
Solutions Stochastic Processes and Simulation II, May 23, 2019

Problem 1: Poisson Processes

Let {N(t), t ≥ 0} be a homogeneous Poisson Process on (0,∞) with rate λ. Let {Si, i = 1, 2, · · · }
be the points of the Poisson Process, such that 0 < S1 < S2 < S3 < · · · . De�ne S0 = 0. In

parts a)-c) of this question let T > 0 be a constant.

a) Provide the distribution of N(T ). (3p)

Solution: By the de�nition of a homogeneous Poisson process N(T ) is Poisson distributed with

expectation λT . That is, for k ∈ {1, 2, · · · } we have P(N(T ) = k) = (λT )k

k! e−λT .

b) Provide the distribution of SN(T )+1 − T , that is provide the distribution of the waiting time

until the next arrival at time T . (2p)

Solution: Inter-arrival times in a Poisson process are exponentially distributed, and the ex-

ponential distribution is memoryless, therefore SN(T )+1 − T is exponentially distributed with

expectation 1/λ. That is, P(SN(T )+1 − T ≤ x) = 1− e−λx for x ≥ 0

c) Let n be a strictly positive integer. Compute for x ∈ [0, T ]

P[T − Sn > x|N(T ) = n].

Use this (or use some other way) to compute (also for x ∈ [0, T ]) P[T − SN(T ) > x]. That is,
provide (one minus) the distribution of the time since the last arrival at time T . (4p)

Solution: By the order statistic property the n arrivals in [0, T ] are distributed as i.i.d. uniform

random variables on [0, T ], therefore the probability of having all n points before T − x is

(1− x/T )n. Therefore P[T − Sn > x|N(T ) = n] = (1− x/T )n.

Using P[T − Sn > x] =
∑∞

n=0 P[T − Sn > x|N(T ) = n]P[N(T ) = n], we obtain that

P[T − Sn > x] =
(λT )0

0!
e−λT +

∞∑
n=1

(1− x/T )n (λT )
n

n!
e−λT

=
∞∑
n=0

(1− x/T )n (λT )
n

n!
e−λT =

∞∑
n=0

[λ(T − x)]n

n!
e−λT = e−λx for x ∈ [0, T ]

For x > T we have P[T − Sn > x] = 0.

d) Provide the distribution of SN(T )+1− SN(T ) for T →∞. That is, provide the distribution of

the length of the interarrival interval at time T , for T →∞. (3p)

Solution: Note that because of the inspection paradox SN(T )+1 − SN(T ) is not exponentially

distributed with parameter λ.
As T →∞ we know from c) that T −SN(T ) is exp. distributed with parameter λ, while from b)

we also know that SN(T )+1 − T is exp. distributed with parameter λ and the two exponential

distributed random variables are independent (because the �rst depends on what happens before

time T and the second on what happens after time T ). Together this gives that SN(T )+1−SN(T )

is gamma distributed with parameters 2 and λ (i.e. with mean 2/λ and variance 2/λ2).



Problem 2: Renewal Theory

In this question all limits are for t→∞.

Let {N(t), t ≥ 0} be a renewal process, with interarrival distribution function F (t). Assume that

the interarrival time has expectation µ and variance σ2 and that F (0) = 0. Let {Si, i = 1, 2, · · · }
be the times of the renewals in the renewal process, such that 0 < S1 < S2 < S3 < · · · . De�ne
S0 = 0.

a) Provide the de�nition of a renewal process. (4p)

Solution: A non-decreasing non-negative integer valued process {N(t); t ≥ 0} is a renewal

process if the random variables Xn = inf{t ≥ 0;N(t) ≥ n} − inf{t ≥ 0;N(t) ≥ n− 1} are i.i.d.

b) De�ne the age of the process at time t as

A(t) = t− SN(t).

Provide the almost sure limit of
1

t

∫ t

0
A(s)ds

and justify your answer. (4p)

Solution: By the theory on renewal reward processes, we know that 1
t

∫ t
0 A(s)ds converges

almost surely to E[
∫ T
0 A(s)ds]/E[T ], where T is the time of the �rst renewal. This expression is

given by

E[
∫ T
0 sds]

µ
=

E[T 2/2]

µ
=
σ2 + µ2

2µ
.

c) Provide the almost sure limit of

1

t

∫ t

0
(SN(s)+1 − SN(s))ds.

(4p)

Solution: De�ne Y (t) = SN(t)+1 − t, to be the excess of the process at time t and note that

SN(s)+1 − SN(s) = A(s) + Y (s). By the theory on renewal reward processes, we know that
1
t

∫ t
0 Y (s)ds converges almost surely to E[

∫ T
0 Y (s)ds]/E[T ], where T is the time of the �rst

renewal. This expression is given by

E[
∫ T
0 (T − s)ds]

µ
=

E[T 2/2]

µ
=
σ2 + µ2

2µ
.

