
Solutions of the second exam:
Stochastic Processes and Simulation II

August 10th 2022

Exercise 1: Poisson processes

(i) Give the definition of a homogeneous Poisson process.

Solution: A non-decreasing non-negative integer valued process (counting process) tNptq, t ě
0u is said to be a (homogeneous) Poisson process with rate λ ą 0 if the following holds:

(i) Np0q “ 0;

(ii) Nptq has independent increments;

(iii) PpNpt` hq ´Nptq “ 1q “ λh` ophq;

(iv) PpNpt` hq ´Nptq ě 2q “ ophq.

A vegan foodtruck is parked every day in front of the university and sells three types of
dishes to students: tofu poke bowls (P), falafel wraps (W) and plant-based burgers (B). Let
tNP ptq, t ě 0u be a Possion process on p0,8q with rate λP describing the arrivals of students
that order a tofu poke bowl, let tNW ptq, t ě 0u be a Possion process on p0,8q with rate
λW describing the arrivals of students that order a falafel wrap, and let tNBptq, t ě 0u be a
Possion process on p0,8q with rate λB describing the arrivals of students that order a plant-
based burger. Assume that the three Poisson processes are independent of each other. Let
Si1, S

i
2, S

i
3, . . . , indicate the arrival times of the Poisson process tNiptq, t ě 0u, for i “ P,W,B,

respectively.

(ii) Provide the distribution of the time of the first student that arrives to the foodtruck, i.e.,
of mintSP1 , S

W
1 , S

B
1 u, and compute the probability that he/she orders a plant-based burger.

Solution: The arrivals of the three independent homogeneous Poisson processes can be de-
scribed by a homogenous Poisson process with rate λP ` λW ` λB. The time of the first
arrival is then exponentially distributed with mean 1

λP`λW`λB
and the probability that the

first student orders a plant-based burger is

P
`

mintSP1 , S
W
1 , S

B
1 u “ SB1

˘

“
λB

λP ` λW ` λB
.

(iii) Assume that at the end of the day, at time T ą 0, we have NP pT q “ p, NW pT q “ w and
NBpT q “ b, with p, w, b ą 0. Provide the distribution of the time at which the last student of
the day arrives, and compute the probability that he/she orders a falafel wrap.

Solution: Using the order statistic property for the combined processes, we obtain that the
time of the last arrival in the interval p0, T q is distributed as the largest of p`w`b independent
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uniform random variables in p0, T q. Denote this time by X and note that, for x P p0, T q, we
have

PpX ď xq “ P pall p` w ` b arrivals occur before time xq “
´ x

T

¯p`w`b

.

Consider p ` w ` b arrivals independently and uniformly distributed on p0, T q. Choose w of
them uniformly at random (without replacement) and label them as W. The probability that
the last arrival is labelled as W is w

p`w`b
, and this equals the probability the the last student

of the day orders a falafel wrap.

Exercise 2: Renewal theory

(i) Give the definition of a continuous-time Markov process/chain and explain the difference
from semi-Markov processes.

Solution: A stochastic process tXptq, t ě 0u is a continuous-time Markov chain if for all
s, t ě 0 and nonnegative integers i, j, xpuq, 0 ď u ă s,

P pXpt` sq “ j |Xpsq “ i,Xpuq “ xpuq, 0 ď u ă sq “ P pXpt` sq “ j |Xpsq “ iq .

In other words, the process has the Markovian property that the conditional distribution of
the future given the present and the past depends only on the present and its independent
of the past. Alternatively, a stochastic process tXptq, t ě 0u is a continuous-time Markov
chain on the state space S if the process moves from state to state in accordance with a
discrete-time Markov chain, but the amount of time it spends in each state, before jumping
to the next state, is exponentially distributed.
A semi-Markov process is a process on S that evolves as a continuous-time Markov chain,
with the difference that, for all i P S, the amount of time it spends in state i before jumping
into a different state is a random variable (not exponential) with mean µi.

Assume that the owner of the foodtruck has collected data on the orders received during peak
hours. He can only prepare one dish at the time and, during these hours, he is always busy
preparing some dishes, i.e., as soon as he finishes with one dish and serves it to the student, he
immediately takes the next order and starts preparing the following dish. The data collected
shows that: if a student orders a tofu poke bowl (P), the following student orders either a
falafel wrap or a plant-based burger with equal probability; if a student orders a falafel wrap
(W), the following student will order a plant-based burger with probability 2{3 and a tofu
poke bowl with probability 1{3; if a student orders a plant-based burger (B), the following
students is equally likely to order any of the three dishes. Assume that the time it takes to
prepare dish i is on average µi, for i “ P,W,B.

