
Solutions Stochastic Processes and Simulation II, August 19, 2020

Problem 1: Poisson Processes

To describe the spread of an infectious disease, such as Covid-19, mathematical modellers often

use SIR models. In those models people can be Susceptible, Infectious or Removed (which

might mean recovered and eternally immune or dead). At time t = 0 there is one infectious

person, Adam, who just turned Infectious (so just before t = 0 Adam was susceptible). All

other individuals in the population are susceptible at time t = 0. If an infectious person makes

an �infectious contact� (more about this below) with a susceptible person, the susceptible one

immediately becomes infectious and stays so for a random time, which is distributed as X and

has distribution function fX(·). This random time is called the infectious period. After the

infectious period the infected person is removed forever. The durations of the infectious periods

of di�erent people are independent.

An infectious individual makes �casual� infectious contacts during his or her infectious period

according to a homogeneous Poisson Process with rate λc, you may assume that all infectious

contacts will be with di�erent people. Furthermore, the infectious individual attends indepen-

dently �gatherings� according to a homogenous Poisson process with rate λg. At a gathering an

infectious person makes infectious contacts with a random number of people distributed as the

non-negative integer-valued random variable A. The number of people contacted at di�erent

gatherings are independent.

Set

E[X] = µX and E[A] = µA.

Further de�ne p0 := P(A = 0) and assume p0 > 0.



a)What is the probability that Adam does not attend any gathering during his infectious period.

You do not have to evaluate possible integrals involving fX(·) in your answer. (4pt)

Solution: If Adam's infectious period is t then Adam does not attend any gathering with

probability e−λgt by the de�nition of a Poisson Process. So the probability that Adam does not

attend any gathering during his infectious period is∫ ∞
0

fX(t)e−λgtdt.

b) Provide the expectation of the number of people that Adam makes an infectious contact with

during his infectious period. (4pt)

Solution: For notational convenience. Let Zc be the number of �casual infections� and Zg be

the number of �gathering infections� caused by Adam. We are interested in

E[Zc + Zg] = E[Zc] + E[Zg].

We compute the terms one by one conditioning on the infectious period X.

E[Zc] = E[E[Zc|X]] = λcE[X] = λcµX .

and to deal with Zg, also consider the number of gatherings Adam attend during his infectious

period (call this Y ).

E[Zg] = E[E[E[Zc|X,Y ]|X]] = E[E[Y µA|X]] = λgµAE[X] = λgµAµX .

So,

E[Zc + Zg] = E[Zc] + E[Zg] = µX(λc + λgµA).

c) If P(X = 1) = 1, what is the probability that Adam makes no infectious contacts at all during

his infectious period? (4pt)

Solution: If we consider only the gatherings in which Adam makes infectious contacts, then we

consider a thinned Poisson process, in which every point of the original Poisson process with rate

λg is kept independently with probability 1− p0. If Adam does not have any infectious contacts

at all, then he does not make any casual contacts during his infectious period (with happens with

probability e−λc by the de�nition of a Poisson Process) and he does not attend any gathering in

which he makes infectious contacts during his infectious period (which happens with probability

e−λg(1−p0). The two Poisson processes are independent and therefore the probability of making

no infectious contact is the product of these probabilities:

e−(λc+λg(1−p0)).
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Problem 2: Renewal Theory

Let Z1, Z2, · · · be independent and identically exponentially distributed random variables with

expectation 1/β. De�ne

Yk :=
k∑
j=1

Zj for k ∈ N := {1, 2, · · · }.

For convenience de�ne Y0 := 0. Consider the process {X(t); t ≥ 0} taking values in the state

space N0 := {0, 1, 2, · · · }. This process is de�ned as follows. Let t0 be a strictly positive constant.

• X(0) = 0.

