
Solutions of the first exam:
Stochastic Processes and Simulation II

June 1st 2022

Exercise 1: Poisson processes

(i) Give the definition of a nonhomogeneous Poisson process and of its mean value function.

Solution: A non-decreasing non-negative integer valued process (counting process) tNptq, t ě
0u is said to be a nonhomogeneous Poisson process with intensity function λptq ą 0, t ě 0 if
the following holds:

(i) Np0q “ 0;

(ii) Nptq has independent increments;

(iii) PpNpt` hq ´Nptq “ 1q “ λptqh` ophq;

(iv) PpNpt` hq ´Nptq ě 2q “ ophq.

Its mean value function is defined by mptq “
şt

0
λpyq dy.

Greta owns a vegan restaurant which is open every day from 09:00 to 23:00. Customers arrive
at a Poisson rate that increases steadily from 6 customers per hour (c/ph) at 09:00 to 30 c/ph
at 12:00. In the following two hours, around lunch time, the average rate remains constant at
30 c/ph. After that, it steadily drops until 16:00, at which time it has the value of 10 c/ph,
and then it steadily increases again until 18:00 to 24 c/ph. Around dinner time, the arrival
rate remains constant at 24 c/ph in the following three hours, after which it steadily drops
again until closing time to 6 c/ph. Assume that the numbers of customers arriving during
disjoint time periods are independent.

(ii) Define a good probability model that describes the arrival of customers at Greta’s restau-
rant.

Solution: A good model would be assume that the arrivals constitute a nonhomegeneous
Poisson process with intensity function λptq given by

λptq “
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6` 8t, 0 ď t ď 3,

30, 3 ď t ď 5,

30´ 10pt´ 5q, 5 ď t ď 7,

10` 7pt´ 7q, 7 ď t ď 9,

24, 9 ď t ď 12,

24´ 9pt´ 12q, 12 ď t ď 14,

λpt´ 14q, t ą 14.
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(iii) What is the probability that no customers arrive between 10:00 and 11:00? What is the
expected number of customers that arrive at the restaurants in a day?

Solution: The number of arrivals between 10:00 and 11:00 is a Poisson random variable with
mean mp2q ´mp1q. The probability that no customers arrive between 10:00 and 11:00 and is
the probability that this random variable is zero. Hence, it is given by

e´
ş2
1 λptq dt “ e´

ş2
1p6`8tq dt “ e´p6`12q “ e´18.

The average number of arrivals in a day is given by

ż 14

0

λptq dt “

ż 3

0

p6` 8tq dt`

ż 5

3

30 dt`

ż 7

5

p30´ 10pt´ 5qq dt

`

ż 9

7

p10` 7pt´ 7qq dt`

ż 12

9

24 dt`

ż 14

12

p24´ 9pt´ 12qq dt

“ 54` 60` 40` 34` 72` 30 “ 290.

Exercise 2: Renewal theory

(i) Let tNptq, t ě 0u be a renewal process with interarrival times Xn, n ě 1. Consider a

renewal reward process tRptq “
řNptq
n“1 Rn, t ě 0u where Rn, n ě 1 are i.i.d. and represent the

rewards earned each time a renewal occurs. State and prove the reneward reward theorem
for Rptq

t
. Note: you can use the elementary renewal theorem without proving it.

Solution: The renewal reward theorem says that, if ErRns “ ErRs ă 8 and the mean in-

terarrival time ErXns “ µ ă 8, then Rptq
t
Ñ

ErRs
µ

almost surely as t Ñ 8. In order to

prove it, first write Rptq
t
“

řNptq
n“1 Rn
t

“

řNptq
n“1 Rn
Nptq

Nptq
t
. Then, by the strong law of large numbers,

řNptq
n“1 Rn
Nptq

Ñ ErRs a.s., and, by the elementary renewal theorem, Nptq
t
Ñ 1

µ
.