(ii) What proportion of time Pi the owner spends preparing each dish i “ P,W,B during
peak hours?
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Solution: Let πi, i “ P,W,B be the stationary distribution of the embedded discrete-time
Markov chain describing the jump between states. We then have that

πP ` πW ` πB “ 1,

πP “
1

3
πW `

1

3
πB,

πW “
1

2
πP `

1

3
πB,

πB “
1

2
πP `

2

3
πW `

1

3
πB,

(0.1)

which gives the solution πP “
1
4
“ 8

32
, πW “ 9

32
and πB “

15
32

. Hence the proportion of time
the owner spends preparing each dish during peak hours is

PP “
8µP

8µP ` 9µW ` 15µB
,

PW “
9µW

8µP ` 9µW ` 15µB
,

PB “
15µB

8µP ` 9µW ` 15µB
.

(0.2)

(iii) Give a sufficient condition for the Pi, i “ P,W,B to represent the limiting probabilities
that a tofu boke bowl, a falalef wrap or a plant-based burger are being prepared during peak
hours.

Solution: They represent the limiting probabilities if the distributions of the amount of time
it takes to prepare each dish are continuous.

Exercise 3: Queueing theory

Due to the high success of the vegan foodtruck business, the following year the owner decides
to hire an assistant that can help when there are lots of students in the queue. Assume that
students arrive now at a Poisson rate λ independently of each other and of what dish they will
order. Assume also that the time it takes to prepare each dish is exponentially distributed
with mean 1{µ, both for the owner and the assistant independently. Initially, the owner
prepares the dishes alone, while the assistant takes care of other tasks. However, as soon as
there are 5 or more students at the foodtruck, the assistant starts preparing the dishes as
well. When the assistant finishes with an order, if the number of students at the foodtruck
is less than 5, then he stops serving the students and goes back to his other tasks until the
number of students at the foodtruck is again 5 or more.

(i) What is the relation that λ and µ must satisfy in order for the number of students not to
grow beyond all bounds?
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Solution: The necessary condition in order for the number of students not to grow beyond all
bounds is that λ ă 2µ.

(ii) Provide the balance equations describing the above queueing system.

Solution: Let πi be the asymptotic probability that there are i students at the foodtruck. The
balance equations are

λπ0 “ µπ1

pλ` µqπi “ λπi´1 ` µπi`1, 1 ď i ď 3,

pλ` µqπi “ λπi´1 ` 2µπi`1, i “ 4,

pλ` 2µqπi “ λπi´1 ` 2µπi`1, i ě 5.

(0.3)

(iii) Provide the asymptotic time a student spends on average in the queue in terms of the
model parameters and of µF , the average number of students at the foodtruck.

Solution: By Little’s formula, µF “ L “ λW , where W is the average time a student spends
at the foodtruck. Furthermore, the average time a student spends being served is 1

µ
. So the

asymptotic time a student spends on average in the queue is µF
λ
´ 1

µ
.

(iv) Bonus (2 points): compute the asymptotic probability π0 that there is no student at the
foodtruck when λ “ 2 and µ “ 4.

Solution: The balance equations become

π0 “ 2π1

3πi “ πi´1 ` 2πi`1, 1 ď i ď 3,

3πi “ πi´1 ` 4πi`1, i “ 4,

5πi “ πi´1 ` 4πi`1, i ě 5.

We have that πi “
`

1
2

˘i
π0 for i “ 0, 1, 2, 3, 4, while πi “

`

1
2

˘4 `1
4

˘i´4
π0 for i ě 5. Hence, we

have

1 “
8
ÿ

i“0

πi “ π0

˜

3
ÿ

i“0

ˆ

1

2

˙i

`

ˆ

1

2

˙4 8
ÿ

i“4

ˆ

1

4

˙i´4
¸

“ π0

˜

1´
`

1
2

˘4

1
2

`

`

1
2

˘4

1´ 1
4

¸

“ π0

ˆ

15

8
`

1

12

˙

“ π0
47

24
,

which implies that π0 “
24
47

.

Exercise 4: Simulation
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Assume now that students arrive at the vegan foodtruck according to a nonhomogeneous
Poisson process with intensity function λptq, t ě 0.

(i) If a student arrives at time x, compute the density function fxptq of the time at which the
next student arrives.

Solution: We have that

Fxptq “ P pnext arrival in px, x` tq | arrival at xq

“ 1´ P pno arrivals in px, x` tq | arrival at xq

“ 1´ P pno arrivals in px, x` tqq

“ 1´ e´
şt
0 λpx`yq dy.

Hence by differentiating we get

fxptq “ λpx` tqe´
şt
0 λpx`yq dy.

(ii) For T ą 0, provide a method for simulating the student arrival process when λptq “ 1` 1
t`2

in p0, T q, by simulating only standard uniform random variables.

Solution: One way of simulating this process is to first simulate a homogeneous Poisson process
with rate 1 and then simulate a nonhomogeneous Poisson process with intensity function 1

t`2
.

