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Symmetric random walk

Consider a symmetric random walk {Xn, n ∈ N}, which at each time is
equally likely to go one step up or down, i.e., the Xn’s are i.i.d. with

P(Xn = 1) = P(Xn = −1) =
1

2
.

This is a Markov chain with Pi,i+1 = 1
2 = Pi,i−1 for i = 0,±1,±2, . . . .

• Sn =
∑n

i=1 Xi .

• E[Sn] = 0 and Var(Sn) = n.

• By the CLT 1√
n
Sn converges in distribution to a N (0, 1).
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Scaling limit of a random walk

Let’s speed up this process by taking smaller and smaller steps in
smaller and smaller time intervals. If at each ∆t time unit we take a step
of size ∆x up or down with equal probabilities, then the position at time
t is

X (t) = ∆x
(
X1 + · · ·+ Xbt/∆tc

)
,

where the Xi ’s are i.i.d. with P(Xi = 1) = P(Xi = −1) = 1
2 .

• E[X (t)] = 0 and Var(X (t)) = (∆x)2
⌊

t
∆t

⌋
.

Go to the limit: let ∆x = σ
√

∆t for σ > 0, and let ∆t → 0.

• E[X (t)] = 0 and Var(X (t))→ σ2t.

• By the CLT X (t) converges in distribution to a N (0, σ2t).

Since the random walk has independent and stationary increments, we
expect the limiting process to have them as well.
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Brownian motion

A stochastic process {X (t), t ≥ 0} is said to be a Brownian motion
(BM) if

(i) X (0) = 0;

(ii) {X (t), t ≥ 0} has independent and stationary increments;

(iii) for every t > 0, X (t) ∼ N (0, σ2t).

• If X (0) = x , then {X (t)− x , t ≥ 0} is a BM.

• If σ = 1, standard Brownian motion (SBM) B(t) ∼ N (0, t). Any
BM can be converted to the standard process by letting
B(t) = X (t)/σ. From now on, we assume σ = 1.

• By symmetry, {X (t), t ≥ 0} is distributed as {−X (t), t ≥ 0}.
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History

• 1827: the English botanist Robert Brown studied the motion of a
small particle that is totally immersed in a liquid or gas.

• 1905: Einstein explained the process by assuming that the
immersed particle was continually being subjected to bombardment
by the molecules of the surrounding medium.

• 1918: Wiener gave the precise mathematical definition (also called
Wiener process)
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Continuous but not differentiable

Consider the SBM {X (t), t ≥ 0}.
• X (t) is a continuous function of t.

Intuition. We must show that limh→0(X (t + h)− X (t)) = 0 a.s..
Note that the r.v. X (t + h)− X (t) ∼ N (0, h) has mean 0 and
variance h, and so it would seem to converge to a r.v. with mean 0
and variance 0 as h→ 0.

• X (t) is nowhere differentiable.

Intuition. Note that X (t+h)−X (t)
h ∼ h−1N (0, h) ∼ N (0, h−1) has

mean 0 and variance 1/h, which converges to ∞ if h→ 0. Hence, it
is not differentiable.
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Brownian bridge

For 0 < s < t, we are interested in the conditional distribution of X (s)
given that X (t) = B. The conditional density is

fX (s)|X (t)=B(x) =
fX (s),X (t)(x ,B)

fX (t)(B)
=

fX (s)(x)fX (t−s)(B − x)

fX (t)(B)

=

1√
2πs

e−
x2

2s
1√

2π(t−s)
e−

(B−x)2

2(t−s)

1√
2πt

e−
B2

2t

=
e−
(

x2

2s + (B−x)2

2(t−s) −
B2

2t

)
√

2π s(t−s)
t

=
e−

t(t−s)x2+st(B2−2Bx+x2)−s(t−s)B2

2st(t−s)√
2π s(t−s)

t

=
e−

(x−Bs/t)2

2s(t−s)/t√
2π s(t−s)

t

,

hence it is normal with

E[X (s) |X (t) = B] =
s

t
B and Var(X (s) |X (t) = B) =

s

t
(t − s).
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Example

Example 10.1: Bicycle race.
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Hitting times

Let Ta = inf{t ≥ 0 : X (t) ≥ a} be the hitting time of barrier a. For
a > 0, since

P(X (t) ≥ a)

= P(X (t) ≥ a|Ta ≤ t)P(Ta ≤ t) + P(X (t) ≥ a|Ta > t)P(Ta > t)

=
1

2
P(Ta ≤ t) + 0P(Ta > t)

=
1

2
P(Ta ≤ t),

we have that (using y = x/
√
t)

P(Ta ≤ t) = 2P(X (t) ≥ a) =
2√
2πt

∫ ∞
a

e−x
2/2t dx =

2√
2π

∫ ∞
a/
√
t

e−y
2/2 dy .

