Computational Biology

Approximate Patter Matching
(Dyn. Prg, Alignments&Co)

Department of Mathematics
Stockholm University

1/24

Dynamic Programming (DP)

Dynamic Programming is . ..

. a general, powerful algorithm design technique for solving optimization
problems.

. atype of “very smart” exhaustive search that can be applied when the
problem can be “subdivided” into overlapping subproblems.

. solves problems by combining the solutions to subproblems

. computes the value of an optimal solution first. Optionally, the optimal solution
can be constructed from computed information (backtracking).

1/24

Example: Fibonacci Numbers...

... are recursively defined:
> f(1)=1f(2) =1
» f(n)=f(n—-1)+f(n—-2),n> 2.

2/24

Example: Fibonacci Numbers...

... are recursively defined:
> f(1)=1f(2) =1
» f(n)=f(n—-1)+f(n—-2),n> 2.

naive recursive way:
F(positive integer n)
1:ifn<2thenf=1
2: else
3: f=F(n—-1)+F(n-2)
4: return f

2/24

Example: Fibonacci Numbers..

... are recursively defined:
> f(1)=1f(2) =1
» f(n)=f(n—-1)+f(n—-2),n> 2.

naive recursive way: recursive way with memo:
F(positive integer n) F(positive integer n)

1:ifn<2thenf=1

2: else

3: f=Fn—-1)+F(n-2)
4

. if memo[n] #NIL then

return memo[n]

cifn<2thenf=1

;
2
3
. return f 4: else
.
6
7

f=F(n-1)+ F(n—-2)

: memo[n] = f
: return f

2/24

Example: Fibonacci Numbers..

... are recursively defined:
> f(1)=1f(2) =1
» f(n)=f(n—-1)+f(n—-2),n> 2.

naive recursive way: recursive way with memo:
F(positive integer n) F(positive integer n)

1:ifn<2thenf=1

2: else

3: f=Fn—-1)+F(n-2)
4

. if memo[n] #NIL then

return memo[n]

cifn<2thenf=1

;
2
3
. return f 4: else
.
6
7

f=F(n-1)+ F(n—-2)

: memo[n] = f
: return f

Which algorithm is more efficient and why? WHITEBOARD

2/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

> String X = xyXo... Xm

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

> String X = xyXo... Xm
> Z =22 ...Z7is subsequence of X, if there are indices
1,02, . .. ik € {1,...,m} such that i <i2<--~<ikandzj:x,-j

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.
> String X = xyXo... Xm
> Z =22 ...Z7is subsequence of X, if there are indices
yhoy ... ik €{1,...,m}suchthat iy < i <--- < andzj:x,-j
E.g. Z = BCDB is subsequence of X = ABCBDAB

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

> String X = xyXo... Xm

> Z =22 ...Z7is subsequence of X, if there are indices
yhoy ... ik €{1,...,m}suchthat iy < i <--- < andzj:x,-j
E.g. Z = BCDB is subsequence of X = ABCBDAB
Z #+ X]i..j] may hold!

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

> String X = xyXo... Xm
> Z =22 ...Z7is subsequence of X, if there are indices
yhoy ... ik €{1,...,m}suchthat iy < i <--- < andzj:x,-j
E.g. Z = BCDB is subsequence of X = ABCBDAB
Z # X|i..j] may hold!
> A subsequence Z of X and Y is a common subsequence of X and Y

3/24

Longest common subsequence (LCS)

Classical problem in bioinformative is to understand how “close” to genes or
genomes are. There are several ways to adress this problem. A simple approach
is the “Longest common subsequence” problem.

> String X = xyXo... Xm
> Z =22 ...Z7is subsequence of X, if there are indices
yhoy ... ik €{1,...,m}suchthat iy < i <--- < andzj:x,-j
E.g. Z = BCDB is subsequence of X = ABCBDAB
Z # X|i..j] may hold!
» A subsequence Z of X and Y is a common subsequence of X and Y
Aim: Find longest subsequence of of X and Y.

