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are central. To this end, we will also touch upon some basic definitions

and theorems regarding the following: quadratic forms, the Hilbert symbol
and the Legendre symbol.

Key-words: p−adic numbers, Hasse-Minkowski theorem, local-to-global

principle.

Abstract. (Swedish) V̊art m̊al i denna avhandling är att beskriva upp-

byggnaden av de p−adiska talen och Hasse-Minkowskis sats, där de förstnämnda
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1. Introduction

The purpose of this thesis is not only to explore the construction of the p−adic
numbers and to give a basic understanding of what these numbers are, but also
to explain the Hasse-Minkowski theorem. Due to this, even though we will
give a full construction of the p−adic numbers, the main goal is to state, prove
and understand the so-called ”local to global principle”, which is also known as
the Hasse-Minkowski theorem, which basically says that for certain equations
(quadratic forms) to have rational solutions, it is necessary and sufficient that
the equations have solutions in the completions of the rational numbers (id est
in the reals and the p−adic numbers).

To be able to understand the proof of the Hasse-Minkowski theorem, we will
not only need the understanding of the p−adic numbers but also understand
exactly what these ”certain equations” are to know when the theorem is appli-
cable. To this end, we will also go through the basic definitions and theorems
regarding these equations; quadratic forms.

The p−adic numbers were first introduced by a German mathematician
named Kurt Hensel, who tried to bring concepts from mathematic series into
number theory. Number theory is an ancient part of mathematics focused on
numbers, and in particular integers, and the relations and properties between
them. This in itself can be interesting enough; however, we can also view num-
bers as solutions to equations, and in this sense we can say that number theory
aims to solve equations. This can be done in many different ways, one such way
is studying the equation arithmetically modular some prime, but a more sophis-
ticated way can be to search for solutions using the p−adic numbers. Indeed,
as we mentioned earlier the Hasse-Minkowski theorem revolves around this. It
is clear that if there is a rational solution to a certain equation it will yield so-
lutions in the reals and the p−adic numbers (since the rational numbers embed
into both the reals and the p−adic numbers). The Hasse-Minkowski theorem
handles the converse; when is it possible for an equation with coefficients in the
reals and the p−adic numbers to have a rational solution?

This way, you can use techniques that require complete fields (as both the
reals and the p−adic numbers are complete fields) to search for a solution, for
example Newton’s method or Hensel’s lemma (which is basically the p−adic
analogue to Newton’s method and can be applied to find roots of polynomials).

So, this might give you a clue to why the p−adic numbers are interesting, but
the next natural question then is; what are they? This question will hopefully
be answered in depth in the first part of this paper when we introduce the p-adic
numbers and describe a construction of them. For now you will have to settle
for this short informal explanation.
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The p−adic numbers are the result of defining a different metric (id est a
different distance function) on the rational numbers, in the same (or at least
similar) way as the ”normal” metric, the Euclidean absolute value, can be used
to define the real numbers. Although the real numbers may at first seem more
intuitive, and indeed they are, since we are taught these at an early age, the
p−adic numbers are a great addition to a mathematicians toolbox. Further,
even if they at first were introduced for a number theoretical purpose they also
have applications in analysis, algebra and more (though this is nothing that will
be discussed here in any more detail).

The major part of reference material consists of A Course in Arithmetic
by Serre [Ser73] and p−adic numbers, p−adic analysis and Zeta-functions by
Koblitz [Kob77].

2. The p-adic numbers

2.1. Prerequisites. Here we will go through some prerequisites needed for the
construction of the p−adic numbers.

Definition 2.1.1. Let X be a (non-empty) set, a function d from X to R≥0 is
called a distance (or a metric), if the following criteria is met:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Moreover, we call the pair (X, d), the set together with the metric, a metric
space.

Definition 2.1.2. Let (X, d) be a metric space. We say that a sequence {x1, x2, ...}
with xi ∈ X for all i, is a Cauchy sequence (alternatively ”sequence is Cauchy”)
if there exist, for each given ϵ > 0, a N ∈ Z>0 such that d(xm, xn) < ϵ for all
m,n > N.

With this definition in mind we have this following definition regarding equiv-
alence of two metrics.

Definition 2.1.3. Two metrics d and d′ are called equivalent if a sequence
is Cauchy with regards to d then it is Cauchy with regards to d′ and vice versa.

In this paper we will mostly have X equal to Q, the rational numbers, or
Qp, the p-adic numbers (we will shortly define exactly what these are). Both
of these are examples of fields, id est a set F together with two operations,
call them addition and multiplication, such that F (respectively F − {0}) is a
commutative group under addition (respectively multiplication) and the law of
distributivity holds.
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Definition 2.1.4. Metrics d that come from the norm of a field F are maps,
denoted as || ||, from F to R≥0 such that the following criteria hold:

(i) ||x||= 0 if and only if x = 0,

(ii) ||x · y|| = ||x||·||y||,
(iii) ||x+ y|| ≤ ||x||+||y||.

Note that when we say that a metric d comes from, alternatively induced by,
a norm || || we simply mean that the metric is defined as d(x, y) = ||x − y||.
If two norms induce equivalent metrics we say that the norms are equivalent.
One example of an induced metric is the metric d(x, y) = |x − y|, where | | is
the standard absolute value norm in Q. The metric d(x, y) is then the ”usual”
distance between two numbers.

Definition 2.1.5. Let p be a prime number and let ordp a be the greatest k
such that a ≡ 0 (mod pk), a ∈ Z− {0}. (Recall that a ≡ b (mod p) means that
p|(a − b)), i.e. k is the highest power for p such that pk divides a. Note that
ordp (a1 · a2) = ordp a1 + ordp a2.

For a = 0 we defined ordp a = ∞, we also define for x ∈ Q (that is x = a
b )

ordp x = ordp a − ordp b. It is worth noting here that this definition does
not depend on a or b, but only x, we could multiply a and b by some number c
(so x = ac

bc ) and still have ordp x = ordp ac − ordp bc = ordp a + ordp c −
(ordp b+ ordp c) = ordp a− ordp b.

For example;

ord7 98 = ord7(49 · 2) = ord7(7
2 · 2) = 2 ord7 99 = 0.

Definition 2.1.6. We define the map | |p from Q to R≥0 as:

|x|p=

{
0, if x = 0;

1
pordp x , if x ̸= 0.

Proposition 2.1.7. The map | |p defined in Definition 2.1.6 is a norm on Q.

Proof. We need to show that the criteria (i)− (iii) for norms (Definition 2.1.4)
hold for | |p.

For (i) : if x = 0 we have, per definition, that |x|p= 0. On the other hand, if
|x|p= 0 we have, since 1

pordp x ̸= 0, that x = 0.

For (ii) : assume x, y ̸= 0 (since if x = 0 or y = 0 the criterion clearly holds)
then

|x · y|p=
1

pordp xy
=

1

pordp x+ordp y
=

1

pordp x
· 1

pordp y
= |x|p·|y|p.
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For (iii) : again assume that x, y and x+ y are all non-zero (if they are, (iii)
holds trivially) and write x = a

b and y = c
d in their lowest terms. Then we have

x+ y = ad+cb
bd and ordp (x+ y) = ordp (ad+ cb)− ordp bd.

Furthermore, we have ordp (x + y) ≥ min{ordp ad, ordp cb} − ordp bd,
since the greatest power of p that divides a sum of two numbers will be no
less than the minimum of the greatest power of p dividing each of the numbers
respectively. Now we can rewrite the right hand side of this, using properties
from Definition 2.1.5 and of min{a, b} to get:

min{ordp ad, ordp cb} − ordp bd =

min{ordp a+ ordp d, ordp c+ ordp b} − ordp b− ordp d =

min{ordp a− ordp b, ordp c− ordp d} = min{ordp
a

b
, ordp

c

d
} =

min{ordp x, ordp y}.

From this we can conclude that the third criterion holds because this shows
that:

|x+ y|p=
1

pordp (x+y)
≤ max{ 1

pordp (x)
,

1

pordp (y)
} = max{|x|p, |y|p},

which clearly is ≤ |x|p+|y|p and we are done. □

One thing that is worth noting is that in this proof we actually proved a
stronger inequality than what is needed for the map in Definition 2.1.6 to be
called a norm (|x + y|p≤ max{|x|p, |y|p} instead of the ”normal” ||x + y||≤
||x||+||y||). This leads us to an important distinction when it comes to norms,
which in turn leads to the next definition.

Definition 2.1.8. We say that a norm, respectively a metric, is non-Archimedean
if the stronger inequality always holds, id est ||x+ y||≤ max{||x||, ||y||}, respec-
tively d(x, y) ≤ max{d(x, z), d(z, y)}. Furthermore, we call norms (or metrics)
that are not non-Archimedean simply Archimedean.

We can see that if a metric is induced by a non-Archimedean norm the metric
will also be non-Archimedean, since if this is the case we have d(x, y) = ||x−y||=
||(x− z) + (z − y)|| ≤ max{||(x− z)||, ||(z − y)||} = max{d(x, z), d(z, y)}.

The difference between a non-Archimedean and an Archimedean norm (or
at least a big difference), id est property (iii) of Definition 2.1.4, leads to
the conclusion that non-Archimedean norms have a somewhat weird property.
For an Archimedean norm property (iii) is the ”normal” triangle-inequality,
which means that, in let say R2 with the standard Euclidean metric d(x, y) =√
(x1 − y1)2 + (x2 − y2)2, the sum of two sides of a triangle is greater than the

third.
While if we do this in a non-Archimedean norm on some field F. Suppose, for

simplicity´s sake, z = 0, then the triangle-inequality (property (iii) of Definition
2.1.4) for non-Archimedean norms state: ||x − y|| ≤ max{||x||, ||y||}. Now, let
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us assume that the sides x and y in this ”triangle” have non-identical ”length”,
id est suppose ||x|| ̸= ||y|| and lets suppose ||x|| < ||y||. Then we have

||x− y|| ≤ ||y||.

