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The exponential distribution

A continuous random variable X is said to have an exponential
distribution with paramenter λ > 0, if

fX (x) =

{
λe−λx , x ≥ 0,

0, x < 0,

or, equivalently, if

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (t)dt =

{
1− e−λx , x ≥ 0,

0, x < 0.

Let X ∼ Exp(λ).

• E[X ] = 1
λ , Var(X ) = 1

λ2 .

• MX (t) = E[etX ] =
∫∞
0

etxλe−λxdx = λ
λ−t , for t < λ.
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Properties

• Memoryless. P(X > s + t |X > t) = P(X > s), for all s, t ≥ 0.
The exponential distribution is the only one with this property.
Example 5.2: time spent in a bank.
Example 5.3: post office.

• Comparing exponentials. P(X1 < X2) = λ1

λ1+λ2
.

• Minimum of exponentials. Assume that X1, . . . ,Xn are
independent exponentials with parameters λi , respectively. Then

min
i

Xi ∼ Exp

( n∑
i=1

λi

)
and, for each j = 1, . . . , n,

P(Xj = min
i

Xi ) =
λj∑n
i=1 λi

.

Moreover, the value of the minimum and the rank ordering of the Xi

are independent.
Example 5.8: post office.
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The gamma distribution

If X1, . . . ,Xn are i.i.d. exponentials with parameter λ, then their sum
Sn =

∑n
i=1 Xi has a gamma distribution with parameters n and λ, and

we write Sn ∼ Γ(n, λ).

• fSn(x) = λe−λx (λx)n−1

(n−1)! .

• FSn(x) = P(Sn ≤ x) = 1−
∑n−1

i=0
(λx)i

i! e−λx

• E[Sn] = n
λ , Var(Sn) = n

λ2 .

• MSn(t) = E[etSn ] = (1− t
λ )−n, for t < λ.
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Counting processes

A stochastic process {N(t), t ≥ 0} is said to be a counting process if
N(t) represents the total number of “events” that occur by time t. A
counting process must satisfy:

(i) N(0) = 0;

(ii) N(t) is integer valued:

(iii) if s < t, then N(s) ≤ N(t);

(iv) for s < t, N(t)− N(s) equals the number of events that occur in
the interval (s, t].

A counting process has:

• independent increments, if the numbers of events that occur in
disjoint time intervals are independent;

• stationary increments, if the distribution of the number of events
that occur in any time interval depends only on the length of the
interval.
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Poisson processes

Notation: The function f (·) is said to be o(h) if limh→0
f (h)
h = 0.

The counting process {N(t), t ≥ 0} is said to be a Poisson process with
rate λ > 0 if the following holds:

(i) N(0) = 0;

(ii) N(t) has independent increments;

(iii) P(N(t + h)− N(t) = 1) = λh + o(h);

(iv) P(N(t + h)− N(t) ≥ 2) = o(h).

Theorem

If {N(t), t ≥ 0} is a Poisson process with rate λ > 0, then, for all
s, t > 0, N(s + t)− N(s) is Poisson distributed with mean λt. In other
words, the number of events in any interval of length t is a Poisson r.v.
with mean λt.

It follows that the Poisson process has stationary increments.
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Interarrival and waiting times

• Interarrival times. Denote the time of the first event by T1 and,
for n > 1, let Tn denote the time between the (n − 1)-st and the
n-th event. The interarrival times Tn, n = 1, 2, . . . are i.i.d.
exponential r.v.’s with parameter λ.
(The assumption of stationary and independent increments is
equivalent to the memoryless property, hence interarrival times are
exponentials.)

• Waiting times. For n ≥ 1, denote the waiting time until the n-th
event by Sn. Note that Sn =

∑n
i=1 Ti ∼ Γ(n, λ). We have that

Sn ≤ t if and only if N(t) ≥ n.
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Combining and splitting Poisson processes

• Combining. If {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent
Poisson Processes with rates λ1 and λ2 respectively, then
{N1(t) + N2(t), t ≥ 0} is a Poisson process with rate λ1 + λ2.

• Splitting. Consider a Poisson process with rate λ and classify its
arrivals as type 1 with probability p or type 2 with probability 1− p,
independently of all other events. If N1(t) and N2(t) denote
respectively the number of type I and type II events occurring in
[0, t], then {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are both Poisson
processes with rates λp and λ(1− p), respectively. Moreover, the
two processes are independent.
Note that this can be generalized to more than two types.
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Order statistics property

Given a collection of r.v.’s Y1, . . . ,Yn, we say that Y(1), . . . ,Y(n) are its
order statistics if Y(k) is the k-th smallest value among Y1, . . . ,Yn, for
k = 1, . . . , n.

