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Phylogenetic Reconstruction

“I think” by Charles Darwin (1837) - One of the first evolutionary trees.
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Tree of Live - A Better Picture

Ernst Haeckel, 1879
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Tree of Live - A Better Picture

Relationship between species with sequenced genomes.

center = last universal an-
cestor of all life on earth.
three domains of life:
eukaryota (animals, plants
and fungi);
bacteria;
archaea.

Ciccarelli, FD (2006). "Toward automatic reconstruction of a highly resolved tree of life.". Science; Letunic, I
(2007). "Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation.". Bioinformatics

3 / 51



Phylogenetic Trees: The idea

Baum and Offner (2008). "Phylogenics & Tree-Thinking", American Biology Teacher, 70(4):222-229.
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Phylogenetic Trees: The idea

extremely simplified, but powerful representation.

Baum and Offner (2008). "Phylogenics & Tree-Thinking", American Biology Teacher, 70(4):222-229.
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Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"
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Applications: Tree of Life

Understanding how species are related to each other in evolution and finding
groups of taxa
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Applications: Tree of Life (a detailled view)

trace the history of changes
and find features of interest in
group or organism

Sadava et al. (2012).
"LIFE: The Science of Biology (10th edition)"
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Applications: Revealing surprising relationsship

Dinosaurs did not go completely extinct and lineage survived in birds

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"
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Applications: HIV

Different HIV strands
Important knowledge for find-
ing drug treatments
(different for distinct strands)

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"
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Applications: Influenza

Prediction of (standart) flu vaccination

Agor and Ozaltin (2018). "Models for predicting the evolution of influenza to inform vaccine strain selection",
HUMAN VACCINES & IMMUNOTHERAPEUTICS
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Applications: forensics

A physician who was accused of purposefully injecting blood from one of his
HIV-positive patients into his former girlfriend in an attempt to kill her. The phylogenetic
analysis revealed that the HIV strains present in the girlfriend were a subset of those
present in the physician’s patient. Based on this evidence (and other), the physician
was found guilty of attempted murder by the jury.

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"
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The “true” evolutionary history

I species are characterized by
its genome:
a “bag of genes”

I “Genes” evolve along a rooted tree

I unique coloring
t : V 0 → M� = {•,�,N}

A

E

F

G

� Gene duplication : an offspring has
two copies of a single gene of its
ancestor

• Speciation : two offspring species
inherit the entire genome of their
common ancestor

N HGT : transfer of genes between
organisms in a manner other than
traditional reproduction and across
different species

HGT
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The “true” evolutionary history

I species are characterized by its
genome:
a “bag of genes”

I “Genes” evolve along a rooted tree
with unique coloring
t : V 0 → M = {•,�,N}

I "×" = gene loss

A B C D

x
x

x

duplication

speciation

HGT

a b1 b3 c1 c2 dc3b2
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PROBLEM:
I We don’t know and will never know the truth,

since we cannot observe the past!

ALL proposed phylogenetic trees on real data are just approximations
and reflect hypothesis about evolutionary histories!

I Only genetic material of extant species ("green box") is available.

What now?
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Idea

Aim: Assemble a tree representing a hypothesis about the evolutionary
history of a set of genes, species or other taxa.

Trees are "good" approximation (does not work if one has hybridization)
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Some Terminology

I Tree = connected, acyclic graph

I phylogenetic (We are interested in branching events!)
I unrooted: degree ≥ 3 ∀ inner vertices
I rooted: at least 2 children ∀ inner vertices

I Fully-resolved or binary
I unrooted: degree = 3 ∀ inner vertices
I rooted: exactly 2 children ∀ inner vertices

I �T in rooted trees and lcaT (x , y)
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The problem in practice

Depending on the application, phylogenetic trees may:
I be rooted or unrooted
I have weighted or unweighted edges / vertices
I labeled vertices / edges
I have bounded degree

(maximum nr of children of each internal node)
I . . .

15 / 51



The problem in practice

I Inference of the gene or species tree T is a classical problem of
molecular phylogenetics.

In practice it can only be solved approximately.
I Only leaves of tree corresponding to extant (currently “observable”) taxa

is available.
I Reconstructed trees do only provide a hypothesis about history!