However, ||y||= ||x− (x− y)|| and so

||y||= ||x− (x− y)|| ≤ max{||x||, ||x− y||} = ||x− y||,

where the last equality holds since ||y|| ̸≤ ||x||.
Then we have ||x − y|| ≤ ||y|| ≤ ||x − y|| so ||y|| = ||x − y||, but this means

that if the two ”sides” x and y are not of the same length then the bigger of
the two will be equal to the third side. In other words, in a non-Archimedean
norm, every triangle is isosceles. We will therefore call the triangle-inequality
for non-Archimedean norms the ”isosceles triangle-inequality”.

As we saw in the proof of the proposition above, we have that | |p is a
non-Archimedean norm on Q.

Theorem 2.1.9. (Ostrowski’s theorem) Every non-trivial norm || || on Q
is either equivalent to | |p for some prime p or to | |∞.

Before we prove this, we make some notational observations; when we talk
about the trivial norm, we mean the norm such that ||0|| = 0 and ||x|| = 1
for all x ̸= 0, and by the notation | |∞ we simply mean the normal absolute
value norm. Note that this is strictly a notation and you should not infer any
connection between | |∞ and | |p.

Now we move on to the proof of the theorem.

Proof. We separate the proof into two cases.
Case (1); Assume there exists some n ∈ N>0 such that ||n|| > 1, and let n0

denote the smallest such n. Then ||n0|| = nα
0 for some α ∈ R>0 (since ||n0|| > 1

we can find such an α). Then we can write any n ∈ N>0 to the base n0, that
is, we can write

n = a0 + a1n0 + a2n
2
0 + ...+ akn

k
0 with 0 ≤ ai < n0 and ak ̸= 0.

Now, by property (iii) of Definition 2.1.4, we have that

||n|| ≤ ||a0||+||a1n0||+||a2n2
0||+...+ ||aknk

0 ||

= ||a0||+||a1||nα
0 + ||a2||n2α

0 + ...+ ||ak||nkα
0 .

We can, since all ai < n0 and the way we picked n0 makes it so ||ai|| ≤ 1,
rewrite this further as:

||n|| ≤ 1 + nα
0 + n2α

0 + ...+ nkα
0

= nkα
0 (n−kα

0 + n
−(k−1)α
0 + ...+ n−α

0 + 1)
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and since nk
0 ≤ n we have that

nkα
0 (n−kα

0 + n
−(k−1)α
0 + ...+ n−α

0 + 1) ≤ nα

( ∞∑
i=0

(
1

nα
0

)i

)
.

We can easily see, by for example the root test, that the sum in the parenthesis
converges, since nα

0 = ||n0|| > 1 =⇒ 1/nα
0 < 1. So we can view this sum as

some finite constant, that we call C, then we have

||n|| ≤ Cnα ∀n ∈ N>0.

Now if we fix an n and take some (large) m and replace n with nm and take

the mth-root we get ||n|| ≤ m
√
Cnα, then, if we let m → ∞, we get (for fixed n)

||n|| ≤ nα.
To get the inequality the other direction, id est ||n|| ≥ nα, we first write

n to the base n0 again and note that nk+1
0 > n ≥ nk

0 . Now write ||nk+1
0 || as

||nk+1
0 +n−n|| which, by property (iii) of Definition 2.1.4, is ≤ ||n||+||nk+1

0 −n||
and so, since ||nk+1|| = ||n||k+1 by property (ii) (of the same definition) and
||n|| ≤ nα by above, we have

||n|| ≥ ||nk+1
0 ||−||nk+1

0 − n||

≥ n
(k+1)α
0 − (nk+1

0 − n)α.

Further, since n ≥ nk
0 , we can write this as

||n|| ≥ n
(k+1)α
0 − (nk+1

0 − nk
0)

α

= n
(k+1)α
0

(
1− (1− 1

n0
)α
)

Again, we can view the parenthesis as a constant, call it C ′, that depends on
n0 and α (but importantly not on n). Also recall that nk+1

0 > n, so what we
have is

||n|| ≥ C ′nα

and now we can do as before, replacing n with nm where m is large and n is
fixed and take the mth-root. Then similarly to before, letting m → ∞, we get
||n|| ≥ nα and we can conclude that ||n|| = nα.

Now, by property (ii) of Definition 2.1.4, we have that ||x|| = |x|α for all
x ∈ Q, since

||x|| = || n
m
|| = ||n||

||m||
=

nα

mα
= |x|α.

We can see that this norm is equivalent to the (standard) absolute value norm
| |∞. This is because, if the sequence xi is Cauchy with respect to | |∞ then for
any given ϵ > 0 we can find N ∈ N such that |xn − xm|α< ϵ for all n,m > N,

indeed, just choose N large enough so that |xn − xm|∞< ϵ
1
α (which we know is

possible since the sequence is Cauchy with respect to this norm). Hence | |α is
equivalent to | |∞ in this case.
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Case (2): Now, instead, assume that ||n|| ≤ 1 for all n ∈ N>0. Since we
assume || || to be non-trivial we know there exists some n such that ||n|| < 1,
let n0 denote the smallest such n. Then n0 must be a prime, otherwise we
would have n0 = n1 · n2 with n1, n2 < n0 but by our choice of n0 we must have
||n1|| = ||n2|| = 1 and so ||n0|| = ||n1n2|| = 1 contradicting ||n0|| < 1. Now if q
is another prime (id est q ̸= n0), we claim that ||q|| = 1. To prove this claim,
assume to the contrary that ||q||< 1, then there exists some (possible very large)
N such that ||qN || = ||q||N< 1

2 . Similarly, since ||n0|| < 1, we can find some

large N ′ such that ||nN ′

0 || < 1
2 . Now, since qN and nN ′

0 are relatively prime, we

can find a, b ∈ N>0 such that aqN + bnN ′

0 = 1. We then have, by property (ii)
and (iii) of Definition 2.1.4,

||1|| = ||aqN + bnN ′

0 || ≤ ||aqN ||+||bnN ′

0 || = ||a||·||qN ||+||b||·||nN ′

0 ||.

However, we have ||a|| ≤ 1 and ||b|| ≤ 1, which gives us

1 ≤ ||a||·||qN ||+||b||·||nN ′

0 || ≤ ||qN ||+||nN ′

0 || < 1

2
+

1

2
= 1,

which is a contradiction, whence we conclude that ||q|| = 1.
Since this is true for any q ̸= n0 and since any positive integer n can be

factorized into primes as n = pa1
1 pa2

2 · · · pak

k we have that the only ||pi|| that is
not equal to 1 in ||n|| = ||p1||a1 ||p2||a2 · · ·||pk||ak will be pi = n0 (if such a pi
exists, otherwise we simply have ||n|| = 1). Further, the ai corresponding to
this pi will be equal ordp n. Hence, we have, if we denote ρ = ||n0|| < 1

||n|| = ρordp n,

and similarly as in Case (1) we can see, by property (ii) of Definition 2.1.4, that
this holds for all rational x ̸= 0 (not only for n). Also similarly as before, we
can see that this kind of norm is equivalent to | |p, which finishes the proof. □

2.2. Construction. From here to the end of this section, we will take p to be
a prime not equal to ∞.

We seek to describe the formal construction of the p-adic numbers, denoted
as Qp, as equivalence classes of Cauchy sequences. However, after the proof
of Theorem 2.2.3 it is advisable to forgo this convoluted way of thinking and
instead think about these numbers more concretely (and we will discuss how to
do this later in this section) as infinite sums.

Let S be the set of Cauchy sequences {xi} of rational numbers. These se-
quences have the property (since they are Cauchy) that for any ϵ > 0 there
exists a (strictly) positive integer N such that |xi − xi′ |p< ϵ for any i, i′ > N.
Furthermore, we say that two of these (Cauchy) sequences, {xi} and {yi}, are
equivalent if |xi − yi|p→ 0 as i → ∞. If {xi} and {yi} are equivalent we denote
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this as {xi} ∼ {yi}. We then define the p-adic numbers, denoted as Qp, as the
set of equivalence classes on S.

We denote, for x ∈ Q, the ”constant” Cauchy sequence, id est the sequence
{xi} = {x, x, x, x, ...}, simply as {x}. Note that {x} ∼ {x′} ⇔ x = x′. Further,
we denote the zero sequence {0, 0, 0, ...} = {0} as 0.

We define the norm of an equivalence class, |x|p, as limi→∞|xi|p, where {xi}
is a representative of the equivalence class x. We know that this limit will exist
because if x = 0 then, per definition, |x|p= 0 and so limi→∞|xi|p= 0. On the
other hand, if x ̸= 0 then we can find an ϵ such that for all N there exists an
iN > N such that |xiN |p> ϵ.

If we then take N sufficiently large such that |xi−x′
i|p< ϵ whenever i, i′ > N

we get that

|xi − xiN |p< ϵ ∀ i > N.

Now, by the isosceles triangle-inequality and since |xiN |p> ϵ, we have that
|xi|p= |xiN |p which implies that, for all i > N , |xi|p is constant and equal to
|xiN |p. Moreover, this will be the value for limi→∞|xi|p.

Definition 2.2.1. The multiplication of two equivalence classes (of Cauchy
sequences) x and y, written as x · y, we define by taking two representatives
{xi} ∈ x and {yi} ∈ y and let the sequence {xiyi} represent the equivalence
class x · y.

Note that this definition of multiplication is independent of which representa-
tives of x and y we choose. To see this, consider another representative {x′

i} ∈ x
and {y′i} ∈ y then we would have

|x′
iy

′
i − xiyi|p= |x′

i(y
′
i − yi) + yi(x

′
i − xi)|p

≤ max{|x′
i(y

′
i − yi)|p, |yi(xi − x′

i)|p}.

