Computational Biology

Exact Matching

Department of Mathematics
Stockholm University

1/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x;...x, be a string:

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x;...x, be a string:

» |S| = nlength of S

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x;...x, be a string:

» |S| = nlength of S
» S(i) = x; character at position i

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = Xy ... x, be a string:

» |S| = nlength of S
» S(i) = x; character at position i
> S[1.j] = xq ... x; prefix of S ending at position j

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = Xy ... x, be a string:

» |S| = nlength of S

» S(i) = x; character at position i

> S[1.j] = xq ... x; prefix of S ending at position j
» S[j..n] = x; ... xn suffix of S starting at position j

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = Xy ... x, be a string:

» |S| = nlength of S

» S(i) = x; character at position i

> S[1.j] = xq ... x; prefix of S ending at position j
» S[j..n] = x; ... xn suffix of S starting at position j

If P(i) = T(k) then they match at position / and k, resp. (else mismatch)

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Exact matching has applications in

» Bioinformatics:
Here, T a biological sequence database, e.g. of DNA sequences

word processing
internet search
fgrep on UNIX
search for plagiarism

vVvyYyyvyy

2/17

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of Pin T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

We now have a closer look to the following methods:
» Naive Method
» Z-algorithm (pre-process P)
» Suffixtrees (pre-process T)

2/17

Naive Method

1: function NAIVE(P,T)

2 occurences = ()

3 fori=1,...,|T|—|P|+1do

4 forj=1,...,|P| do

5: match = true

6 if P(j) 2 T(i+j—1) then

7 match = false break

8 if match then add / to occurences
9 return occurences

3/17

Naive Method

1: function NAIVE(P,T)

2 occurences = ()

3 fori=1,...,|T|—|P|+1do

4 forj=1,...,|P| do

5: match = true

6 if P(j) 2 T(i+j—1) then

7 match = false break

8 if match then add / to occurences
9 return occurences

Example and runtime : board

3/17

> before looking at text T examine internal structure of P

We now continue on the board (slides 5 to 16 below summarize the content)

4/17

> before looking at text T examine internal structure of P
» preprocessing should be in O(|P|) time

We now continue on the board (slides 5 to 16 below summarize the content)

4/17

> before looking at text T examine internal structure of P
» preprocessing should be in O(|P|) time

» several different algorithms use same fundamental preprocessing:
Z-algorithm

We now continue on the board (slides 5 to 16 below summarize the content)

4/17

> before looking at text T examine internal structure of P

» preprocessing should be in O(|P|) time

» several different algorithms use same fundamental preprocessing:
Z-algorithm

> will later use preprocessing results to search Pin T in O(|T|).

We now continue on the board (slides 5 to 16 below summarize the content)

4/17

Preprocessing

We will preprocess a string S. S will later often play the role of P.

—

Definition 1 (Z values)
Let i > 1 be a position in string S.
Z; = Z;(S) is the length of the longest substring of S that starts at / and matches a
prefix of S.)

S = eiderdeiderlei
Z7=5

Z>=0

Ziz =2

.

5/17

Definition 3 (Z-Box)
Let i > 1 such that Z; > 0. Then the Z-box at i is the interval starting at / and
endingati+ 2 — 1.

v

Example 4

=18 Z,=16 33

[] LTI

abcdefabcdefgabcbabedefabedefgabeded

6/17

Let i > 1. In the following [¢;, rj] will denote a Z-box that contains position i. If no
Z-box contains position i, then r; < i (e.g. r; = 0).

4

(Examples |
[] LT

abcdefabcedef gabcb?bc?e fabcdef gab<|:dcd

1,=18 i=21 r,=33

A\

717

vVvyvyVvyy

preprocessing of S: compute all Z; values
direct approach takes time O(|S|?)

want to do it in O(|S|)

will compute Z for increasing k

Idea: When computing Z, rk, £x we will reuse

» r=ry_q,0 =101 and
» previously computed values of 2, ..., Zx_1.

in order to save comparisons.

8/17

Z Algorithm: Idea

Reuse previously computed 2.

If r > k then the string 5 = Slk..r] occurs also at the end of the prefix of S of
length Z,, starting at kK = k — ¢ + 1 in S. We can use the value of Z to save
comparison operations when determining Z.

9/17

Z Algorithm: Idea

o
sy o W B 718
Zie e ! kA
k'+Z,-1
k+Zp—1

If Zy < |B| =r — k + 1, then the string v = S[1..Z)/] starts also at k’ and at k.
We get Zx = Z without any further comparisons.

N

10/17

Z Algorithm: Idea

1
s 7] o 8 1B
k) I Lo
ez
k+Zp—1

If Zy < |B] = r — k+ 1, then the string v = S[1..Zy/] starts also at k’ and at k.
We get Zx = Z without any further comparisons.

iR e b o
s[8B [1] [T~
k' T 1 k r
k'+Z,—1

If Zk» > |5, then Zj is at least ||, too. We make further comparisons starting at
r + 1, but don’t have to compare the characters in [k..r].

.

10/17

1:r+£+0

2: fork =210 |S| do

3: // Case 1:

4 if r < k then

5 Compute Zi explicitly by comparing the characters starting at k to the characters starting at 1 until a
mismatch is found.

6: Set Z to the length of the match.

7 if Zx > 0 then

8: Setr«+ k+2Zx—1,4<+ k.