Combining this with part b) we obtain

1

t

∫ t

0
(SN(s)+1 − SN(s))ds→

1

t

∫ t

0
A(S)ds+

1

t

∫ t

0
Y (s)ds =

σ2 + µ2

µ
.
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Problem 3: Queueing Theory

Consider anM/M/2 queue in which customers arrive according to a Poisson Process with rate λ,
and customers have independent workloads which are exponentially distributed with expectation

1/µ. Assume that λ < 2µ. Assume further that the number of customers in the system at time

0, follows the stationary distribution of the number of customers in the system.

a) For k ∈ N≥0, let Pk be the probability that there are k customers in the system in stationarity.

Show that

P0 =
2µ− λ
2µ+ λ

and Pk = 2P0

(
λ

2µ

)k
for k ∈ N≥1.

(4p)

Solution: Using the balance equations (rate of entering a state equals rate of leaving a state) we

obtain λP0 = µP1, (λ+µ)P1 = λP0+2µP2 and for k ≥ 2 we have (λ+2µ)Pk = λPk−1+2µPk+1.

With the suggested values of Pk �lled in, those equations read

λP0 = 2µP0
λ

2µ
,

2(λ+ µ)P0
λ

2µ
= λP0 + 4µP0

(
λ

2µ

)2

and

2(λ+ 2µ)P0

(
λ

2µ

)k
= 2λP0

(
λ

2µ

)k−1
+ 4µP0

(
λ

2µ

)k+1

,

which are all correct. Furthermore for the suggested values,

∞∑
k=0

Pk = P0 +2P0

∞∑
k=1

(
λ

2µ

)k
= 2P0

∞∑
k=0

(
λ

2µ

)k
−P0 = P0

(
2

1− λ/(2µ)
− 1

)
= P0

2µ+ λ

2µ− λ
= 1.

b) Compute the long run average time that a customer is in the queue. That is, compute the

long run average time that customers are waiting before their service start. (4p)

Solution: We know that the expected number of customers in the system is given by

L =

∞∑
k=1

kPk = P0
λ

µ

(
1− λ

2µ

)−1 ∞∑
k=1

k

(
1− λ

2µ

)(
λ

2µ

)k−1
= P0

λ

µ

(
1− λ

2µ

)−1(
1− λ

2µ

)−1
=

4µλ

(2µ− λ)(2µ+ λ)
.

We then deduce from the cheat sheet that the average time a customer spends in the system is

W = L/λ = 4µ
(2µ−λ)(2µ+λ) and the average time a customer spends in the queue is given by

WQ =W − E[S] =
4µ

(2µ− λ)(2µ+ λ)
− 1

µ
=

λ2

µ(2µ− λ)(2µ+ λ)
.
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c) Assume that Adam is the �rst customer arriving (strictly) after time 0, what is the Probability

that Adam �nd no customers in the queue at his arrival? (4p)

Solution: Since Adam is the �rst customer to arrive, his arrival is not independent of what

happened before (no other customer arrived before) so we cannot use PASTA. We do know

however, that the process starts in stationarity.

Let XA be the number of other customers in the system as Adam arrives and X0 the number of

customers present at time 0. We are interested in P(XA ≤ 2) (at most two customers may be

in the system, which then are in service).

Then

P(XA ≤ 2) =
∞∑
j=0

P(XA ≤ 2|X0 = j)P(X0 = j).

We note that for j ≤ 2, P(XA ≤ 2|X0 = j) = 1, while for j ≥ 3, P(XA ≤ 2|X0 = j) is the
probability that the �rst j−2 events (departures or arrivals) are all departures. From the theory

of Markov Processes we know that if there are at least 2 customers present the probability that

the next event is a departure is 2µ
2µ+λ . Therefore,

P(XA ≤ 2) =
∞∑
j=0

P(XA ≤ 2|X0 = j)P(X0 = j)

= P0 + P1 + P2 +
∞∑
j=3

(
2µ

λ+ 2µ

)j−2
Pj

= P0

(
1 + 2

λ

2µ
+ 2

(
λ

2µ

)2
)

+
2µ

λ+ 2µ

∞∑
j=3

(
2µ

λ+ 2µ

)j−3
2P0

(
λ

2µ

)j

= P0

1 + 2
λ

2µ
+ 2

(
λ

2µ

)2

+ 2
2µ

λ+ 2µ

(
λ

2µ

)3 ∞∑
j=3

(
λ

λ+ 2µ

)j−3
= P0

(
1 + 2

λ

2µ
+ 2

(
λ

2µ

)2

+ 2
2µ

λ+ 2µ

(
λ

2µ

)3 λ+ 2µ

2µ

)

= P0

(
1 + 2

λ

2µ
+ 2

(
λ

2µ

)2

+ 2

(
λ

2µ

)3
)
.
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t), t ≥ 0} be a standard Brownian motion and for t > 0, let

M(t) := max
0≤s≤t

B(s),

be the maximum of the Brownian motion up to time t. Here we assume that B(0) = 0 and that

the variance parameter σ2 = 1 is part of the de�nition of a standard Brownian motion.

a) For y > 0 and x > 0, argue that

P(M(t) > y,B(t) < y − x) = P(B(t) > y + x).

