
Some solutions, Stochastic processes II

Chapter 5

5.3 X is exponentially distributed and therefore memoryless. This implies that for all
t, s > 0, we have

P(X > t+ s|X > t) = P(X > s).

In particular, this implies that for any continuous function f : R+ → R+ (or any other
nice enough function), we have

E[f(X)|X > t] = E[f(X + t)].

So,
E[X2|X > 1] = E[(X + 1)2] = E[X2] + 2E[X] + 1,

which is only equal to E[X2]+1 if E[X] = 0 (which is never for an exponental distribution),
and equal to

(1 + E[X])2 = (E[X])2 + 2E[X] + 1

if E[X2] = (E[X])2 (i.e. if V ar(X) = 0), which is also never. So only 3(a) is true.

5.8 LetX have density function fX(t) = λe−λt and Y have density function fY (t) = µe−µt,
both for t ≥ 0. Furthermore X and Y are independent.

We compute

P(X > t|X ≤ Y ) =
P(X > t,X ≤ Y )

P(X ≤ Y )
=

∫∞
t

∫∞
x
fY (y)fX(x)dydx∫∞

0

∫∞
x
fY (y)fX(x)dydx

=

∫∞
t

∫∞
x
µe−µyλe−λxdydx∫∞

0

∫∞
0
µe−µyλe−λxdydx

=

∫∞
t
λe−λxe−µxdx∫∞

0
λe−λxe−µxdx

=

λ
λ+µ

e−(λ+µ)t

λ
λ+µ

= e−(λ+µ)t,

which is equal to P(min(X, Y ) > t). (See page 288).
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5.36 Let {N(t), t ≥ 0} be a homogeneous Poisson Process with rate λ and let for
i = 1, 2, · · · the random variables Xi be independent identically distributed exponen-
tial random variables with mean 1/µ, which are independent of {N(t), t ≥ 0}. Define

S(t) = s
∏N(t)

i=1 Xi. Then using the “telescoping property of expectations”

E[S(t)] = E[

N(t)∏
i=1

Xi] = E[E[

N(t)∏
i=1

Xi|N(t)]] = E[

N(t)∏
i=1

E[Xi|N(t)]] = E[

N(t)∏
i=1

(1/µ)] = E[(1/µ)N(t)],

where we used the independence of the Xi’s for the third identity. We may now use that
N(t) is Poisson distributed with expectation λt and thus that

E[(1/µ)N(t)] =
∞∑
k=0

P(N(t) = k)(1/µ)k =
∞∑
k=0

(λt)k

k!
e−λt(1/µ)k = e−λ(1−1/µ)t.

Similarly, using that E[(Xi)
2] = V ar(Xi) + (E[Xi])

2 = 1/µ2 + 1/µ2 = 2/µ2, we obtain

E[(S(t))2] = E[(

N(t)∏
i=1

Xi)
2] = E[E[

N(t)∏
i=1

(Xi)
2|N(t)]] = E[

N(t)∏
i=1

(2/µ2)] = E[(2/µ2)N(t)] = e−λ(1−2/µ
2)t.

5.40 Use definition 5.2 (page 299) and see that
(1) N1(0) +N2(0) = 0,
(2) for all 0 ≤ t1 < t2 < t3 < t4. N1(t2) − N1(t1), N1(t4) − N1(t3), N2(t2) − N2(t1) and
N2(t4) − N2(t3) are independent and therefore, N1(t2) + N2(t2) − N1(t1) − N2(t1) and
N1(t4) +N2(t4)−N1(t3)−N2(t3) are independent, and we have independent increments,
(3)

P(N1(t+ h) +N2(t+ h)−N1(t)−N2(t) = 1)

=P(N1(t+ h)−N1(t) = 1, N2(t+ h)−N2(t) = 0)

+ P(N1(t+ h)−N1(t) = 0, N2(t+ h)−N2(t) = 1)

=(λ1h+ o(h))(1− λ2h+ o(h)) + (1− λ1h+ o(h))(λ2h+ o(h))

=(λ1 + λ2)h+ o(h)

while (4)

P(N1(t+ h) +N2(t+ h)−N1(t)−N2(t) ≥ 2)

=P(N1(t+ h)−N1(t) = N2(t+ h)−N2(t) = 1)

+ P(N1(t+ h)−N1(t) ≥ 2 ∪N2(t+ h)−N2(t) ≥ 2)

≤P(N1(t+ h)−N1(t) = N2(t+ h)−N2(t) = 1)

+ P(N1(t+ h)−N1(t) ≥ 2) + P(N2(t+ h)−N2(t) ≥ 2)

=(λ1h+ o(h))(λ2h+ o(h)) + o(h) + o(h)

=o(h).

Where we have used that the product of two functions which are linear in h is o(h). This
finishes the proof.
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5.45 Let {N(t), t ≥ 0} be a homogeneous Poisson Process with rate λ, which is indepen-
dent of T (≥ 0), which has mean µ and variance σ2. Note that

Cov(T,N(T )) = E[TN(T )]− E[T ]E[N(T )].

