
Computational Biology
Exact Matching

Department of Mathematics
Stockholm University

1 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Notation
Let S = x1 . . . xn be a string:

▶ |S| = n length of S
▶ S(i) = xi character at position i
▶ S[1..j] = x1 . . . xj prefix of S ending at position j
▶ S[j ..n] = xj . . . xn suffix of S starting at position j

If P(i) = T (k) then they match at position i and k , resp. (else mismatch)

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

Exact matching has applications in
▶ Bioinformatics:

Here, T a biological sequence database, e.g. of DNA sequences
▶ word processing
▶ internet search
▶ fgrep on UNIX
▶ search for plagiarism
▶ . . .

2 / 17

Given: pattern P, text T (P,T are strings)
Aim: Find occurences of P in T

Example: P = ATG occurs in T = AATGCATGCA at position 2 and 6

We now have a closer look to the following methods:
▶ Naive Method
▶ Z-algorithm (pre-process P)
▶ Suffixtrees (pre-process T)

2 / 17

Naive Method

1: function NAIVE(P,T)
2: occurences = ∅
3: for i = 1, . . . , |T | − |P|+ 1 do
4: for j = 1, . . . , |P| do
5: match = true
6: if P(j) ̸= T (i + j − 1) then
7: match = false break
8: if match then add i to occurences
9: return occurences

Example and runtime : board

3 / 17

Naive Method

1: function NAIVE(P,T)
2: occurences = ∅
3: for i = 1, . . . , |T | − |P|+ 1 do
4: for j = 1, . . . , |P| do
5: match = true
6: if P(j) ̸= T (i + j − 1) then
7: match = false break
8: if match then add i to occurences
9: return occurences

Example and runtime : board

3 / 17

Z-algorithm

▶ before looking at text T examine internal structure of P
▶ preprocessing should be in O(|P|) time
▶ several different algorithms use same fundamental preprocessing:

Z-algorithm
▶ will later use preprocessing results to search P in T in O(|T |).

We now continue on the board (slides 5 to 16 below summarize the content)

4 / 17

Z-algorithm

▶ before looking at text T examine internal structure of P
▶ preprocessing should be in O(|P|) time
▶ several different algorithms use same fundamental preprocessing:

Z-algorithm
▶ will later use preprocessing results to search P in T in O(|T |).

We now continue on the board (slides 5 to 16 below summarize the content)

4 / 17

Z-algorithm

▶ before looking at text T examine internal structure of P
▶ preprocessing should be in O(|P|) time
▶ several different algorithms use same fundamental preprocessing:

Z-algorithm
▶ will later use preprocessing results to search P in T in O(|T |).

We now continue on the board (slides 5 to 16 below summarize the content)

4 / 17

Z-algorithm

▶ before looking at text T examine internal structure of P
▶ preprocessing should be in O(|P|) time
▶ several different algorithms use same fundamental preprocessing:

Z-algorithm
▶ will later use preprocessing results to search P in T in O(|T |).

We now continue on the board (slides 5 to 16 below summarize the content)

4 / 17

Preprocessing

We will preprocess a string S. S will later often play the role of P.

Definition 1 (Z values)
Let i > 1 be a position in string S.
Zi = Zi(S) is the length of the longest substring of S that starts at i and matches a
prefix of S.

Example 2
S = eiderdeiderlei
Z7 = 5
Z2 = 0
Z13 = 2

5 / 17

Z-Box

Definition 3 (Z-Box)
Let i > 1 such that Zi > 0. Then the Z-box at i is the interval starting at i and
ending at i + Zi − 1.

Example 4

abcdefabcdefgabcbabcdefabcdefgabcdcd

i=18 Z =16
i

33

6 / 17

Z-Box

ri , ℓi

Let i > 1. In the following [ℓi , ri] will denote a Z-box that contains position i . If no
Z-box contains position i , then ri < i (e.g. ri = 0).

Example 5

r =33
i

abcdefabcdefgabcbabcdefabcdefgabcdcd

l =18
i

i=21

7 / 17

Z Algorithm

Z Algorithm
▶ preprocessing of S: compute all Zi values
▶ direct approach takes time O(|S|2)
▶ want to do it in O(|S|)
▶ will compute Zk for increasing k
▶ Idea: When computing Zk , rk , ℓk we will reuse

▶ r = rk−1, ℓ = ℓk−1 and
▶ previously computed values of Z2, . . . ,Zk−1.

in order to save comparisons.

8 / 17

Z Algorithm: Idea

Reuse previously computed Zk ′

If r ≥ k then the string β = S[k ..r] occurs also at the end of the prefix of S of
length Zℓ, starting at k ′ = k − ℓ+ 1 in S. We can use the value of Zk ′ to save
comparison operations when determining Zk .

9 / 17

Z Algorithm: Idea

Case A

If Zk ′ < |β| = r − k + 1, then the string γ = S[1..Zk ′] starts also at k ′ and at k .
We get Zk = Zk ′ without any further comparisons.

Case B

If Zk ′ ≥ |β|, then Zk is at least |β|, too. We make further comparisons starting at
r + 1, but don’t have to compare the characters in [k ..r].

10 / 17

Z Algorithm: Idea

Case A

If Zk ′ < |β| = r − k + 1, then the string γ = S[1..Zk ′] starts also at k ′ and at k .
We get Zk = Zk ′ without any further comparisons.

Case B

If Zk ′ ≥ |β|, then Zk is at least |β|, too. We make further comparisons starting at
r + 1, but don’t have to compare the characters in [k ..r].

