y → X is etale above a point P ∈ X if and
only if the induced holomorphic map Y (C) → X(C) restricts to a cover in a
neighborhood of P .

Proof. Preceding discussion from Proposition 4.5.13,[10]

5.6 Algebraic Fundamental Group

The last Theorem in the previous Section yields a strong connection between
Riemann Surfaces and integral proper normal curves. Thus, it is reasonable to
expect to have an analogue Theorem to Theorem 3.13. That is the following:
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Theorem 5.20. Let k be a perfect field, X an integral proper normal curve
over k with function field K and U ⊆ X a non-empty open subset. We choose
Ks to be a separable closure of the function field K. The composite KU of all
finite subextensions L|K of Ks such that the corresponding finite morphism of
integral proper normal curves is etale above all P ∈ U is a Galois extension of
K and each finite subextension of KU |K comes from a curve etale over U .

Proof. Proposition 4.6.1,[10]

Definition 5.12. In the situation above we define the algebraic fundamental
group of U , denoted π1(U), to be Gal(KU |K).

It is evident from how we defined π1(U) that it is a profinite group. It
depends on the choice of the separable closure Ks and since we are over a perfect
field, this corresponds to a choice of the algebraic closure of K, just as in the
case of Section 1.5. We now state the main result of this section, but before
that we have to give some definitions. We define a proper (not necessarily
integral) normal curve X to be the disjoint union of integral proper normal
curves, i.e X = ⊔Xi. The morphisms of proper normal curves are to be the
disjoint union of morphisms on each component. The ring of rational functions
of it is defined to be the direct sum of the function fields of its components,so
K(O(X)) =

⊕
iK(O(Xi)). A finite morphism ϕ : Y → X of a proper normal

curve Y equips each component Yi with an inclusion of fields K(X) ⊆ K(Yi), we
say that such finite morphism is separable if

⊕
iK(O(Xi)) is an etale algebra

over K(X).

Theorem 5.21. Let X be an integral proper normal curve over a perfect field
k and let U ⊆ X be a non-empty open subset. The category of proper normal
curves Y equipped with a finite separable morphism ϕ : Y → X etale over U is
equivalent to the category of non-empty finite left π1(U)-sets.

Proof. Let Y be a proper normal curve, i.e Y = ⊔iYi where Yi are integral
proper normal curves, then we get finite separable morphisms ϕi : Yi → X of
integral proper normal curves etale over U . Then by Proposition 4.14 we get
for each component a field extension of K(X), i.e Ki|K(X) and because the
corresponding finite morphisms of integral proper normal curves are etale over
U , we get that each Ki ⊆ KU are finite separable extensions of K(X) living
inside KU . Thus we get the finite etale algebra

⊕
iKi = A over K(X) and a

set Homk(A,KU ), which by Theorem 1.20 gives an anti-equivalence with the
category of finite sets with continuous left Gal(KU |K) action. So we have an
anti-equivalence between the category of proper normal curves Y equipped with
a finite separable morphism ϕ : Y → X etale over U with the category of finite
etale alebras A over K(X) and the latter is anti-equivalent with the category
of finite sets with left Gal(KU |K(X)) action. Therefore we get the equivalence
stated in the theorem.

We note that we may even say more than what stated in the Theorem.
That is, if we have a finite separable morphism of integral proper normal

81



curves ϕ : Y → X etale over U, then this corresponds to sets with transi-
tive Gal(KU |K) action and if the ϕ : Y → X is a finite branched cover etale
over U (i.e K(Y )|K(X) Galois) then this corresponds to a finite quotient of
Gal(KU |K). These facts follow from the above proof and Theorem 1.20.

Let now U be an integral normal affine curve over a perfect field k. Then
we saw in Proposition 4.13 that we can embed it in an integral proper nor-
mal curve X as an affine open subset. Then the fundamental group π1(U) =
Gal(KU |K) is defined by Theorem 4.20 and it does not depend on the embed-
ding of U in X. We define a proper normal affine curve (again not necessarily
integral) to be a disjoint union of integral normal affine curves and the mor-
phisms extend naturally as we did for proper normal curves above. Just as in
the proof of Theorem 4.21 we get:

Corollary 5.21.1. The category of normal affine curves V equipped with a finite
etale morphism ϕ : V → U is equivalent to the category of finite continuous left
π1(U) sets.