In order to be able to cook healthier food, Greta decides to buy an air fryer machine for
her restaurant. The machine breaks down according to a renewal process, whose interarrival
times are uniformly distributed between 0 and 2 years. Assume that the cost of a new machine
is 75000 SEK, while the expected cost of a new repair increases with the number of earlier
repairs in such a way that the expected cost of the k-th repair is 600 ¨ k SEK. Assume that
at the K-th breakdown Greta decides to replace the air fryer and buy a new one instead of
repairing it.

(ii) What is the expected age of an air fryer when being replaced?

Solution: Denote by X1 the time of the first breakdown and by Xi the time between the
pi ´ 1q-st and i-th breakdown for i ě 2. For all i ě 1, since Xi „ Up0, 2q, we have that
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ErXis “ 1. The expected age of an air fryer when being replaced is then given by (in years)

E

«

K
ÿ

i“1

Xi

ff

“

K
ÿ

i“1

ErXis “ K ¨ 1 “ K.

(iii) What is the expected cost per year for Greta’s restaurant using an air fryer? For which
value of K is this cost the lowest?

Solution: Using renewal reward theory, we know that

Ercost per time units “
Ercost per cycles

Erlength of a cycles
.

Let a new cycle begin as soon as a new air fryer is bought. The expected length of a cycle is
then K, as seen in (i). The expected cost per cycle is

75000`
K´1
ÿ

i“1

600 ¨ i “ 75000` 600
KpK ´ 1q

2
“ 75000` 300KpK ´ 1q.

The expected cost per year is then

75000` 300KpK ´ 1q

K
“

75000

K
` 300pK ´ 1q.

This expression attains its minimum when d
dK

`

75000
K

` 300pK ´ 1q
˘

“ 0 i.e., when 75000
K2 “ 300,

i.e., when K “

b

75000
300

“
?

250 « 15.8. Since K only takes discrete values, the expected cost

per year is the lowest for K “ 16. Indeed, for K “ 16 it is 9187.5 SEK, while for K “ 15 it
is 9200 SEK.

Exercise 3: Queueing theory

Right next to her restaurant, Greta also runs a vegan ice cream shop where she works serving
customers. Assume that customers arrive at a Poisson rate λ independently of each other
and they order one ice cream each as soon as it’s their turn to be served. Assume also that
the time it takes Greta to prepare an ice cream is exponentially distributed with mean 1{µ,
independently of everything else.

(i) Specify what type of queueing model best describes the ice-cream shop activity and provide
the relation that λ and µ must satisfy in order for the number of customers not to grow be-
yond all bounds. What is the asymptotic distribution of the number of customers in the shop?

Solution: The ice-cream shop activity can be described by an M{M{1 queueing model in
which customers arrive according to a Poisson Process with rate λ and their service time S
is exponentially distributed with mean 1{µ. Customers are served according to a “first come

3



first served” rule. The necessary condition in order for the number of customers not to grow
beyong all bounds is that λ ă µ.
Solving the balance equations for an M{M{1 queueing model, we get that the asymptotic
distribution of the number of customers in the shop is given by P0 “ 1 ´ λ

µ
and, for n ě 1,

Pn “
´

λ
µ

¯n ´

1´ λ
µ

¯

.

(ii) What is the average time a newly arrived customer has to wait in the queue before Greta
takes his/her order?

Solution: For an M{M{1 queueing model, the average number of customers in the shop is
L “ λ

µ´λ
and the average time a customer spends in the shop is W “ L

λ
“ 1

µ´λ
. Then the

average time a customer has to wait in the queue is given by

WQ “ W ´ ErSs “
1

µ´ λ
´

1

µ
“

λ

µpµ´ λq
.

Assume now that, as soon as there are no more customers to be served, Greta leaves the shop
and goes to the restaurant to help in the kitchen. She comes back to check on the ice cream
shop after an exponentially distributed time with mean 1{γ. If there are still no customers,
she returns to the restaurant, again for an exponentially distributed time with mean 1{γ,
independently of anything else. If there are customers in the queue when she comes back to
the ice-cream shop, then she starts serving until the shop is empty again.

(iii) Describe the number of customers and the location of Greta as a continuous-time Markov
chain and derive its balance equations.

