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Chapter 5

5.3 X is exponentially distributed and therefore memoryless. This implies that for all
t,s > 0, we have
P(X >t+s|X >t) =P(X > s).

In particular, this implies that for any continuous function f : Ry — R, (or any other
nice enough function), we have

E[f(X)|X > t] = E[f(X +1)].
So,
E[X?|X > 1] = E[(X + 1)?] = E[X?] + 2E[X] + 1,

which is only equal to E[X?]+1 if E[X] = 0 (which is never for an exponental distribution),

and equal to
(1+E[X])? = (E[X])* + 2E[X] + 1

if E[X?] = (E[X])? (i.e. if Var(X) = 0), which is also never. So only 3(a) is true.

5.8 Let X have density function fx(t) = Ae™* and Y have density function fy (t) = ue ",
both for ¢ > 0. Furthermore X and Y are independent.

We compute

PX >t X <Y) [~ [, fy(y)fx(z)dyde

P(X > X <Y)=

PX<Y) [ fy(y)fx(x)dydx
_ [ [ pem v xe M dyda _ [ Ae e dy _ ﬁe_(““)t _ Gy
I S nemmde e dyde [ Ae e redy ﬁ ’

which is equal to P(min(X,Y) > t). (See page 288).



5.36 Let {N(t),t > 0} be a homogeneous Poisson Process with rate A and let for

1 = 1,2,--- the random variables X; be independent identically distributed exponen-

tial random variables with mean 1/u, which are independent of {N(¢),t > 0}. Define
S(t)=s HN(t) X;. Then using the “telescoping property of expectations”

N(t) N(t) N(#) N
=E[]] xi = H XN @) = BT BN G = B[] (/) = Bl /)

where we used the independence of the X;’s for the third identity. We may now use that
N (t) is Poisson distributed with expectation At and thus that

E[(1/m)N ZIF’ F)(1/ )" Z k, e M (1 )t = e AR,
k=0
Similarly, using that E[(X;)?] = Var(X;) + (E[X;])? = 1/p* + 1/p* = 2/1?, we obtain
N(t) N(t) N(t)
E((5())"] = B[] X% = BB (X0 IV 0] = B (/2] = El(2/)] = 020

5.40 Use definition 5.2 (page 299) and see that

(1) N1(0) + N2(0) =0,

(2) for all 0 < #; <ty < t3 < ty. Ni(t2) — Ni(t1), Ni(ts) — Ni(t3), Na(ta) — No(t1) and
Ns(t4) — No(t3) are independent and therefore, Ni(to) + No(t2) — Ni(t1) — No(t1) and
Ni(t4) + No(ts) — Ni(t3) — Na(t3) are independent, and we have independent increments,
(3)

P(Ny(t + h) + No(t +h) — Ny (t) — No(t) =
=P(Ni(t +h) — N1(t) = 1, No(t + h) — No(t) =

+P(Ni(t+ h) — Ni(t) = 0, Nao(t + h) — No(t) = 1)
=(Mh+o0(h))(1 = Xsh+0(h)) + (1 — Ah + o(h))(A2h + o(h))
=(A1 + A2)h +o(h)

1)
0)

while (4)

P(Ny(t + h) + No(t + h) — Ny (t) — Na(t) > 2)
=P(Ni(t+ h) — Ni(t) = No(t + h) — Na(t) = 1)

+ P(N1(t+ h) — Ni(t) > 2U No(t + h) — No(t) > 2)
<P(Ny(t+h) — Ni(t) = Na(t + h) — No(t) = 1)

+P(Ni(t + h) — Ni(t) > 2) + P(Na(t + h) — No(t) > 2)
=(Mh +o(h))(A2h + o(h)) + o(h) + o(h)
=o(h).

Where we have used that the product of two functions which are linear in A is o(h). This
finishes the proof.



