Computational Biology

Exact Matching

Department of Mathematics
Stockholm University

Given: pattern P, text T (P, T are strings)

Aim: Find occurences of P in T

Example: $P=$ aTG occurs in $T=$ AATGCATGCA at position 2 and 6

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
- $S[1 . . . j]=x_{1} \ldots x_{j}$ prefix of S ending at position j
- $S\left[j \ldots n=x_{j} \ldots x_{n}\right.$ suffix of S starting at position j

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
- $S[1 . . j]=x_{1} \ldots x_{j}$ prefix of S ending at position j
- $S[j . . n]=x_{j} \ldots x_{n}$ suffix of S starting at position j

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
$\begin{aligned}-S[1 . . j] & =x_{1} \ldots x_{j} \text { prefix of } S \text { ending at position } j \\ -S[j \ldots n] & =x_{j} \ldots x_{n} \text { suffix of } S \text { starting at position } j\end{aligned}$

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
- $S[1 . . j]=x_{1} \ldots x_{j}$ prefix of S ending at position j
- $S[j \ldots n]=x_{j} \ldots x_{n}$ suffix of S starting at position j

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
- $S[1 . . j]=x_{1} \ldots x_{j}$ prefix of S ending at position j
- $S[j . . n]=x_{j} \ldots x_{n}$ suffix of S starting at position j

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

Notation

Let $S=x_{1} \ldots x_{n}$ be a string:

- $|S|=n$ length of S
- $S(i)=x_{i}$ character at position i
- $S[1 . . j]=x_{1} \ldots x_{j}$ prefix of S ending at position j
- $S[j . . n]=x_{j} \ldots x_{n}$ suffix of S starting at position j

If $P(i)=T(k)$ then they match at position i and k, resp. (else mismatch)

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6
Exact matching has applications in

- Bioinformatics:

Here, T a biological sequence database, e.g. of DNA sequences

- word processing
- internet search
- fgrep on UNIX
- search for plagiarism
- ...

Given: pattern P, text T (P, T are strings)
Aim: Find occurences of P in T
Example: $P=$ ATG occurs in $T=$ AATGCATGCA at position 2 and 6

We now have a closer look to the following methods:

- Naive Method
- Z-algorithm (pre-process P)
- Suffixtrees (pre-process T)

1: function $\operatorname{Naive}(P, T)$
2: occurences $=\emptyset$
3: \quad for $i=1, \ldots,|T|-|P|+1$ do
4: \quad for $j=1, \ldots,|P|$ do
5: \quad match $=$ true
6:
7:
8:
if $P(j) \neq T(i+j-1)$ then match = false break
if match then add i to occurences
9: return occurences

```
1: function \(\operatorname{NAIVE}(P, T)\)
2: occurences \(=\emptyset\)
3: \(\quad\) for \(i=1, \ldots,|T|-|P|+1\) do
4: \(\quad\) for \(j=1, \ldots,|P|\) do
5: \(\quad\) match \(=\) true
6:
7:
8:
9: return occurences
```

Example and runtime : board

- before looking at text T examine internal structure of P
> preprocessing should be in $O(|P|)$ time
- several different algorithms use same fundamental preprocessing: Z-algorithm
- will later use preprocessing results to search P in T in $O(|T|)$.

We now continue on the board (slides 5 to 16 below summarize the content)

- before looking at text T examine internal structure of P
- preprocessing should be in $O(|P|)$ time
- several different algorithms use same fundamental preprocessing: Z-algorithm
- will later use preprocessing results to search P in T in $O(|T|)$.

We now continue on the board (slides 5 to 16 below summarize the content)

- before looking at text T examine internal structure of P
- preprocessing should be in $O(|P|)$ time
- several different algorithms use same fundamental preprocessing: Z-algorithm
> will later use preprocessing results to search P in T in $O(|T|)$.
We now continue on the board (slides 5 to 16 below summarize the content)
- before looking at text T examine internal structure of P
- preprocessing should be in $O(|P|)$ time
- several different algorithms use same fundamental preprocessing: Z-algorithm
- will later use preprocessing results to search P in T in $O(|T|)$.

We now continue on the board (slides 5 to 16 below summarize the content)

We will preprocess a string S. S will later often play the role of P.