Now let i → ∞, then the first argument in the max function will be equal
to |x′

i|p· lim|y′i − yi|p= 0 since {yi} ∼ {y′i}, similarly for the second argument
in the max function we got |yi|p· lim|x′

i − xi|p= 0 since {xi} ∼ {x′
i}. Hence

|x′
iy

′
i − xiyi|p= 0 as i → ∞ and so, per definition, {x′

iy
′
i} ∼ {xiyi}.

Definition 2.2.2. The sum of two equivalence classes of Cauchy sequences x
and y we define in a similar manner, by taking a representative of each class
{xi} ∈ x and {yi} ∈ y and define x+ y as term-wise addition, id est {xi + yi}.

It can be shown, again similarly to above, that the choice of representative
does not matter.

We also define the additive inverse −x of x in the obvious way. Meaning, take
a representative {xi} ∈ x and define −x to be the equivalence class represented
by {−1 · xi} where −1 is the constant sequence {−1,−1,−1, ...}.

However, for multiplicative inverses we can not take the ”obvious” sequence
{ 1
xi
}, since there is a possibility that some terms in the Cauchy sequence {xi}

are equal to zero. So we have to be a bit careful here, but we can see that
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a zero term in a Cauchy sequence can be replaced with a non-zero term (say
xi = 0, then replace this term with x′

i = pi). Then, as long as {xi} ̸∼ 0 (id est
|xi|p ̸→ 0 as i → ∞), the sequence { 1

xi
} will be Cauchy and this sequence will

be the multiplicative inverse of {xi}.
We can now show that the set of equivalence classes of Cauchy sequences,

Qp, together with the operations addition and multiplication as defined above,
is a field. Example gratia; distributivity is easily shown as: take representatives
{xi}, {yi} and {zi} of the elements x, y, z ∈ Qp (id est representatives of the
equivalence classes of Cauchy sequences). Then the equivalence class x(y + z)
can be represented by the sequence {xi(yi + zi)} = {xiyi + xizi}, which also
represents the equivalence class xy+ yz (so these equivalence classes of Cauchy
sequences are the same) and so distributivity holds.

Theorem 2.2.3. Let x ∈ Qp be an equivalence class of Cauchy sequences such
that |x|p≤ 1. Then x has precisely one representative Cauchy sequence {xi} that
satisfies the following:

(i) 0 ≤ xi < pi ∀i ∈ N>0,
(ii) xi ≡ xi+1 (mod pi) ∀i ∈ N>0.

Before we go into the proof of this theorem we state a lemma, which will
prove helpful in the proof of the theorem.

Lemma 2.2.4. Suppose x ∈ Q with |x|p≤ 1 then we can find an integer α ∈ Z
such that |α− x|p ≤ p−i holds for any i.

Furthermore, this α can be picked from the set {0, 1, 2, .., pi − 1}.

Proof. Since x ∈ Q we can write x = a
b , let this be its simplest form, and

since |x|p≤ 1 we know, by definition, that p does not divide b. Thus pi and
b are relatively prime, which means that we can find integers n,m such that
npi +mb = 1. Now let α = am then

|α− x|p = |am− a

b
|p = |a

b
|p|mb− 1|p

and now, since |ab |p = |x|p≤ 1 and mb− 1 = npi, we have

|a
b
|p|mb− 1|p ≤ |npi|p =

|n|p
pi

,

which is ≤ pi since |n|p ≤ 1 for all integers.
Lastly, note that we can (if needed) add any multiple of pi to α to make

α ∈ {0, 1, 2, .., pi−1} hold, and this will not change the fact that |α−x|p≤ pi. □

Now to the proof of Theorem 2.2.3:

Proof. We will first show the uniqueness (that there is precisely one representa-
tive and no more). Let x′

i be another sequence that fulfills both criteria (i) and
(ii). Then, if xi0 ̸= x′

i0
we have that xi0 ̸≡ xi0 (mod pi0), since by (i) we have
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0 ≤ xi0 < pi0 and 0 ≤ x′
i0

< pi0. However, this means that for all i ≥ i0, that

xi ̸≡ x′
i (mod pi0) since xi ≡ xi0 ̸≡ x′

i0
≡ x′

i (mod pi0). Which in turn means

|xi − x′
i|p > p−i0 ∀ i ≥ i0

and so {xi} ̸∼ {x′
i} (which is what we wanted to show).

Now we show the existence. Suppose {yi} is a Cauchy sequence; then what
we want to do is to find a sequence {xi}, for which (i) and (ii) hold, which is
equivalent to {yi}.

Let, for k ∈ N>0, nk be a natural number such that |yi − yi′ |p ≤ p−k for all
i, i′ ≥ nk. We can, without loss of generality, assume that the nk’s are increasing
(strictly) with k and, in particular, that nk ≥ k. This means that |yi|p≤ 1 for
i ≥ n1 since

|yi|p= |yi − yi′ + yi′ |p ≤ max{|yi′ |p, |yi − yi′ |p} ≤ max{|yi′ |p, p−1}
for all i′ ≥ n1 and |yi′ |→ |x|p≤ 1 as i′ tends to infinity. Then, by Lemma 2.2.4,
we can find a sequence of integers αk such that

|αk − ynk
|p ≤ p−k

and also, by the lemma, this sequence of integers will satisfy (i) in the theorem.
We claim that {αk} is the sequence we are looking for, to prove this we have
left to show that αk+1 ≡ αk (mod pk) and that {αk} ∼ {yi}.

We have (using the old trick that ynk+1
− ynk+1

= 0)

|αk+1 − αk|p = |αk+1 − ynk+1
+ ynk+1

− ynk
− (αk + ynk

)|p
≤ max{|αk+1 − ynk+1

|p, |ynk+1
− ynk

|p, |αk + ynk
|p}

≤ max{ 1

pk+1
,
1

pk
,
1

pk
}

=
1

pk
,

whence we can conclude that the first of the two assertions we wanted to prove
is correct. For the second one, {αk} ∼ {yi}, we use the exact same technique
to see that, given any k, for i > nk we have

|αi − yi|p≤
1

pk
.

Thus we have |αi − yi|→ 0 as i → ∞ and we are done.
□

Now, with this theorem under our belts, we can ”forget” that p-adic numbers
are equivalence classes of Cauchy sequences and instead think of them as sums
that stretch infinitely to the right.

However, before we explain this in more detail we have to ask; what about a
p-adic number x for which |x|p≤ 1 does not hold? In this case, we can multiply
x with a power of p, say pn, where this power equals |x|p. Then we can find
a p-adic number x′ = xpn for which |x′|p≤ 1 does hold, thus, by the Theorem
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2.2.3, x′ is represented by a sequence {x′
i} (with properties as in the theorem)

and x = x′p−n is represented by {xi} (where xi = x′
ip

−n). It is then practical
to view the x′

i’s to the base p, that is as

x′
i = a0 + a1p+ a2p

2 + ...+ ai−1p
i−1

where aj are integers in {1, 2, .., p − 1} for j ∈ {0, 1, .., i − 1}. Note that the
second condition in Theorem 2.2.3 means that

x′
i+1 = a0 + a1p+ a2p

2 + ...+ ai−1p
i−1 + aip

i,

where aj for j ∈ {0, 1, .., i−1} are the same as in the expansion of x′
i. So we can,

intuitively, think of x′ as a number, written in base p, that stretches infinitely
to the right, where we add a new digit whenever we go from xi to xi+1.

We can now view our original x as the decimal number, written to the base
p, where the decimals (id est the digits to the right of the decimal sign) are
finite and are represented by the negative powers of p (id est written to the left
in the sum), but still has infinitely many digits for positive powers. That is, x
can be written as:

x =
a0
pn

+
a1

pn − 1
+ ...+

an−1

p
+ an + an+1p+ an+2p

2 + ...,

we call this the ”p-adic expansion” of x.

Worth to note here, is that the uniqueness of the sequence in the theorem
only applies because | |p is non-Archimedean, since in the Archimedean case
we can represent terminating decimals with repeating 9’s, id est 1 = 0, 9999...,
while if two p-adic expansions converge to the same number x ∈ Qp they are
the same. That is, all the digits aj are the same.

3. Hensel’s lemma and Chevalley-Warning theorem

Theorem 3.1. (Hensel’s Lemma)
Let f ∈ Zp[x] be a polynomial of degree n with p−adic integer coefficients (id

est f(x) = a0 + a1x+ ....+ anx
n) and let f ′ be its derivative. Furthermore, let

b ∈ Zp be a p−adic integer such that f(b) ≡ 0 (mod p) and f ′(b) ̸≡ 0 (mod p).
Then there exists a unique b′ ∈ Zp such that

f(b′) = 0 and b′ ≡ b (mod p)

Proof. We claim that it is possible to find a sequence of integers b1, b2, b3... ∈ Z
for which the following is true for all n ≥ 1 :

(i) f(bn) ≡ 0 (mod pn+1)
(ii) bn ≡ bn−1 (mod pn)
(iii) 0 ≤ bn < pn+1.



14 SIMON VESTBERG

Hensel’s lemma follows immediately from this claim (as we will see when we
have proven the claim), so let us prove this claim.

We do this using induction on n: if n = 1 let b̄0 ∈ {0, 1, 2, ..., p − 1} be the
unique integer such that b̄0 ≡ b (mod p) then b1 = b̄0 + α1p, for some integer
0 ≤ α1 ≤ p− 1 (els (ii) and (iii) would not hold). Thus,

f(b1) = f(b̄0 + α1p) = a0 + a1(b̄0 + α1p) + ...+ an(b̄0 + α1p)
n

=

n∑
i=0

ai(b̄0 + α1p)
i

=

n∑
i=0

a1b̄
i
0 + ia1b̄

i−1
0 α1p+ ...

