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The problem

Given a random vector X = (X1, . . . ,Xn) with density function
f (x1, . . . , xn), we want to compute

θ = E[g(X)] =

∫ ∫
· · ·
∫

g(x1, . . . , xn)f (x1, . . . , xn) dx1 · · · dxn,

for some n-dimensional function g .

Often it is not analytic possible to compute it exactly or to numerically
approximate it. However, we can approximate it using simulation.

Monte Carlo simulation.

• Simulate r independent random vectors X(i) = (X
(i)
1 , . . . ,X

(i)
n ),

i = 1, . . . , r , having density f (x1, . . . , xn).

• Compute Yi = g(X(i)).

• SLLN: limr→∞

∑r
i=1 Yi

r = E[Yi ] = E[g(X)] a.s..

How to simulate random vectors having a specified joint distribution?
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Simulating a uniform random variable

• Number ten balls from 0 to 9, put them in a bag, and draw n balls,
with replacement. The sequence of digits obtained represents the
fractional part of a U(0, 1) r.v. rounded off to the nearest

(
1
10

)n
.

• Digital computers use pseudo random numbers. Start with an
initial value X0 and, for suitable choices of a, c ,m, recursively
compute the values

Xn+1 = (aXn + c) modulo m, n ≥ 0.

Each Xn

m approximates a U(0, 1) and the sequence
(
Xn

m

)
n

seems
generated from independent U(0, 1) r.v.’s.

We assume we can simulate random numbers, i.e., independent U(0, 1),
and we present three methods for simulating continuous r.v.’s.
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The inverse transformation method

• The inverse transformation method. Let U ∼ U(0, 1). For any
continuous distribution function F , the r.v.

X = F−1(U) = inf{x |F (x) ≥ U}
has distribution function F .

Proof. Since F is monotone,

FX (a) = P(X ≤ a) = P(F−1(U) ≤ a) = P(U ≤ F (a)) = F (a).

Note that the definition in the book (F−1(U) = x s.t. F (x) = U) is not
proper: if the density is zero on an interval, then the value of x is not
unique.

Hence, when F−1 is computable, we can simulate X from F by
simulating U ∼ U(0, 1) and then setting X = F−1(U).

Stochastic Processes and Simulation II
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Example

Example 11.3: Simulating an exponential r.v..

Exponential r.v.’s have distribution F (x) = 1− e−λx . Hence, if

U ∼ U(0, 1), then − log(U)
λ ∼ Exp(λ) and −c log(U)

λ ∼ Exp(λc ).

Note that the log function is not the cheapest function to work with in
mathematical programs.

Stochastic Processes and Simulation II
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The rejection method

• The rejection method. Suppose that we can simulate a r.v. with

density g(x). If f (x)
g(x) ≤ c for all x , then we can simulate a

continuous r.v. X with density f (x).

1 Simulate Y with density g and U ∼ U(0, 1).

2 If U ≤ f (Y )
cg(Y )

, set X = Y , otherwise return to step 1.

Proof. For K = P
(
U ≤ f (Y )

cg(Y )

)
,

P(X ≤ x) = P
(
Y ≤ x

∣∣U ≤ f (Y )

cg(Y )

)
=

P
(
Y ≤ x ,U ≤ f (Y )

cg(Y )

)
K

=

∫ x

−∞ P
(
U ≤ f (y)

cg(y)

)
g(y) dy

K
=

∫ x

−∞
f (y)
c dy

K
,

and letting x →∞ shows that K = 1
c .

Stochastic Processes and Simulation II



DR
AF
T

Simulating random variables Variance reduction techniques Simulating stochastic processes Markov chain Monte Carlo methods Exercises

• Each iteration will result in an accepted value with probability

K = P
(
U ≤ f (Y )

cg(Y )

)
=

1

c
,

hence number of iterations is geometric with mean c .

• It is not necessary to simulate a new U(0, 1) after rejection, but we
can suitably modify the previous one, at the cost of some
computation. Indeed, if Y is rejected, we can use

U − f (Y )
cg(Y )

1− f (Y )
cg(Y )

=
cUg(Y )− f (Y )

cg(Y )− f (Y )
∼ U(0, 1).