• Let k, ` ∈ N0. If X(Yk) = ` then X(t) = ` for t ∈ [Yk, Yk+1). That is X(t) is constant

between Yk and Yk+1 = Yk + Zk+1

• Let k, ` ∈ N0. If X(Yk) = ` then

X(Yk+1) =

{
`+ 1 if Zk+1 := Yk+1 − Yk > t0,
0 if Zk+1 := Yk+1 − Yk ≤ t0.

That is, X(t) can be seen as the number of �events� taken place since the last event which came

less than t0 time units after its predecessor.
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a) Let

J := min{j ∈ N;Zj ≤ t0}

be the index of the �rst �Z random variable� which is less than t0. Provide the distribution of

J and compute E[YJ ] = E[
∑J

j=1 Zj ]. (6pt)

Solution: Since the Z random variables are independent and identically distributed they all

have probability of being less than t0 (that probability is q := 1− e−βt0). P(J = j) is therefore
given by the probability that the �rst j−1 Zj 's are all larger that t0 (with probability (1−q)j−1
time the probability that Zj is less than t0 (probability q). So P(J = j) = (1− q)jq.

Furthermore, J is a stopping time with �nite expectation (it is a geometric random variable

with expectation 1/q) and we can use Wald's equation to obtain

E[YJ ] = E[
J∑
j=1

Zj ] = E[J ]E[Z1] =
1

q

1

β
.

b) Compute the (almost sure) long run fraction of time that {X(t); t ≥ 0} is in state 0. That

is, compute the almost sure limit of ∫ t
0 11(X(s) = 0)ds

t
,

for t→∞. (6pt)

Solution: Use a renewal reward process, where a cycle starts at time 0 and at every time the

process enters state 0. The expected duration of a cycle is computed in a): 1/(βq). The expected
time the process is in state 0 during a cycle is the expectation of the �rst Z random variable

in the cycle, which is 1/β. By the Renewal Reward theorem, the long run fraction of time the

process is in state 0 is therefore
1/β

1/[βq]
= q.
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Problem 3: Queueing Theory

Consider the following queing system. Customers arrive at the system according to a homo-

geneous Poisson Process with rate λ. Independently of other customers and time of arrival a

customer is either Easy (with probability p) or Hard (with probability 1 − p). Whether a cus-

tormer is Easy or Hard is known at his or her entrance in the system. Easy customers have a

workload (i.e. the time that a unit speed server needs to work on that customer when in service)

which is exponentially distributed with expectation 1/µE and Hard customers have a workload

which is exponentially distributed with expectation 1/µH . Workloads are independent of each

other.

Suppose that there are two queues, one for the Easy customers and one for the Hard customers.

There are also two servers both working at unit speed. One server serves the queue with Easy

customers only, while the other serves the queue with Hard customers only.

a) Provide necessary and su�cient relations between λ, p, µE and µH for neither of the queue

length to go to in�nity? (2pt)

Solution: The arrival processes of easy and hard customers can be seen as two independent

Poisson processes (See Prop. 5.2 on page 304). So using that proposition the easy queue is an

M/M/1 queue with arrival rate pλ and departure rate µE , which does not explode if

pλ < µE ,

while the hard queue is an M/M/1 queue with arrival rate (1 − p)λ and departure rate µH ,
which does not explode if

(1− p)λ < µH .

Assume for the remainder of the problem that the condition of part a) is satis�ed.

b) Compute the (almost sure) long run average ammount of time that a customer are in the

system. That is, compute the cummulative ammount of time customers have spent in the system

up to time t divided by the number of customers which arrived before time t for t→∞. (4pt)

Solution: Using that the two queues are M/M/1 queues, we know (using page 490 of Ross)

that the average time an easy (resp. hard) customer is in the system is 1
µE−pλ (resp. 1

µH−(1−p)λ).
A fraction p of the customers is Easy and a fraction 1−p of the customers is hard, so the average

ammount of time a customer is in the system is

p
1

µE − pλ
+ (1− p) 1

µH − (1− p)λ
.
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Now assume that the two servers are replaced by one single server who works at double speed.