Hint: A picture tells a thousand words. (4p)

Solution: We use the re�ection principle, with Ty de �rst hitting time of y

P(M(t) > y,B(t) < y − x) = P(Ty < t,B(t) < y − x) = P(Ty < t,B(t)−B(Ty) < y − x− y)
= P(Ty < t,B(t)−B(Ty) < −x) = P(Ty < t,B(t)−B(Ty) > x),

where we have used symmetry of the Brownian motion started in y at time Ty. Note that

P(Ty < t,B(t) − B(Ty) > x) is the probability that the Brownian motion hits y before time t
and then from then makes an additional increase of at least x at time t. So

P(Ty < t,B(t)−B(Ty) > x) = P(Ty < t,B(t) > y + x) = P(B(t) > y + x),

because {B(t) > y + x} implies {Ty < t}.

One can deduce from part a) that the joint density function of M(t) and B(t) is given by

fM(t),B(t)(y, x) =
2√
2πt

2y − x
t

e−
(2y−x)2

2t ,

for y > 0 and x < y. In part b) you may use this without further proof.

b) For t ∈ (0, 1) and x ∈ R, provide the density of M(t) conditioned on B(t) = x. (4p)

Solution:

fM(t)|B(t)(y|x) =
fM(t)|B(t)(y|x)

fB(t)(x)
=

2√
2πt

2y−x
t e−

(2y−x)2

2t

1√
2πt
e−

x2

2t

= 2
2y − x
t

e−
(2y−x)2−x2

2t = 2
2y − x
t

e−2
y(y−x)

t
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In part c) you me use without further proof that for all x ∈ R and y ∈ R and t ∈ (0, 1) we have

P
(
max
t≤s≤1

B(s) > y|B(t) = x,B(1) = 0

)
= P (M(1− t) > y|B(1− t) = x) .

c) For t ∈ (0, 1), compute P(M(t) < M(1)|B(t) = x,B(1) = 0). That is, compute

P
(
max
0≤s≤t

B(s) < max
t≤s≤1

B(s) | B(t) = x,B(1) = 0

)
.

(4p)

Solution: First condition on M(t) and note that for t ∈ (0, 1) conditioned on B(t), M(t) is
independent of B(1).

P
(
max
0≤s≤t

B(s) ≤ max
t≤s≤1

B(s) | B(t) = x,B(1) = 0

)
=

∫ ∞
x

P
(
y ≤ max

t≤s≤1
B(s) |M(t) = y,B(t) = x,B(1) = 0

)
fM(t)|B(t)(y|x)dy

=

∫ ∞
x

P (M(1− t) > y | B(1− t) = x) fM(t)|B(t)(y|x)dy,

where we have used the hint and that conditioned on B(t), maxt≤s≤1B(s) is independent of
M(t). Filling in what we have from part b) we obtain that

P
(
max
0≤s≤t

B(s) ≤ max
t≤s≤1

B(s) | B(t) = x,B(1) = 0

)
=

∫ ∞
x

(∫ ∞
y

fM(1−t)|B(1−t)(z|x)dz
)
2
2y − x
t

e−2
y(y−x)

t dy

=

∫ ∞
x

(∫ ∞
y

2
2z − x
1− t

e−2
z(z−x)
1−t dz

)
2
2y − x
t

e−2
y(y−x)

t dy

=

∫ ∞
x

(
e−2

y(y−x)
1−t

)
2
2y − x
t

e−2
y(y−x)

t dy =

∫ ∞
x

2
2y − x
t

e
−2 2y(y−x)

t(1−t) dy = 1− t.
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Problem 5: Simulation

Let U1, U2, · · · be independent random variables taking uniform values between 0 and 1.

a) Explain in detail that − log(U1) has density f1(t) = e−t for t ≥ 0. (4p)

Solution:

P(− log(U1) ≤ t) = P(log(U1) ≥ −t) = P(U1 ≥ e−t) = 1− e−t.

So, − log(U1) is exponentially distributed with mean 1, and has density e−t.

b) Show that −
∑n

k=1 log(Uk) has density fn(x) =
xn−1

(n−1)!e
−x. (4p)

Solution: This follows immediately from the fact that the sum of n independent exponential

distributed random variables with mean 1 is gamma distributed with mean and variance both

equal to n. Such a Gamma distribution has indeed density fn(t) (see cheat-sheet).

c) De�ne

N = min

k ∈ N≥0;
k+1∏
j=1

Uj ≤ e−λ
 .

What is the distribution of N?

Hint: Note that N can also be de�ned as

min

k ∈ N≥0;− log

k+1∏
j=1

Uj

 ≥ λ
 .

(4p)

Solution: Observe, that using the hint

N = min

k ∈ N≥0;
k+1∏
j=1

Uj ≤ e−λ
 = min

k ∈ N≥0;
k+1∑
j=1

− (log(Uj)) ≥ λ

 .

So, using part a, we observe thatN is the minimum number of i.i.d. exponential random variables

with mean 1, one should add up to get above λ. Which we know from the theory of Poisson

processes to be distributed as 1 +X, where X is Poisson distributed with expectation λ.

7