By symmetry, for a < 0 the distribution of Ta is the same as that of T−a,

hence we obtain P(Ta ≤ t) = 2√
2π

∫∞
|a|/
√
t
e−y

2/2 dy . By computing the

density fTa(t), we get E[Ta] =∞.
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The maximum of Brownian motion

Let M(t) = max0≤s≤t X (s) be the maximum of Brownian motion. For
a > 0,

P(M(t) ≥ a) = P(Ta ≤ t) = 2P(X (t) ≥ a) =
2√
2π

∫ ∞
a/
√
t

e−y
2/2 dy .

Moreover, by symmetry,

2P(X (t) ≥ a) = P(X (t) ≥ a) + P(X (t) ≤ −a) = P(|X (t)| ≥ a).

Hence M(t) has the same distribution of |X (t)|.
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The reflection principle

Theorem (The reflection principle)

Let {X (t), t ≥ 0} is a SBM and T a stopping time. The process
{XT (t), t ≥ 0} defined as

XT (t) =

{
X (t), 0 ≤ t ≤ T ,

2X (T )− X (t), t > T ,

is also a SBM.

Example: exam 2021.
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Variations on Brownian motion

• If {B(t), t ≥ 0} is a SBM and µ ∈ R, then the process
{X (t) = B(t) + µt, t ≥ 0} is a Brownian motion with drift µ.

Since B(t)
t ∼ N (0, 1/t), and its variance converges to 0, we have

that B(t)
t → 0 in probability and a.s.. Hence, as t →∞,

X (t)

t
=

B(t)

t
+ µ→ µ a.s..

• If {Y (t), t ≥ 0} is a BM with drift µ and variance parameter σ2, the
the process {X (t), t ≥ 0}, defined by X (t) = eY (t) is a geometric
Brownian motion.
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Geometric Brownian motion

Given the history of the process up to time s < t, the expected value of
the process at time t is

E[X (t) |X (u), 0 ≤ u ≤ s] = E[eY (t) |Y (u), 0 ≤ u ≤ s]

= E[eY (t)−Y (s)+Y (s) |Y (u), 0 ≤ u ≤ s]

= eY (s)E[eY (t)−Y (s) |Y (u), 0 ≤ u ≤ s)

= X (s)E[eY (t)−Y (s)]

and, since Y (t)− Y (s) ∼ N (µ(t − s), σ2(t − s)),

E[eY (t)−Y (s)] = eE[Y (t)−Y (s)]+Var(Y (t)−Y (s))/2 = eµ(t−s)+σ2(t−s)/2,

hence,
E[X (t) |X (u), 0 ≤ u ≤ s] = X (s)e(t−s)(µ+σ2/2).

Similarly, we can compute

Var(X (t) |X (u), 0 ≤ u ≤ s) = (X (s))2e2µ(t−s)(e2σ2(t−s) − eσ
2(t−s)).
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Application

Geometric BM is useful in the modeling of stock prices over time when
the percentage changes are i.i.d..

• Suppose that X (n) is the price of some stock at time n and
Y (n) = X (n)/X (n − 1), n ≥ 1 are i.i.d..

• We have that X (n) = Y (n)X (n − 1) = Y (n)Y (n − 1) . . .Y (1)X (0).

• Then log(X (n)) =
∑n

i=1 log(Y (i)) + log(X (0)) and, since the
log(Y (i))’s are i.i.d., {log(X (n)), n ≥ 0} is approximately (for large
n) a BM with a drift, so {X (n), n ≥ 0} is approximately a geometric
BM.
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The maximum of Brownian motion with drift

Let {X (t), t ≥ 0} be a BM with drift µ and variance parameter σ2, and
define

M(t) = max
0≤s≤t

X (s)

to be the maximal value of the process up to time t. We are
interested in the distribution of M(t).

• For y > x , we have that P(M(t) ≥ y |X (t) = x) = e−
2y(y−x)

tσ2 , y ≥ 0.
The proof uses the fact that the conditional distribution of
X (s), 0 ≤ s ≤ t, given X (t), does not depend on µ.

• Then we get P(M(t) ≥ y) = e2yµ/σ2

φ̄( y+µt
σ
√
t

) + φ̄( y−µt
σ
√
t

), with

φ̄(x) = 1− φ(x) = P(Z > x) for Z ∼ N (0, 1).

• For y > 0, recall that M(t) ≥ y iff Ty ≤ t.

Stochastic Processes and Simulation II



DR
AF
T

Brownian motion Variations on Brownian motion Gaussian and stationary processes Exercises

Index

1 Brownian motion

2 Variations on Brownian motion

3 Gaussian and stationary processes

Stochastic Processes and Simulation II



DR
AF
T

Brownian motion Variations on Brownian motion Gaussian and stationary processes Exercises

Gaussian processes

A stochastic process {X (t), t ≥ 0} is called a Gaussian process (or
normal process) if X (t1), . . . ,X (tn) have a multivariate normal
distribution for all t1, . . . , tn, n ≥ 1.

