Exam in Combinatorics 7.5 hp February 8th, 2023

Please read carefully the general instructions:

- During the exam any textbook, class notes, or any other supporting material is forbidden.
- In particular, calculators are not allowed during the exam.
- In all your solutions show your reasoning, explaining carefully what you are doing. Justify your answers.
- Use natural language, not just mathematical symbols.
- Use clear and legible writing. Write preferably with a ball-pen or a pen (black or dark blue ink).
- A maximum score of 30 points can be achieved. A score of at least 15 points will ensure a pass grade.

GOOD LUCK!

1. Generating functions Let C_n be the sequence of Catalan numbers, that is numbers defined by the relation

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1},$$

With initial conditions $C_0 = C_1 = 1$.

- (a) (1 point) Compute C_2 and C_3 .
- (b) (2 points) Let G(x) be the generating function of the sequence C_n , show that $x(G(x))^2 G(x) + 1 = 0$.
- (c) (2 points) Conclude (using the initial conditions) that

$$G(x) = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

You can use that the McLaurin polynomial of $\sqrt{1-4x}$ is

$$p(x) = 1 - 2x - 2x^2 + \dots +$$

(**Hint**: For G to be a generating function it has to be bounded when x is close to 0)

- 2. Rook polynomials: (5 points) Compute the rook polynomial of the the chessboard C obtained from a 4×4 chessboard by forbidding all the cells below on of the diagonals.
- 3. Recursion: (4 points) Consider the following recursion relation

$$a_{n+2} + 4a_{n+1} + 4a_n = 3(-2)^n$$

With boundary conditions $a_0 = 0$ and $a_1 = 1$. Solve the relation finding a closed formula for a_n .

- 4. Graphs: The complete k-partite graph $K_{n_1,...,n_k}$ has vartices partitioned into k subsets of size n_1 , $n_2,...,n_k$ repectively. Two vertices are adjacent if and only if they belong to different subsets of the partition.
 - (a) (1 point) Draw a sketch for $K_{1,2,3}$.
 - (b) (3 points) Give the number of vertices, edges and the degree of every vertex in $K_{100,100,100}$.
 - (c) (2 points) Give necessary and sufficient conditions for K_{n_1,n_2,n_3} to have an Euler circuit.
 - (d) (2 points) Show that $K_{1,2,3}$ has an Hamilton cycle.
- 5. Minimal spanning trees: (3 points) Find a minimal spanning tree for the graph in Figure 1 and give its total weight. In order to get full points you have to state which algorithm you are using (Kruskal or Prym) and show the iterations at every step.
- 6. Transport Networks: Consider the transport network in Figure 2, where S is the source and T is the sink.
 - (a) (3 points) Find a flow with the maximum value for the network.
 - (b) (2 points) Give a cut with the minimum capacity for the network. Determine the capacity of such cut.

Figure 1: Weighted Graph

Figure 2: Network