
Solutions of the second exam:
Stochastic Processes and Simulation II

August 20th 2024

Exercise 1: Poisson processes

(i) Give the definition of a counting process and explain what it means for the process to
have independent increments and stationary increments.

Solution: A stochastic process tNptq, t ě 0u is said to be a counting process if Nptq represents
the total number of events that occur by time t. A counting process must satisfy the following:

(i) N(0) = 0;

(ii) N(t) is integer-valued;

(iii) if s ă t, then Npsq ď Nptq;

(iv) for s ă t, Nptq ´Npsq equals the number of events that occur in the interval ps, ts.

A counting process has independent increments if the number of events that occur in dis-
joint time intervals are independent, while it has stationary increments if the distribution of
the number of events that occur in any time interval depends only on the length of the interval.

(ii) Give the definition of a mixed Poisson process and explain why it is not a Poisson process.

Solution: For a positive random variable L, the counting process tNptq, t ě 0u is said to be
a mixed Poisson process if, conditional on L “ λ, it is a Poisson process with rate λ. In
general, a mixed Poisson process does not have independent increments: knowing how many
events occur in an interval gives information about the possible value of L, which affects the
distribution of the number of events in any other interval. Hence, it is not a Poisson process.

The Amazon rainforest is suffering a major deforestation problem which is drastically reduc-
ing its size year after year. The rate of deforestation has changed over the years ranging
from an annual forest loss of around 25 000 km2 in 2003 to an annual forest loss of around
9 000 km2 in 2023. In the Brazilian Amazon rainforest, it has been observed that the leading
political party has deeply influenced the rate of deforestation over the last decades. Denote
by tNptq, t ě 0u a Poisson process describing the amount of land reduction per month, where,
for k ě 1, the k-th event occurs when 100 ¨ k km2 of total land have been deforested. For
example, if after 1 month has been deforested 750 km2 of land, then N(1) = 7, and if after
2 months have been deforested 1 600 km2 of land then N(2) = 16. Assume that the process
starts at the beginning of 2024, so that time units correspond to calendar months. The rate
at which events occur, i.e., the rate of deforestation, depends on the leading political party
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and is described by a positive random variable L with mean µ and variance σ2.

(iii) Calculate the expected value and variance of the total land reduction of the year 2024.

Solution: Since it is a mixed Poisson process, we have that ErNp12qs “ 12ErLs “ 12µ and
VarpNp12qq “ 12ErLs ` 144VarpLq “ 12µ` 144σ2.

Exercise 2: Renewal theory

(i) Let tNptq, t ě 0u be a renewal process with renewal function mptq “ ErNptqs. Assuming
that the interarrival distribution F is continuous with density function f , derive the renewal
equation for mptq. For t ď 1, what is the solution of the renewal equation when F is uniform
on p0, 1q?

Solution: The renewal equation is

mptq “ ErNptqs

“

ż 8

0

EpNptq |X1 “ xqfpxq dx

“

ż t

0

p1` ErNpt´ xqsqfpxq dx

“ F ptq `

ż t

0

mpt´ xqfpxq dx,

where X1 is the first interarrival time. When F is uniform on p0, 1q we have mptq “ et´ 1 for
t P r0, 1s.

Consider now a new type of tree-cutting machine for deforestation that has recently started
being produced. Assume that every day such machines are introduced in the Amazon rain-
forest one by one at random time intervals U1, U2, . . . , that are distributed uniformly on p0, 1q
independently of each other, where a unit time indicates a day. Assume also that every day
the process restarts, independently of the previous day.

(ii) How many new machines are introduced on average in a day? How many in a month (30
days)?

Solution: We can describe the introduction of the machines in a single day via a renewal pro-
cess tNptq, t P r0, 1su with interarrival distribution F „ Up0, 1q. By using the solution of the
renewal equation from point (i), we have that the average number of machines introduced in a
day is then mp1q “ e´1. Moreover, the average number of machines introduced in a month is
30 mp1q “ 30pe´1q. Note that we cannot write mp30q “ e30´1, because the process regener-
ates every day and the solution of the renewal equation from point (i) is valid only for t P r0, 1s.
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Consider now one of the above machines and assume that a workers association has just
bought it. The machine breaks down according to a renewal process with interarrival times
uniformly distributed between 0 and 4 years. Assume that the cost of a new machine is 2
million SEK, while the expected cost of a new repair increases with the number of earlier
repairs in such a way that the expected cost of the k-th repair is 100 000 ¨ k SEK. Assume
that at the 5-th breakdown the association decides to replace the machine and buy a new one
instead of repairing it.

(iii) (6 points) What is the expected cost the association has per year?

Solution: Let a new renewal cycle begin as soon as a new machine is bought. Using renewal
reward theory, we know that

Ercost per time units “
Ercost per cycles

Erlength of a cycles
.