• Let Z1, · · · ,Zm be i.i.d. N (0, 1) and let

Xi =
∑

aijZj + µi

for some constants aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m and µi , 1 ≤ i ≤ n.
Then the r.v.’s X1, · · · ,Xn have a multivariate normal distribution.

• A multivariate normal distribution is completely determined by the
marginal mean values and the covariance matrix.
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Brownian motion is Gaussian

• If {X (t), t ≥ 0} is a BM, since each X (t1), . . . ,X (tn) can be
expressed as a linear combination of the independent normal
variables X (t1),X (t2)− X (t1), . . . ,X (tn)− X (tn−1) it follows that
BM is a Gaussian process.

• Hence SBM can also be defined as a Gaussian process with
E[X (t)] = 0 and Cov(X (s),X (t)) = min{s, t}. Indeed, for s ≤ t

Cov(X (s),X (t)) =Cov(X (s),X (s) + X (t)− X (s))

=Cov(X (s),X (s)) + Cov(X (s),X (t)− X (s))

=Cov(X (s),X (s)) = Var(X (s)) = s.
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The Brownian bridge is Gaussian

• Let {X (t), 0 ≤ t ≤ 1 |X (1) = 0} be a standard Brownian bridge
(SBB). Since in general X (t) |X (1) = B ∼ N (tB, t(1− t)), we
have that X (t) |X (1) = 0 ∼ N (0, t(1− t)).

• The conditional distribution is a multivariate normal, hence the
standard Brownian bridge is a Gaussian process with mean value
0 and covariance Cov(X (s),X (t)) = s(1− t), s ≤ t. Indeed, since
E[X (u) |X (1) = 0] = 0 for all u < 1,

Cov(X (s),X (t) |X (1) = 0)

= E[X (s)X (t) |X (1) = 0]

= E
[
E[X (s)X (t) |X (t),X (1) = 0] |X (1) = 0

]
= E

[
X (t)E[X (s) |X (t)] |X (1) = 0

]
= E[X (t)

s

t
X (t) |X (1) = 0]

=
s

t
E[(X (t))2 |X (1) = 0] =

s

t
t(1− t) = s(1− t).

• Alternative definition: if {X (t), t ≥ 0} is a SBM, then
{Z (t) = X (t)− tX (1), 0 ≤ t ≤ 1} is a SBB.
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Integrated Brownian motion

If {X (t), t ≥ 0} is a BM, the process {Z (t) =
∫ t

0
X (s) ds, t ≥ 0} is

called integrated Brownian motion.

• It can be used to model the price of a commodity throughout time.
Let Z (t) be the price at time t and assume the rate of change

X (t) = d
dtZ (t) follows a BM. Then Z (t) = Z (0) +

∫ t

0
X (s) ds.

• Since BM is a Gaussian process, also the integrated BM is a
Gaussian process. When {X (t), t ≥ 0} is a SBM, we get

E[Z (t)] = E
[ ∫ t

0
X (s) ds

]
=
∫ t

0
E[X (s)] ds = 0 and, for s ≤ t,

Cov(Z (s),Z (t)) = E[Z (s)Z (t)] = E
[ ∫ s

0

∫ t

0

X (u)X (v) dudv

]
=

∫ s

0

∫ t

0

E[X (u)X (v)] dudv =

∫ s

0

∫ t

0

min{u, v} dudv

=

∫ s

0

(∫ u

0

v dv +

∫ t

u

u dv

)
du = s2

(
t

2
− s

6

)
.
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Stationary processes

A stochastic process {X (t), t ≥ 0} is a stationary process if for all
n ≥ 1 and s > 0 the random vectors (X (t1), . . . ,X (tn)) and
(X (s + t1), . . . ,X (s + tn)) have the same joint distribution.

Examples:

• An ergodic continuous-time Markov chain {X (t), t ≥ 0} when
P(X (0) = j) = Pj for each state j , i.e., when the initial state is
chosen according to the limiting probabilities.

• The process {X (t) = N(t + L)− N(t), t ≥ 0} with L > 0 constant
and {N(t), t ≥ 0} Poisson Process with rate λ. It follows from the
stationary and independent increment assumption of Poisson
processes.

• BM is not a stationary process.

Example 10.5: the random telegraph signal process.
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Weakly stationary processes

A stochastic process {X (t), t ≥ 0} is a weakly stationary process if for
all s, t > 0, E[X (t)] = c constant and Cov(X (t),X (t + s)) = R(s) does
not depend on t.

For Gaussian processes, weakly stationarity implies stationarity, because
multivariate normal distributions are determined by their mean values and
the covariance matrix. Note that BM is not weakly stationary.

Example 10.6: the Ornstein-Uhlenbeck process.

Example 10.8: the random telegraph signal process.
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Exercises

Session 11. Chapter 10: 1-4, 6.

Session 12. Chapter 10: 7, 9, 10, 32, 35. Suggested extra: 11, 33, 34.

Note that answers might contain some integrals that are very hard to
evaluate. It is okay to provide answers as not evaluated integrals.
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