Cost of simulation vs. cost of computation.
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Examples

Example 11.4: simulating a beta random variable.

Example 11.5: simulating a normal random variable.
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The hazard rate function

Consider a continuous positive r.v. X with distribution F and density f .
The hazard rate function λ(t) is defined by

λ(t) =
f (t)

1− F (t)
.

It represents the conditional probability density that a t-year-old item
with lifetime X will fail. Indeed,

P(X ∈ (t, t + dt) |X > t) =
P(X ∈ (t, t + dt),X > t)

P(X > t)

=
P(X ∈ (t, t + dt))

P(X > t)
≈ f (t)dt

1− F (t)
= λ(t)dt.

Stochastic Processes and Simulation II
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The hazard rate method

• The hazard rate method. Given a bounded function λ(t) s.t.∫∞
0
λ(t) dt =∞, we can simulate a r.v. S having λ(t) as its hazard

rate function.

1 Simulate a Poisson process with rate λ s.t. λ(t) ≤ λ for all t ≥ 0.

2 Accept an event that occurs at time t with probability λ(t)
λ

.
3 Set S to be the time of the first accepted event.

Simulate pairs of r.v.’s Ui ∼ U(0, 1),Xi ∼ Exp(λ), i ≥ 1. Stop at

N = min

{
n : Un ≤

λ(
∑n

i=1 Xi )

λ

}
and set S =

∑N
i=1 Xi .

From Wald’s equation, E[S ] = E
[∑N

i=1 Xi

]
= E[Xi ]E[N] = E[N]

λ , hence
the expected number of iterations is E[N] = λE[S ].
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Proof.

P(S ∈ (t, t + dt) |S > t)

= P(first accepted event in (t, t + dt) | no accepted events prior to t)

= P(accepted Poisson event in (t, t + dt) | no accepted events prior to t)

= P(accepted Poisson event in (t, t + dt))

= (λdt + o(dt))
λ(t)

λ
= λ(t)dt + o(dt).
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Special techniques for simulating continuous r.v.’s

Section 11.3: normal, gamma, chi-square, beta and exponential
distributions.
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Simulating from discrete distributions

The general methods for simulating from continuous distributions have
analogues in the discrete case.

• Analogue of the inverse transformation method. In order to
simulate a r.v. X having probability mass function

P(X = xj) = Pj , j = 1, 2, . . . ,
∑
j

Pj = 1,

let U ∈ U(0, 1) and set

X =



x1, if U < P1,

x2, if P1 < U < P1 + P2,
...

xj , if
∑j−1

i=1 Pi < U <
∑j

i=1 Pi ,
...

Note that P(X = xj) = P(
∑j−1

i=1 Pi < U <
∑j

i=1 Pi ) = Pj .

Stochastic Processes and Simulation II
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Example

Example 11.9: simulating a Poisson r.v..
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Motivation for variance reduction

Given a random vector X = (X1, . . . ,Xn) with density f (x1, . . . , xn) and
some n-dimensional function g , we want to compute

θ = E[g(X)] =

∫ ∫
· · ·
∫

g(x1, . . . , xn)f (x1, . . . , xn) dx1 · · · dxn.

Monte Carlo simulation.

• Simulate r independent random vectors X(i) = (X
(i)
1 , . . . ,X

(i)
n ),

i = 1, . . . , r , having density f (x1, . . . , xn).

• Compute Yi = g(X(i)).

• SLLN: limr→∞

∑r
i=1 Yi

r = E[Yi ] = E[g(X)] a.s..

Let Ȳ =
∑r

i=1 Yi

r . To know how fast the convergence is, we need control
on the variance

Var(Ȳ ) = E[(Ȳ − E[g(X)])2],

and we will see three techniques for reducing it.