5.45 Let {N(t),t > 0} be a homogeneous Poisson Process with rate A, which is indepen-
dent of T' (> 0), which has mean p and variance o%. Note that

Cov(T,N(T)) =E[TN(T)| — E[T|E[N(T)].
Then observe
E[TN(T)] = E[E[TN(T)]|T]] = E[T x AT] = AE[T?] = A\(Var(T) + (E[T])?) = A(o® + 1i?)
and
E[N(T)] = E[E[N(D)||T)] = EXT] = AB[T] = A
So,
Cov(T,N(t)) = Mo? + p®) — o x A = Ao,

The variance of N(T) can be computed similarly: Var(N(T)) = E[(N(T))?|— (E[N(T)])?,
where

E[(N(T))’) = E[E[(N(T)))IT] = EXT + N°T% = M1+ A2(0” + ).

So,
Var(N(T)) = M+ N (0% + 1) — (Au)® = A+ Ao,

5.49 A translation of this problem is to compute P(N(7')—N(s) = 1), where {N(¢),t > 0}
be a homogeneous Poisson Process with rate A. Because if N(T') — N(s) > 1, then the
first arrival after s is not the last one before 7" while if N(T") — N(s) = 0, the first arrival
after s is after T'. By definition we have

P(N(T) — N(s) =1) = 222 M=) — \(T — 5)e 29, (1)

This value is maximized if the derivative with respect to s is 0 or if s =0 or if s = T'. if
s =T, (1) is clearly 0, while if s = 0 this value is A\Te™*T, which is easily checked to be at
most e~!. The derivative of P(N(T)— N(s) = 1) is 0, if \(\(T —s) —1)e *7=%) = 0, which
implies that 7'—s = 1/\. Filling in this value for s in (1) gives P(N(T)—N(s) = 1) = e},
which is the maximal probability of winning.

5.60 By the order statistic property we obtain (a) (1/3)*> =1/9, (b) 1 —(2/3)*=5/9.



5.46 Let {N(t),t > 0} be a homogeneous Poisson Process with rate A and let for i =
1,2,--- the random variables X; be independent identically distributed random variables
with mean g, which are independent of {N(¢),t > 0}. Then,

N(t)

N(t) N(?)
Cou(N(t), 3 X;) =EIN(t) }_ Xi] - EIN()E[Y_ X}

N(t) N(t)
=E[EIN() Y_ XN - E[N@IEEL_ Xi|N(1)]

= E[N()uN(t)] — E[NOE[EN(£)] = p(M + N22) — M x pht = pit.

5.78 Consider an inhomogeneous process between time 0 and 9, where the time is the
time (in hours) since SAM. A(¢t) =4 for t € (0,2]; A(t) = 8 for t € (2,4]; A(t) =8+ (t —4)
for t € (4,6] and A(t) = 10 — 2(t — 6) for ¢t € (6,9]. From the theory on inhomogeneous
Poisson processes we know that the total number of arrivals of this Poisson Process is
Poisson distributed with expectation fog A(t)dt =8+ 16+ 18 + 21 = 63.

5.81b Use part a), but define G(z) = m(x)/m(t) for v < t and G(z) =1 for x > t. As-
sume that there are N(t) workers injured before time ¢. Note that this number is Poisson
distributed with expectation m(t). By part (a), the times of injury are independent and
have distribution G(x) and density g(z) = m/(x)/m(t) for x < t. So, the probability that
a worker is still injured at time ¢ is given by fot g(x)(1—F(t—z))dx. The expected number
of workers injured at time ¢ is then given by this probability times the expected number
of workers injured before time ¢. This product is given by fg m/(z)(1 — F(t — x))dz.

5.95 Let {N(t),t > 0} be a mixed Poisson Process with random rate L. We first want to
compute E[L|N(t) = n|. By the definition of conditional expectation we have

E[L|N(t) = n] =

The latter is equal to

E[E[LIN () = n)|Z] _ E[LEFe ™)  E[Lrle ]

|
E[P(N(t) = n|L)] E[L0 ¢ 1)  E[Lre ]

For s < t we obtain
E[N(s)|N(t) = n] = E[E[N(s)|N(t) = n, L]|N(t) = n] = E[ns/t|N(t) = n] = ns/t,

where we have used the order statistic property for computing E[N(s)|N(t) = n, L].