Solution: via Dynamic Programming (WHITEBOARD)

3/24

Longest common subsequence (LCS) ()

LCS(strings X, Y) PRINT_LCS(b, X, i,j)

1: m= X.length, n= Y.length // Initial call PRINT_LCS(b, X, m, n)

2: Letb[1...m,1...n] be new array 1:if i=0orj = 0 then return

3 Let _0[0 - m;O...n]_be new array 2: it b[i,j] = "~ then
4:fori=1...mdoc[i,0] =0 3: PRINT_LCS(b, X,i—1,j—1)
5:forj=0...ndoc[0,/]=0 4. print x;

6: fori=1...mdo 5: elseif b[i,j] = “ 1" then

7 forj=1...ndo 6: PRINT_LCS(b, X, i —1,j)

8: if x; = y; then 7: else

9: cli,jl=cli—1,j—1] +1 8: PRINT_LCS(b, X, i,j — 1)

10 bli,jl=“~\"

11 elseif c[i — 1,j] > c[i,j — 1] then

12 cli,jl = cli—1,]]

13 bli,jl = “1"

14: else 4.3 LCS() and PRINT_LCS() correctly
15: cli,j] = C[, j —1] returns length and LCS of two strings
16: b[lj]_ X:X1...xnandY:y1...yminO(mn)

time.

17: return cand b

4/24

"Non-exact" matching

Aim:
Compare strings to score/evaluate the (dis)similarity between them.
"Non-exact" matching arises in many fields:
» Molecular biology
> Inexact text matching (e.g. spell checkers; web page search)
» Speech recognition

Biology:
In biomolecular sequences (DNA,RNA,Proteins) high sequence similarity often
implies significant functional or structural similarity.

Important:
similar function % similar structure # similar sequences

5/24

How to measure "sequence similarity"?

Naive/simple ways:
» Hamming distance (board)
» LCS (board)
> ..

6/24

Edit Distance

Edit Operations:
» Insertion of character
» Deletion of character
> Replacement of one character by some other one

Edit Distance = Min. Nr. of Edit Operations to transform string u to string v
(equivalent transform string v to string u)

M I
r - (M = Match)
r s

D
W

o o=

M
i
i

R RI=X

I, D, R, M} that describes transformation from u

~ QA | D

Edit Script = string over alphabet
to v.

Edit Distance Problem: For two strings compute edit distance and optimal edit

script.
7/24

U =TGCATAT v =ATCCGAT

8/24

U =TGCATAT v =ATCCGAT

1. I :
U:TGCATATMTGCATAMTGCATaddA pos ATGCATrep G by € 3.pos

ATCCAT 0P, procgaT= v

8/24

U =TGCATAT v =ATCCGAT

1. I :
U:TGCATATMTGCATAMTGCATaddA pos ATGCATrep G by € 3.pos

ATCCATRSeME 5P,)\ receAT= v Edit Distance < 5

8/24

U =TGCATAT v =ATCCGAT

1. I :
U:TGCATATMTGCATAMTGCATaddA pos ATGCATrep G by € 3.pos

ATCCATRSeME 5P,)\ receAT= v Edit Distance < 5

ins. A 1. del. T 6. l. Aby G 5.
U = TGCATAT "5 2 1P) paoprar 8 TOPOS, ypaoppr O A DY GO POS,

l. .
ATGCGTAT P EBY C3POS)\ anT— v

8/24

U =TGCATAT v =ATCCGAT

1. I :
U:TGCATATMTGCATAMTGCATaddA pos ATGCATrep G by € 3.pos

ATCCATRSeME 5P,)\ receAT= v Edit Distance < 5

ins. A 1. del. T 6. l. Aby G 5.
U = TGCATAT "5 2 1P) paoprar 8 TOPOS, ypaoppr O A DY GO POS,

l. .
ATGCGTAT P EBY C3POS)\ anT— v

Edit Distance < 4

(How to find OPTIMAL one?)

8/24

(global pairwise) Alignment

Alternative way to edit script: Alignment

9/24

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings u = uy ... un and v = vy ... v, an alignment A is a matrix with two
rows and entries A[/, j] that are characters from Alphabet ¥ (e.g.X = {A,C, G, T})
oragap“’s.t.