Stochastic Processes and Simulation II
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Use of antithetic variables

Example: Suppose we have generated Y1,Y2, identically distributed. If

they are independent, then Var
(
Y1+Y2

2

)
= Var(Y1)

2 . However, if they are
dependent and negatively correlated, i.e., Cov(Y1,Y2) ≤ 0, then the
variance is reduced. Indeed,

Var

(
Y1 + Y2

2

)
=

Var(Y1) + Var(Y2) + 2Cov(Y1,Y2)

4

=
Var(Y1)

2
+

Cov(Y1,Y2)

2
≤ Var(Y1)

2
.

When simulating via the inverse transformation method (Xi = F−1i (Ui )
with Ui ∼ U(0, 1), for i = 1, . . . , n), we can use the following technique.

• Use of antithetic variables. If U ∼ U(0, 1), then 1− U ∼ U(0, 1)
and they are negatively correlated. Hence, rather than generating r
sets of n variables U(0, 1), we should generate r/2 sets and use each
set twice.
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Theorem

If X1, . . . ,Xn are independent, then, for any increasing functions f and g
of n variables,

E[f (X)g(X)] ≥ E[f (X)]E[g(X)].

Proof. Proof by induction on n. For n = 1, for any i.i.d. r.v.’s X and Y ,
we have that (f (X )− f (Y ))(g(X )− g(Y )) ≥ 0 and

0 ≤ E[(f (X )− f (Y ))(g(X )− g(Y ))]

= E[f (X )g(X ) + f (Y )g(Y )− f (X )g(Y )− f (Y )g(X )]

= 2E[f (X )g(X )]− 2E[f (X )]E[g(X )].

For larger n, see the book.
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Corollary

If U1, . . . ,Un are independent, and h is either an increasing or decreasing
function, then

Cov
(
h(U1, . . . ,Un), h(1− U1, . . . , 1− Un)

)
≤ 0.

Proof. If h is increasing, let g(x1, . . . , xn) = −h(1− x1, . . . , 1− xn), and
if h is decreasing, replace it with its negative.

When simulating via the inverse transformation method (Xi = F−1i (Ui )),
since F−1i (Ui ) is increasing in Ui , we have that g(F−11 (U1), . . . ,F−1n (Un)
is monotone whenever g is monotone. Hence, the antithetic variable
approach of twice using each set of U1, . . . ,Un by computing

g
(
F−11 (U1), · · · ,F−1n (Un)

)
and g

(
F−11 (1− U1), · · · ,F−1n (1− Un)

)
(which are identically distributed and negatively correlated) will reduce
the variance of the estimate of θ = E[g(X1, . . . ,Xn)].
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Variance reduction by conditioning

Recall the conditional variance formula for r.v.’s Y and Z

Var(Y ) = E[Var(Y |Z )] + Var(E[Y |Z ]) ≥ Var(E[Y |Z ]).

• Variance reduction by conditioning. If we can compute E[Y |Z ]
for some cleverly chosen r.v. Z , then E[Y |Z ] is a better estimator
of E(Y ) than is Y .

Moreover, for any λi ≥ 0 s.t.
∑

i λi = 1, and for a sequence of r.v.’s
Zi , i ≥ 1, we have that

E
[∑

i

λiE[Y |Zi ]

]
= E[Y ]

and

Var

(∑
i

λiE[Y |Zi ]

)
≤ Var(Y ).
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Examples

Example 11.16: queueing system with capacity.

Example 11.18: estimating the renewal function.
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Importance sampling

Suppose we want to estimate θ = E[h(X)] =
∫
h(x)f (x) dx, but

simulating X with density f is difficult or Var(h(X)) is large.

• Importance sampling. Let g be another density s.t. f (x) = 0 if

g(x) = 0, and Var
(

h(x)f (x)
g(x)

)
is small. Simulate X from g and let

θ = E[h(X)] =

∫
h(x)f (x)

g(x)
g(x)dx = E

[
h(X)f (X)

g(X)

]
.