Proof. From Proposition 4.13 we can extend each morphism Vi → U of in-
tegral affine normal curves to a morphism ϕi : V

K
i → UK of integral proper

normal curves. Taking the disjoint union of the integral proper normal curves
we get a finite separable morphism etale over U and thus the result follows from
Theorem 4.21.

We now want to describe the algebraic fundamental group π1(U). Over the
complex numbers C we have the very strong property coming from Theorem
4.19. We will use that to get a presentation of the algebraic fundamental group
in the following theorem.

Theorem 5.22. Let X be an integral proper normal curve over C and let U ⊆
X a non-empty open subset. Then the algebraic fundamental group π1(U) is
isomorphic to the profinite completion of the topological group of the Riemann
surface associated with U . Hence as a profinite group it has a presentation

< a1, b1, ..., ag, bg, γ1, ..., γg|[a1, b1] · · · [ag, bg]γ1 · · · γg = 1 >

where n is the number of points of X lying outside U and g is the genus of
the compact Riemann surface X(C) associated with X. The [a1, b1] are the
commutators defined by the relation a1b1 = b1a1.

Proof. From Theorem 4.20 we have that KU |K arises as the composite of all
finite subextension L|K of Ks coming from finite morphisms of proper normal
curves etale over U . Those correspond to all finite subextension L|K of Ks

coming from holomorphic maps of the associated connected compact Riemann
surfaces Y → X that restrict to a cover over U from Theorem 4.19. But that
is exactly the definition of the K ′

X composite defined in Theorem 3.13, so we
have an isomorphism of the Galois extensions KU |K and K ′

X |M(X), therefore
Gal(KU |K) ∼= Gal(K ′

X |M(X)). The latter group, as proved in Theorem 3.13,

is isomorphic to ̂π1(X ′, x′). Here X ′ is a compact Riemann surface such that
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X ′ = X(C)\S, where S = X(C)\U (since branch point correspond to points
outside U). The statement about the presentation now follows from Remark
3.6.4,[10].

So far we have described the algebraic fundamental group only for integral
proper normal curves over C. We now want to extend to any algebraically closed
field k of characteristic 0. This will be possible by base change.

Let X be an integral affine curve over a field k, recall that this means that
O(X) is an integral domain, finitely generated over k of transcendence degree 1.
Let L|k be a finite extension of k, such that O(X)⊗k L is an integral domain.
Then we have that O(X)⊗kL is a finitely generated L−algebra, integral domain
and of trancedence degree 1 and therefore from the map A → A ⊗k L which
sends a 7→ a ⊗ 1 we get and induced map on the spectra Spec(O(X) ⊗k L) →
Spec(O(X)) in view of Proposition 4.10, which is an integral affine curve.

We denote XL = Spec(O(X)⊗L). When A⊗k k̂ is an integral domain, for k̂ an

algebraic closure of k, then for every finite subextension L|k of k̂ we have that
A⊗k L is integral domain and therefore for a fixed L as above we get a functor
X 7→ XL. In this case we say that X = Spec(A) is a geometrically integral.
Moreover, when L|k is a finite separable extension of k then the morphism
XL → X is finite and etale over X. Finite because A ⊗k L becomes a finitely
generated A-module, since L|k is finite and etale because A⊗k L/P (A⊗k L) ∼=
A/P ⊗k L ∼= κ(P ) ⊗k L which is a separable algebra over κ(P ) since L is
separable.

Now we want to extend this construction to integral proper normal curves
over a field k (algebraically closed). Let XK be an integral proper normal curve
with function field K and L|k a finite extension. Then K is a finite extension of
the field k(t) as we saw in Section 4.4 and K ⊗k L becomes a finitely generated
L(t) algebra. Under the assumption that k is algebraically closed then K ⊗k L
becomes a field and in fact a direct product of fields Li. Each Li is then finitely
generated and of transcendence degree 1 over L and thus corresponds to an
integral proper normal curve (Section 4.4 definition of proper normal curve)
XLi over L with function field Li. We have inclusions Li|K for each i and
therefore by Proposition 4.14 we get surjective morphisms ϕi : X

Li → XK .
We define the base change XL to be the disjoint union of the XLi together
with the disjoint union of the morphisms. Thus we get a natural surjective
morphism XL → XK of proper normal curves.