That is a customer with workload w needs w/2 units of time of service from this server.

c) Compute the (almost sure) long run average ammount of time that a customer is in this

system? (6pt)

Hint: What kind of queueing system is this single queue system?

Solution: The system with one queue is an M/G/1 queue. With expected needed service time

E[S] = p
1

2µE
+ (1− p) 1

2µH
=
pµH + (1− p)µE

2µEµH
,

where the factor 2 in the denominator is because the server is working at double speed. Similarly

we can compute

E[S2] = p
2

(2µE)2
+ (1− p) 2

(2µH)2
=
p(µH)2 + (1− p)(µE)2

2(µEµH)2
.

Using equation (8.34) from Ross we obtain that the average time a customer is in the system is:

λE[S2]

2(1− λE[S])
+ E[S]

=
λ(p(µH)2 + (1− p)(µE)2)

2(µEµH)22(1− λpµH+(1−p)µE
2µEµH

)
+
pµH + (1− p)µE

2µEµH

=
λ(p(µH)2 + (1− p)(µE)2)

(2µEµH)[(2µEµH)− λ(pµH + (1− p)µE)]
+
pµH + (1− p)µE

2µEµH

=
λ(p(µH)2 + (1− p)(µE)2) + 2µEµH(pµH + (1− p)µE)− λ(pµH + (1− p)µE)2

(2µEµH)[(2µEµH)− λ(pµH + (1− p)µE)]
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Problem 4: Brownian Motion and Stationary Processes

Let {B(t); t ≥ 0} be a standard Brownian motions satisfying B(0) = 0 and having variance

parameter 1. Let
{Bµ(t); t ≥ 0} := {B(t) + µt; t ≥ 0}

be a Brownian Motion with drift, where µ is a strictly negative constant. Let

{Mµ(t); t ≥ 0} := {max
0≤s≤t

Bµ(s); t ≥ 0}

be the process providing the maximu of the Brownian motion up to time t. De�ne the random
variable

Mµ := max
t>0

Bµ(t).

You may assume without further proof that P(Mµ exists and is �nite) = 1.

a) Provide the density function of Mµ. (3pt)

Solution: We can now use results from Section 10.5 of Ross in many ways. Here I use the the

last line of the Section. Noting that if the maximum of a Brownian Motion with drift is at least

y if and only if the hitting time of y is �nite, we obtain (using that µ is strictly negative

P(max
t>0

Bµ(t) ≥ y) = P(Ty ≤ ∞) = e2yµΦ̄(−∞) + Φ̄(+∞) = e−2y|µ|

Here we have used that Φ̄(x) is the probability that a standard normal random variable is larger

than x.

b) Let Tmax := min{t > 0;Bµ(t) = Mµ} be the �rst (and almost surely only) time that the

Brownian Motion with (negative) drift takes its overall maximum. Argue that P(Tmax ≤ t) =
P(Mµ(t)−Bµ(t) > M̃µ), where M̃µ is a random variable which is independent of {Bµ(t); t ≥ 0}
and distributed as Mµ. (4pt)

Solution: If Tmax ≤ t, then Mµ(t) ≥ maxs>tBµ(s) and thus Mµ(t)−Bµ(t) ≥ maxs>t[Bµ(s)−
Bµ(t)]. By independent increments and noting that the left hand side only depends on what

happens before time t and the right hand side only depends on what happens after time t the
left and right hand side are independent of each other. Furthermore,

max
s>t

[Bµ(s)−Bµ(t)] = max
s>t

[B(s) + µs−B(t)− µt] = max
s>t

[B(s)−B(t) + µ(s− t)].