Intuition: Since X has density g(X), the ratio f (X)
g(X) is usually small in

comparison to 1. However, since E
[
f (X)
g(X)

]
= 1, f (X)

g(X) is occasionally large

and Var
(

f (X)
g(X)

)
will tend to be large. We should choose g s.t. this ratio

is large exactly when h is very small, so that h(X)f (X)
g(X) is always small.
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Tilted densities

Let X be a r.v. with density f , and M(t) = E[etX ] =
∫
etx f (x) dx be its

moment generating function. The tilted density of X is defined as

ft(x) =
etx f (x)

M(t)
.

Example 11.22 :

• If X ∼ Exp(λ), then, for t ≤ λ, ft(x) is an exponential density with
rate λ− t.

• If X ∼ Ber(p), then ft(x) is the probability mass function of a

Bernoulli r.v. with parameter pt = pet

pet+1−p .

For the importance sampling estimator, we can use g = ft for an
appropriate choice of t.
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Sum of independent random variables

If X = (X1, · · ·Xn) is a vector of independent random variables with
densities fi , for i = 1, . . . , n, then the joint density function is

f (x1, . . . , xn) =
n∏

i=1

fi (xi ).

It is useful to simulate the Xi ’s according to their fi,t with a common t.

Example 11.23: sum of independent r.v.’s. For S =
∑n

i=1 Xi and
a > E

[∑n
i=1 Xi

]
, we want to approximate θ = P(S ≥ a) = E[1{S≥a}]. At

each iteration, estimate

θ̂ = 1{S≥a}

n∏
i=1

fi (Xi )

fi,t(Xi )
= 1{S≥a}

n∏
i=1

Mi (t)e−tXi

= 1{S≥a}M(t)e−tS ≤ M(t)e−ta,

and choose t that minimizes M(t)e−ta. It can be shown that the optimal
t = t∗ is such that E[S ] = a when the Xi ’s are simulated from fi,t∗ .
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Simulating stochastic processes

So far, we have seen how to simulate r.v.’s and random vectors. We can
easily simulate a stochastic process by simulating a sequence of r.v.’s
(not creative but often effective).

Example: simulating a renewal process.

1 Given an interarrival distribution F , simulate i.i.d. r.v.’s X1,X2, . . .
with distribution F .

2 Stop at N = min{n :
∑n

i=1 Xi > t}
3 The Xi ’s represents the interarrival times and the simulation yields
N − 1 events by time t.
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Simulating Poisson processes

Suppose that we want to simulate a Poisson process with rate λ until
time t.

• Simulate the sequence of exponentially distributed arrival times.

• Another approach:

1 Simulate N(t) ∼ Po(λt), the number of events by time t.
2 If N(t) = n, simulate n U(0, 1) r.v.’s.
3 To order them, rather than ordering a single list, create n random

lists and put U in list i if i−1
n
≤ U < i

n
. Then order each list (quick)

and obtain U1 < · · · < Un.
4 The values {tU1, . . . , tUn} represent the ordered times at which the

events occur.

Nonhomogeneous Poisson processes (where λ = λ(t)) are usually not
mathematically tractable, hence are strong candidates for simulations.
We will present three methods.
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Sampling a Poisson process

Sampling a Poisson process. By simulating a Poisson process with rate
λ ≥ λ(t) for all t ≤ T , and then randomly counting its events with

probability λ(t)
λ (thinning), we can simulate a nonhomogeneous Poisson

process with intensity function λ(t) up to time T .

Thinning algorithm:

1 Simulate independent r.v.’s {Xi ∼ Exp(λ)}i and {Ui ∼ U(0, 1)}i .
2 Stop at N = min{n :

∑n
i=1 Xi > T}.

3 For j = 1, . . . ,N − 1, let Ij =

{
1, if Uj ≤

λ(
∑j

i=1 Xi )

λ

0, otherwise,
and set

J = {j : Ij = 1}.
4 The counting process having events at the set of times
{
∑j

i=1 Xi : j ∈ J} is a nonhomogeneous Poisson process on [0,T ]
with intensity function λ(t).

Most efficient if λ(t) is close to λ throughout the interval, since we
would have the fewest number of rejected events.
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Improve the thinning method by breaking up the inteval [0,T ] into k
subintervals {Ii = [ti−1, ti ), i = 1, . . . , k}, with t0 = 0, tk = T , on which
we sample Poisson processes using λ1, . . . , λk s.t. λ(t) < λi for t ∈ Ii .