The expected cost per cycle is given by

2 000 000`
4

ÿ

k“1

100 000 ¨ k “ 2 000 000` 1 000 000 “ 3 000 000 SEK.

Moreover, breakdowns are distributed uniformly as Up0, 4q, hence the average time between
breakdowns is 2 years. Since the machine is replaced at the 5-th breakdown, we obtain that
the expected age of a machine when replaced, i.e., the expected length of a cycle, is 10 years.
We conclude that the expected cost per year is 3000000

10
“ 300 000 SEK.

Exercise 3: Queueing theory

(i) Write the basic cost equation and describe how it can be used to derive Little’s formula.

Solution: The basic cost equation is

average rate at which the system earns “ λa ˆ average amount an entering customer pays,

where λa is the average arrival rate of entering customers. Little’s formulas can be obtained by
supposing that each customer pays 1 SEK per unit time while in the system. Under this cost
rule, the rate at which the system earns is just the number of customers in the system L, and
the amount a customer pays is just equal to its time in the system W . Hence we get L “ λaW .

In order to contrast the Amazon deforestation, lots of initiatives are arising to re-plant trees
in the forest. The Brasilian Ministry of Environment in 2017 sponsored a project aiming at
planting 73 million new trees in the following 6 years. On a smaller scale, many associations
allow people to donate money online to plant trees and help with the cause. To maintain
biodiversity, a lot of different species need to be planted, among which are the andiroba and

3



the Roucouyer tree, known for their medicinal properties. Consider an association specializ-
ing in medicinal plants and planting andiroba and Roucouyer trees in different areas of the
Amazon forest. Assume that anyone can donate money and place an order to plant a tree
through the association website and can even specify which type of tree to plant. Assume
that the association receives orders for andiroba trees according to a Poisson process with rate
λa, while it receives orders for Roucouyer trees according to a Poisson process with rate λr,
independently of all the other orders. When an order arrives, it is normally picked up by the
people in the association who process it and make sure the tree is planted. The time it takes
from when the order is picked up to when the tree is planted is exponentially distributed with
mean µ, independently of the other orders and the type of tree. However, the association
consists of a limited number of people, hence they can only pick up and process k orders at
the time. If there are more than k orders in the system, the remaining ones are placed in a
queue according to their arrival time.

(ii) What type of queueing model best describes the above situation? What is the total
arrival rate λ of orders in the system? What conditions, if any, must λ and µ satisfy? Write
down the balance equations.

Solution: The situation can be described as an M{M{k queueing model where the arrival
times are i.i.d. Exp(λ) with λ “ λa ` λr and the service times are i.i.d. Exp(1{µ). Note that
the combination of two independent Poisson process with rates λa and λr is a Poisson process
with rate λa ` λr. The condition to be satisfied is λ ă k{µ. The balance equations are

λP0 “
1
µ
P1,

pλ` n
µ
qPn “ λPn´1 `

n`1
µ
Pn`1, n ă k,

pλ` k
µ
qPn “ λPn´1 `

k
µ
Pn`1, n ě k.

(iii) Assuming that you know the average number of orders in the system, what is the average
time between the placing of an order and the planting of its tree?

Solution: It is a simple application of Little’s formula where we want W knowing L, hence
W “ L{λ.

Exercise 4: Simulation

(i) Describe how to use the inverse transformation method to simulate an exponential random
variable with parameter λ.

Solution: The inverse transformation method says that, when F´1 is computable, we can simu-
late a random variable X from a continuous distribution F by simulating U „ Up0, 1q and then
setting X “ F´1pUq. Since exponential random variables have distribution F pxq “ 1´ e´λx,

we just need to simulate U „ Up0, 1q and we obtain that ´ logpUq
λ

„ Exppλq.
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(ii) Consider the tree-planting association of the previous exercise. Describe how we can
simulate the arrival times of the andiroba tree orders by simulating only standard uniform
random variables.

Solution: We can simulate the standard Poisson process with rate λa by simulating the
sequence of exponentially distributed interarrival times X1, X2, . . . . We can simulate stan-
dard uniform random variables U1, U2, . . . , and use the inverse transformation method setting
Xi “ ´

logpUiq

λa
. The arrival times are then given by Si “

ři
j“1Xj, for i ě 1.

(iii) Let Tn denote the time of the n-th order placed on the website of the association. What
is its distribution? How can we simulate Tn in such a way that we can tell if it is for an
andiroba tree or a Roucouyer tree?