> 1st row = u after deleting all gaps

» 2st row = v after deleting all gaps

» in no column are two gaps

9/24

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings u = uy ... un and v = vy ... v, an alignment A is a matrix with two
rows and entries A[/, j] that are characters from Alphabet ¥ (e.g.X = {A,C, G, T})
oragap“’s.t.

> 1st row = u after deleting all gaps

» 2st row = v after deleting all gaps

» in no column are two gaps

w r i t e r -

=
= A
Q@
Q Q
= A

- r i d e r s

9/24

(global pairwise) Alignment

Alternative way to edit script: Alignment

For two strings u = uy ... un and v = vy ... v, an alignment A is a matrix with two
rows and entries A[/, j] that are characters from Alphabet ¥ (e.g.X = {A,C, G, T})
oragap“’s.t.

> 1st row = u after deleting all gaps

» 2st row = v after deleting all gaps

» in no column are two gaps

w r i t e r -

- T G C A T A T
- r i d e r s AT C C G A T

Cost-Function §:XU{-}xXU{-} =R

Unit-Cost-Function é(a,b) =1ifa#b
d(a,b)=0ifa=b

Alignment Costs 0(A) =>"_410(ai, bi)

9/24

Edit Distance of two strings u, v equals the min. alignments costs §(A) between u
and v with unit-cost function.

How to compute Edit Distance? Dynamic Programming!

10/24

Recurrence Function D (Needieman-Wunsch Algorithm)

Giventhe stringsu=uy...upand v =vy... v,

11/24

Recurrence Function D (Needieman-Wunsch Algorithm)

Giventhe stringsu=uy...upand v =vy... v,

Assume DJi, j] are the costs for an optimal alignment of substrings
up...upand vy... v, 1<i<m1<j<n

11/24

Recurrence Function D (Needieman-Wunsch Algorithm)

Giventhe stringsu=uy...upand v =vy... v,

Assume DJi, j] are the costs for an optimal alignment of substrings
up...upand vy... v, 1<i<m1<j<n

i = 0: alignment empty string e and vy ...V,

Jj = 0: alignment uy ... u; and empty string e

11/24

Recurrence Function D (Needieman-Wunsch Algorithm)

Giventhe stringsu=uy...upand v =vy... v,

Assume DJi, j] are the costs for an optimal alignment of substrings
up...upand vy... v, 1<i<m1<j<n

i = 0: alignment empty string e and vy ...V,
Jj = 0: alignment uy ... u; and empty string e
Init: D[i,0] = D[i —1,0] + 06(sj, —); D[0,j] = D[0,j — 1] +d(—. t), i,j > 0;
Compute

D[I_ 17j] + (S(Ui, _)

Dli,jl =minq D[i—1,j—-1] + é(ui,v)

D[I?j_” + 5(_7‘/])

(if & = unit-cost-function, then D[i,0] = i and DI[0,j] = j for i,j > 1)

11/24

Recurrence Function D (Needieman-Wunsch Algorithm)

Giventhe stringsu=uy...upand v =vy... v,

Assume DJi, j] are the costs for an optimal alignment of substrings
up...upand vy... v, 1<i<m1<j<n

i = 0: alignment empty string e and vy ...V,
Jj = 0: alignment uy ... u; and empty string e
Init: D[i,0] = D[i —1,0] + 06(sj, —); D[0,j] = D[0,j — 1] +d(—. t), i,j > 0;
Compute

D[I_ 17j] + (S(Ui, _)

Dli,jl =minq D[i—1,j—-1] + é(ui,v)

D[I?j_” + 5(_7‘/])

(if & = unit-cost-function, then D[i,0] = i and DI[0,j] = j for i,j > 1)

D[m, n|=cost of optimal alignment between u and v. \

11/24

Backtracing

Giventhe stringsu=uy...upand v =vy...v,

Tracematrix is an m x n matrix with T[i,j] C {«,~N,1}.