Theorem (Order statistics property)

Given that N(t) = n, the n arrival times S1, . . . ,Sn have the same
distribution as the order statistics corresponding to n independent U(0, t)
r.v.’s. In other words, the times S1, . . . ,Sn, considered as unordered
r.v.’s, are distributed independently and uniformly in (0, t).

Given Sn, the first (n − 1) arrival times S1, . . . ,Sn−1 are distributed as
the ordered values of a set of U(0,Sn) r.v.’s.
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Continuous-time Markov chains

A stochastic process {X (t), t ≥ 0} is a continuous-time Markov chain
if for all s, t ≥ 0 and nonnegative integers i , j , x(u), 0 ≤ u < s,

P(X (t + s) = j |X (s) = i ,X (u) = x(u), 0 ≤ u < s)

= P(X (t + s) = j |X (s) = i).

In other words, the process has the Markovian property that the
conditional distribution of the future given the present and the past
depends only on the present and is independent of the past.

• If P(X (t + s) = j |X (s) = i) is independent of s, then the process is
said to have stationary (homogeneous) transition probabilities.

• If Ti denotes the amount of time that the process stays in state i
before jumping into a different state, then
P(Ti > t + s |Ti > s) = P(Ti > t). We have that Ti is memoryless,
hence exponentially distributed.
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Alternative definition

A stochastic process {X (t), t ≥ 0} is a continuous-time Markov chain
if each time it enters state i the following holds:

(i) the amount of time it spends in that state before jumping into a
different state is exponentially distributed wih parameter vi ;

(ii) when the process leaves state i , it enters state j with probability Pij ,
such that Pii = 0 and

∑
j Pij = 1.

In other words, the process moves from state to state in accordance with
a discrete-time Markov chain, but the amount of time it spends in each
state, before jumping to the next state, is exponentially distributed.

• The amount of time the process spends in state i and the next state
visited are independent r.v.’s.
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Birth and death processes

A birth and death process is a continuous-time Markov chain with
states {0, 1, . . . } for which transitions from state i can go only to either
state i − 1 or state i + 1.
For example, let the states represent the number of people in a system. If
from state i people arrive at an exponential rate λi and leave at an
exponential rate µi , then the parameters {λi}∞i=0 and {µi}∞i=0 rare called
the birth and death rates, respectively.

• Note that if, for all i ≥ 0, λi = λ and µi = 0, then the process is a
Poisson process.

• If Ti denotes the time it takes for the process to reach state i + 1
starting from state i , then E[T0] = 1

λ0
and E[Ti ] = 1

λi
+ µi

λi
E[Ti−1].
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The transition probabilities

Let P(t) be the matrix with entries

Pij(t) = P(X (t + s) = j |X (s) = i)

which represent the transition probabilities that a process now in state
i will be in state j at a time t later.

For any pair of states i and j , let qij = viPij be the rates at which the
process from state i jumps to state j . Recall that vi is the rate at which
the process makes a transition when in state i .

Let Q the transition rate matrix with diagonal elements −vi and
off-diagonal elements qij . Note that Q determines the Markov chain:

• vi =
∑

j viPij =
∑

j qij ;

• Pij =
qij
vi

=
qij∑
j qij

.
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Kolmogorov’s equations

Theorem (Kolmogorov’s backward equations)

For all states i , j and times t ≥ 0, P ′(t) = QP(t), i.e.,

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t).

Theorem (Kolmogorov’s forward equations)

Under suitable regularity conditions, for all states i , j and times t ≥ 0,
P ′(t) = P(t)Q, i.e.,

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

The forward equations hold for all birth and death processes and all
processes with a finite number of states.
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Stationary distribution

Assume that, for each state j , the limiting probability Pj = limt→∞ Pij(t)
exists and is independent of the initial state i . Then the vector of (Pj)j is
a stationary distribution and it satisfies the balance equations

vjPj =
∑
k 6=j

qkjPk , for all states j .

Note that Pj represents the long-run proportion of time that the process
is in state j .

• A sufficient condition for the stationary distribution to exist is that
the chain is irreducible (all the states communicate) and positive
recurrent (the mean return time to each state is finite).

• In a continuous-time Markov chain, if a stationary distribution
exists, then it is unique.
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Example

Examples 6.1 and 6.15: a shoe shine shop.
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Nonhomogeneous Poisson processes

The counting process {N(t), t ≥ 0} is said to be a nonhomogeneous
Poisson process with intensity function λ(t) > 0, t ≥ 0 if the following
holds:

(i) N(0) = 0;

(ii) N(t) has independent increments;

(iii) P(N(t + h)− N(t) = 1) = λ(t)h + o(h);

(iv) P(N(t + h)− N(t) ≥ 2) = o(h).