Solution: Consider the state space tpS, 1q, pS, 2q, . . . , pR, 0q, pR, 1q, pR, 2q, . . . u, where we are
in state pS, kq if Greta is at the shop and there are k ě 1 customers in the shop, while we
are in state pN, kq if Greta is at the restaurant and there are k ě 0 customers in the shop.
Denote by PpS,1q, PpS,2q, . . . , PpR,0q, PpR,1q, PpR,2q, . . . the probabilities of being in each of the
states, respectively. The transition rates to go from one state to another are the followings:
from pS, kq to pS, k`1q the rate is λ, for k ě 1; from pR, kq to pR, k`1q the rate is also λ, for
k ě 0; from pS, kq to pS, k ´ 1q the rate is µ, for k ě 2; from pS, 1q to pR, 0q the rate is also
µ; from pR, kq to pS, kq the rate is γ, for k ě 1. Hence, we can write the balance equations:

λPpR,0q “ µPpS,1q

pλ` µqPpS,1q “ µPpS,2q ` γPpR,1q

pλ` γqPpR,kq “ λPpR,k´1q, for k ě 1

pλ` µqPpS,kq “ λPpS,k´1q ` µPpS,k`1q ` γPpR,kq, for k ě 2.

(iv) Bonus (2 points): Show that the long-run proportion of time that there are k ě 1
customers in the ice-cream shop while Greta is at the ice-cream shop is

γpµ´ λq

µpµ´ λ´ γq

ˆˆ

λ

λ` γ

˙k

´

ˆ

λ

µ

˙k˙

,
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and the long-run proportion of time that there are k ě 0 customers in the ice-cream shop
while Greta is at the restaurant is

γpµ´ λq

µpλ` γq

ˆ

λ

λ` γ

˙k

.

Solution: Fill in the suggested expressions for PpS,kq and PpR,kq and verify the balance equa-
tions.

Exercise 4: Simulation

Consider the Poisson process tNptq, t ě 0u with rate λ describing the arrivals of customers at
Greta’s vegan ice-cream shop. Let U1, U2, . . . be i.d.d. random variables uniformly distributed
on the interval r0, 1s and assume that we can easily simulate them.

(i) Explain in detail why we can simulate the time of the first customer arriving at the ice
cream shop by simulating only U1.

Solution: The time of the first customer arriving at the ice-cream shop is X „ Exppλq. Note
that

PpX ď xq “ 1´ eλx “ PpU1 ď 1´ e´λxq “ Pplogp1´ U1q ě ´λxq “ Pp´
logp1´ U1q

λ
ď xq,

hence X is distributed as ´ logp1´U1q

λ
, which has the same distribution of ´ logpU1q

λ
. Using the

inverse transformation method, we can then simulate U1 „ Up0, 1q and set X “ ´
logpU1q

λ
.

(ii) Recall that if X „ Γpn, λq, then its density fXpxq “
λn

pn´1q!
xn´1e´λx. Let Y be Gamma

distributed with density fY pxq “ 4λ3x2e´2λx. Show that Y can be simulated by simulating
only U1, U2, U3 and setting Y “ ´ 1

2λ
plogpU1q ` logpU2q ` logpU3qq.

Solution: Note that Y „ Γp3, 2λq is distributed as the sum of three i.i.d. exponential random
variables with paramenter 2λ. The result follows then from (i).

(iii) Show how we can simulate the time of the k-th customer arriving at the ice-cream shop

using the rejection method with gpxq “ λ
k
e´

λ
k
x as trial density and compute the average num-

ber of iteration in the most efficient case.