Then note that B(s) − B(t) is distributed as B(s − t) and thus that maxs>t[Bµ(s) − Bµ(t)]
is distributed as maxs>t[B(s − t) − µ(s − t)], which by properties of the Brownian Motion is

distributed as maxs>0[B(s)− µ(s)] = maxs>0Bµ(s) = Mµ. This �nishes the argument.
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c) For t > 0, compute P(Bµ(s) < 0 for all s > t). That is, compute the probability that all

zeros of {Bµ(s); s ≥ 0} are before time t. (4pt)

Solution:

P(Bµ(s) < 0 for all s > t) = P(max
s>t

Bµ(s) < 0) = P(max
s>t

[Bµ(s)−Bµ(t)] < −Bµ(t))

=

∫ ∞
−∞

fBµ(t)(x)P(max
s>t

[Bµ(s)−Bµ(t)] < −x|Bµ(t) = x)dx

Arguing as in part b) we know that P(maxs>t[Bµ(s)−Bµ(t)] < −x|Bµ(t) = x) does not depend
on x and therefore is equal to P(maxs>t[Bµ(s) − Bµ(t)] < −x), which in turn is equal to 0 for

x > 0 and equal to 1− e−2|µ||x| for x < 0 by part a. So, we obtain

P(Bµ(s) < 0 for all s > t)) =

∫ 0

−∞

1√
2πt

e−(x+|µ|t)
2/(2t)[1− e−2|µ||x|]dx

=

∫ 0

−∞

1√
2πt

e−(x+|µ|t)
2/(2t)dx−

∫ 0

−∞

1√
2πt

e−(x+|µ|t)
2/(2t)e−2|µ||x|dx

=

∫ ∞
0

1√
2πt

e−(x−|µ|t)
2/(2t)dx−

∫ ∞
0

1√
2πt

e−(x−|µ|t)
2/(2t)e−4|µ|tx/(2t)dx

=

∫ ∞
0

1√
2πt

e−(x−|µ|t)
2/(2t)dx−

∫ ∞
0

1√
2πt

e−(x+|µ|t)
2/(2t)dx

=

∫ µt

−µt

1√
2πt

e−x
2/(2t)dx
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Problem 5: Simulation

Consider a Poisson Process with batch arrivals. At the points of a homogeneous Poisson Process

with rate λ buses arrive. The number of passengers per bus are independent of the arrival times

and independent and identically distributed and distributed as the random variable B. With

P(B = k) = p(1− p)k−1 for k ∈ N = {1, 2, · · · },

where p ∈ (0, 1). Number the passengers in order of arrival, where the order of passengers on

the same bus is arbitrary.

a) Provide a way to simulate from B. (4pt)

Solution: One way is to simulate independent and identically distributed uniformly distributed

random variables on (0, 1), V1, V2, · · · one by one. If V1 < p set B = 1. If Vk > p for all k < j
(which happens with probability (1 − p)j−1 and Vj < p (which happens independently with

probability p) then set B = j. It follows immediately that B has the right distribution.

b) Argue that one can simulate the arrival times of the �rst n customers (say T1, T2, · · · , Tn)
using only a sequence of independent uniform random variables, U1, U2, · · · , Un taking values in

the interval (0, 1) as follows:

• Simulate U1 and set time of �rst arriving customer as T1 = | logU1|/λ

• For ` ∈ {1, 2, · · · , n− 1}, simulate U`+1. If U`+1 > p set T`+1 = T`, while if U`+1 < p, set
T`+1 = T` + | log(U`+1/p)|/λ.

(8pt)

Solution: We know from page 650 of Ross that | logU1|/λ is exponentially distributed with

parameter λ as desired. If we follow the algorithm above, the number of arrivals at the same

time as the �rst arrival is equal to A = min j ∈ {2, 3, · · · };Uj < p − 1, and we thus have that

P(A = k − 1) = (1 − p)k−2p = P(B = k − 1). Similarly, if for ` ∈ N, we have T`+1 > T` the
probability that T`+k = T` is the probability that U`+2, U`+3, ·, U`+k are all larger than p which
is (1− p)k−1 = P(B ≥ k) as desired.

Conditioned on Uj < p, Uj/p is a uniform (0, 1) random variable. And | log(Uj/p)|/λ is an

exponentially distributed random variable with parameter λ as desired for the inter-arrival times

in a Poisson Process.
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