Definition 1 (Z values)

Let $i>1$ be a position in string S.
$Z_{i}=Z_{i}(S)$ is the length of the longest substring of S that starts at i and matches a prefix of S.

Example 2

$S=$ eiderdeiderlei
$Z_{7}=5$
$Z_{2}=0$
$Z_{13}=2$

Z-Box

Definition 3 (Z-Box)

Let $i>1$ such that $Z_{i}>0$. Then the Z-box at i is the interval starting at i and ending at $i+Z_{i}-1$.

Example 4

Z-Box

r_{i}, ℓ_{i}
Let $i>1$. In the following $\left[\ell_{i}, r_{i}\right]$ will denote a Z-box that contains position i. If no Z-box contains position i, then $r_{i}<i\left(\right.$ e.g. $\left.r_{i}=0\right)$.

Example 5

Z Algorithm

- preprocessing of S : compute all Z_{i} values
- direct approach takes time $O\left(|S|^{2}\right)$
- want to do it in $O(|S|)$
- will compute Z_{k} for increasing k
- Idea: When computing Z_{k}, r_{k}, ℓ_{k} we will reuse
- $r=r_{k-1}, \ell=\ell_{k-1}$ and
- previously computed values of Z_{2}, \ldots, Z_{k-1}.
in order to save comparisons.

Reuse previously computed $Z_{k^{\prime}}$

If $r \geq k$ then the string $\beta=S[k . . r]$ occurs also at the end of the prefix of S of length Z_{ℓ}, starting at $k^{\prime}=k-\ell+1$ in S. We can use the value of $Z_{k^{\prime}}$ to save comparison operations when determining Z_{k}.

Z Algorithm: Idea

Case A

If $Z_{k^{\prime}}<|\beta|=r-k+1$, then the string $\gamma=S\left[1 . . Z_{k^{\prime}}\right]$ starts also at k^{\prime} and at k. We get $Z_{k}=Z_{k^{\prime}}$ without any further comparisons.

Z Algorithm: Idea

Case A

If $Z_{k^{\prime}}<|\beta|=r-k+1$, then the string $\gamma=S\left[1 . . Z_{k^{\prime}}\right]$ starts also at k^{\prime} and at k.
We get $Z_{k}=Z_{k^{\prime}}$ without any further comparisons.

Case B

If $Z_{k^{\prime}} \geq|\beta|$, then Z_{k} is at least $|\beta|$, too. We make further comparisons starting at $r+1$, but don't have to compare the characters in $[k . . r]$.

Z Algorithm

1: $r \leftarrow \ell \leftarrow 0$
2: for $k=2$ to $|S|$ do
3: // Case 1:
4: if $r<k$ then
5: Compute Z_{k} explicitly by comparing the characters starting at k to the characters starting at 1 until a mismatch is found.
6: \quad Set Z_{k} to the length of the match.
7: if $Z_{k}>0$ then
8: \quad Set $r \leftarrow k+Z_{k}-1, \ell \leftarrow k$.
9: // Case 2:
10: else
11: $\quad k^{\prime} \leftarrow k-\ell+1$
12: // Case 2a:
13: if $Z_{k^{\prime}}<r-k+1$ then
14: $\quad Z_{k} \leftarrow Z_{k^{\prime}}$
15: // Case 2b:
16: else
17: $\quad \ell \leftarrow k$
18: compare the characters starting at $r+1$ with the characters starting at $r-k+2$ of S until a mismatch occurs
19: \quad let $q>r$ be the position of the first mismatch or $q=|S|+1$ if no mismatch occurs
20: $\quad Z_{k} \leftarrow q-k, r \leftarrow q-1$

Proof of Correctness

Theorem 6 (Correctness of Z Algorithm)
The Z algorithm computes all values $Z_{2}, \ldots, Z_{|S|}$ correctly.

Proof.

