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Dynamic Programming (DP)

Dynamic Programming is . . .
. . . a general, powerful algorithm design technique for solving optimization

problems.
. . . a type of “very smart” exhaustive search that can be applied when the

problem can be “subdivided” into overlapping subproblems.
. . . solves problems by combining the solutions to subproblems
. . . computes the value of an optimal solution first. Optionally, the optimal solution

can be constructed from computed information (backtracking).
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Example: Fibonacci Numbers. . .

. . . are recursively defined:
▶ f (1) = f (2) = 1
▶ f (n) = f (n − 1) + f (n − 2), n > 2.

naive recursive way:
F (positive integer n)

1: if n ≤ 2 then f = 1
2: else
3: f = F (n − 1) + F (n − 2)
4: return f

recursive way with memo:
F (positive integer n)

1: if memo[n] ̸=NIL then
2: return memo[n]
3: if n ≤ 2 then f = 1
4: else
5: f = F (n − 1) + F (n − 2)
6: memo[n] = f
7: return f

Which algorithm is more efficient and why? WHITEBOARD
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Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

▶ String X = x1x2 . . . xm

▶ Z = z1z2 . . . zk is subsequence of X , if there are indices
i1, i2, . . . , ik ∈ {1, . . . ,m} such that i1 < i2 < · · · < ik and zj = xij

E.g. Z = BCDB is subsequence of X = ABCBDAB

Z ̸= X [i ..j] may hold!
▶ A subsequence Z of X and Y is a common subsequence of X and Y

Aim: Find longest subsequence of of X and Y .

Solution: via Dynamic Programming (WHITEBOARD)
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Longest common subsequence (LCS) (WHITEBOARD)

LCS(strings X , Y )
1: m= X .length, n= Y .length
2: Let b[1 . . .m, 1 . . . n] be new array
3: Let c[0 . . .m; 0 . . . n] be new array
4: for i = 1 . . .m do c[i, 0] = 0
5: for j = 0 . . . n do c[0, j] = 0
6: for i = 1 . . .m do
7: for j = 1 . . . n do
8: if xi = yj then
9: c[i, j] = c[i − 1, j − 1] + 1
10: b[i, j] = “↖′′

11: else if c[i − 1, j] ≥ c[i, j − 1] then
12: c[i, j] = c[i − 1, j]
13: b[i, j] = “ ↑′′
14: else
15: c[i, j] = c[i, j − 1]
16: b[i, j] = “←′′

17: return c and b

PRINT_LCS(b, X , i, j)
// Initial call PRINT_LCS(b, X , m, n)

1: if i = 0 or j = 0 then return
2: if b[i, j] = “↖′′ then
3: PRINT_LCS(b, X , i − 1, j − 1)
4: print xi
5: else if b[i, j] = “ ↑′′ then
6: PRINT_LCS(b, X , i − 1, j)
7: else
8: PRINT_LCS(b, X , i, j − 1)

Theorem

4.3 LCS( ) and PRINT_LCS( ) correctly
returns length and LCS of two strings
X = x1 . . . xn and Y = y1 . . . ym in O(mn)
time.
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"Non-exact" matching

Aim:
Compare strings to score/evaluate the (dis)similarity between them.

"Non-exact" matching arises in many fields:
▶ Molecular biology
▶ Inexact text matching (e.g. spell checkers; web page search)
▶ Speech recognition

Biology:
In biomolecular sequences (DNA,RNA,Proteins) high sequence similarity often
implies significant functional or structural similarity.

Important:
similar function ̸⇒ similar structure ̸⇒ similar sequences
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How to measure "sequence similarity"?

Naive/simple ways:
▶ Hamming distance (board)
▶ LCS (board)
▶ ..
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Edit Distance
Edit Operations:
▶ Insertion of character
▶ Deletion of character
▶ Replacement of one character by some other one

Edit Distance = Min. Nr. of Edit Operations to transform string u to string v
(equivalent transform string v to string u)

D M M R M M I
w r i t e r -
- r i d e r s

(M = Match)

Edit Script = string over alphabet {I,D,R,M} that describes transformation from u
to v .