When U ⊆ XK is an open subset we define UL to be the inverse image of
U in XL and when U is affine this results to UL = Spec(O(U)⊗k L), from the
fact O(U)⊗k L integral domain if and only if K ⊗k L is a field.

Theorem 5.23. Let k ⊆ L be an extension of algebraically closed fields of
characteristic 0, X an integral proper normal curve over k and U ⊆ X an open
subset. The base change functor Y 7→ YL induces an equivalence between the
finite covers of X etale over U and those of XL etale over UL. Consequently,
we have an isomorphism of algebraic fundamental groups π1(UL) ∼= π1(U).

Proof. See Theorem 4.6.10,[10]

83



Corollary 5.23.1. Let k be an algebraically closed field of characteristic 0, X
an integral proper normal curve over k and U ⊆ X an open subset. The π1(U)
has a presentation as in Theorem 4.22.

Proof.

When k is not algebraically closed then we have the result that the absolute
Galois group of the base field, i.e Gal(k̂|k) where k̂ is the algebraic closure of k
and k is a perfect field, arises as a quotient of the algebraic fundamental group,
since we have a surjection π1(U)→ Gal(k̂, k) given in the following Theorem.

Theorem 5.24. Let X be a geometrically integral proper normal curve over a
perfect field k and U ⊆ X an open subset. Then there is an exact sequence of
profinite groups.

1→ π1(Uk̂)→ π1(U)→ Gal(k̂|k)→ 1

Proof. Proposition 4.7.1,[10]

5.7 Application To the Inverse Galois Problem

This section will be dedicated to showing that the theory we have developed in
this Project has applications to the inverse Galois problem. First we state the
problem:

Problem 1: Let G be a finite group. Construct a finite Galois extension
K|Q such that G ∼= Gal(K|Q).

This is called inverse Galois problem over Q. All the methods we have
developed so far in Chapters 3 and 4 were considering extensions of the fraction
fields k(T ) for fields k, where T was transcendental over k. Thus, we will
reformulate the problem to what is called regular Inverse Galois problem over
Q.

Problem 2: Let G be a finite group. Construct a regular Galois extension
K|Q(T ) such that Gal(K|Q(T )) ∼= G.

The regularity condition means that there is no subextension of K of the
form L(T ) such that K|L(T )|Q(T ) and L is a non-trivial extension of Q. A
positive answer to Problem 2 gives a positive answer to Problem 1, because
of the following theorem:

Theorem 5.25. Consider a finite regular Galois extension K|Q(T ) with Galois
group G. Let xm + am−1x

m−1 + ...+ a0 be a minimal polynomial of the Galois
extension with ai ∈ Q(T ). There exist infinitely many t ∈ Q such that none of
the ai has a denominator vanishing at t and xm + am−1(t)x

m−1 + ...+ a0(t) ∈
Q(x) defines a minimal polynomial that gives a Galois extension of Q with
Galois group G.

The only close positive solution we have gotten so far to Problem 2 was
Theorem 3.15 which stated that every finite group G arises as the Galois
group of some extension L|C(t). We would like to manipulate this case to give
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a Galois group of some extension over Q(T ). In order to do so, we will utilize
the theory of algebraic curves and more specifically the base change introduced
in the previous Section. We start of by recalling some basic facts we have seen
so far.

