Computational Biology

Comparative Genomics and Phylogenies

Marc Hellmuth

Department of Mathematics
Stockholm University

Phylogenetic Reconstruction

“I think” by Charles Darwin (1837) - One of the first evolutionary trees.

1/51

Tree of Live - A Better Picture

Menschen
Gorilla)

ST

Trsiuger Promammtia]

Kanchenfische.
Teleosieil | g uche
Protepirns |

[Crnsiaceen]

Ringelwiirmes
(Aunelids)

iore (Protozon

Ernst Haeckel, 1879

2/51

Tree of Live - A Better Picture

Relationship between species with sequenced genomes.

\

i ﬂ[sialfz’g!ff,’ I
s 4,
%\:}\}:\:_\\\“\ i j/’{’iél//,y,;';)/ I
QA | 77
\\\t*‘\\ K22\ .
N 9 center = last universal an-
= . = \ cestor of all life on earth.
= = three domains of life:
eukaryota (animals, plants
and fungi);
bacteria;
archaea.

NN

N
i
?"\‘S\\‘}\k\ N

%\\\:\\\\\T}é‘
1y s’

h i
g
G

Co

Ciccarelli, FD (2006). "Toward automatic reconstruction of a highly resolved tree of life.". Science; Letunic, |
(2007). "Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation.". Bioinformatics
3/51

Phylogenetic Trees: The idea

Ancestral species

Descendant species

):222-229.

4)

(

Baum and Offner (2008). "Phylogenics & Tree-Thinking", American Biology Teacher, 70

4/51

Phylogenetic Trees: The idea

Descendant species

Ancestral species

extremely simplified, but powerful representation.

Baum and Offner (2008). "Phylogenics & Tree-Thinking", American Biology Teacher, 70(4):222-229.
4/51

A species, population, or
————_gene at one point n time...

gﬁ ..becomes a lineage as we follow
— its descendants through time.

A split occurs when the
ancestral lineage divides into
two descendant lineages

continues to evolve
independently as
different traits
(represented by red
dots) arise.

;(:
v
‘o=
v

The lineages
continue to

splt, and a
phylogenetic
tree emerges.

The splits in branches are
called nodes and indicate a

division of one lineage into two,

Chimpanzee

Common

ancestor Gorilla

Orangutan

I I |
15 10 5
Past Time (millions of years ago) Present

@
)
¢

The positions of the

nodes on the time scale

(if present) indicate the
times of the corresponding
speciation events.

Branches can be
rotated around any
node without changing
the meaning of the tree.

Chimparzee

Chimpanzee

Gorilla Gorilla

Time

22.1 The Components of a Phylogenetic Tree Evolutionary
relationships among organisms can be represented in a treelike
diagram.

QOrangutan Orangutan

22.2 How to Read a Phylogenetic Tree (A) Phylogenetic trees
can be produced with time scales, as shown here, or with no
indication of time. If no time scale is shown, then the trees are
only meant to depict the relative order of divergence events.
(B) Lineages can be rotated around a given node, so the vertical
order of taxa is largely arbitrary.

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"

5/51

Applications: Tree of Life

P AR
w2,
7\, >
A Uy
N\l Yz

Understanding how species are related to each other in evolution and finding
groups of taxa

6/51

Applications: Tree of Life (a detailled view)

23.8 Allopatric Speciation among Darwin's Finches ~The descendants

R (DK of the ancestral finch that colonized the Galapagos archipelago several

s s pesy | ™ilion years ago evolved into at least 13 different species whose beaks
\ Bt peeen o are variously adapted to feed on buds, seeds, and insects.
Pactic e grasping and wrenching
Ocean buds from branches

b Seed eaters
Bils of seed eaters are

o 2rge ground finc
and crushing seacs. o

piza magnirostis)

Medium ground finch
@ forti)

(‘smaliteg fnches. |
canmo crush large

‘Small ground finch
G. fginosa)

* trace the history of changes
and find features of interest in
group or organism

Large cactus finch
G controstrs)

‘Gactus fnch
G scancens)

‘Sharp-billed ground finch
G, dffcis)
Insect eaters

Sadava et al. (2012).
"LIFE: The Science of Biology (10th edition)"

Thelarge es fnch |
usos s hoawy bl to

Large free finch
(Camartyncus
psittacu)

<@
=S
L 2

diferent ways.

parvilus) / andb
| expere croices tor
hidgen prey.