Lemma

There are (2n − 3)!! rooted trees (2n − 5)!! unrooted trees with n leaves
labeled from 1, . . . , n.

(m)!! :=
∏dm

2 e−1
k=0 (m − 2k) = m(m − 2)(m − 4) · · · .

Exmpl:
n 3 4 5 6 10 20
unrooted 1 3 15 105 2’027’025 2.22·1020

rooted 3 15 105 945 34’459’425 8.20·1021

Enumeration / exhaustive search is no option!
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Standart Methods

Aim: Assemble a tree representing a hypothesis about the evolutionary
history of a set of genes, species or other taxa.

Methods:

I Distance Based e.g.:
I Ultrametric Tree Reconstruction (UPGMA)
I Additive Tree Reconstruction (Neighbor-Joining)

I Character Based e.g.:
I Parsimony Methods (Fitch- and Sankoff Algorithm)
I Maximum Likelihood (not part here)

I Consensus Methods e.g.:
I Supertree from subtrees (BUILD)
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Distance-Based Methods
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UPGMA
Unweighted Pair Group Method with Arithmetic Mean
is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)
Given is a Distance matrix D : X × X → R on a set X = {x1, . . . , xn} of taxa.

Init clusters Ci = {xi}, 1 ≤ i ≤ n

In each step of UPGMA merge the two closest clusters Ci ,Cj into new
cluster Cnew = Ci ∪ Cj

After merging re-compute distances for all clusters C 6= Cnew :

D(Cnew ,C) =
1

|Cnew ||C|
∑

x∈Cnew ,y∈C

D(x , y)

= the mean distance between the taxa in Cnew and C.

Repeat until one cluster remains

Example Whiteboard
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UPGMA

Two sets A,B do not overlap if A ∩ B ∈ {A,B, ∅}.
A set C of sets is a hierarchy if no two elements in C overlap.

For a rooted tree T on X put

L(v) := {x ∈ X | x �T v}, v ∈ V (T )

and
C (T ) = {L(v) | v ∈ V (T )}

Exercise: C (T ) and C as computed with UPGMA are hierarchies.

Example Whiteboard

Theorem

Let C be a collection of non-empty subsets of X . Then, there is a rooted
phylogenetic tree T with C (T ) = C if and only if C is a hierarchy. Up to
isomorphism, this tree T is unique.

without proof
Example Whiteboard
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UPGMA

Keep track of branch-length:
Each step of merging to clusters C,C′ means that we create a new vertex v
in the underlying tree such that L(v) = C ∪ C′ and the distance from v to any
leaf x ∈ L(v) is supposed to be the same:

δ(v) = D(C,C′)/2

Example Whiteboard

Q: Does this always work in such a perfect way?
A: No, it depends on the distances D!
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UPGMA and ultrametrics

A tree T with branch length δ is an ultrametric tree if all leaves have the same
distance to the root and u ≺T v implies δ(u) ≤ δ(v).

(T , δ) represents map D : X × X → R≥0 iff δ(v) = 1
2 D(x , y) for all x , y ∈ X

with v = lcaT (x , y).

D : X × X → R≥0 is an ultrametric if for all x , y , z ∈ X it holds that

(1) D(x , y) = 0 ⇐⇒ x = y

(2) D(x , y) = D(y , x)

(3) D(x , y) ≤ max{D(x , z),D(y , z)}

Lemma (3-point condition)

A symmetric map D : X × X → R≥0 is an ultrametric if and only if the two
largest distances among D(x , y),D(x , z),D(y , z) are equal

proof - whiteboard

Theorem

There is an ultrametric tree (T , δ) that represents D if and only if D is an
ultrametric.

proof - whiteboard
21 / 51
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UPGMA

Drawbacks:
Constant Molecular-Clock Assumption: The “speed of evolution”, i.e.,
mutation rates are constant along all branches.
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Neighbor-Joining (NJ)

I NJ is another very sophisticated distance-based method to compute
unrooted trees developed by Saitou and Nei (1987)

I NJ does not make a Constant Molecular-Clock Assumption
I NJ is based on the concept of minimum-evolution, i.e., the resulting tree

will have minimum total branch length.
I The idea is simple but the details are by far not trivial!

Main Idea:
Start with star-tree and stepwise seperate verices that are quite close to each
other and at the same time together quite far away from the remaining leaves
until a fully-resolved unrooted tree has been built.