9: // Case 2:

10: else

11: kK < k—0+1

12: // Case 2a:

13: if Zy <r— k+1then

14: Zy +— Zys

15: // Case 2b:

16: else

17: Lk

18: compare the characters starting at r + 1 with the characters starting at r — k 4+ 2 of S until a
mismatch occurs

19: let g > r be the position of the first mismatch or g = |S| + 1 if no mismatch occurs

20: Zk+q—K,r+q—1)

Proof of Correctness

Theorem 6 (Correctness of Z Algorithm)

The Z algorithm computes all values 25, . .., Zs| correctly.

(chalk board)

12/17

Running Time of Z Algorithm

Theorem 7 (Running Time of Z Algorithm)

The Z algorithm computes all the Z; values in O(|S|) time.

(chalk board)

13/17

A Linear-Time Exact Matching Algorithm

Simple Linear-Time Exact Matching Algorithm

Require: character $ not occuring in P or T
n<« |Pl,m« |T]
: S+ PST
: apply Z algorithm to S
:fori=n+2tom+2do
if Z, = nthen
output occurence of P starting at position i —n—1in T

o g ks w2

.

14/17

A Linear-Time Exact Matching Algorithm

Theorem 8 (Correctness of Simple Exact Matching Algorithm)
Above algorithm reports all exact occurences of P in T.

15/17

A Linear-Time Exact Matching Algorithm

Theorem 8 (Correctness of Simple Exact Matching Algorithm)

Above algorithm reports all exact occurences of P in T.

If Z; = nfor any i in the range n+ 2 < i < m+ 2 then, by definition of Z;, we have
S[1..n] = S[i..i + n— 1], and therefore, by definitionof S, P = T[i —n—1..i — 2].
Therefore, P occurs as substring in T at position i — n — 1.

Conversely, if P occurs starting at position j in T, then P occurs starting at position
j+n+1inSandi:=j+n+1isintherange /= n-+2to m+ 2. Therefore,

Z; > n. As $ does not occur in T, we have Z; = n and position j is reported as
occurence of Pin T. O

15/17

A Linear-Time Exact Matching Algorithm

Theorem 9
Above algorithm runs in time O(m) with |T| = m.

16/17

A Linear-Time Exact Matching Algorithm

Theorem 9

Above algorithm runs in time O(m) with |T| = m.

As shown previously, the Z algorithm takes time O(|S|) = O(m + n) = O(m), since
n<m.]

16/17

A Linear-Time Exact Matching Algorithm

Theorem 9
Above algorithm runs in time O(m) with |T| = m

As shown previously, the Z algorithm takes time O(|S|) = O(m + n) = O(m), since
n<m. D

Above algorithm can be implemented requiring O(n) space in addition to storing P and T:
We simply store the Z; values only for i < n. Since $ is not in T, we always have Z; < n
and therefore k’ from the Z algorithm is always less than or equal to n. We never need to
recurse to a Z; value for i > n.

There is another important algorithm for pattern matching: Boyer-Moore Algorithm
[skipped due to time-limitations; cf any standart bioinformatic book]

16/17

SuffixTrees

» data structure build from a string

17/17

SuffixTrees

» data structure build from a string

» will assume that the alphabet size is a constant

17/17

SuffixTrees

» data structure build from a string
» will assume that the alphabet size is a constant

> also allows to solve the exact matching problem in time O(n+ m), |T| = n,|P|=m

17/17

SuffixTrees

vV v vy

data structure build from a string
will assume that the alphabet size is a constant
also allows to solve the exact matching problem in time O(n+m), |T|=n,|P|=m

but here: preprocessing of text T in O(m) and then searching of Pin T in time
O(n + k), where k is the number of occurences of Pin T

This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

17/17

SuffixTrees

vV v. vy

data structure build from a string
will assume that the alphabet size is a constant
also allows to solve the exact matching problem in time O(n+m), |T|=n,|P|=m

but here: preprocessing of text T in O(m) and then searching of Pin T in time
O(n + k), where k is the number of occurences of Pin T

This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

Z-Algorithm (and also Boyer-Moore) requires time Q(m) for searching

17/17

SuffixTrees

data structure build from a string
will assume that the alphabet size is a constant

also allows to solve the exact matching problem in time O(n+m), |T|=n,|P|=m

vV v. vy

but here: preprocessing of text T in O(m) and then searching of Pin T in time
O(n + k), where k is the number of occurences of Pin T

This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

» Z-Algorithm (and also Boyer-Moore) requires time Q(m) for searching

» suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m > n and
many patterns are searched in fixed text

17/17

SuffixTrees

data structure build from a string
will assume that the alphabet size is a constant

also allows to solve the exact matching problem in time O(n+m), |T|=n,|P|=m

vV v. vy

but here: preprocessing of text T in O(m) and then searching of Pin T in time
O(n + k), where k is the number of occurences of Pin T

This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

» Z-Algorithm (and also Boyer-Moore) requires time Q(m) for searching

» suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m > n and
many patterns are searched in fixed text

> suffix trees flexible data structure to solve many more string problems

17/17

SuffixTrees

vV v. vy

data structure build from a string
will assume that the alphabet size is a constant
also allows to solve the exact matching problem in time O(n+m), |T|=n,|P|=m

but here: preprocessing of text T in O(m) and then searching of Pin T in time
O(n + k), where k is the number of occurences of Pin T

This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

» Z-Algorithm (and also Boyer-Moore) requires time Q(m) for searching

» suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m > n and

many patterns are searched in fixed text

suffix trees flexible data structure to solve many more string problems

Now: Board

17/17

	Basics