Medium tree finch
©.pau The woodpecker fich

uses s long bil o

7 probe desct wood,

Vioodpecker finch
(. pai

American
mainland

==

T
S o

7/51

Applications: Revealing surprising relationsship

REPTILES

A
74

Tuataras

Squamates

Turtles

Crocodilians

Pterosaurs (extinct)

fire

Ornithischians
(extinct)

<,
X

Sauropods
(extinct)

%,

Crocodilians

Theropods,
including birds

MAMMALS

K

Mammals

Mammals

Dinosaurs did not go completely extinct and lineage survived in birds

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"

8/51

Applications: HIV

Virus transferred from simian host to humans
@ H|V-1 (humans)
SlVepz
(chimpanzees)

SIVhoest
(L’'Hoest monkeys)

SIVsun
(sun-tailed monkeys)

SIVmnd (mandrills)

SlVagm (African
green monkeys)

SIVsm (sooty
(mangabeys)
O HIV-2 (humans)
L Sivsyk

(Sykes monkeys)

22.8 Phylogenetic Tree of Inmunodeficiency Viruses The evolution-
ary relationships of immunodeficiency viruses show that these viruses
have been transmitted to humans from two different simian hosts:
HIV-1 from chimpanzees and HIV-2 from sooty mangabeys. (SIV stands
for simian immunodeficiency virus.)

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"

Different HIV strands
Important knowledge for find-
ing drug treatments

(different for distinct strands)

9/51

Applications: Influenza

NEXTTIU | vow- 1 5-

Real-time tracking of nfluerza veus evolion

Phylageny

T

lag; titer distanca fram oot

W
|

Coiorby artgenic ade «

ke
brench abets
fngion | HorthAmedc +
£ 3
: x
ceer
—y—
g xx

Prediction of (standart) flu vaccination

Agor and Ozaltin (2018). "Models for predicting the evolution of influenza to inform vaccine strain selection",
HUMAN VACCINES & IMMUNOTHERAPEUTICS

10/51

Applications: forensics

Awunwwod
[e90] 8U) Ul
Sfenpupul
anysod-AIH
JBLYO WOy
SaIE0S! [RIA

wened

A physician who was accused of purposefully injecting blood from one of his
HIV-positive patients into his former girlfriend in an attempt to kill her. The phylogenetic
analysis revealed that the HIV strains present in the girlfriend were a subset of those
present in the physician’s patient. Based on this evidence (and other), the physician
was found guilty of attempted murder by the jury.

Sadava et al. (2012). "LIFE: The Science of Biology (10th edition)"
11/51

The “true” evolutionary history

12/51

The “true” evolutionary history

12/51

The “true” evolutionary history

@ speciation

» species are characterized by its B duplication
genome: A wer
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
E:V0 > M= {e M A}

> "x" =gene loss

12/51

The “true” evolutionary history

> species are characterized by its B aomication
genome: A wer
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
t: V0 M={e M A}

> "x"=gene loss

m Gene duplication : an offspring has two

copies of a single gene of its ancestor w @:}w\

e Speciation : two offspring species | W duplication
inherit the entire genome of their m\/\ A HGT *p
common ancestor \@speciaion

A HGT : transfer of genes between
organisms in a manner other than ‘V ‘

traditional reproduction and across
different species

12/51

The “true” evolutionary history

@ speciation

» species are characterized by its B duplication
genome: A wer
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
E:V0 > M= {e M A}

> "x" =gene loss

PROBLEM: A B C D

» We don’t know and will never know the truth,
since we cannot observe the past!

ALL proposed phylogenetic trees on real data are just approximations
and reflect hypothesis about evolutionary histories!

12/51

The “true” evolutionary history

@ speciation
W duplicatjgn

» species are characterized by its
genome:
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
t: VO M={e, M 4}

PROBLEM:

» We don’t know and will never know the truth,
since we cannot observe the past!