23 / 51
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Neighbor-Joining (NJ)

For a given distance matrix D : X × X → R with n = |X |, the matrix D∗

denotes the NJ-matrix that is definded by:

D∗i,j = (n − 2)Di,j − TotalDistD(i)− TotalDistD(j)

where TotalDistD(x) =
∑

y∈X\{x} D(x , y) for all x ∈ X .

Intuition:

D∗ is “common net divergence”

24 / 51
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Neighbor-Joining (NJ)

Keep track of branch-length:

Want to have for all edges incident to the newly-merged leaves i and j the
corresponding branch-length δi and δj

To this end define: ∆i,j = TotalDistD(i)−TotalDistD(j)
n−2

Small computation (whiteboard) shows that

δi = 1
2 (Di,j + ∆i,j ) and δj = 1

2 (Di,j −∆i,j )

Hence, taking total length in a smart way allows us to compute the single
branch length in each step.

25 / 51



Neighbor-Joining (NJ)

Algorithm:

Neighbor-Joining(D)

If(D is 1× 1 matrix) then stop

Construct D∗ from D

Take i, j such that D∗i,j is minimum

Compute ∆i,j , δi , δj

“Refine” tree (initially start with star-tree)

D ← “adjusted” D, that is, i-th and j-th colomn/row are combined into
new m-th colomn/row with entries Dk,m = Dm,k =

Di,k+Dj,k−Di,j
2

∀k 6= i, j,m

Call Neighbor-Joining(D)

Exmpl - whiteboard

Q: Does this always work in such a perfect way?
A: No, it depends on the distances D!
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NJ and additive metrics
D : X × X → R≥0 is an additive metric if for all x , y , a, b ∈ X it holds that

(1) D(x , y) = 0 ⇐⇒ x = y
(2) D(x , y) = D(y , x)

(3) D(x , y) + D(a, b) ≤ max{D(x , a) + D(y , b),D(x , b) + D(y , a)}
Intuition:

A tree T with branch-length δ is additive for matrix D if
distT (i, j) =

∑
edges along unique path connecting i,j δ(i, j) = Di,j for all leaves i, j

Theorem

There is an additive tree (T , δ) that represents D if and only if D is an additive
metric. [without proof]
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NJ

NJ is based on the concept of minimum-evolution, i.e., the resulting tree will
have minimum total branch length.

If D is an additive metric, NJ computes a tree (T , δ) that represents D.

The correctness of the output tree topology is even guaranteed as long as the
distance matrix is ’nearly additive’, specifically if each entry in the distance
matrix differs from the true distance by less than half of the shortest branch
length in the tree

Although quite fast, it has a drawback: NJ often assigns negative length to
some of the branches.
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Summary: Distance-Based Methods

I Distance-based Methods work well on near-additive or ultrametric data
I The latter is often violated, however, these methods are quite useful as

heuristics
I We examined two fundamental approaches, but plenty of other methods

exist

Observation:
When we use sequence-alignments then we can obtain distances and use
Distance-based Methods to compute a tree even with branch-length.

BUT: we loose all information about possible ancestral states!

=⇒ other methods ?

29 / 51



Character-Based Methods
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Character-Based Methods

Before the “’Era of DNA” half a centure ago, researches constructed trees
from anatomical/physiological properties called characters.

Example:

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

giant centipide no 42
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Character-Based Methods
Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters
I Input: An n ×m character table for n taxa and m characters
I Output: A tree in which taxa with similar character values occur near

each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

Example:

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

32 / 51



Character-Based Methods
Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters
I Input: An n ×m character table for n taxa and m characters
I Output: A tree in which taxa with similar character values occur near

each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

Example:

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

32 / 51



Character-Based Methods
Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters
I Input: An n ×m character table for n taxa and m characters
I Output: A tree in which taxa with similar character values occur near

each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

Example:

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

32 / 51



Character-Based Methods
Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters
I Input: An n ×m character table for n taxa and m characters
I Output: A tree in which taxa with similar character values occur near

each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

Example:

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

32 / 51



Character-Based Methods

wings nr of legs

winged stick-insect yes 6

wing-less stick-insect no 6

This is quite reasonable and is in line with Dollo’s law of irreversibility
(1893): Evolution doesn’t reinvent the same organ (e.g. wings)

Let’s have a look to the currently best-approximated phylogeny of
stick-insects
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Character-Based Methods
Evolutionary History of Stick-Insects:

What can you observe?