In the algorithm, t is the present time and I is the present interval.

1 Start with t = 0 and I = 1.

2 Simulate X ∼ Exp(λI ).

3 If t + X < tI , set t → t + X , simulate U ∼ U(0, 1) and accept the

event time t if U ≤ λ(t)
λI

. Return to step 2.

4 If t + X ≥ tI , stop if I = k , or set X → (X−(tI−t))λI

λI+1
∼ Exp(λI+1),

t → tI , I → I + 1, and go to step 3.

If on the subinterval Ii we have that λi = min{λ(s) : s ∈ Ii} > 0, then it
is better to first simulate a Poisson process with rate λi , then simulate a
nonhomogeneous Poisson process with intensity function λ(s)− λi , and
merge the two processes.
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Conditional distribution of the arrival times

For a nonhomogeneous Poisson process on [0,T ], given N(T ), the event
times are i.i.d. with conditional distribution

F (t) =

∫ t

0
λ(s)

m(T )
=

∫ t

0
λ(s)∫ T

0
λ(s) ds

, t ∈ (0,T ).

Since N(T ) ∼ Po(m(T )), we can simulate the nonhomogeneous Poisson
process by first simulating N(T ) and then simulating N(T ) r.v.’s from

their common density function f (t) = λ(t)
m(T ) .

Example 11.12: λ(t) = ct.
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Simulating the event times

The most basic approach is to simulate the event times in the order in
which they occur.

If an event occurs at time x , then, independently of what has occurred
prior to x , the time until the next event has distribution Fx s.t.

1− Fx(t) = P(no events in (x , x + t) | event at x)

= P(no events in (x , x + t))

= e−
∫ t
x
λ(s) ds ,

and density

fx(t) = λ(x + t)e−
∫ t
0
λ(x+s) ds .

Simulate X1 from F0. If X1 = x1, simulate X2 by adding x1 to a value
simulated from Fx1 . If X2 = x2, simulate X3 by adding x2 to a value
simulated from Fx2 , and so on.

Example 11.13: λ(t) = 1
t+a .
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Markov chain Monte Carlo methods

Let X be a discrete random vector taking values xi , i ≥ 1, and with
probability mass function P(X = xi ), for i ≥ 1. For a given h, we want to
compute

θ = E[h(X)] =
∞∑
i=1

h(xi )P(X = xi ).

• Monte Carlo simulation. Use U(0, 1) r.v.’s to simulate i.i.d.
X1, . . . ,Xr with mass function P(X = xi ) for i ≥ 1. From the SLLN,

θ = limr→∞

∑r
i=1 h(Xi )

r a.s..
Difficult to simulate the Xi ’s, especially if they are vectors of
dependent r.v.’s. Moreover, often P(X = xi ) = Cbi , i ≥ 1, with only
the bi ’s specified, and it is computationally hard to compute C .

• Markov chain Monte Carlo (MCMC) method. Simulate a
sequence of the successive states of a (vector-valued) Markov chain
X1,X2, . . . whose stationary distribution is π with πi = P(X = xi )

for i ≥ 1. Then θ = limr→∞

∑r
i=1 h(Xi )

r .
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Metropolis-Hastings algorithm

For bi > 0 for i ≥ 1 and B =
∑

i bi <∞, we want to generate a Markov
chain with stationary probabilities πi = bi

B for i ≥ 1. In particular, we
want to allow arbitrary stationary distributions that may only be specified
up to a multiplicative constant.

Metropolis-Hastings algorithm to define a Markov chain with state
space {Xn, n ≥ 0}.

1 Let Q be any irreducible transition matrix with entries q(i , j).

2 When Xn = i , simulate a r.v. Y s.t. P(Y = j) = q(i , j), j ≥ 1. If

Y = j , then set Xn+1 =

{
j , w.p. α(i , j)

i , w.p. 1− α(i , j).
.
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• The Markov chain has transition probabilities Pi,j given by

Pi,j =q(i , j)α(i , j), if j 6= i ,

Pi,i =q(i , i) +
∑
k 6=i

q(i , k)(1− α(i , k)).