Note that we may ignore all terms that contain powers of p greater than or
equal to 2, since we are looking at f modulo p2. Now, this last sum we can
separate as

n∑
i=0

a1b̄
i
0 +

n∑
i=0

ia1b̄
i−1
0 α1p (mod p2)

and this is equal to f(b̄0) + f ′(b̄0)α1p.
By assumption (in the theorem itself) we have that f(b) ≡ 0 (mod p) and so

f(b̄0) ≡ βp (mod p2) for some integer 0 ≤ β ≤ p−1 which means that, for f(a1)
to be congruent to 0 modulo p2, we must have βp+ f ′(b̄0)α1p be congruent to
0 modulo p2, which is the same as saying β + f ′(b̄0)α1 ≡ 0 (mod p). However,
since, by the second assumption of the theorem, f ′(b) ̸≡ 0 (mod p), we can
solve this for the unknown α1 (since this means we can divide by f ′(b)) and

by using Lemma 2.2.4 we can pick α1 ∈ {0, 1, .., p − 1} so that α1 ≡ − β
f ′(b̄0)

(mod p). Note that this also means that α1 is uniquely determined.
Now we continue with the induction step, so assume that b1, b2, ..., bn−1 is

”found” and that we want to find bn. As in the case for n = 1 we have, by (ii)
and (iii), that bn = bn−1 + αnp

n for an integer 0 ≤ αn ≤ p− 1. Also similarly
to before, we look at the expansion of f(bn−1 +αnp

n) (ignoring terms divisible
by pn+1), then we have

f(bn) = f(bn−1 + αnp
n) ≡ f(bn−1) + f ′(bb−1)αnp

n (mod pn+1).

Again we work as we did in the base case and rewrite the equality we want to
prove, f(bn) ≡ 0 (mod pn+1), as

β′pn + f ′(bn−1)αnp
n ≡ 0 (mod pn+1) ⇐⇒ β′ + f ′(bn−1)αn ≡ 0 (mod p).

Note that we can do this, since by the induction hypothesis f(bn−1) ≡ 0
(mod pn), which means that f(bn−1) ≡ β′pn (mod pn+1) for some β′ ∈ {0, 1, 2, ..., p−
1}.

Now we again use the assumption that f ′(b) ̸≡ 0 (mod p) together with the
fact that bn−1 ≡ b (mod p) to see that f ′(bn−1) ≡ f ′(b) ̸≡ 0 (mod p) and
thus we can find αn in the same way as we did in the base case (by solving
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β′+ f ′(bn−1)αn ≡ 0 (mod p) for αn). This concludes the induction step and so
also the proof of the claim.

Now, as we alluded to before, we easily prove the theorem (by using the
claim). Simply let b′ = b̄0 + b1p+ b2p

2 + ... then the p−adic number f(b′) must
equal 0 since f(b′) ≡ f(bn) ≡ 0 (mod pn+1) for all n. On the other hand, if we
have a b′ of this form, then we have a sequence of bn that fulfills the criteria in
the claim and since this sequence is unique it follows that b′ is unique.

This concludes the proof of Hensel’s lemma.
□

In the following theorem and lemma, let p be a prime number and q be a
power of p. Also, let F be a field with q elements.

Theorem 3.2. (Chevalleys-Warning) Let {fi}ki=1 ⊆ F [x1, ...xn] be polyno-
mials such that

∑
i deg fi < n (in other words, the total degree of all fi’s should

be less than n).
Then, the number of common solutions (a1, ..., an) ∈ Fn is congruent to 0

modulo p (id est the number of common solutions are divisible by the charac-
teristic of the field F ).

Note that the conclusion of the theorem could also be stated as ”the cardi-
nality of the vanishing set for the polynomials {fi}ki=1 is congruent to 0 modulo
p.”

Lemma 3.3. Let l be an non-negative integer.
Then, the sum∑

x∈F

xl =

{
−1 if l ≥ 1 and divisible by q − 1,
0 otherwise.

Proof. First note that we use the convention that 00 = 1, so xl = 1 if l = 0.
Now, if l = 0, we have that all terms in the sum is equal to 1. Thus,∑
xl = q · 1 = 0 since F is of characteristic p.
Secondly, if l ≥ 1 and divisible by q−1. We have, by Fermat, xl = 1 for x ̸= 0

(and 0l = 0). So, in this case, we have that
∑

xl = (q − 1) · 1 = q · 1− 1 = −1.
Lastly, in the case where l ≥ 1 is not divisible by q − 1. We have, by basic

group theory, that F ∗ is cyclic of order q−1 and by this we know that there exists
some y ∈ F ∗ for which yl ̸= 1 and that

∑
xl =

∑
ylxl ⇐⇒ (1 − yl)

∑
xl = 0.

This implies that the sum must equal 0.
This finishes the proof of the lemma. □

Proof. (Of Theorem 3.2).

Let x ∈ Fn and define the product P =
∏k

i=1(1−fq−1
i (x)). Furthermore, let

U ⊆ Fn denote the set of common zeros of the fi’s.
Then we have, if x ∈ U, that P = 1 since, in this case, fi(x) = 0 for all

i. On the other hand, if x /∈ U, at least one fi(x) ̸= 0 and so, since F is of
characteristic p, fi(x)

q−1 = 1 thus P = 0 in this case.
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Note that this makes P a so-called characteristic function of U (since P :
Fn 7→ {0, 1}).

Now, define S(g) =
∑

x∈F∗ g(x), this means that S(P ) will equal the number
of x ∈ F ∗ such that fi(x) = 0 for all i, or in other words:

Card(U) ≡ S(P ) (mod p).

If we can now show that S(P ) = 0 we are done (since, as we note below the
statement of the theorem, this is equivalent to the conclusion of the theorem).

The assumption that
∑k

i=1 deg fi < n implies that the degree of P is less
than n(q− 1). This in turn means that P is a linear combination of monomials

xl = xl1
1 · · · xln

n with combined degree less than n(q − 1), id est
∑n

j=1 lj <

n(q − 1). However, by Lemma 3.3, since at least one of the lj is < q − 1 (since∑n
j=1 lj < n(q− 1)) we then know that S(P ) = S(xl) = 0 (since in this case we

have a l ≥ 1 not divisible by q − 1) and we are done.
□

4. Quadratic forms

In this section, we will discuss quadratic forms. We will begin by stating
multiple definitions, and then we will state some theorems which we will use
later in the paper (in the proof of the Hasse-Minkowski Theorem).

Definition 4.1. Let V be a module over a commutative ring R. We say that
Q : V → R is a quadratic form on V if the following criteria hold:

(1) Q(rx) = r2Q for all r ∈ R and x ∈ V
(2) The function (x, y) 7→ Q(x+ y)− (Q(x) +Q(y)) is a bilinear form (id

est a function that is linear in each argument separately).

Further, we call the pair (V,Q) a quadratic module.

Note that in this paper we only consider the case where the ring A is a field
(namely Q or Qp, which we will denote as k) of characteristic other than 2.
This makes it so that we can define the scalar product associated with Q as the
symmetric bilinear form:

(x, y) 7→ x.y =
1

2

(
Q(x+ y)− (Q(x) +Q(y))

)
.

It is worthy to note that x.x = Q(x) which determines a bijection between
quadratic forms and symmetric bilinear forms (this is only the case since we are
not considering characteristic 2).

We will later in this section show that each quadratic form Q is equivalent
to a quadratic form looking like a1x

2
1 + a2x

2
2 + ...+ anx

2
n.
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For now, consider a basis {e1, .., em} for V and the matrix A = (ai,j) with
(ai,j) = ei.ej (this will be a symmetric), which is the matrix for Q with respect
to this basis. Then for an element x ∈ V , we can write x =

∑n
i=1 xiei, we have

Q(x) =
∑
i,j

ai,jxixj ,

which shows that Q is, in the variables x1, ..., xn, a ”standard” quadratic form.

Definition 4.2. Two quadratic forms Q and Q′ are called equivalent if their
modules (V,Q) respectively (V ′, Q′) are isomorphic.

We denote two equivalent forms as Q ∼ Q′.

If Q and Q′ are two equivalent quadratic forms then their corresponding
matrices A and A′ is related as Y.A.Y t = A′ for some invertible matrix Y.

Definition 4.3. Let (V,Q) be a quadratic module and x, y ∈ V be two elements
from V. We say that x and y are orthogonal if x.y = 0

Further, we say that two vector subspaces V1, V2 ⊂ V is orthogonal if for any
x ∈ V1 and y ∈ V2 we have that x.y = 0.

Definition 4.4. Let (V,Q) be a quadratic module of rank n. Then we denote
by d(Q) the discriminant of the quadratic form Q. If we have an orthogonal
basis e = {e1, e2, ...em} for V and we put ai = ei · ei then

d(Q) = a1 · · · an.
Furthermore, we define ϵ(Q) =

∏
i<j(ai, aj), where (ai, aj) is the Hilbert

symbol (which, in particular, means that, if ai, aj ∈ k∗, then (ai, aj) = ±1).
We have that ϵ(Q) = ±1.

Definition 4.5. Let (V,Q) be a quadratic module and d be the discriminant of
the quadratic form Q. We say that Q is non-degenerate if d ̸= 0.

Definition 4.6. Let (V,Q) be a quadratic module and x ∈ (V,Q) be an element
of this module. We say that x is isotropic if Q(x) = 0.

Furthermore, if U ⊆ V is such that, for all x ∈ U, Q(x) = 0 we say that U
is isotropic.

Theorem 4.7. For each quadratic module (V,Q) there exists an orthogonal
basis, id est if {e1, ..., em} is a basis for (V,Q) the basis elements are pairwise
orthogonal.

Before we start with the proof of this theorem, it is worth noting that saying
that the basis elements are pairwise orthogonal is the same as the matrix A of
Q with respect to this basis being a diagonal matrix.