Wings were gained or lost
7times in stick-insects alone!

What happened?

Evolution did not reinvent
wings from scratch!

The genetic information of hav-
ing wings is not lost, but “sup-
pressed” and “switched-on/off”
which can be justifed by exam-
aining the genomes.
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Character-Based Methods

We do not consider here morphological features as characters but genetic
data.

SECIES ALIGNMENT

Chimp ACGTAGGCCT
n species

Human ATGTAAGACT
Seal TCGAGAGCAC
Whale TCGAAAGCAT︸ ︷︷ ︸

m characters

Parsimony-Score: Sum of Hamming-distances along edges in T
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Character-Based Methods

We do not consider here morphological features as characters but genetic
data.

SECIES ALIGNMENT

Chimp ACGTAGGCCT
n species

Human ATGTAAGACT
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m characters

chimp human seal whale
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Parsimony-Score = 8

Parsimony-Score: Sum of Hamming-distances along edges in T
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Small Parsimony Problem

= Find the most parsimonious labeling of internal nodes of given tree.

In: A rooted tree T whose leaves are labeled by a string of length m

Out: A labeling of all inner vertices by strings of length m that minimizes the
tree’s parsimony score

Assuming the columns of a multiple alignment are independent from each
other we can simplify the problem as follows:

In: A rooted tree T whose leaves are labeled by a single symbol

Out: A labeling of all inner vertices by single symbol that minimizes the tree’s
parsimony score

And repeat the latter for each of the m columns.

Q: Why Parsimony?
A: Ocham’s razor (1347) The simplest explanation is usually the best one.

[in a very simplified version]
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Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v , stored in a candidate set Xv .
In (1b), Assume an inner vertex v with children u and w . If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v .

1. (Bottom-up phase)
1a. (Leaves) for each leaf `, set X` = {label of `}
1b. (Inner vertices)

Xv =

{
Xu ∩ Xw , if Xu ∩ Xw 6= ∅
Xu ∪ Xw , otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a

top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one

element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol

assigned to u.
If a is contained in Xv , assign it to node v as well.
Otherwise, arbitrarily assign any state from Xv to node v .

For the proof of correctness we refer to “Hartigan, Minimum mutation fits to a given tree. Biometrics, 1973” were a
generalized version of this algorithm is studied that also deals with non-binary tree and to find all co-optimal
solutions.

37 / 51



Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v , stored in a candidate set Xv .
In (1b), Assume an inner vertex v with children u and w . If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v .

1. (Bottom-up phase)
1a. (Leaves) for each leaf `, set X` = {label of `}
1b. (Inner vertices)

Xv =

{
Xu ∩ Xw , if Xu ∩ Xw 6= ∅
Xu ∪ Xw , otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a

top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one

element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol

assigned to u.
If a is contained in Xv , assign it to node v as well.
Otherwise, arbitrarily assign any state from Xv to node v .

For the proof of correctness we refer to “Hartigan, Minimum mutation fits to a given tree. Biometrics, 1973” were a
generalized version of this algorithm is studied that also deals with non-binary tree and to find all co-optimal
solutions.

37 / 51



Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v , stored in a candidate set Xv .
In (1b), Assume an inner vertex v with children u and w . If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v .

1. (Bottom-up phase)
1a. (Leaves) for each leaf `, set X` = {label of `}
1b. (Inner vertices)

Xv =

{
Xu ∩ Xw , if Xu ∩ Xw 6= ∅
Xu ∪ Xw , otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a

top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one

element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol

assigned to u.
If a is contained in Xv , assign it to node v as well.
Otherwise, arbitrarily assign any state from Xv to node v .

For the proof of correctness we refer to “Hartigan, Minimum mutation fits to a given tree. Biometrics, 1973” were a
generalized version of this algorithm is studied that also deals with non-binary tree and to find all co-optimal
solutions.

37 / 51



Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v , stored in a candidate set Xv .
In (1b), Assume an inner vertex v with children u and w . If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v .