ALL proposed phylogenetic trees on real data are just approximations
and reflect hypothesis about evolutionary histories!

12/51

The “true” evolutionary history

@ speciation
W duplicatjgn

» species are characterized by its
genome:
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
t: VO M={e, M 4}

PROBLEM:

» We don’t know and will never know the truth,
since we cannot observe the past!

ALL proposed phylogenetic trees on real data are just approximations
and reflect hypothesis about evolutionary histories!

» Only genetic material of extant species ("green box") is available.

12/51

The “true” evolutionary history

@ speciation
W duplicatjgn

» species are characterized by its
genome:
a “bag of genes”

» “Genes” evolve along a rooted tree
with unique coloring
t: VO M={e, M 4}

PROBLEM:

» We don’t know and will never know the truth,
since we cannot observe the past!

ALL proposed phylogenetic trees on real data are just approximations
and reflect hypothesis about evolutionary histories!

» Only genetic material of extant species ("green box") is available.

What now?

12/51

Aim: Assemble a tree representing a hypothesis about the evolutionary
history of a set of genes, species or other taxa.

Trees are "good" approximation (does not work if one has hybridization)

human ape whale cow horse

TAXA:

ACeT ALTT TelA TelA AbaT

RSy WELSH SwgdiSH DAadisn GERMAN

13/51

Some Terminology

UnrOO'LeA roo l-d
£
v children
of v
x 7

Leaves il\.*l-r'\a-L (l'hvu.r) Vertices V:Leo Lx.j)

> Tree = connected, acyclic graph

> phylogenetic (We are interested in branching events!)

> unrooted: degree > 3 V inner vertices
> rooted: at least 2 children V inner vertices

> Fully-resolved or binary

> unrooted: degree = 3 V inner vertices
> rooted: exactly 2 children V inner vertices

> <7 inrooted trees and lcar(x, y)

14/51

The problem in practice

Depending on the application, phylogenetic trees may:
> be rooted or unrooted
» have weighted or unweighted edges / vertices
> labeled vertices / edges
>

have bounded degree
(maximum nr of children of each internal node)

v

15/51

The problem in practice

» Inference of the gene or species tree T is a classical problem of
molecular phylogenetics.

In practice it can only be solved approximately.

» Only leaves of tree corresponding to extant (currently “observable”) taxa
is available.

» Reconstructed trees do only provide a hypothesis about history!

15/51

The problem in practice

» Inference of the gene or species tree T is a classical problem of
molecular phylogenetics.
In practice it can only be solved approximately.

» Only leaves of tree corresponding to extant (currently “observable”) taxa
is available.

» Reconstructed trees do only provide a hypothesis about history!

There are (2n — 3)!! rooted trees (2n — 5)!! unrooted trees with n leaves
labeled from 1, ... n.

()t = T1L2) " (m — 26) = m(m — 2)(m — 4) .

n 3 4 5 6 10 20
Exmpl: unrooted | 1 3 15 105 2027025 2.22.10%
rooted 3 15 105 945 34459425 8.20-10°

Enumeration / exhaustive search is no option!

15/51

Standart Methods

Aim: Assemble a tree representing a hypothesis about the evolutionary
history of a set of genes, species or other taxa.

Methods:

» Distance Based e.g.:

> Ultrametric Tree Reconstruction (UPGMA)
> Additive Tree Reconstruction (Neighbor-Joining)

» Character Based e.g.:

> Parsimony Methods (Fitch- and Sankoff Algorithm)
» Maximum Likelihood (not part here)

» Consensus Methods e.g.:
> Supertree from subtrees (BUILD)

16/51

Distance-Based Methods

17/51

Unweighted Pair Group Method with Arithmetic Mean
is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

18/51

Unweighted Pair Group Method with Arithmetic Mean

is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,..., Xp} of taxa.

18/51

Unweighted Pair Group Method with Arithmetic Mean

is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,..., Xp} of taxa.

Init clusters C; = {x;},1<i<n

18/51

Unweighted Pair Group Method with Arithmetic Mean

is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,...,x,} of taxa.

Init clusters C; = {x;},1<i<n

In each step of UPGMA merge the two closest clusters C;, C; into new
cluster Cpew = Ci U G;

18/51

Unweighted Pair Group Method with Arithmetic Mean

is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,..., X} of taxa.