• The Markov chain has stationary probabilities πi if it satisfies the
balance equations for j 6= i

πiPi,j = πjPj,i

πiq(i , j)α(i , j) = πjq(j , i)α(j , i),

which are solved by taking πi = bi
B and α(i , j) = min

(
πjq(j,i)
πiq(i,j)

, 1
)

.

• Since α(i , j) = min
(
πjq(j,i)
πiq(i,j)

, 1
)

= min
(

bjq(j,i)
biq(i,j)

, 1
)

, the value of B is

not needed to define the Markov chain.

• Almost always the stationary probabilities πi ’s are also limiting
probabilities (a sufficient condition is Pi,i > 0 for some i).
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Gibbs sampling

We want to simulate a discrete random vector X = (X1, . . . ,Xn) with
probability mass function p(x) = Cg(x), where g is known and C is not.

Gibbs sampling to define a vector-valued Markov chain.
1 When in state x = (x1, . . . , xn), choose u.a.r. one coordinate, say the
i-th coordinate.

2 Simulate a r.v. X with mass P(X = x) = P(Xi = x |Xj = xj , j 6= i}
(assume we can). If X = x , then consider as the candidate next
state y = (x1, . . . , xi−1, x , xi+1, . . . , xn).

3 Use the Metropolis-Hastings algorithm with

q(x, y) =
1

n
P(Xi = x |Xj = xj , j 6= i} =

p(y)

n P(Xj = xj , j 6= i)
.

4 The candidate state y is accepted with probability

α(x, y) = min

(
p(y)q(y, x)

p(x)q(x, y)
, 1

)
= min

(
p(y)p(x)

p(x)p(y)
, 1

)
= 1,

hence it is always accepted.
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The Ising model

• The Ising model is the simplest model of ferromagnetism, which
arises when atomic spins align s.t. their magnetic moments all point
in the same direction, yielding a macroscopic net magnetic moment.

• Consider discrete r.v.’s with spins +1 or −1 and a state space
{−1, 1}V , where V is a large part of a lattice.

• The spins interact with their neighbors: spins that agree have a
lower energy than spins that disagree. The energy of a state σ is
given by the Hamiltonian

H(σ) =
∑
v∼w

1{σ(v) 6=σ(w)}, σ ∈ {−1, 1}V , v ,w ∈ V ,

and its probability by πσ = Cβe
−βH(σ), where β > 0 is a constant

(inverse temperature) and Cβ is a normalizing constant.
• The system tends to the lowest energy, but heat can disturb this

tendency and create the possibility of different structural phases
(phase transitions).
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Gibbs sampling applied to the Ising model

Since Cβ is hard to compute, direct sampling from the distribution π is
hard. We can then apply Gibbs sampling to define a Markov chain on{

X (k) ∈ {−1, 1}V , k ≥ 0
}
.

1 Start in X (0) with all −1 or all 1. When in state X (k), choose u.a.r.
one element, say the i-th element X

(k)
i .

2 The next state X (k+1) is s.t. X
(k+1)
j = X

(k)
j for all j 6= i and X

(k+1)
i

is a simulated r.v. with mass P
(
X

(k+1)
i = x |X (k)

j = xj , j 6= i
)
.

In particular, for the 1-dim Ising model,

P
(
X

(k+1)
i = 1 |X (k)

i−1 + X
(k)
i+1 = 0

)
=

1

2
,

P
(
X

(k+1)
i = 1 |X (k)

i−1 = X
(k)
i+1 = 1

)
=

1

1 + e−2β
,

P
(
X

(k+1)
i = 1 |X (k)

i−1 = X
(k)
i+1 = −1

)
=

e−2β

1 + e−2β
.
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Exercises

Session 8. Chapter 11: 1, 5, 7, 8, 13, 30-33. For 8 use Stirling’s formula.

Session 9. Chapter 11: 17, 23, 24. For 23 assume that the intensity is
strictly positive everywhere.
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