10 / 17

Z Algorithm
1: r ← ℓ← 0
2: for k = 2 to |S| do
3: // Case 1:
4: if r < k then
5: Compute Zk explicitly by comparing the characters starting at k to the characters starting at 1 until a

mismatch is found.
6: Set Zk to the length of the match.
7: if Zk > 0 then
8: Set r ← k + Zk − 1, ℓ← k .
9: // Case 2:
10: else
11: k ′ ← k − ℓ+ 1
12: // Case 2a:
13: if Zk′ < r − k + 1 then
14: Zk ← Zk′

15: // Case 2b:
16: else
17: ℓ← k
18: compare the characters starting at r + 1 with the characters starting at r − k + 2 of S until a

mismatch occurs
19: let q > r be the position of the first mismatch or q = |S|+ 1 if no mismatch occurs
20: Zk ← q − k , r ← q − 1

Proof of Correctness

Theorem 6 (Correctness of Z Algorithm)
The Z algorithm computes all values Z2, . . . ,Z|S| correctly.

Proof.
(chalk board)

12 / 17

Running Time of Z Algorithm

Theorem 7 (Running Time of Z Algorithm)
The Z algorithm computes all the Zi values in O(|S|) time.

Proof.
(chalk board)

13 / 17

A Linear-Time Exact Matching Algorithm

Simple Linear-Time Exact Matching Algorithm
Require: character $ not occuring in P or T
1: n← |P|, m← |T |
2: S ← P$T
3: apply Z algorithm to S
4: for i = n + 2 to m + 2 do
5: if Zi = n then
6: output occurence of P starting at position i − n − 1 in T

14 / 17

A Linear-Time Exact Matching Algorithm

Theorem 8 (Correctness of Simple Exact Matching Algorithm)
Above algorithm reports all exact occurences of P in T .

Proof.
If Zi = n for any i in the range n + 2 ≤ i ≤ m + 2 then, by definition of Zi , we have
S[1..n] = S[i ..i + n − 1], and therefore, by definition of S, P = T [i − n − 1..i − 2].
Therefore, P occurs as substring in T at position i − n − 1.
Conversely, if P occurs starting at position j in T , then P occurs starting at position
j + n + 1 in S and i := j + n + 1 is in the range i = n + 2 to m + 2. Therefore,
Zi ≥ n. As $ does not occur in T , we have Zi = n and position j is reported as
occurence of P in T .

15 / 17

A Linear-Time Exact Matching Algorithm

Theorem 8 (Correctness of Simple Exact Matching Algorithm)
Above algorithm reports all exact occurences of P in T .

Proof.
If Zi = n for any i in the range n + 2 ≤ i ≤ m + 2 then, by definition of Zi , we have
S[1..n] = S[i ..i + n − 1], and therefore, by definition of S, P = T [i − n − 1..i − 2].
Therefore, P occurs as substring in T at position i − n − 1.
Conversely, if P occurs starting at position j in T , then P occurs starting at position
j + n + 1 in S and i := j + n + 1 is in the range i = n + 2 to m + 2. Therefore,
Zi ≥ n. As $ does not occur in T , we have Zi = n and position j is reported as
occurence of P in T .

15 / 17

A Linear-Time Exact Matching Algorithm

Theorem 9
Above algorithm runs in time O(m) with |T | = m.

Proof.
As shown previously, the Z algorithm takes time O(|S|) = O(m + n) = O(m), since
n ≤ m.

Space

Above algorithm can be implemented requiring O(n) space in addition to storing P and T :
We simply store the Zi values only for i ≤ n. Since $ is not in T , we always have Zi ≤ n
and therefore k ′ from the Z algorithm is always less than or equal to n. We never need to
recurse to a Zi value for i > n.

There is another important algorithm for pattern matching: Boyer-Moore Algorithm
[skipped due to time-limitations; cf any standart bioinformatic book]

16 / 17

A Linear-Time Exact Matching Algorithm

Theorem 9
Above algorithm runs in time O(m) with |T | = m.

Proof.
As shown previously, the Z algorithm takes time O(|S|) = O(m + n) = O(m), since
n ≤ m.

Space

Above algorithm can be implemented requiring O(n) space in addition to storing P and T :
We simply store the Zi values only for i ≤ n. Since $ is not in T , we always have Zi ≤ n
and therefore k ′ from the Z algorithm is always less than or equal to n. We never need to
recurse to a Zi value for i > n.

There is another important algorithm for pattern matching: Boyer-Moore Algorithm
[skipped due to time-limitations; cf any standart bioinformatic book]

16 / 17

A Linear-Time Exact Matching Algorithm

Theorem 9
Above algorithm runs in time O(m) with |T | = m.

Proof.
As shown previously, the Z algorithm takes time O(|S|) = O(m + n) = O(m), since
n ≤ m.

Space

Above algorithm can be implemented requiring O(n) space in addition to storing P and T :
We simply store the Zi values only for i ≤ n. Since $ is not in T , we always have Zi ≤ n
and therefore k ′ from the Z algorithm is always less than or equal to n. We never need to
recurse to a Zi value for i > n.

There is another important algorithm for pattern matching: Boyer-Moore Algorithm
[skipped due to time-limitations; cf any standart bioinformatic book]

16 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

SuffixTrees

▶ data structure build from a string

▶ will assume that the alphabet size is a constant

▶ also allows to solve the exact matching problem in time O(n + m), |T | = n, |P| = m

▶ but here: preprocessing of text T in O(m) and then searching of P in T in time
O(n + k), where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom,
collected work of Shakespeare)

▶ Z-Algorithm (and also Boyer-Moore) requires time Ω(m) for searching

▶ suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when m≫ n and
many patterns are searched in fixed text

▶ suffix trees flexible data structure to solve many more string problems

Now: Board

17 / 17

	Basics