Proof. To prove this theorem, we will use induction on the number of basis
elements (id est the dimension of V ). For the base case, m = 0, it is trivially
true. Now, if m > 0 pick an element e1 ∈ V such that e1.e1 ̸= 0, if such an
element exists (if it does not exist, we are already done since if e.e = 0 for
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all elements e ∈ V then all elements are isotropic and all bases of V would be
orthogonal). Then, let H be the orthogonal complement of e1 (clearly we then
have e1 /∈ H) and we have V = ke1

⊕
H, where k is whatever field V is a

module over. However, this means that, since the dimension of H is less than
m for which we can conclude, by induction, that H must have an orthogonal
basis {e2, ..., em} and so {e1, e2, ..., em} will be a orthogonal basis of V and we
are done. □

Note that this theorem can be interpreted as: ”any quadratic form is equiv-
alent to a sum of squares”. More concisely, if Q is a quadratic form then
Q ∼ f = a1x

2
2 + a2x

2
2 + ...+ amx2

m with a1, ..., am ∈ k (from here on out, when
we write f is a quadratic form, we mean a ”standard” quadratic form, id est a
sum of squares).

Definition 4.8. Let f be a quadratic form (then, by Theorem 4.7, f ∼ a1x
2
2 +

a2x
2
2 + ...+ amx2

m). If the number of aj ̸= 0 equals i we say that f is of rank i.

Now that we know that any quadratic form Q is equivalent to a quadratic
form f we have some important and useful theorems to go through and consider.

Definition 4.9. Let f be a quadratic form of n variables. We say that f
represent an element a ∈ k if there exists an x = (x1, ..., xn) ∈ kn, not equal
to 0, such that f(x) = a.

Note that for a quadratic form f to represent 0, in light of this definition,
this means that there must exist an isotropic element, different from 0, in the
quadratic module.

Theorem 4.10. Let f be a non-degenerate quadratic form such that f represent
0. Then f represent every element of k.

A full proof for this can be found in exampli gratia [Ser73] on page 32, we
however are more interested in the corollary.

Corollary 4.11. Let f be a non-degenerate quadratic form of n − 1 variables
and let a ∈ k∗. Then, these statements are equivalent:

(i) f represent a
(ii) f is equivalent to f ′+ay2, where f ′ is a quadratic form of n−2 variables.
(iii) Let f ′′ = f − az2, then f ′′ represent 0.

Proof. The implication (ii) =⇒ (i) is obvious, since, if f ∼ f ′ + ay2 we
can simply take the element (x1, ...xn−2, y) = (0, ..., 0, 1) ∈ kn−1 to make f
represent a. On the other hand, if f represent a, we have f(x) = x.x = a
for some element x ̸= 0 in the corresponding quadratic module V . Now, let
H denote the orthogonal complement of x then, with the same argument as
in Theorem 4.7 above, we have V = kx

⊕
H. Further, if we let f ′ denote

the quadratic form corresponding to a basis of H then we have, as desired,
f ∼ f ′ + ay2 (and f ′ is a quadratic form of n− 2 variables).
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Now the implication (ii) =⇒ (iii) is given, since f ∼ f ′ + ay2 represent
a, f ′′ = f − az2 ∼ f ′ + ay2 − az2 will represent 0 (just take the element
(0, ..., 0, 1, 1) ∈ kn).

Lastly, we show the implication (iii) =⇒ (i), assume f ′′ = f−az2 represent
0, id est there exists a non-trivial element (x1, ..., xn−1, z) ∈ kn. Then either
z = 0 whence we conclude that f represent 0 and so, by Theorem 4.10, f
represent all elements of k, and in particular f represent a. In the other case,
when z ̸= 0, we have an element x = (x1

z , ..., xn−1

z ) ∈ kn−1 such that f(x) = a
(id est f represent a). Either-way this show the desired implication and the
proof is done.

□

Corollary 4.12. Let f1 and f2 be two non-degenerate quadratic form of any
rank greater than zero, and let f = f1 − f2. The following are equivalent:

(i) f represent 0.
(ii) There exists some element a ∈ k∗ such that both f! and f2 represent a.
(iii) There exists some element a ∈ k∗ such that both f1 − ay2 and f2 − ay2

represent 0.

Proof. From Corollary 4.11 it follows that (ii) ⇐⇒ (iii). Furthermore, (ii) =⇒
(i) is immediate (since if f1 and f2 represent a we clearly have that f = f1− f2
represent 0). For the implication (i) =⇒ (ii): if f represent 0 then, per
definition, there exists a non-trivial x such that f(x) = 0, write this x on form
(x′, x′′) where f1(x

′) = f2(x
′′). Now, either the element a = f1(x

′) = f2(x
′′)

does not equal 0 and we see that (ii) holds or a = 0 and in this case at least one
of the forms, say f1, represent 0. This means, by Theorem 4.10, f1 represent
all elements of k and, especially, all non-zero values that f2 takes, so (ii) holds
in this case as well. This ends the proof. □

Theorem 4.13. Let f be a quadratic form of rank n. Then f represent 0 if
and only if the following hold:

(i) n = 2 and d(f) = −1 (as an element of k∗/k∗2).
(ii) n = 3 and ϵ(f) = (−1,−d(f)).
(iii) n = 4 and one of: d(f) ̸= 1 or d(f) = 1 and ϵ(f) = (−1,−1).
(iv) n ≥ 5.

Note that when we say ”d(f) = −1 as an element of k∗/k2∗” we mean that
d(f) equals the product of −1 by a square. The same also applies for d(f) in
the other cases of the theorem, and also in the upcoming corollary (which we
will state before going into the proof of this theorem).

Corollary 4.14. Let f be a quadratic form of rank n and let a ∈ k∗/k∗2. Then
f represent a if and only if the following hold:

(i) n = 1 and a = d(f) (as elements of k∗/k∗2, id est a equals a product of
d(f) by a square).

(ii) n = 2 and ϵ(f) = (a,−d(f)).
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(iii) n = 3 and one of: a ̸= −d(f) or a = −d(f) and ϵ(f) = (−1,−d(f)).
(iv) n ≥ 4.

We will only present the proof of case n = 2, since this is the only part used
in this paper. However, the case n = 3 is quite easily proven using only the
definition of Hilbert symbols (Definition 6.1) and some of its properties, while
the last two cases require a bit more work. For a fully written proof we refer
you to, for example, [Ser73] pages 37-38.

Proof. (Of Theorem 4.13 in the case n = 2). In this case, we have a quadratic
form f ∼ a1x

2
1 + a2x

2
2 and we can see that it is, for f to represent 0, necessary

and sufficient that −a1

a2
is a square. Because, assume f represent 0 then

a1x
2
1 + a2x

2
2 = 0 ⇐⇒ a2x

2
2 = −a1x

2
1 ⇐⇒ x2

2 = −a1
a2

x2
1 ⇐⇒ x2

2

x2
1

= −a1
a2

,

which implies that −a1

a2
is a square.

Note that the last equality is legal, since per definition of represent (Definition
4.9) we know that there exists a non-trivial x ∈ k2 such that f(x) = 0 and if
x1 = 0 then f(x1, x2) = a2x

2
x = 0 which can only be true if x2 = 0 (since by

Definition 4.8 a2 ̸= 0).
Conversely, assume −a1

a2
is a square (and that f represent some element b)

then

a1x
2
1 + a2x

2
2 = b ⇐⇒ x2

2 =
b

a2
− a1

a2
x2
1.

Then we see that taking x = (1,
√
−a1

a2
) gives us that f represent 0, as desired.

However, −a1

a2
= −a1a2 = −d(f) in k∗/k∗2 which means that −d(f) is a

square, which in turn means d(f) = −1 (in k∗/k∗2).
This ends the proof for the case when f is of rank 2. □

5. Legendre symbol

In this section we are going to touch on the Legendre symbol and some of
its basic properties. Recall that we say that a is a quadratic residue modulo p
if there exists some integer x such that

x2 ≡ a (mod p).

Definition 5.1. Let p ̸= 2 be a prime number and x an integer. We define the
Legendre symbol of x, denoted by (xp ), as(

x

p

)
=

 1 if a ̸≡ 0 (mod p) and a is a quadratic residue modulo p,
−1 if a is not a quadratic residue modulo p,
0 if a ≡ 0 (mod p).
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Alternatively, we could define the Legendre symbol of x, via an explicit for-

mula, as the integer x
p−1
2 (mod p) ≡ ±1.

Furthermore, if x′ ∈ Fp is the image of x ∈ Z in the finite field Fp, we simply

write (xp ) = (x
′

p ).

First thing that is worthy to notice is that(
x

p

)(
y

p

)
= x

p−1
2 y

p−1
2 (mod p) = xy

p−1
2 (mod p) =

(
xy

p

)
.

In other words, it is multiplicative in the top argument, the Legendre symbol
is in fact a character (however this is not something we will dive deeper into in
this paper).

Now for some computations of the Legendre symbol, the following theorem
will deal with the case when x equals 1,−1 or 2. Before that though we want to
define two functions that will clear up the notations in the following paragraphs
a bit.

Definition 5.2. Let a be an odd integer. We define the functions

ε(a) ≡ a− 1

2
(mod 2) =

{
1 a ≡ −1 (mod 4)
0 a ≡ 1 (mod 4)

and

ω(a) ≡ a2 − 1

2
(mod 2) =

{
1 a ≡ ±5 (mod 8)
0 a ≡ ±1 (mod 8).

Theorem 5.3. Let p be a prime number, and q a power of p.
We have that if p = 2 then every element of Fq is a square.
If p ̸= 2 then the elements of F∗

q that are squares forms a subgroup H such
that |F∗

q : H|= 2, id est H has index 2.