Init: T[0,0] =0, T[i,0] =1, T[0,j] =«for1 <i<m,1<j<n
re Tl it Dli—1,j]+d(ui,—)

Set: N\eTli,j] if Dli—1,j—1]+0(ui,v))
e T[ij] i D[i,j—1]+0(-v)

Runtime: O(mn)

12/24

Alignment with variable Gap-Costs

ACCGTCTGCT ACCGTCTGCT 4(A) =5
A-C--C-G-T ACCGT----

This contradicts “biological intuition”:
Insertion of gap of length k is “evolutionary simpler to realize” then insertion of k
gaps of length 1.

gap penalty function g : N — R
g(k) is penalty for inserting a gap of length k.
we need:
gk +1) < g(k)+g(/),

as otherwise it might be better to insert 2 gaps of length k and / then one gap of
length k + 1.

13/24

Alignment with variable Gap-Costs (Smith-Waterman-Alg.)

Init: D[O, 0] = 0; D[O, k] = D[k,0] = g(k), k > 1;
Dli —1,j—1] + d(ui, vj)
D[’?j] = min min1§k§i D[I_ kaj] + g(k)
min1§ksj D[I,j—k] + g(k)
Tracematrix is an m x n matrix with T[i,j] C {««, N, Tk, k € N}

14/24

Distance VS Scoring Function

Note: Instead of using a distance matrix D we can use a Similarity/Scoring Matrix
S and maximize.

Init: S[i,0] = —i x gap — cost; S[0,j] = —j x gap — cost; for i,j > 0;
Compute
Sli—1,j] + 6(ui,—)
S[i,jl=maxs Sli—1,j—-1] + o(u,v))
with e.g.

1 ifa=»b
dab)=¢ —1 ifa#bandab# —
—3 else (gap-costs)

15/24

Local vs Global Alignment

Needleman-Wunsch computes a global optimal Alignment
NW reasonable if sequences have almost same length

If sequences have quite different length, then the sequences are “shredded”:

RCGEQGSNMECPNNLC-CSQYGYCGMGGDYCGKGCQONGACWTSKR

Reason: gaps are penalized equally on each position
Reasonable: less penalization of gaps at end and beginning

Local Alignment: find best alignment of two substrings of two sequences
(Smith-Waterman-Algorithm)

16/24

)
c
()
£
c

R=l

<

[

Q

o

(O]
(]
>

®
(%
o

|

Y
€e TATATGCGGCGTTT

4
6

10!

8|2|2|0|0|0

4|0(4a|0|0|0|0
6/0|0(0[2(2(2

0/0|0/0|0|0B|2|2|2

2|2|2|@|2|0|0]|0

T|e|2]|e|6|0

Gle|e|eje|2]|@

clejeloe|e|o|0]|2

T|e|2|e|2|e|2]|0

G|le|e|o|e|e|06|4|0

clele|e|e|o|o|o|a|0[2]4]6[8]2]0
Tle|2]|e[2]e|2|e[e[e|e|e[e]8
Alefe|afe|afee|efe|e[o|o]2]a

e
e

2

o

e TATATGCGGCGTTT

c|@e|o|o|/0|0|0|0|@|0|B|O|O|O|0O |0
G|e|(e|e|e|e|e|2(@|2|2(/0|2|(0|0 |0

G|e|(e|e|e|6|0|2(B|2|4(/0|2(0|0 |0

T|le|2|e|2|e|2|0|@6(0|0|0|0|4|2|2
Aloje|4|0|4|0|0|0|0|0|/O0|0[O|0O |0

T|le|2|0|6|/@0|6|0|@(0|@|0|0|2]2|2

G eje|e|0|2|0|8/2/2|2|0|2|0|0 |0

Cle|e|o/@|0|@|2|10(/4|@|4|0|0@|0 |0
T|e|2|@e|2|e|2|0|4a(6|0|0|0|2][2|2
G| e|o|e|eo|e|e|4a/@0|6|8|2|2|0|/0|0

X

Gle|le|e|e|e|e|2]|e|2|8|a|a|e|a]e
cle|e|e[e|e|e|a|a[e]2]10
Gle|e|e[e|e|e[2]e|6[2]al12
Ccle|e|e|o|e[e|o|a]e]|2]a