Solution: The arrival times of the orders follow a Poisson process with rate λ “ λa`λr, hence
Tn „ Γpn, λq has a gamma distribution with parameters n and λ. We can simulate the first n
orders placed for andiroba trees by simulating a Poisson process with rate λa as in point (ii).
We label the arrival times with the letter a. Analogously, we can simulate the first n orders
placed for Roucouyer trees by simulating a Poisson process with rate λr as in point (ii). We
label the arrival times with the letter r. We then merge the two processes, order the arrival
times through a list and select the n-th smallest one. Its label indicates the type of tree.

Exercise 5: Brownian motion

(i) (3 points) Give the definition of a standard Brownian motion tXptq, t ě 0u. Give some
intuition on why Xptq is a continuous function of t and it is nowhere differentiable.

Solution: A stochastic process tBptq, t ě 0u is said to be a standard Brownian motion if:

(i) Bp0q “ 0;

(ii) tBptq, t ě 0u has independent and stationary increments;

(iii) for every t ą 0, Bptq „ N p0, tq.

To show that Xptq is a continuous function of t, we must show that limhÑ0pXpt`hq´Xptqq “ 0
almost surely. Note that the random variable Xpt ` hq ´ Xptq „ N p0, hq has mean 0 and
variance h, and so it would seem to converge to a random variable with mean 0 and variance
0 as h Ñ 0. Moreover, note that Xpt`hq´Xptq

h
„ h´1N p0, hq „ N p0, h´1q has mean 0 and

variance 1{h, which converges to 8 if hÑ 0. Hence, Xptq is not differentiable.

The Amazon rainforest represents over half of Earth’s remaining rainforests and comprises
the largest and most biodiverse tract of tropical rainforest in the world, with around 390
billion trees in about 16 000 species. Assume that we can model the number of trees in
the Amazon rainforest as a standard Brownian motion tXptq, t ě 0u with drift, where Xptq
is the number of trees at time t. We can assume as a starting point the initial condition
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Xp0q “ 390 000 000 000 at the beginning of the year 2024. The drift is given by the estimate
that deforestation is responsible for a loss of trees at an average rate of 1.5 billion per year.

(ii) (3 points) In how many years should we expect to reach the threshold of 300 billion trees
in total in the Amazon rainforest?

Solution: The deforestation rate can be described by a negative drift µ1 ă 0 of 1.5 billion
trees per year, so that to go from 390 billion trees to 300 billion trees we must decrease by 90
billion trees. This occurs in 60 years.

Consider now also the action of re-planting trees and assume that various initiatives from
governments and associations manage to re-plant trees at an average rate of 500 million (half
billion) per year.

(iii) (3 points) In how many years should we expect to reach the threshold of 300 billion trees
in total in the Amazon rainforest?

Solution: The re-planting rate can be described by a positive drift µ2 ą 0 of 0.5 billions trees
per year. Together with the deforestation drift µ1, we obtain that the number of trees evolves
according to a standard Brownian motion with drift µ1 ` µ2, hence with a negative drift of
1 billion trees a year. It takes then 90 years to decrease by 90 billion trees and reach the
threshold.

Assume that the average deforestation rate will decrease linearly in the next 4 years and then
it will suddenly drop to match the average re-planting rate. More precisely, it will still be 1.5
billion trees in the year 2024, then 1.4 billion trees in 2025, 1.3 billion trees in 2026, 1.2 billion
trees in 2027, 1.1 billion in 2028, and then drop to 500 million trees starting from the year 2029.

(iv) (3 points) If the number of trees in 2029 will be exactly at its mean value, what is the
probability that it will reach the threshold of 350 billion trees before the year 2065? (You can
leave the answer in the form of an integral, without calculating it).

Solution: The deforestation rate is decreasing linearly every year, hence the drift associated
with deforestation is changing every year. In 2024 the sum of the drifts of deforestation and
re-planting is still negative 1 billion trees, in 2025 it is negative 0.9 billion trees, in 2026
negative 0.8 billion trees, in 2027 negative 0.7 billion trees and in 2028 negative 0.6 billion
trees. Since the number of trees in 2029 is at its mean value, it means that it has decreased by
a total of 1`0.9`0.8`0.7`0.6 “ 4 billion trees, hence it is at the value of 386 billion trees in
2029. From this year on, the drifts from deforestation and re-planting sum up to zero, hence
the number of trees evolves as a standard Brownian motion without drift. The probability of
reaching the threshold of 350 million trees before 2065 is then equal to the probability that
a standard Brownian motion decreases by 36 billion within 36 years. Since by symmetry for
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a ă 0 the distribution of the hitting time Ta is the same as that of T´a, we have that

PpTa ď tq “
2
?

2π

ż 8

|a|
?
t

e´y
2{2 dy.

Hence the requested probability is

PpT´36000000000 ď 36q “
2
?

2π

ż 8

36000000000?
36

e´y
2{2 dy “

2
?

2π

ż 8

6000000000

e´y
2{2 dy « 0.
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