We start off with Theorem 3.15 were we got a surjection

πtop1 (P 1(C)− {p1, ..., pn+1})→ G

Where G was a finite group of order |G| = n and the fundamental group was
isomorphic to the free group on n generators. That gave us an isomorphism

G ∼= ̂πtop1 (P 1(C)− {p1, ..., pn+1})/H ′ (2)

by utilizing that Gal(KX′ |M(X)) was isomorphic to the above profinite com-
pletion of the fundamental group in view of Theorem 3.13. For this profinite

completion we got in Theorem 4.22 that π1(U) ∼= ̂π1(P 1(C)− {p1, ..., pn+1})
when X was an integral proper normal curve over C. Since those facts hold for
arbitrary set of points {pi}, we choose point pi such that they are closed point
of P 1

Q, so that their complement is open, and with κ(Pi) ∼= Q. From the fact

that Q̂ ⊆ C is an extension of algebraically closed field and P 1
Q is an integral

proper normal curve over Q and P 1
Q̂ − {p1, ..., pn+1} is an open subset, then

applying Theorem 4.23 we get P 1
Q̂ − {p1, ..., pn+1} ∼= P 1

C − {p1, ..., pn+1} and
from Theorem 4.22 we get that

P 1
C − {p1, ..., pn+1} ∼= ̂πtop1 (P 1(C)− {p1, ..., pn+1})

So combining we get

P 1
Q̂ − {p1, ..., pn+1} ∼= ̂πtop1 (P 1(C)− {p1, ..., pn+1}) (3)

For simplicity we denote Π(n) = P 1
Q−{p1, ..., pn+1}, π(n) = ̂πtop1 (P 1(C)− {p1, ..., pn+1})

and πtop1 (n) = πtop1 (P 1(C) − {p1, ..., pn+1}). By Theorem 4.24 and the iso-
morphism above, we get the exact sequence of profinite groups

1→ π(n)→ Π(n)→ Gal(Q̂|Q)→ 1

By the exactness of the above sequence we can view π(n) as a subgroup
of Π(n) and moreover it is normal and closed in Π(n) (equal to the kernel of

Π(n) → Gal(Q̂|Q)). Our goal will be to extend the surjection ϕ : π(n) → G

(coming from (2)), to a continuous homomorphism ϕ̂ : Π(n) → G which will
automatically be surjective (since π(n) injects to Π(n) and π(n) surjects on G).

Therefore we will get that Π(n)/ker(ϕ̂) ∼= G. Since by the construction of Π(n)

in Theorem 4.20 we have that it is a Galois group contained in Gal( ˆQ(t)|Q(t)),
then it is a quotient of the absolute Galois group in view of Theorem 1.13 and
therefore G will arise as the Galois group of a finite Galois extension K|Q(t).
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The extension will be regular since Π(n)/π(n) ∼= Gal(Q̂|Q) and ker(ϕ) ⊆ ker(ϕ̂)
where both are surjective on G. The construction of ϕ̂ will depend on a group
theoretic construction.

Assume given a profinite group Γ (= Π(n))) and a closed normal subgroup
N ⊆ Γ (=π(n)) and a finite group G. The set Hom(N,G) of continuous homo-
morphisms N → G is equipped with two natural actions. One is a left action
by G given by (g, ϕ) 7→ gϕ(n)g−1 for all n ∈ N and the other is a right action
by Γ on Hom(N,G) given by (ϕ, σ) 7→ ϕ(σnσ−1) for σ ∈ Γ(since N is a normal
subgroup of Γ this action is well defined). The two actions are also compatible,
i.e (g, ϕ) ◦ σ = g ◦ (ϕ, σ).

Lemma 5.26. In the above situation, let S ⊆ Hom(N,G) be a subset stable by
both actions of G and Γ and such that moreover G acts freely ((g, s) = s⇒ g =
1, this means that the stabilizers are trivial) and transitively on S. Then every

ϕ ∈ S extends to a continuous homomorphism ϕ̂ : Γ→ G.

Proof. Lemma 4.8.3,[10]

We want to apply the lemma to the groups Γ = Π(n) and N = π(n) so
that we can extend the surjection ϕ. This amounts to specifying a set S ⊆
Hom(π(n), G) with the properties in Lemma 4.26. We had seen in the proof
of Theorem 3.15 that π(n) = F̂n and so the surjection ϕ : π(n) → G is
determined by the images ϕ(γi) where γi the generators of the free group Fn
on n generators, we shall call such a tuple (ϕ(γ1), ..., ϕ(γn)) ∈ Gn a generating
n-tuple. If ϕ ∈ S and S is stable by the action of Γ = Π(n), then (ϕ, σ) ∈ S for
all σ ∈ Π(n) and in particular for all σ ∈ π(n) ⊆ Π(n). For σ ∈ π(n) we have
(ϕ, σ) = ϕ(σγiσ