T|e|2|/e|2/0[2|/0p|/0|/0|0 /0|0 |8|10 4
Ale|o|4a|o|a|o|o|e|6|0|0|B|2]|4|6

17/24

Example Multiple Alighment

* B * .
Q5E940_BOVIN -MPREDRATWRSN YFLK LI@LLDDEPKCFI VEA] TRuSs DREK - A¥V LMEKNEMME KA TRG] N--PAL 76
RLAO_HUMAN MDREDRATWKSN YFLK LTQLLDD¥PKCFI VEA] TRMS LRGK - A¥V LMCKNTMMR KATRG] N--PAL 16
RLAO_MOUSE MPREDRATWKSN YFLK [TQLLDDY¥PKCFIVGA] TRMS LRGK - A¥V LMGKNTMME KATRG! N--PAL 76
RLAO_RAT MPREDRATWKSN YFLK ITQLLDDY¥PKCFI VGA] TRMS LRGK - A¥V LMGKNTMMR KATRG| N--PAL| 76
L LDD¥PKCEY VG Al TRMS LRGK - A¥VLMGKNTMME KATRG] N--PAL 76
L L.DD¥PKCFI VGA] TRMS LEGK - A¥VLMGKNTMME KATRG] N--SAL 76
L LDDYPKCFI VGA] IRLS LRGK - A¥V LMGKNTMMR KATRG! N--PAL 76
L LND¥PKCFI VGA] IRLSLRGK - ALVLMGKNTMMR KATRG] N--PAL 76
) [LEDEFPKCFIVGA] IRTSLRGL-A¥VLMGKNTMMRKATRG] N--PQL 76
RLAO_DICDI KLETTEDKMIVAEADFV IRKS IRGI-GAVLMGKKIMIRKY IRDLADS K--PELD 5
Q54LP0_DICDT KLETT¥DKMIV AE ADFVC 1.gK IRKS TRGT - GAV LMCKKTMIRKVIRDLADS K- -PELD 15
RLAO_PLAFS -MAK LSKQOKKQMYIEKLS SLIQQESKILIVHY VRKS LRGK- ABILMGKI IRTBLKKNLIBV’*PQ? 76
RLAO_SULAC - ----MIGLAVTTT KK IAKWKVDEVAE LTEK LKTHKT LITAN IEGFP ADKLHE IRKK LRGK - ADIKY o 79
RLAO_SULTO ----MRIMAVITQERKIAKWKIEEVKELEQKLREYHT IIIAN IEGFPADKL 80
RLAO_SULSO - ---MKRLALALKQRKVASWKLEEVKE LTELIKNSNTILIGNLEGFPADKL 80
RLAO_AERPE MSVVS5LVGOMYKREKP IPEWKTLMLRE LEELFSKHRYVLE ADLTGEP [F V¥R VRKK LWKK - EP MMV AKKR T TLRAMKARGLE - - - LDDN 86
RLAO_PYRAE -MMLAIGKRRYVRT RO¥PARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHE¥RYRLRRY-G¥IKIIKPHLFK IAFTKY¥GE - - - IPA] 85
RLAO_METAC ------MAEERHHT EHTPQWKKDETEN IKELT0SHKVFGMYGE THG TLATKM! 78
RLAO_METMA ----- -MAEERHHT EHIPQWKKDETEN IKEL IO! vpcuvulﬁnmu K 78
RLAO_RRCFU ------ MARVRES- - -PPEYKVRAVEE IKRMISSKPVVAIVSFRNVDAG FRGK-BEIKVVKI 5
RLAO_METKA MAVKAKGQFFSGYEFKVAEWKRREVKELK'LMDEENVGLVDL';IEAE IL.OE IRAK LRERDTIRMSR] MR IALEEKLDE R- -PEL] 88
RLAO_METTH - - -MAHVAEWKKKEVQE LHDL IKG¥EVVG I ANLADIPARQLOKMRQT LRDS - AL TRMSKKL TS LALEKAGRE L- ~ENVD 74
RLAO_METTL - --MITAESE HK TAPWKIEEVNK LKELLKNGQIVAL VDMME VP ARQLQE TRDK IR - GrMEL KMS RETL Tk HATRE vABE TENPEFA 82
- - -MIDAKSE HK TAPWKIE E¥NALKELLKSANY IAL IDMME VP AVQLQE TRDK TR - DQMEL KMSRNTL TKRAVEE VAEE TGNDEFA 82
KPYYAIVDMMDVP APQLOE TRDK IR - DKYKLRMSRNTLITRALKE AREE LNNPKLA 81
Py TAL VDV SSMPAYPLSQMRRL IRENGGLLRVSRNTL IE LATKK ARQE LEKPEL 77
PV IALYVDYSSMPAYPLSQMRRL IRENGGLLRVSRNTLIE LATKKAAKE LGKPEL 77
DYVALYVDYSSMPAYPLSOMRRL TRENNGLLREVSRNTL TE LATRK VAGE LEKPEL 77
PV TAL VD VAGVE A YPLSKMRDK LR - GKALLRVSRNTLIE LATKRARQE LGQPEL 16
RLAO_HALMA -----BSAESERKTET IPEWKOEEVDAIVEMIES¥ESVGY VN IAGIPSROLODMRRD LHET - AELRVSHI D! -DEL| 79
RLAO_HALVO -----MSESEVROTEVTPQWKREEYDELVDE IES¥ES¥GY YEVAGIPSROLOSMRRE LHES - AAVRMSRI 79
RLAO_HALSA -----MSAEEQRTTEEVPEWKRQEYAELYDLLET¥DS¥GY VN VTG IPSKOLODMRRELHEO - AALRMSRI 79
RLAO_THEAC —MKEVSQQKKELVNEITﬁIKA RSYAIVDHAGIRTROTODTREK NRGK - INLKV IKK 12
RLAO_THEVO -MRK INPKKKE IVSELAQD ITKSKAVAI VD IKGV TRAKNRDK - VK IKV VKK 72
RLAO_PICTO - -MTEPAQWKTDF¥KNLENE INSRKVAAI VS IKGLRN N IRNSTIRDK- ARIKV.RARLLRLAIEN.GK———mum 72
ruler 1....... 0. 20........ 30........ 0. ..., 50........ 60........