Then observe

E[TN(T )] = E[E[TN(T )]|T ]] = E[T ×λT ] = λE[T 2] = λ(V ar(T )+(E[T ])2) = λ(σ2 +µ2)

and
E[N(T )] = E[E[N(T )]|T ]] = E[λT ] = λE[T ] = λµ.

So,
Cov(T,N(t)) = λ(σ2 + µ2)− µ× λµ = λσ2.

The variance of N(T ) can be computed similarly: V ar(N(T )) = E[(N(T ))2]−(E[N(T )])2,
where

E[(N(T ))2] = E[E[(N(T ))2]|T ] = E[λT + λ2T 2] = λµ+ λ2(σ2 + µ2).

So,
V ar(N(T )) = λµ+ λ2(σ2 + µ2)− (λµ)2 = λµ+ λ2σ2.

5.49 A translation of this problem is to compute P(N(T )−N(s) = 1), where {N(t), t ≥ 0}
be a homogeneous Poisson Process with rate λ. Because if N(T ) − N(s) > 1, then the
first arrival after s is not the last one before T while if N(T )−N(s) = 0, the first arrival
after s is after T . By definition we have

P(N(T )−N(s) = 1) =
(λ(T − s))1

1!
e−λ(T−s) = λ(T − s)e−λ(T−s). (1)

This value is maximized if the derivative with respect to s is 0 or if s = 0 or if s = T . if
s = T , (1) is clearly 0, while if s = 0 this value is λTe−λT , which is easily checked to be at
most e−1. The derivative of P(N(T )−N(s) = 1) is 0, if λ(λ(T−s)−1)e−λ(T−s) = 0, which
implies that T−s = 1/λ. Filling in this value for s in (1) gives P(N(T )−N(s) = 1) = e−1,
which is the maximal probability of winning.

5.60 By the order statistic property we obtain (a) (1/3)2 = 1/9, (b) 1− (2/3)2 = 5/9.
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5.46 Let {N(t), t ≥ 0} be a homogeneous Poisson Process with rate λ and let for i =
1, 2, · · · the random variables Xi be independent identically distributed random variables
with mean µ, which are independent of {N(t), t ≥ 0}. Then,

Cov(N(t),

N(t)∑
i=1

Xi) = E[N(t)

N(t)∑
i=1

Xi]− E[N(t)]E[

N(t)∑
i=1

Xi]

= E[E[N(t)

N(t)∑
i=1

Xi|N(t)]]− E[N(t)]E[E[

N(t)∑
i=1

Xi|N(t)]]

= E[N(t)µN(t)]− E[N(t)]E[µN(t)] = µ(λt+ λ2t2)− λt× µλt = µλt.

5.78 Consider an inhomogeneous process between time 0 and 9, where the time is the
time (in hours) since 8AM. λ(t) = 4 for t ∈ (0, 2]; λ(t) = 8 for t ∈ (2, 4]; λ(t) = 8+(t−4)
for t ∈ (4, 6] and λ(t) = 10 − 2(t − 6) for t ∈ (6, 9]. From the theory on inhomogeneous
Poisson processes we know that the total number of arrivals of this Poisson Process is
Poisson distributed with expectation

∫ 9

0
λ(t)dt = 8 + 16 + 18 + 21 = 63.

5.81b Use part a), but define G(x) = m(x)/m(t) for x ≤ t and G(x) = 1 for x > t. As-
sume that there are N(t) workers injured before time t. Note that this number is Poisson
distributed with expectation m(t). By part (a), the times of injury are independent and
have distribution G(x) and density g(x) = m′(x)/m(t) for x ≤ t. So, the probability that
a worker is still injured at time t is given by

∫ t
0
g(x)(1−F (t−x))dx. The expected number

of workers injured at time t is then given by this probability times the expected number
of workers injured before time t. This product is given by

∫ t
0
m′(x)(1− F (t− x))dx.

5.95 Let {N(t), t ≥ 0} be a mixed Poisson Process with random rate L. We first want to
compute E[L|N(t) = n]. By the definition of conditional expectation we have

E[L|N(t) = n] =
E[L11(N(t) = n)]

P(N(t) = n)
.

The latter is equal to

E[E[L11(N(t) = n)|L]]

E[P(N(t) = n|L)]
=

E[L (Lt)n

n!
e−Lt]

E[ (Lt)
n

n!
e−Lt]

=
E[Ln+1e−Lt]

E[Lne−Lt]
.

For s > t we obtain

E[N(s)|N(t) = n] = E[E[N(s)|N(t) = n, L]|N(t) = n]

= E[n+ E[N(s)−N(t)|L]|N(t) = n] = n+ E[L(t− s)|N(t) = n]

= n+ (t− s)E[L|N(t) = n].

For s < t we obtain

E[N(s)|N(t) = n] = E[E[N(s)|N(t) = n, L]|N(t) = n] = E[ns/t|N(t) = n] = ns/t,

where we have used the order statistic property for computing E[N(s)|N(t) = n, L].

4