(chalk board)

Theorem 7 (Running Time of \mathbf{Z} Algorithm)

The Z algorithm computes all the Z_{i} values in $O(|S|)$ time.
Proof.
(chalk board)

A Linear-Time Exact Matching Algorithm

Simple Linear-Time Exact Matching Algorithm

Require: character \$ not occuring in P or T
1: $n \leftarrow|P|, m \leftarrow|T|$
2: $S \leftarrow P \$ T$
3: apply Z algorithm to S
4: for $i=n+2$ to $m+2$ do
5: \quad if $Z_{i}=n$ then
6: \quad output occurence of P starting at position $i-n-1$ in T

Theorem 8 (Correctness of Simple Exact Matching Algorithm)

Above algorithm reports all exact occurences of P in T.

Theorem 8 (Correctness of Simple Exact Matching Algorithm)

Above algorithm reports all exact occurences of P in T.

Proof.

If $Z_{i}=n$ for any i in the range $n+2 \leq i \leq m+2$ then, by definition of Z_{i}, we have $S[1 . . n]=S[i . . i+n-1]$, and therefore, by definition of $S, P=T[i-n-1 . . i-2]$. Therefore, P occurs as substring in T at position $i-n-1$.
Conversely, if P occurs starting at position j in T, then P occurs starting at position $j+n+1$ in S and $i:=j+n+1$ is in the range $i=n+2$ to $m+2$. Therefore, $Z_{i} \geq n$. As $\$$ does not occur in T, we have $Z_{i}=n$ and position j is reported as occurence of P in T.

A Linear-Time Exact Matching Algorithm

Theorem 9

Above algorithm runs in time $O(m)$ with $|T|=m$.

A Linear-Time Exact Matching Algorithm

Theorem 9

Above algorithm runs in time $O(m)$ with $|T|=m$.

Proof.

As shown previously, the Z algorithm takes time $O(|S|)=O(m+n)=O(m)$, since $n \leq m$.

A Linear-Time Exact Matching Algorithm

Theorem 9

Above algorithm runs in time $O(m)$ with $|T|=m$.

Proof.

As shown previously, the Z algorithm takes time $O(|S|)=O(m+n)=O(m)$, since $n \leq m$.

Space

Above algorithm can be implemented requiring $O(n)$ space in addition to storing P and T : We simply store the Z_{i} values only for $i \leq n$. Since $\$$ is not in T, we always have $Z_{i} \leq n$ and therefore k^{\prime} from the Z algorithm is always less than or equal to n. We never need to recurse to a Z_{i} value for $i>n$.

There is another important algorithm for pattern matching: Boyer-Moore Algorithm [skipped due to time-limitations; cf any standart bioinformatic book]

- data structure build from a string
- data structure build from a string
- will assume that the alphabet size is a constant
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- but here: preprocessing of text T in $O(m)$ and then searching of P in T in time $O(n+k)$, where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom, collected work of Shakespeare)
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- but here: preprocessing of text T in $O(m)$ and then searching of P in T in time $O(n+k)$, where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom, collected work of Shakespeare)
- Z-Algorithm (and also Boyer-Moore) requires time $\Omega(m)$ for searching
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- but here: preprocessing of text T in $O(m)$ and then searching of P in T in time $O(n+k)$, where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom, collected work of Shakespeare)
- Z-Algorithm (and also Boyer-Moore) requires time $\Omega(m)$ for searching
- suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when $m \gg n$ and many patterns are searched in fixed text
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- but here: preprocessing of text T in $O(m)$ and then searching of P in T in time $O(n+k)$, where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom, collected work of Shakespeare)
- Z-Algorithm (and also Boyer-Moore) requires time $\Omega(m)$ for searching
- suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when $m \gg n$ and many patterns are searched in fixed text
- suffix trees flexible data structure to solve many more string problems
- data structure build from a string
- will assume that the alphabet size is a constant
- also allows to solve the exact matching problem in time $O(n+m),|T|=n,|P|=m$
- but here: preprocessing of text T in $O(m)$ and then searching of P in T in time $O(n+k)$, where k is the number of occurences of P in T
This is reasonable as text T is often static and does not change (human genom, collected work of Shakespeare)
- Z-Algorithm (and also Boyer-Moore) requires time $\Omega(m)$ for searching
- suffix trees much more efficient than Z-Algorithm or Boyer-Moore, when $m \gg n$ and many patterns are searched in fixed text
- suffix trees flexible data structure to solve many more string problems

Now: Board