Edit Distance Problem: For two strings compute edit distance and optimal edit
script.
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Example

u =TGCATAT v =ATCCGAT

u = TGCATAT del. last T−−−−−→ TGCATA del. last A−−−−−→ TGCAT
add A 1.pos−−−−−−−→ ATGCAT

repl. G by C 3.pos−−−−−−−−−−→
ATCCAT

insert G 5.pos−−−−−−−−→ ATCCGAT= v Edit Distance ≤ 5

u = TGCATAT
ins. A 1.pos−−−−−−−→ ATGCATAT

del. T 6.pos−−−−−−−→ ATGCATAT
repl. A by G 5.pos−−−−−−−−−−→

ATGCGTAT
repl. G by C 3.pos−−−−−−−−−−→ ATCCGAT= v

Edit Distance ≤ 4

(How to find OPTIMAL one?)
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(global pairwise) Alignment
Alternative way to edit script: Alignment

For two strings u = u1 . . . um and v = v1 . . . vn an alignment A is a matrix with two
rows and entries A[i , j] that are characters from Alphabet Σ (e.g.Σ = {A,C,G,T})
or a gap “-” s.t.
▶ 1st row = u after deleting all gaps
▶ 2st row = v after deleting all gaps
▶ in no column are two gaps

w r i t e r -
- r i d e r s

- T G C A T A T
A T C C G - A T

Cost-Function δ : Σ ∪ {−} × Σ ∪ {−} → R
Unit-Cost-Function δ(a,b) = 1 if a ̸= b

δ(a,b) = 0 if a = b
Alignment Costs δ(A) :=

∑
i=1 δ(ai ,bi)
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Lemma 1
Edit Distance of two strings u, v equals the min. alignments costs δ(A) between u
and v with unit-cost function.

How to compute Edit Distance? Dynamic Programming!
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Recurrence Function D (Needleman-Wunsch Algorithm)

Given the strings u = u1 . . . um and v = v1 . . . vn

Assume D[i , j] are the costs for an optimal alignment of substrings
u1 . . . ui and v1 . . . vj , 1 ≤ i ≤ m, 1 ≤ j ≤ n

i = 0: alignment empty string ϵ and v1 . . . vj
j = 0: alignment u1 . . . ui and empty string ϵ

Init: D[i ,0] = D[i − 1,0] + δ(si ,−); D[0, j] = D[0, j − 1] + δ(−, tj), i , j ≥ 0;
Compute

D[i , j] = min


D[i − 1, j] + δ(ui ,−)
D[i − 1, j − 1] + δ(ui , vj)
D[i , j − 1] + δ(−, vj)

(if δ = unit-cost-function, then D[i ,0] = i and D[0, j] = j for i , j ≥ 1)

Lemma 2
D[m,n]=cost of optimal alignment between u and v.
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Backtracing

Given the strings u = u1 . . . um and v = v1 . . . vn

Tracematrix is an m × n matrix with T [i , j] ⊆ {←,↖, ↑}.

Init: T [0,0] = ∅, T [i ,0] =↑, T [0, j] =← for 1 ≤ i ≤ m, 1 ≤ j ≤ n

Set:
↑ ∈ T [i , j] if D[i − 1, j] + δ(ui ,−)
↖∈ T [i , j] if D[i − 1, j − 1] + δ(ui , vj)
←∈ T [i , j] if D[i , j − 1] + δ(−, vj)

Runtime: O(mn)
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Alignment with variable Gap-Costs

ACCGTCTGCT ACCGTCTGCT δ(A) = 5
A-C–-C-G-T ACCGT––––

This contradicts “biological intuition”:
Insertion of gap of length k is “evolutionary simpler to realize” then insertion of k
gaps of length 1.

gap penalty function g : N→ R
g(k) is penalty for inserting a gap of length k .
we need:

g(k + l) ≤ g(k) + g(l),

as otherwise it might be better to insert 2 gaps of length k and l then one gap of
length k + l .
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Alignment with variable Gap-Costs (Smith-Waterman-Alg.)

Init: D[0,0] = 0; D[0, k ] = D[k ,0] = g(k), k ≥ 1;

D[i , j] = min


D[i − 1, j − 1] + δ(ui , vj)
min1≤k≤i D[i − k , j] + g(k)
min1≤k≤j D[i , j − k ] + g(k)

Tracematrix is an m × n matrix with T [i , j] ⊆ {←k ,↖, ↑k , k ∈ N}
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Distance VS Scoring Function

Note: Instead of using a distance matrix D we can use a Similarity/Scoring Matrix
S and maximize.

Init: S[i ,0] = −i ∗ gap − cost ; S[0, j] = −j ∗ gap − cost ; for i , j ≥ 0;
Compute

S[i , j] = max


S[i − 1, j] + δ(ui ,−)
S[i − 1, j − 1] + δ(ui , vj)
S[i , j − 1] + δ(−, vj)

with e.g.