Solution: The arrival time of the k-th customer Sk has a Gamma distribution with parameters
k and λ, so its density is fpxq “ λk

pk´1q!
xk´1e´λx. We have that

fpxq

gpxq
“
kλk´1xk´1

pk ´ 1q!
e´λp1´

1
kqx
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and its derivative
d

dx

fpxq

gpxq
“ pk ´ λxq

λk´1xk´2

pk ´ 2q!
e´λp1´

1
kqx

is 0 when x “ 0 or x “ k
λ
. We get that fp0q

gp0q
“ 0 and

fp kλq

gp kλq
“ kk

pk´1q!
e´pk´1q, so that fpxq

gpxq
attains

its maximum value c “ kk

pk´1q!
e´pk´1q in x “ k

λ
. We can now use the rejection method: simulate

Y with density gpxq (for example using the method in (i)), simulate U „ Up0, 1q, and set

Sk “ Y if U ď fpY q
cgpY q

, otherwise repeat the procedure.

The most efficient case is when c “ maxxě0
fpxq
gpxq

. The average number of iterations is exactly

c “ kk

pk´1q!
e´pk´1q.

Exercise 5: Brownian motion

After years of collaboration with Heura Foods to have their plant-based meat products in her
restaurant, Greta decides to buy a share of Heura’s stock whose price changes according to
a standard Brownian motion. Assume that Greta buys the stock at some moment when the
price is a, a ą 0, and decides to sell it either as soon as the price reaches the value b, b ą a,
or as soon as a period of time of length s goes by.

(i) What is the probabily of Greta selling the stock at the price b?

Solution: The probability of Greta selling the stock at the price b is the probability that the
price reaches the value b within time s from the moment Greta buys the stock. If we look at
the (shifted) Brownian motion tBptq, t ě 0u starting from the moment Greta buys the stock,
then we are interested in the probability that the process reaches the value b before time s,
i.e.,

PpTb ď s |Bp0q “ aq “ PpTb´a ď s |Bp0q “ 0q “ PpTb´a ď sq “
2
?

2π

ż 8

b´a?
s

e´
y2

2 dy.

Starting from the moment Greta buys the stock, let Tbc be the first time the price reaches the
value c, c ă a, after reaching the value b.

(ii) State the reflection principle and use it to compute PpTbc ą tq.

Solution: The reflection principle says that, if tXptq, t ě 0u is a standard Brownian motion
and T a stopping time, then the process tXT ptq, t ě 0u defined as

XT ptq “

#

Xptq, 0 ď t ď T,

2XpT q ´Xptq, t ą T,

is also a standard Brownian motion.
Since hitting times are stopping times, by the reflection principle, we know that Tbc is dis-
tributed as T2b´c. Indeed, from Tb the time until reaching c (from b to a and then from a to
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c) is distributed as the time until reaching b` pb´ aq ` pa´ cq “ 2b´ c. Hence,

PpTbc ą tq “ PpT2b´c ą tq “ 1´ PpT2b´c ď tq “ 1´
2
?

2π

ż 8

2b´c?
t

e´
y2

2 dy.

(iii) Compute the probability that the price returns to the value a at least once in the time
interval p1, 2q after Greta buys the stock.

Solution: We are interested in the probability of the event tD t P p1, 2q : Bptq “ a |Bp0q “
au, which is the same probability of the event A “ tD t P p1, 2q : Bptq “ 0 |Bp0q “ 0u.
Conditioning on the value of Bp1q, since Bp1q „ N p0, 1q, we get

PpAq “
ż 8

´8

PpA |Bp1q “ xqfBp1qpxq dx “

ż 8

´8

PpA |Bp1q “ xq
1
?

2π
e´

x2

2 dx

“

ż 8

´8

P pD t P p0, 1q : Bptq “ ´x |Bp0q “ 0q
1
?

2π
e´

x2

2 dx “

ż 8

´8

PpT´x ă 1q
1
?

2π
e´

x2

2 dx

“

ż 8

´8

PpTx ă 1q
1
?

2π
e´

x2

2 dx “

ż 8

´8

2
?

2π

ż 8

|x|

e´
y2

2 dy
1
?

2π
e´

x2

2 dx “
2

π

ż 8

0

ż 8

x

e´
x2`y2

2 dydx

“
1

π

ż 8

0

ż 8

0

e´
x2`y2

2 dxdy “ 2

ˆ

1
?

2π

ż 8

0

e´
x2

2 dx

˙2

“ 2 ¨

ˆ

1

2

˙2

“
1

2
.
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