We no longer require stationary increments. Instead, we allow for the
possibility that events may be more likely to occur at certain times.
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Properties

The mean value function is defined by m(t) =
∫ t

0
λ(y) dy .

Theorem

If {N(t), t ≥ 0} is a nonstationary Poisson process with intensity function
λ(t), t ≥ 0, then N(t + s)− N(s) is a Poisson r.v. with mean

m(t + s)−m(s) =
∫ t+s

s
λ(y) dy

• If {N(t), t ≥ 0} is an ordinary Poisson process with rate 1, and
{N̂(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(t), then {N̂(t), t ≥ 0} is distributed as {N(m(t)), t ≥ 0}.

• Conditioned on N̂(t) = n, the points of {N̂(s), s ∈ (0, t)} are i.i.d.

on (0, t) with distribution function m(s)
m(t) .
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Time sampling

Time sampling an ordinary Poisson process generates a
nonhomogeneous Poisson process.

• Let {N(t), t ≥ 0} be a Poisson process with rate λ. Suppose that an
event occurring at time t is counted with probability p(t),
independently of the past.

• If Nc(t) denotes the number of counted events by time t, then
{Nc(t), t ≥ 0} is a nonhomogeneous Poisson process with intensity
function λ(t) = λp(t).

Note: This can be used when simulating nonhomogeneous Poisson
processes.
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Example

Example 5.24: food stand.
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Compound Poisson processes

A stochastic process {X (t), t ≥ 0} is said to be a compound Poisson
process if it can be represented as

X (t) =

N(t)∑
i=1

Yi , t ≥ 0,

where {N(t), t ≥ 0} is a Posson process, and {Yi , i ≥ 1} is a family of
i.i.d. r.v.’s independent of {N(t), t ≥ 0}.

• E[X (t)] = λtE[Y1], Var(X (t)) = λtE[Y 2
1 ].
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Properties

• Countably many values. Suppose that Yi can only take countably
many values αj , j ≥ 1, and P(Yi = αj) = pj . If Nj(t) denotes the
number of type j events by time t, then Nj(t), j ≥ 1 are independent
Poisson r.v.’s with respective means E[Nj(t)] = λpj t. Hence, the
cumulative sum at time t can be expressed as X (t) =

∑
j αjNj(t).

As a consequence, as t grows large, the distribution of X (t)
converges to the normal distribution.

• Sum of independent compound Poisson processes. If
{X (t), t ≥ 0} and {Y (t), t ≥ 0} are independent compound Poisson
processes with respective parameters and distributions λ1,F1 and
λ2,F2, then {X (t) + Y (t), t ≥ 0} is a compound Poisson process
with parameter λ1 + λ2 and distribution F = λ1

λ1+λ2
F1 + λ2

λ1+λ2
F2.
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Example

Example 5.27: busy periods in a single-server queue.
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Mixed Poisson processes

For a positive r.v. L, the counting process {N(t), t ≥ 0} is said to be a
mixed Poisson process if, conditional on L = λ, it is a Poisson process
with rate λ.

A mixed Poisson process has stationary increments: if L is continuous
with density function g , then

P(N(t + s)− N(s) = n) =

∫ ∞
0

P(N(t + s)− N(s) = n | L = λ)g(λ) dλ

=

∫ ∞
0

e−λt
(λt)n

n!
g(λ) dλ.

In general, a mixed Poisson process does not have independent
increments: knowing how many events occur in an interval gives
information about the possible value of L, which affects the distribution
of the number of events in any other interval. Hence, it is not a Poisson
process or a Markov process.
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Mean and variance

From the laws of total expectation and variance, we get that the mean

E[N(t)] = EL[E[N(t) | L]] = EL[Lt] = tE[L]

and the variance

Var(N(t)) = EL[Var(N(t) | L)] + VarL(E[N(t) | L])

= EL[Lt] + VarL(Lt)

= tE[L] + t2Var(L).

The conditional density function of L given that N(t) = n is

fL|N(t)=n(λ) =
e−λtλng(λ)∫∞

0
e−λtλng(λ) dλ

, λ ≥ 0.
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Example

Example 5.30: insurance company.
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Exercises

Session 1. Chapter 5: 3, 8, 36, 40, 45, 49, 60.

Session 2. Chapter 5: 46, 78, 81b (assume that the result of 81a is
given), 95.
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