The superposition of these two processes in p0, T q is the desired Poisson process.
We can simulate the homogeneous Poisson process with rate 1 by simulating the sequence of
exponentially distributed arrival times X1, X2, . . . . We can simulate standard uniform random
variables U1, U2, . . . , and use the inverse transformation method setting Xi “ ´ logpUiq.
In a similar way, we can simulate the inhomogeneous Poisson process with intensity function
1
t`2

by simulating the event times in the order in which they occur. Using point (i), we can
simulate the time of the first event Y1 from the distribution F0. If Y1 “ y1, then we simulate
Y2 by adding y1 to a value simulated from Fy1 . If Y2 “ y2, then we simulate Y3 by adding y2
to a value simulated from Fy2 , and so on. In particular,

Fxptq “ 1´ e´
şt
0 λpx`yq dy “ 1´ e´

şt
0

1
x`y`2

dy
“ 1´ e´ logpx`t`2

x`2 q “ 1´
x` 2

x` t` 2
“

t

x` t` 2
.

Hence, using the inverse transformation method with

F´1x puq “ px` 2q
u

1´ u
,

we can simulate the successive event times Y1, Y2, . . . by simulating standard uniform random
variables U 11, U

1
2, . . . and then setting

Y1 “ F´10 pU 11q “
2U 11

1´ U 11
,

Y2 “ Y1 ` F
´1
Y1
pU 12q “ Y1 ` pY1 ` 2q

U 12
1´ U 12

,

Yi “ Yi´1 ` F
´1
Yi´1
pU 1iq “ Yi´1 ` pYi´1 ` 2q

U 1i
1´ U 1i

, i ě 2.
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(iii) How can we simulate the arrival time of the first student?

Solution: To simulate the arrival time of the first student we can simply simulate X1 and
Y1 as above and take minpX1, Y1q, which gives the first event in the superposition of the two
Poisson processes.

Exercise 5: Brownian motion

(i) Give the definition of a standard Brownian motion and explain how any Brownian motion
can be rescaled to a standard one. Also, give the definition of a standard Brownian brigde
and specify its mean and variance at time t ą 0.

Solution: A stochastic process tBptq, t ě 0u is said to be a standard Brownian motion if:

(i) Bp0q “ 0;

(ii) tBptq, t ě 0u has independent and stationary increments;

(iii) for every t ą 0, Bptq „ N p0, tq.

A general Brownian motion tXptq, t ě 0u is defined in the same way, but with (iii) replaced
by Xptq „ N p0, σ2tq, hence any Brownian motion can be converted to the standard one by
letting Bptq “ Xptq{σ.
A standard Brownian bridge is a stochastic process on r0, 1s whose probability distribution is
the probability distribution of a standard Brownian motion conditional on Bp1q “ 0, i.e., the
process tBptq, t P r0, 1s |Bp1q “ 0u. We have that Bptq |Bp1q “ 0 „ N p0, tp1 ´ tqq, hence it
has mean 0 and variance tp1´ tq.

After months of selling the plant-based Beyond Burger at his foodtruck, the owner decides
to buy a share of the stock of Beyond Meat, the company that produces it. Assume that
the stock price changes according to a standard Brownian motion. Moreover, assume that he
buys the stock at a certain time when the price is x, x ą 0, and that he decides to sell it when
one of the two following events occurs: either when the price reaches the value y, y ą x, or
when a period of time of length t has passed.

(ii) What is the probabily that the owner of the foodtruck does not sell the stock at the price
y?

Solution: The probability of the owner of the foodtruck not selling the stock at the price y is
the probability that the price does not reach the value y within time t from the moment he
buys the stock. If we look at the (shifted) Brownian motion tBpsq, s ě 0u starting from the
moment he buys the stock, then we are interested in the probability that the process does
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not reach the value y before time t, i.e.,

PpTy ą t |Bp0q “ xq “ 1´ PpTy ď t |Bp0q “ xq

“ 1´ PpTy´x ď t |Bp0q “ 0q

“ 1´ PpTy´x ď tq

“ 1´
2
?

2π

ż 8

y´x
?
t

e´
s2

2 ds.

(iii) Starting from the moment he buys the stock, let Tyz be the first time the price reaches
the value z, z ă x, after it has reached the value y, i.e., the time it takes for the price to go
from x to z passing by y. Compute PpTyz ď sq using the reflection principle.

Solution: Since hitting times are stopping times, by the reflection principle, we know that Tyz
is distributed as T2y´z. Indeed, from Ty the time until reaching z (from y to x and then from
x to z) is distributed as the time until reaching y ` py ´ xq ` px´ zq “ 2y ´ z. Hence,

PpTyz ď sq “ PpT2y´z ď sq “
2
?

2π

ż 8

2y´z
?
s

e´
u2

2 du.
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