Proof. For the first point consider the function f : Fq → Fq such that f(a) = a2,
recall that here we have q as a power of p = 2 meaning that Fq is of characteristic
2 and so, in this field, we have that (a− b)2 = a2 − b2. Thus,

f(a) = f(b) ⇐⇒ a2 = b2 ⇐⇒ a2 − b2 = 0 ⇐⇒ (a− b)2 = 0 ⇐⇒ a− b = 0.

Hence, f is injective and so (since Fq is a finite field) f is also surjective, id est
f is an automorphism, and we conclude that in this case all elements of Fq are
indeed squares.

For the second point, let y ∈ Fq (id est let y be an element in the algebraic
closure of Fq) such that y2 = x where x ∈ F∗

q .

Since x ∈ F∗
q we know that xq−1 = 1 and so yq−1 = x

q−1
2 = ±1. Thus, x is a

square in Fq if and only if yq−1 = 1 (id est y ∈ F∗
q).

Moreover, this also means that the kernel of the function x 7→ x
q−1
2 is pre-

cisely equal to H = F∗2
q and, since F∗

q is cyclic of order q − 1, we have that F∗2
q

has index 2 as stated. This completes the proof.
□
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Theorem 5.4. We have that for the Legendre symbol that the following is true:

(i) (
1

p

)
= 1.

(ii) (
−1

p

)
= (−1)ε(p).

(iii) (
2

p

)
= (−1)ω(p).

Proof. Since 1 is always a quadratic residue modulo p the (i) is clear. For
(ii), if we use the alternative definition stated in definition 5.1, it is straightfor-

ward to see that (−1
p ) = (−1)

p−1
2 , but this is precisely as desired since (−1)k

only depends on whether k is even or odd (id est we can view (−1)
p−1
2 as

(−1)
p−1
2 (mod 2) = (−1)ε(p)).

For (iii) there is a bit more work needed. Let ζ denote the primitive 8th

root of unity in an algebraic closure Fp of the finite field Fp. Then we have that
ζ4 = −1 which implies that ζ2+ ζ−2 = 0, and so, for an element y = ζ+ ζ−1 we
have y2 = ζ2 + ζ−2 + 2 · (ζζ−1) = 2 (id est y is the square root of the element
2 in Fp). Which, by argument seen in the proof of Theorem 5.3, means that
(xp ) = yp−1.

Now, since we are working modulo p, we have

yp = ζp + ζ−p

and so, if p ≡ ±1 (mod 8), we get yp = ζp + ζ−p = y and(
2

p

)
= yp−1 = 1.

On the other hand, if p ≡ ±5 (mod 8), we get (since ζ4 = −1) yp = ζp+ ζ−p =
ζ5 + ζ−5 = ζ4(ζ1 + ζ−1) = −(ζ1 + ζ−1) = −y. Which implies, in the case where
p ≡ ±5 (mod 8), that yp−1 = −1.

We can thusly conclude that (iii) holds (since this was how we defined the
function ω(a)). This finishes the proof of the theorem. □

Lastly, we have the quadratic reciprocity law that state, if p and q are dis-

tinct odd primes, that (pq )(
q
p ) = (−1)

p−1
2

q−1
2 . This can, alternatively, be written

(using the ε(n) from Definition 5.2 and the fact that the Legendre symbol is mul-

tiplicative in the top argument, since p and q are distinct we have (p
2

q ) = 1 we

can move one Legendre symbol to the right-hand side) as (pq ) = ( qp )(−1)
p−1
2

q−1
2

and this is how Gauss stated the quadratic reciprocity law.



Local to global principle 23

Theorem 5.5. (Gauss) Let p and q be two distinct odd primes then(
p

q

)
=

(
q

p

)
(−1)

p−1
2

q−1
2 .

To prove this theorem we will make use of two lemmas that we will state and
prove shortly. First we make a note that we can use the Gauss sum

y =
∑
x∈Fq

(
x

q

)
wx.

We are able to do this, and it will be well-defined, since if we let x ∈ Fq and

w ∈ Fp such that w is an qth root of unity (this means that wx is well-defined
since wq = 1) the sum will indeed be well-defined.

Note that we will abuse the notation a bit and let q also denote the image of
q in Fp.

Lemma 5.6. y2 = (−1)ε(q)q

Proof. We prove this by manipulating the Gauss sum stated above. Recall that
the Legendre symbol is multiplicative in the top argument we have:

y2 =
∑

x1∈Fq

(
x1

q

)
wx1 ·

∑
x2∈Fq

(
x2

q

)
wx2 =

∑
x1,x2∈Fq

(
x1x2

q

)
wx1+x2 .

This can, with a simple variable change, be rewritten as∑
x1,x2∈Fq

(
x1x2

q

)
wx1+x2 . =

∑
z1∈Fq

wz1

[ ∑
z2∈Fq

(
z2(z1 − z2)

q

)]
.

Then, if z2 ̸= 0, we have (by the multiplicative nature of the Legendre symbol
and the fact that z2(z1 − z2) = −1(1− z1z

−1
2 )z22) that(

z2(z1 − z2)

q

)
=

(
(z1z

−1
2 − 1)z22
q

)
=

(
−1

q

)(
(1− z1z

−1
2 )

q

)(
z22
q

)
.

This can be simplified; from Theorem 5.4 we have (−1
q ) = (−1)ε(q) and

from the definition we can see that (
z2
2

q ) = 1 and so (−1
q )(

(1−z1z
−1
2 )

q )(
z2
2

q ) =

(−1)ε(q)(
(1−z1z

−1
2 )

q ).

Now, if we denote

Cz1 =
∑

z2∈F∗
q

(
(1− z1z

−1
2 )

q

)
we have

y2 = (−1)ε(q)
∑
z1∈Fq

Cz1w
z1 .

If z1 = 0 then C0 =
∑

z2∈F∗
q
( 1q ) = q − 1 where the last equality comes from

that there are q − 1 elements in F∗
q and, by Theorem 5.4, ( 1q ) = 1.
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On the other hand, if z1 ̸= 0 we have that z′ = 1− z1z
−1
2 runs over Fq −{1}

and so

Cz1 =
∑
z′∈Fq

(
z′

q

)
−
(
1

q

)
= −

(
1

q

)
= −1.

Where the second to last equality comes from that we know, by Theorem 5.3,
that the squares in F∗

q form a subgroup of index 2, id est the number of squares
in F∗

q equal the number of non-squares and the last equality is, again, Theorem
5.4.

Putting all this together, we have that

(−1)ε(q)y2 =
∑
z1∈Fq

Cz1w
z1 = q − 1−

∑
z1∈F∗

q

wz1 = q

and we are done. □

Lemma 5.7. yp−1 = (pq )

Proof. The proof of this lemma is quite straightforward; we again make use of
the Gauss sum but also the fact that Fp is of characteristic p.

We have that

yp =
∑
x∈Fq

(
x

q

)
wxp =

∑
z∈Fq

(
zp−1

q

)
wz =

(
p−1

q

) ∑
x∈Fq

(
z

q

)
wz =

(
p−1

q

)
y.

Now, let b be the multiplicative inverse of a then 1 ≡ ab (mod p) and so
a ≡ a2b (mod p) which means that

1 ·
(
b

p

)
=

(
a2

p

)(
b

p

)
=

(
a2b

p

)
=

(
a

p

)
.

This means that

yp =

(
p−1

q

)
y =

(
p

q

)
y

and we can, dividing both side with y, see that

yp−1 =

(
p

q

)
as we wanted to prove. □

The proof of Theorem 5.5 is now instantaneous by the above lemmas and by
Theorem 5.4.

Proof. (of Theorem 5.5)
By Lemma 5.6 and 5.7 we have:(

(−1)ε(q)q

p

)
= yp−1 =

(
p

q

)
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and by Theorem 5.4: (
(−1)ε(q)

p

)
= (−1)ε(q)ε(p)

(since if ε(q) = 0 then (−1)ε(q)ε(p) = 1 no matter what ε(p) is, as it should be.
On the other hand, if ε(q) = 1 the above-mentioned theorem gives the formula).

Then, since the Legendre symbol is multiplicative in the top argument and
by Definition 5.2, we get the reciprocity law as stated:(

q

p

)
= (−1)

q−1
2

p−1
2

(
p

q

)
.

□

6. Hilbert symbol

Throughout this section we will let k denote either R or Qp (id est either the
field of real numbers or the field of p−adic numbers for some p prime).

Definition 6.1. Let a, b ∈ k∗. We call the number (a, b) = ±1 the Hilbert
symbol of a and b and define it as

• (a, b) = 1 if z2− ay2− bx2 = 0 has a solution other than (0, 0, 0) ∈ k3

• (a, b) = −1 if such a solution does not exist.

Note that we can multiply a and b with squares without changing the value
of the Hilbert symbol (a, b). Hence, (a, b) is a map from k∗/k∗2 × k∗/k∗2 to
{1,−1}.

We will denote, if clarification is needed, the Hilbert symbol as (a, b)p, re-
spectively (a, b)∞, with a, b ∈ Qp, respectively a, b ∈ R (id est if the form
z2 − ay2 − bx2 represent 0 or not, in Qp respectively R).

Proposition 6.2. Let a, b, c, d ∈ k∗ and assume a ̸= 1 in the Hilbert symbols
containing 1− a. The following are properties of the Hilbert symbol:

(i) (a, b) = (b, a) and (a, c2) = 1
(ii) (a,−a) = 1 and (a, 1− a) = 1
(iii) (a, b) = 1 =⇒ (ad, b) = (d, b)
(iv) (a, b) = (a,−ab) = (a, (1− a)b)

Proof. For (i) : if (x′, y′, z′) ∈ k3 is a solution to quadratic form z2−ay2−bx2 = 0
then (y′, x′, z′) is gonna be a solution to z2 − by2 − ax2 = 0, thus (a, b) = (b, a).
Further, if b equals a square c2 then clearly z2−ay2−bx2 = z2−ay2−c2x2 = 0
has a solution in k3, hence (a, c2) = 1.