−1) and (ϕ(σ), ϕ) = ϕ(σ)ϕ(γi)ϕ(σ)
−1 and because ϕ is a group

homomorphism we get (ϕ, σ) = (ϕ(σ), ϕ). Conversely, for each g ∈ G we get
that the map (g, ϕ) 7→ gϕ(γi)g

−1 defines a surjective homomorphism π(n)→ G.
Therefore it is natural to fix C1, ..., Cn conjugacy classes in G, with ϕ(γi) ∈ Ci
for each i such that (ϕ(γ1), ..., ϕ(γn)) is a generating tuple of G. So we consider
the set

S = {ϕ ∈ Hom(π(n), G) : ϕ(γi) ∈ Ci, (ϕ(γ1), ..., ϕ(γn)) ∈ Gn a generating n-tuple}

Since each ϕ(γi) ∈ Ci and Ci is a conjugacy class, therefore S is stable by the
action of G. Also, if σ ∈ π(n) then for an element ϕ ∈ S we have (ϕ, σ) =
ϕ(σγiσ

−1) = ϕ(σ)ϕ(γi)ϕ(σ
−1) ∈ Ci for each i and thus S is also stable by the

action of π(n).
What remains now is to force the set S to have a free and transitive action

by G and a stable action by Π(n). The next two definitions will give us those
properties.

Definition 5.13. Let G be a finite group. An n-tuple C1, .., Cn of conjugacy
classes in G is called rigid if there exists a generating n-tuple (g1, ..., gn) ∈
Gn such that gi ∈ Gi and moreover G acts transitively on the set of all such
generating n-tuples.
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This forces the action of G to be transitive on S. If we also assume that the
center of G, Z(G) = {z ∈ G|zgz−1 = g,∀g ∈ G}, is trivial then the action is
free. Indeed, let ϕ ∈ S, g ∈ G then (g, ϕ) = gϕ(γi)g

−1 = ϕ(γi) if and only if
g ∈ Z(G) but since Z(G) trivial then g = 1 and so the action is free. The next
definition give us that S is stable by Π(n).

Definition 5.14. A conjugacy class C in a finite group is called rational if
g ∈ C implies gm ∈ C for all m ∈ Z prime to the order of G.

The next lemma shows that the rationality implies that S is stable by the
action of G.

Lemma 5.27. Assume that C1, ..., Cn are rational conjugacy classes in a finite
group G and ϕ : π(n) → G is a continuous homomorphism with ϕ(γi) ∈ Ci for
all i. Then the same holds for (ϕ, σ) = ϕ(σγiσ

−1) for all σ ∈ Π(n). If moreover
ϕ is surjective, so is (ϕ, σ).

Proof. Lemma 4.8.6,[10]

To sum up the construction , we wanted to extend the the surjection ϕ :
π(n)→ G to a continuous surjection ϕ̂ : Πn → G. By the properties of the two
groups, i.e that π(n) is a closed normal subgroup of Π(n) we got two compatible
actions. Under the conditions on Lemma 4.26 we showed that it is possible
to get such an extension of ϕ. To force the set S to have the properties in the
Lemma, we showed that it is enough to force conditions on G. Those were that
G has a rigid system of rational conjugacy classes C1, ..., Cn and that G has a
trivial center. We include all those facts in the Theorem below.

Theorem 5.28. Let G be a finite group with trivial center such that it has a
rigid system of rational conjugacy classes C1, ..., Cn. Then G arises as a finite
quotient of π1(P

1
Q − {p1, ..., pn}) where pi are Q-rational points. In particular,

it is the Galois group of a regular Galois extension over Q(t).

The problem then shifts to the group theoretic problem of finding a group
G with trivial center and with a rigid system of rational conjugacy classes as
above. It is not to be assumed an easier problem, but there are groups known
from the classification of finite simple groups which has been shown to have
a rigid system of rational conjugacy classes and a trivial center. For example
Thompson has verified that the Monster group and the baby monster group
have a rigid system of three rational conjugacy groups classes of order (2, 3, 29)
and (2, 3, 71) in [11].
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