1. (Bottom-up phase)
1a. (Leaves) for each leaf `, set X` = {label of `}
1b. (Inner vertices)

Xv =

{
Xu ∩ Xw , if Xu ∩ Xw 6= ∅
Xu ∪ Xw , otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a

top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one

element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol

assigned to u.
If a is contained in Xv , assign it to node v as well.
Otherwise, arbitrarily assign any state from Xv to node v .

For the proof of correctness we refer to “Hartigan, Minimum mutation fits to a given tree. Biometrics, 1973” were a
generalized version of this algorithm is studied that also deals with non-binary tree and to find all co-optimal
solutions.

37 / 51



Fitch Algorithm (Walther M. Fitch, 1971)

1a. (Leaves) for each leaf `, set X` = {label of `}
1b. (Inner vertices)]

Xv =

{
Xu ∩ Xw , if Xu ∩ Xw 6= ∅
Xu ∪ Xw , otherwise

2a. (Root) If the candidate set of the root contains more than one element, arbitrarily
assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol assigned
to u.
If a is contained in Xv , assign it to node v as well.
Otherwise, arbitrarily assign any state from Xv to node v .
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Sankoff Algorithm (David Sankoff, 1971)

Given a (not necessarily binary) tree with leaves labeled by a symbol.

The tree is traversed bottom-up. During this traversal, assume we process a vertex u. Define s(u) as the cost of the
min. pars.-score for the subtree T (u) rooted at u. Let sa(u) be the cost of the best labeling of T (u) when u is
required to be labeled with symbol a. Obviously, s(u) = mina sa(u).

1. (Bottom-up phase)
1a. (Leaves) The symbol for each leaf ` is fixed and we put

sa(`) = 0 if label of ` is a and, otherwise, sa(`) =∞
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is

given by

sa(u) =
∑

child v of u

min
all symbols b

(sb(v) + 1a,b)

2. (Top-down refinement) The optimal assignment of states to the internal nodes is
then obtained in a backtracing phase.

2a. (Root) The root ρ is assigned a state a such that s(ρ) = sa(ρ).
2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex

u (say, u was labeled with state a) is assigned a state b that
yielded the minimum in the bottom-up pass, i.e., where

1a,b + sb(v) = min
b′

(1a,b′ + sb′ (v))

Correctness is exercise, but follows essential from the fact that we consider all possiblities.
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Summary Fitch- and Sankoff-Algorithm

Both solve the small parsimony problem and run in polynomial-time.

The red-colored vertices are precisely the sets Xv computed with the Fitch
alg.:

G G T C

A C G Ta
sa (.) 2  2  0  2

A C G Ta
sa (.) 2  1  2  1

A C G Ta
sa (.) 3  2  2  2

But Fitch is restricted to “unit costs” 1a,b which can be replaced in Sankoff’s
alg. by an arbitrary cost function.

In Sankoff’s alg. backtracking can be used to obtain all optimal solutions and
it works on non-binary trees.

41 / 51



Large Parsimony Problem

In: n strings of length m

Out: Find a tree on n leaves together with a labeling of all inner vertices by
strings of length m that minimizes the tree’s parsimony score

This problem is NP-hard!
=⇒ heuristics are needed [not part of this lecture]
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Consenus-Based Methods
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Consensus-Based Methods

A simple example:
Assume we have partial information about similarities about between some
taxa A,B,C,D,E such as
I A and B are closer related then A to C and B to C
I C and D are closer related then C to E and D to E

Is there a rooted tree that reflects both observations?
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Consensus-Based Methods

Central Idea:
I Find a consensus tree that reflects all partial information as “best as

possible”.

Motivation:
I Combine many trees constructed from different data sets.
I Computationally expensive methods may yield highly accurate trees for

small, overlapping subsets of the objects.
I Most individual studies investigate relatively few species. Supertrees

allow us to deduce new evolutionary relationships.

whiteboard: DEF rooted triple, displayed, compatible
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Rooted Trees, Triples and Compatibility

Rooted tree T:

Triples:

a b x y z

connected,acyclic
graph

T displays a triple ab|z if the path from a to b
does not intersect the path from z to the root.