For (ii) : if b = −a then the quadratic form z2−ay2−bx2 = z2−ay2+ax2 will
have a zero at (0, 1, 1) (id est (a,−a) = 1), and if b = 1−a then z2−ay2−bx2 =
z2 − ay2 − (1− a)x2 = z2 − ay2 − x2 + ax2 will have a zero at (1, 1, 1), (which
implies that (a, 1− a) = 1).
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For (iii) : if (a, b) = 1 then the quadratic form z2 − ay2 − bx2 = 0 has a
solution (not equal to (0, 0, 0)). Now, either b is a square of some element b′

whence we can see that the form has a zero at (1, 0, b′) and k(
√
b) = k and

the norm elements of k(
√
b)∗ equals k∗, or b is not a square whence we know

that the solution (x′, y′, z′) ̸= (0, 0, 0) must be such that y′ ̸= 0 (else b would
be a square). This means that a is the norm of z

y + β x
y , where β denotes a

square root of b. In either case we have that a belongs to the group of norms of
k(
√
b)∗ (denoted Nk(

√
b)∗) and we have that d ∈ Nk(

√
b)∗ ⇔ ad ∈ Nk(

√
b)∗,

this proves (iii).
For (iv) : this follows from (i)− (iii).

□

It is worth to note that (iii), in the proposition above, is a special case of

(ad, b) = (a, b)(d, b),

which demonstrates the bilinearity of the Hilbert symbol. The actual proof
that the Hilbert symbol is bilinear we get from the following theorem, since the
formulae for the Hilbert symbols given in the theorem are bilinear.

Theorem 6.3. For k = R, if a > 0 or b > 0 we have that (a, b) = 1 and if both
a, b < 0 we have (a, b) = −1.

For k = Qp, let a, b be written in the form pαu respectively pβv, with u, v
p−adic units, then we have

(a, b) = (−1)αβε(p)
(
u

p

)β(
v

p

)α

, p ̸= 2,

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u), p = 2.

Theorem 6.4. (Hilbert) Let a, b ∈ Qp. Then (a, b)v = 1 for all v ∈ V (possibly
excluding some finite amount of elements) and∏

v∈V

(a, b)v = 1.

Proof. First note that by the observation above, that the Hilbert symbol is
bilinear, it is enough to prove the theorem in the cases where a, b equals −1
or some prime q. We make use of Theorem 6.3 in all of the following cases to
calculate the Hilbert symbol.

Case a = −1, b = −1 : we have (a, b)∞ = (a, b)2 = −1 and (a, b)v = 1 for
all v ∈ V − {2,∞}, thus the product equals 1 as desired.

Case a = −1, b = q : here we have two sub-cases (q = 2 and q ̸= 2). If
q = 2 we have (a, b)v = (−1, 2)v = 1 for all v ∈ V . If q ̸= 2, we have (a, b)v = 1
for all v ∈ V − {2, q} and (a, b)2 = (a, b)v = (−1)ε(q). Thus, in both cases, the
product equals 1.

Case a = q, b = q′ : where q′ is another prime (possibly distinct from q).
If q = q′ we have for all v ∈ V , by Proposition 6.2 case (iv) together with (i),
that (a, b)v = (q, q)v = (−1, q)v and we can refer back to the previous case.
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If q ̸= q′ and q′ = 2 we have (a, b) = (q, 2) = 1 for all v ∈ V − {2, q}, for
v = 2, q we have (q, 2)2 = (−1)ω(q) and

(q, 2)q =

(
2

q

)
= (−1)ω(q),

where this last equality comes from Theorem 5.4.
If q ̸= q′ and q, q′ ̸= 2, we have (a, b)v = (q, q′)v = 1 for all v ∈ V −{2, q, q′},

for v = 2, q, q′ we have (a, b)2 = (q, q′)2 = (−1)ε(q)ε(q
′) and

(a, b)q = (q, q′)q =

(
q′

q

)
, (a, b)q′ = (q, q′)q′ =

(
q

q′

)
.

However, by Theorem 5.5 (quadratic reciprocity), we have(
q

q′

)(
q′

q

)
= (−1)ε(q)ε(q

′)

from which we can conclude that the product must be equal to 1, which finishes
the proof.

□

This next theorem proves the existence of rational numbers given a Hilbert
symbol, id est given elements ai ∈ Q∗ and a collection (ei,v)i∈I,v∈V (where I
is a set of indices) of numbers ±1 there exists a x ∈ Q such that (ai, x)v =
ei,v ∀i ∈ I, v ∈ V.

Before we actually state and prove the theorem, we will first present some
lemmas that will be needed for the proof. The first two of these lemmas will
be stated without proof (proofs for these can be found exempli gratia in [Ser73]
page 24 and 74-75 respectively).

Lemma 6.5. (Chinese remainder theorem) Let a1, .., ak and l1, ...lk be in-
tegers such that gcd(li, lj) = 1 for all i ̸= j, id est all the li are relatively prime,
and 0 ≤ ai < li for all i. Then there exists an integer a such that

a ≡ ai (mod li) for all i.

Lemma 6.6. (Dirichlet theorem) Let a, n ∈ Z≥1 be relatively prime integers.
Then there exists infinitely many primes p for which p ≡ a (mod n).

Lemma 6.7. (Approximation lemma) Let S be a finite subset of V and let∏
v∈S Qv be equipped with the standard product topology. Then the image of Q

is dense in
∏

v∈S Qv.

Proof. Suppose S = {∞, p1, ..., pn}, with pi’s being distinct primes, we then
want to show that Q is dense in R × Qp1 × ... × Qpn . We do this by showing
that any point, (x∞, x1, x2, ..., xn), in this product is a closure point of Q (id
est every open neighbourhood of this point contains at least one point of Q).

So, let (x∞, x1, x2, ..., xn) ∈ R × Qp1
× ... × Qpn

be a point of the product.
We can assume xi ∈ Zpi for 1 ≤ i ≤ n, if not we may simply multiply with
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some integer to make it so. Then, given any ϵ > 0 and any integer N > 0, we
want to prove that there exists an x ∈ Q such that

|x− x∞|< ϵ and ordpi(x− xi) ≥ N for all i ∈ {1, ..., n}.

By the Chinese remainder theorem (applied to li = pNi ) there exists some
y ∈ Z such that ordp1

(y − xi) ≥ N for all i.
Now, pick some prime number q ≥ 2 (actually any number that is relatively

prime with all pi’s would work). Then, since qm → ∞ as m → ∞, we have that
the rational numbers of the form a

qm , with a ∈ Z and m ≥ 0, are dense in R.
Now, pick a number b on the form above (id est b = a

qm ) such that

|y − x∞ + bpN1 · · · pNn |≤ ϵ.

Then x = y+ bpN1 · · · pNn (which will be a rational number) will be as desired
and we are done. □

Now to the theorem I alluded to above which will make use of Dirichlet’s
theorem (Lemma 6.6) and the approximation lemma (Lemma 6.7).

Theorem 6.8. Let (ai)i∈I and (ϵi,v)i∈I,v∈V be collections of numbers from Q∗

respective numbers equal to {±1} (here I is a finite index set). We have that
there exists an x ∈ Q∗ such that (ai, x)v = ϵi,v for all i ∈ I and for all v ∈ V if
and only if the following conditions hold:

(i) All, but a finite amount, ϵi,v equals 1.
(ii)

∏
v∈V ϵi,v = 1 for all i ∈ I.

(iii) There exists, for all v ∈ V, xv ∈ Q∗
v such that, for all i ∈ I, (ai, xv)v = ϵi,v.

Proof. The ”if” part of (i) and (ii) follows from Theorem 6.4. Furthermore, for
(iii) we can simply take xv = x.

The other direction is more work; let (ϵi,v)i∈I,v∈V be a collection of numbers
equal to ±1 that satisfies the three conditions (i), (ii) and (iii) in the theorem.
We may also, since we are free to multiply ai by the square of some integer,
assume that the ai’s are integers. Now, let S, T ⊂ V be two subsets of V where
v ∈ S if v = ∞, 2 or is a prime factor of any ai and v ∈ T if there exists i ∈ I
such that ϵi,v = −1. We can first note that these sets will be finite (since the
collections (ai) and (ϵi,v) are finite) and we may also note that we can, and will
indeed, separate the proof into two cases: if S ∩ T = ∅ or if the intersection is
not empty (which we will call the general case).

Case S ∩ T = ∅ : Put

t =
∏

l∈T−{∞}

l and s = 8 ·
∏

l∈S−{2,∞}

l.

We have, since S ∩ T = ∅, that these two integers, s and t, are relatively
prime and both are ≥ 1 whence, by Lemma 6.6, we can find a prime number p
such that p ≡ t (mod s) and p /∈ S ∪ T. We then want to show that x = tp will
be as desired (id est, for all i ∈ I and v ∈ V, (ai, x)v = ϵi,v).
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If v ∈ S then, again since S∩T = ∅, we have ϵi,v = 1 and we are left to check
if (ai, x) = 1. We can first note that if v = ∞ then, since both t > 0 and p > 0
we have x > 0, and so (ai, x)∞ = 1 by Theorem 6.3. On the other hand, if
v ̸= ∞, we have that v is a prime number l and (since x and t are l−adic units,
because l ̸= p by our choice of p) x = tp ≡ t2 (mod s) thus x ≡ t2 (mod 8) if
l = 2 and x ≡ t2 (mod l) if l ̸= 2, either way x is a square in Q∗

q and we can

conclude that (ai, x)v = 1. Since, if we consider the equation z2−cy2−bx2 = 0,
and if b is square of some element b′ then the equation will have a solution at
(1, 0, b′) and so (c, b) = 1.

If v ̸∈ S, then v is a prime number l ̸= 2 (since 2 is in S) and we also know
that l is not a prime factor of ai (since all of these are also in S), this means
that ai is a l−adic unit. Then by Theorem 6.3 we have that, for all b ∈ Q∗

l ,

(ai, b)l =

(
ai
l

)ordl b

.