First 90 positions of a protein multiple sequence alignment of instances of the
acidic ribosomal protein PO (L10E) from several organisms. (wikipedia)

18/24

Now a short overview of three classical (collections) of algorithm that are based on
or concerned with Alignments.

> BLAST
» Clustal
» MUSCLE

19/24

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

» Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

» Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

» very fast local alignment heuristic, but no optimality guarantee

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

» Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

» very fast local alignment heuristic, but no optimality guarantee

> output: series of local alignments, i.e. comparisons of pieces of the searched
sequence with similar pieces from the database. In addition, BLAST indicates how
significant of the hits that have been found.

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

» Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

» very fast local alignment heuristic, but no optimality guarantee

> output: series of local alignments, i.e. comparisons of pieces of the searched
sequence with similar pieces from the database. In addition, BLAST indicates how
significant of the hits that have been found.

Databases e.g. for nucleotide sequences (Genbank of NCBI, EMBL, . ..) or protein
databases (SwissProt, RefSeq, Pfam, ...).

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST = asic ocal lignment earch ool

Umbrella term for a collection of the world’s most widely used programs for analyzing
biological sequence data

» BLAST is used to compare experimentally determined DNA or protein sequences
with sequences already existing in a database.

» Basic idea: BLAST divides query sequences into short strings and initially only looks
for (exact) matches of those strings in database strings.
This is afterwards extended to get the entire alignment.

» very fast local alignment heuristic, but no optimality guarantee

> output: series of local alignments, i.e. comparisons of pieces of the searched
sequence with similar pieces from the database. In addition, BLAST indicates how
significant of the hits that have been found.

Databases e.g. for nucleotide sequences (Genbank of NCBI, EMBL, . ..) or protein
databases (SwissProt, RefSeq, Pfam, ...).