δ(a,b) =


1 if a = b
−1 if a ̸= b and a,b ̸= −
−3 else (gap-costs)
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Local vs Global Alignment

Needleman-Wunsch computes a global optimal Alignment

NW reasonable if sequences have almost same length

If sequences have quite different length, then the sequences are “shredded”:
R––––––LCPMNLCGCSQ–––––––––––––––––KY
RCGEQGSNMECPNNLC-CSQYGYCGMGGDYCGKGCQNGACWTSKR

Reason: gaps are penalized equally on each position
Reasonable: less penalization of gaps at end and beginning

Local Alignment: find best alignment of two substrings of two sequences
(Smith-Waterman-Algorithm)
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Local vs Global Alignment
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Example Multiple Alignment

First 90 positions of a protein multiple sequence alignment of instances of the
acidic ribosomal protein P0 (L10E) from several organisms. (wikipedia)
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Now a short overview of three classical (collections) of algorithm that are based on
or concerned with Alignments.

▶ BLAST
▶ Clustal
▶ MUSCLE
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BLAST = Basic Local Alignment Search Tool
Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

▶ BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

▶ Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

▶ very fast local alignment heuristic, but no optimality guarantee

▶ output: series of local alignments, i.e. comparisons of pieces of the searched
sequence with similar pieces from the database. In addition, BLAST indicates how
significant of the hits that have been found.

Databases e.g. for nucleotide sequences (Genbank of NCBI, EMBL, . . . ) or protein
databases (SwissProt, RefSeq, Pfam, . . . ).

BLAST homepage: blast.ncbi.nlm.nih.gov
Tutorial: digitalworldbiology.com/BLAST
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BLAST“Types”

type query target
blastn nucleotide nucleotide
blastp protein protein
blastx nucleotide (transl) protein
tblastn protein nucleotide (transl)
tblastx nucleotide (transl) nucleotide (transl)
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Online Example

https://blast.ncbi.nlm.nih.gov/Blast.cgi→ nucleotide blast→ copy&paste→
press button BLAST

>Sequence_experimental
GACATTACGGCGACCCAGTCTCCCCCGGTGTTGTCAGTGGGACTGGGCC
AGACCGCAACCATCACTTGTACGGCCAGTCAAAGCATCTACAGTAACCT
TGCTTGGTACCAGCAGAGAGAAGGACAGAAGCCCTCTCTCCTGATCTAT
GCTGCGACAACGCGATACGAAGGAGTCTCCGAGCGATTCAGCGGCAGTG
GATCAGGGACCAGTTTCACCCTGACAATCAGCAACGTTCAGAATGAGGA
TGTCGCTGACTATTACTGTCAGATCGCATATTCGATCTACTCCGGTTCC
GTTGTTTTCGGTGAAGGAACCAAGCTCAGACTGAGCCGT

specific mRNA of a nurse shark.

22 / 24

https://blast.ncbi.nlm.nih.gov/Blast.cgi


Clustal

Clustal is a series of computer programs used in bioinformatics for multiple se-
quence alignment.

Brief History:
▶ Clustal (1981, first version)
▶ CLustalW (1994, great improvements)
▶ ClustalX (1997, first time with GUI)
▶ ClustalΩ (latest standard version, 2011)
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Clustal

Basic idea explained on ClustalW (3 steps for input ζ= set {S1, . . . ,Sk} of sequences):

W1 Compute for all pairs Si ,Sj ∈ ζ
a pairwise alignment =⇒
pairwise distances D(Si ,Sj)

W2 Use distance matrix D to
compute phylogenetic tree T
(via NeighborJoining-method)

W3 Use T to carry out a multiple
alignment
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MUSCLE

MUltiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/
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MUSCLE

MUltiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/

Basic idea for input ζ= set {S1, . . . ,Sk} of sequences (2nd and 3rd steps similar to
ClustalW):

1 Compute k -mer distances
=(dis)similarities D(Si ,Sj) between the sets of k-mers for all pairs Si ,Sj ∈ ζ

Much(!) faster than [W1] in Clustal

W2 Use distance matrix D to compute phylogenetic tree T (via UPGMA-method)

W3 Use T to carry out a multiple alignment

4 Several re-iteration and refinement steps follow
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MUSCLE

MUltiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/
Online Example:
>Sequence_1
GTTTATTAGTGATCATGGCTAAGTTTGCGTCCATCATCGCACTTCTTTTT

>Sequence_2
CTCGAGACAGTGATCATGGCTTCTCTCTCTCGTGCCGCATCTCACACC

>Sequence_3
TCTTGGTGAGGATCCGTTGAGAGTGATCATGGCTCGCCCCATCGCCCTNGTTAGA

>Sequence_4
GACATTACGGCGACCCAGTCTCCCAGTGATCATGGCTTCAGTGGGACTGGGCC
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