.
If l ̸∈ T ∪ {p} then x = tp is a l−adic unit, which means that ordl x = 0,

which in turn means that the formula above shows that (ai, x)l = 1. However,
this is exactly what we want because, since l ̸∈ T, we have, by construction,
that ϵi,l = 1.

If l ∈ T (note that this means that l ̸= p by our choice of p) then, since x = tp
and t is the product of the elements of T, we have ordl x = 1. Furthermore, by
condition (iii) there exists some xl ∈ Q∗

l such that (ai, xl)l = ϵi,l for all i ∈ I
and we know, since l ∈ T, that at least one of these have ϵi,l = −1. This means
that ordl xl ≡ 1 (mod 2) hence we have, for all i ∈ I,

(ai, x)l =

(
ai
l

)
= (ai, xl)l = ϵi,l

as desired.
Only thing left is if l = p, this we can infer from the previous cases together

with the product formula (Theorem 6.4) and conclude that

(ai, x)p =
∏
v ̸=p

(ai, x)v =
∏
v ̸=p

ϵi,v = ϵi,p

and we are done.
Left to prove is the so called ”general case” where S∩T ̸= ∅. Since the squares

of Q∗
v forms an open set we have, by Lemma 6.7, that there exists a x′ ∈ Q∗ for

which x′

xv
is a square in Q∗

v for all v ∈ S. This means, specifically, that for all

v ∈ S we have (ai, x
′)v = (ai, xv)v = ϵi,v. Now, if we define εi,v = ϵi,v · (ai, x′)v,

then first note that if v ∈ S we have εi,v = 1. Furthermore, the collection
(εi,v)i∈I,v∈V satisfies the conditions (i), (ii) and (iii), this means that we can
use the previous case (where S and T are disjoint). So, by Case S ∩ T = ∅,
there exists a y ∈ Q∗ such that (ai, y)v = εi,v for all i ∈ I and for all v ∈ V.
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Now we can find an x with the desired properties, namely let x = yx′ and we
are done.

□

7. Hasse-Minkowski theorem

Theorem 7.1. (Hasse-Minkowski theorem) Let f be a quadratic form,
written as

f = a1x
2
1 + a2x

2
2 + ...+ anx

2
n, ai ∈ Q∗.

Then for f to represent 0 it is necessary and sufficient, that fv represent 0, for
all v ∈ V. Where V is equal to the set of all primes union infinity.

This is also, sometimes, called the local to global principle, because in other
words this means that for f to have a ”global” zero it must have ”local” zeroes
everywhere, and vice versa. Writing it like this the necessary part is clear, since
if f ”misses” a local zero then it cannot have a global zero, thus we only need
to show the sufficiency.

Proof. First note that we can, by exchanging f by a1f, assume that a1 = 1.
We will consider different cases of n and prove the theorem separately for

n = 2, 3, 4 and n ≥ 5.

1) Case n = 2: Here we have f = x2
1 − a2x

2
2, since fv represent 0, for all

v ∈ V, we have, in particular, that f∞ represent 0 which means that a2 > 0.
Further, consider the prime decomposition of a2

a2 =
∏
p

a
ordp a2

2

then, since fp represent 0 and so a2 is a square in Qp (because fp = x2
1−a2x

2
2 =

0 =⇒ a2 =
x2
1

x2
2
= (x1

x2
)2), we have that ordp a2 is even. This means that a2 is a

square in Q and f represent 0.

2) Case n = 3: Here we have f = x2
1 − a2x

2
2 − a3x

2
3 (for easier notation lets

write a2 = a and a3 = b). We can assume, since we are free to multiply a and
b with any square, that a, b are square free integers (id est ordp a and ordp b
equals 0 or 1 for all p primes). We may also, without loss of generality, assume
that |a|≤ |b|. We now prove that f represent 0 if fv represent 0, for all v ∈ V,
by the use of induction on the integer k = |a|+|b|.

If k = 2; in this case we have f = x2
1 ± x2

2 ± x2
3, we can eliminate the case

where f = x1 + x2 + x3 since f∞ represent 0 (which is impossible in this case),
in the other cases f represent 0. For example, if f = x2

1 + x2
2 − x2

3 we can find
rational numbers x1, x2 and x3 such that f = 0.
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So lets assume k ≥ 3 (in other words, since a and b are integers, |b|≥ 2) and
write b as a decomposition into, since b square free, distinct primes

b = ±p1p2 · · · pi.
Further, assume that one of the primes in this decomposition equals p, then we
want to show that a is a square modulo p.

First note that this is clear if a ≡ 0 (mod p). On the other hand, if a ̸≡ 0
(mod p), a is a p−adic unit; by assumption (that fp represent 0), there exists
x = (x1, x2, x3) ∈ (Qp)

3 such that x2
1−ax2

2−bx2
3 = 0. Moreover, we can suppose

that x is primitive, since if not we can simply divide x2
1 − ax2

2 − bx2
3 = 0 by p as

many times as needed for one of x1, x2 or x3 to not be divisible by p anymore
(note that this does not change a or b in any way). Now, since b ≡ 0 (mod p),
we have x2

1 − ax2
2 ≡ 0 (mod p) and it follows that, if x2 ≡ 0 (mod p) then

x1 ≡ 0 (mod p) and p2 | bx2
3 (since bx2

3 = x2
1 − ax2

2), which means that x3 ≡ 0
(mod p) (since ordp(b) = 1), contradicting the assumption that x is primitive.
Hence x2 ̸≡ 0 (mod p), and thus a is a square modulo p and so it is a square

modulo b, since, because b = ±p1p2 · · · pi, we have that Z/bZ =
∏i

l=1 Z/plZ.
We can therefore find integers m, b′ such that m2 = a+ bb′, where |m|≤ |b|

2 .

Moreover, we can, by rewriting this equation as bb′ = m2 − a, see that bb′ is a
norm of the field extension k(

√
a) over k where k = Q or k = Qv. Which means

that f represent 0 if and only if f ′ represent 0, where

f ′ = x2
1 − ax2

2 − b′x2
3.

This is the case since f = x2
1 − ax2

2 − bx2
3 represent 0 if and only if (a, b) = 1

(which is the case if b is a norm of k(
√
a)/k). So, since bb′ is a norm of k(

√
a)/k,

we have (a, bb′) = (a, b)(a, b′) = 1, id est f represent 0 if and only if f ′ represent
0.

Now write b′ = b′′u where b′′, u ∈ Z and b′′ square free, then |b′′| < b since
we have, because |b| ≥ 2 and |a| ≤ |b|,

|b′| =
∣∣∣∣m2 − a

b′

∣∣∣∣ ≤ |b|
4

+ 1 < |b|.

Whence we can conclude that the induction hypothesis applies to the qua-
dratic form

f ′′ = x2
1 − ax2

2 − b′′x2
3,

which is equivalent to f ′, and so it will represent 0 in Q, which means (by
previous remark) that f will represent 0 in Q and we are done with this case.

3) Case n = 4:
In this case we write f = ax2

1 + bx2
2 − (cx2

3 + dx2
4). For v ∈ V we have by

Corollary 4.12 that, since fv represent 0, there exists a yv ∈ Q∗
v such that both

ax2
1 + bx2

2 and cx2
3 + dx2

4 represent yv and by Corollary 4.14 (note that this also
applies to Q∞ = R) this is the same as the following equations being satisfied

(yv,−ab)v = (a, b)v and (yv,−cd)v = (c, d)v ∀ v ∈ V.
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After applying Theorem 6.8 (which we can apply since
∏

v∈V (a, b)v =
∏

v∈V (c, d)v =
1), we can procure a y ∈ Q∗ such that

(y,−ab)v = (a, b)v and (y,−cd)v = (c, d)v ∀ v ∈ V.

This means that the form ax2
1 + bx2

2 − yz2 represent 0 in Qv for all v ∈ V
and so will (by case 2) above) represent 0 in Q. Thus ax2

1 + bx2
2 represent y in

Q, similarly, with the same argument, we have that cx2
3 + dx2

4 represent y in Q
and with this we can conclude that f represent 0.

4) Case n ≥ 5:
In this case we write f on the form f = h − g where h = a1x

2
1 + a2x

2
2 and

g = a3x
2
3 + a4x

2
4 + ...+ anx

2
n.

Let S ⊂ V be the subset of V such that 2, ∞ and all p such that ordp(ai) ̸= 0
for, at least, one i ≥ 3 (id est for one of the coefficients of g) is in S. For v ∈ S
we have that, since fv represent 0 by assumption, there exists av ∈ Qv such that
both h and g represent av in Qv. This in turn means that there exist xv

i ∈ Qv

such that
h(xv

1, x
v
2) = av = g(xv

3, x
v
4, ..., x

v
n).

Now, by the so called approximation theorem (Theorem 6.7), there exists
x1, x2 ∈ Q for which, if h(x1, x2) = a, we have that a

av
∈ Q∗2

v , ∀ v ∈ S. Now if
we consider the quadratic form

f1 = az2 − g

then, if z = 1, we have az2 = a · 1 = a which means that a
av

∈ Q∗2
v . Moreover,

this also means that, if v ∈ S, g will represent both av and a in Qv and so f1
will represent 0 in Qv. On the other hand, if v ̸∈ S; as a direct consequence
of Theorem 3.2 we have that polynomials without constant terms (like the
polynomials we have here) have a non-trivial solution and by Hensel’s lemma
(Theorem 3.1) this solution can be lifted to a true solution.

We see, in any case, that f1 represent 0 inQv and by the induction hypothesis,
since f1 is of rank n− 1, f1 will represent 0 in Q, which means that g represent
a in Q and so, since h represent a, f will represent 0 in Q and we are done.

□
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