⇐⇒ lcaT (a, b) ≺T lcaT (a, c) = lcaT (b, c)

R(T ) = {ab|x , ab|y , ab|z, xy |a . . . }

For a set R of triples let L(R) := ∪xy|z∈R{x , y , z}.

An arbitrary set R of triples is compatibe,
if there is a tree T on L(R) with R ⊆ R(T )

When is a set R of triples compatible?
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Rooted Trees, Triples and Compatibility

R = {AB|C,CD|E} is compatible:

R = {AB|C,CB|A} is not compatible.
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Rooted Trees, Triples and Compatibility

How to test compatibilty of R?

Observation: Assume there is a rooted tree T that displays R.

If xy |z ∈ R then x and y cannot be descendants of two distinct children of the
root ρT

Central Idea:
I Determine for potential tree T on L(R) for R the set of leaves that are

descendants of children of the root.
Hence, we want to find a partition X1, . . . ,X` of L(R):

Note xy |z ∈ R implies that x , y ∈ Xi for some i ∈ {1, . . . , `}
I Then recurse on each such child.
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Rooted Trees, Triples and Compatibility
Define for a set R of triples and a leaf set L the set

R|L := {xy |z ∈ R : x , y , z ∈ L}
Example:

R = {ab|c, ab|d , ax |y}
R|L = {ab|c, ax |y} for L = {a, b, c, x , y}
R|L = ∅ for e.g. L = {a, b, y}

Comparative graph G[R,L]:
Given set R of triples and a leaf set L.
Then G[R, L] has vertex set L and {x , y} is an edge iff ∃ xy |z ∈ R|L
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Rooted Trees, Triples and Compatibility

Is R = {ab|c, ab|d , ax |y} compatible? Need to find tree T that displays R

Hence, we want to find a partition X1, . . . ,X` of L(R):

Note xy |z ∈ R implies that x , y ∈ Xi for some i ∈ {1, . . . , `}

IDEA: connect x and y as an edge and look at connected components!

This is precisely what is reflected by the Comparative graph G[R, L]!
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BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v ,T , L)

IF(|L| = 1) //L = {x}
output rooted tree •x

IF(|L| = 2) //L = {x , y}
output rooted tree obtained by attaching two vertices to v labelled x and y .

IF(|L| ≥ 3)
Construct G[R, L]
Let L1, . . . , Lk be the vertex set of conn. comp. of G[R, L]
IF(k = 1) RETURN “R not compatible”
FOR(i = 1, . . . , k)

call BUILD(R, vi ,Ti , Li )
IF(BUILD(R, vi ,Ti , Li ) outputs a tree Ti )

attach Ti to v via edge {v , vi}.

Further Examples: Whiteboard

Theorem

BUILD runs in O(|L||R|)-time and is correct
proof sketch: whiteboard

51 / 51



BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v ,T , L)

IF(|L| = 1) //L = {x}
output rooted tree •x

IF(|L| = 2) //L = {x , y}
output rooted tree obtained by attaching two vertices to v labelled x and y .

IF(|L| ≥ 3)
Construct G[R, L]
Let L1, . . . , Lk be the vertex set of conn. comp. of G[R, L]
IF(k = 1) RETURN “R not compatible”
FOR(i = 1, . . . , k)

call BUILD(R, vi ,Ti , Li )
IF(BUILD(R, vi ,Ti , Li ) outputs a tree Ti )

attach Ti to v via edge {v , vi}.

Further Examples: Whiteboard

Theorem

BUILD runs in O(|L||R|)-time and is correct
proof sketch: whiteboard

51 / 51



BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v ,T , L)

IF(|L| = 1) //L = {x}
output rooted tree •x

IF(|L| = 2) //L = {x , y}
output rooted tree obtained by attaching two vertices to v labelled x and y .

IF(|L| ≥ 3)
Construct G[R, L]
Let L1, . . . , Lk be the vertex set of conn. comp. of G[R, L]
IF(k = 1) RETURN “R not compatible”
FOR(i = 1, . . . , k)

call BUILD(R, vi ,Ti , Li )
IF(BUILD(R, vi ,Ti , Li ) outputs a tree Ti )

attach Ti to v via edge {v , vi}.

Further Examples: Whiteboard

Theorem

BUILD runs in O(|L||R|)-time and is correct
proof sketch: whiteboard

51 / 51


	Intro
	intro