BLAST homepage: blast.ncbi.nlm.nih.gov
Tutorial: digitalworldbiology.com/BLAST

20/24

blast.ncbi.nlm.nih.gov
digitalworldbiology.com/BLAST

BLAST“Types”

type query target

blastn nucleotide nucleotide

blastp protein protein

blastx nucleotide (transl) protein

tblastn protein nucleotide (transl)

tblastx nucleotide (transl) nucleotide (transl)

21/24

Online Example

https://blast.ncbi.nlm.nih.gov/Blast.cgi — nucleotide blast — copy&paste —
press button BLAST

>Sequence_experimental
GACATTACGGCGACCCAGTCTCCCCCGGTGTTGTCAGTGGGACTGGGCC
AGACCGCAACCATCACTTGTACGGCCAGTCAAAGCATCTACAGTAACCT
TGCTTGGTACCAGCAGAGAGAAGGACAGAAGCCCTCTCTCCTGATCTAT
GCTGCGACAACGCGATACGAAGGAGTCTCCGAGCGATTCAGCGGCAGTG
GATCAGGGACCAGTTTCACCCTGACAATCAGCAACGTTCAGAATGAGGA
TGTCGCTGACTATTACTGTCAGATCGCATATTCGATCTACTCCGGTTCC
GTTGTTTTCGGTGAAGGAACCAAGCTCAGACTGAGCCGT

specific mRNA of a nurse shark.

22/24

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Clustal

Clustal is a series of computer programs used in bioinformatics for multiple se-
quence alignment.

Brief History:
» Clustal (1981, first version)
» ClLustalW (1994, great improvements)
» ClustalX (1997, first time with GUI)
» Clustal(2 (latest standard version, 2011)

23/24

Clustal

Basic idea explained on ClustalW (3 steps for input (= set {5y, ..., Sk} of sequences):

146 Algorithms in Bioinformatics A Practical Introduction
S, | S, | S5 | s, | Ss
. S,;: PPGVKSDCAS S - PP P D
W1 Compute for all pairs S;, S; € ¢ S,: PADGVKDCAS e
a pairwise alignment — S3: PPDGKSDS ~ — 1
Lo . S,: GADGKDCCS 3 S I B
pairwise distances D(S;, S)) S.: GADGKDCAS s, > o
. . (a) Sg 0
W2 Use distance matrix D to ®)

compute phylogenetic tree T

(via NeighborJoining-method) Sy: PPGVKSDCAS

S,: PATGVKDCAS

H S;: PPTGKSD--S

W3 Use T to carry out a multiple o GATCR-DeCS
S

alignment i GATGK-DCAS S1 8382 %4 S5
(d) (c)

FIGURE 6.6: The three steps of ClustalW (a progressive alignment meth-
ods). Five input sequences are given in (a). Step 1 computes the pairwise
distance scores for these five sequences (see (b)). Then, Step 2 generates
the guide tree such that similar sequences are grouped together first (see (c)).
Step 3 aligns the sequences one by one according to the branching order of the
guide tree, yielding the multiple alignment of all input sequences (see (d)).

23/24

MUSCLE

MUItiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/

24/24

https://www.ebi.ac.uk/Tools/msa/muscle/

MUSCLE

MUItiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/

Basic idea for input (= set {Si,..., Sk} of sequences (2nd and 3rd steps similar to
ClustalW):

1 Compute k-mer distances
=(dis)similarities D(S;, S;) between the sets of k-mers for all pairs S;, S; € ¢
Much(!) faster than [W1] in Clustal
W2 Use distance matrix D to compute phylogenetic tree T (via UPGMA-method)
W3 Use T to carry out a multiple alignment

4 Several re-iteration and refinement steps follow

24/24

https://www.ebi.ac.uk/Tools/msa/muscle/

MUSCLE

MUItiple Sequence Comparison by Log-Expectation (2004)
computer software used in bioinformatics for multiple sequence alignment.
Online available via https://www.ebi.ac.uk/Tools/msa/muscle/

Online Example:
>Sequence_1
GTTTATTAGTGATCATGGCTAAGTTTGCGTCCATCATCGCACTTCTTTTT

>Sequence_2
CTCGAGACAGTGATCATGGCTTCTCTCTCTCGTGCCGCATCTCACACC

>Sequence_3
TCTTGGTGAGGATCCGTTGAGAGTGATCATGGCTCGCCCCATCGCCCTNGTTAGA

>Sequence_4
GACATTACGGCGACCCAGTCTCCCAGTGATCATGGCTTCAGTGGGACTGGGCC

24/24

https://www.ebi.ac.uk/Tools/msa/muscle/