Init clusters C; = {x;},1<i<n
In each step of UPGMA merge the two closest clusters C;, C; into new
cluster Cpew = Ci U G;

After merging re-compute distances for all clusters C # Chew:

D(Coow, C) = —— > D(x.y)

|CrewllCl crrryeo

= the mean distance between the taxa in Crew and C.

18/51

Unweighted Pair Group Method with Arithmetic Mean
is a bottom-up hierarchical clustering method developed by Sokal and
Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,..., X} of taxa.
Init clusters C; = {x;},1<i<n

In each step of UPGMA merge the two closest clusters C;, C; into new
cluster Cpew = Ci U G;

After merging re-compute distances for all clusters C # Chew:

D(Coow, C) = —— > D(x.y)

|CrewllCl crrryeo

= the mean distance between the taxa in Crew and C.
Repeat until one cluster remains

18/51

Unweighted Pair Group Method with Arithmetic Mean

is a bottom-up hierarchical clustering method developed by Sokal and

Michener (1958)

Given is a Distance matrix D: X x X — Ronaset X = {x1,..., X} of taxa.
Init clusters C; = {x;},1<i<n

In each step of UPGMA merge the two closest clusters C;, C; into new
cluster Cpew = Ci U G;

After merging re-compute distances for all clusters C # Chew:

D(Coow, C) = —— > D(x.y)

|CrewllCl crrryeo

= the mean distance between the taxa in Crew and C.
Repeat until one cluster remains

Example Whiteboard
18/51

Two sets A, B do not overlap if An B € {A, B, 0}.
A set C of sets is a hierarchy if no two elements in C overlap.
For a rooted tree T on X put

Lv):={xeX|x=2rv}veV(T)

and

¢(T) ={L(v) | ve V(T)}
Exercise: ¥(T) and C as computed with UPGMA are hierarchies.
Example Whiteboard

Let C be a collection of non-empty subsets of X. Then, there is a rooted
phylogenetic tree T with €(T) = C if and only if C is a hierarchy. Up to
isomorphism, this tree T is unique.

without proof
Example Whiteboard

19/51

Keep track of branch-length:

Each step of merging to clusters C, C’ means that we create a new vertex v
in the underlying tree such that L(v) = C U C’ and the distance from v to any
leaf x € L(v) is supposed to be the same:

s(v) = D(C,C')/2

_4,:: j ch{¢c+L7
! rt?rcsc;l-m/
o1 * C
g L_AI*‘ b ‘{——_}j

Example Whiteboard

20/51

Keep track of branch-length:

Each step of merging to clusters C, C’ means that we create a new vertex v
in the underlying tree such that L(v) = C U C’ and the distance from v to any
leaf x € L(v) is supposed to be the same:

s(v) = D(C,C')/2

Q
S
: m‘)rasc;l't"(
4 rr ¢
.[—','*o b ‘——ﬁ
4+
4 3 ¢ 1 o
Example Whiteboard

Q: Does this always work in such a perfect way?
A: No, it depends on the distances D!

20/51

UPGMA and ultrametrics

A tree T with branch length ¢ is an ultrametric tree if all leaves have the same
distance to the root and u <r v implies 6(u) < é(v).

21/51

UPGMA and ultrametrics

A tree T with branch length ¢ is an ultrametric tree if all leaves have the same
distance to the root and u <r v implies 6(u) < é(v).
(T,6) represents map D: X x X — R iff §(v) = 3D(x,y) forall x,y € X

with v = lcar(X, y).

21/51

UPGMA and ultrametrics

A tree T with branch length ¢ is an ultrametric tree if all leaves have the same
distance to the root and u <7 v implies 6(u) < §(v).

(T,5) represents map D: X x X — R iff §(v) = 1D(x,y) forall x,y € X
with v = lcar(x, y).

D: X x X — Ry is an ultrametric if for all x, y, z € X it holds that
(1) D(x,y)=0 <= x=y

(2) D(x,y) = D(y,x)

(3) D(x,y) < max{D(x,z),D(y,z)}

21/51

UPGMA and ultrametrics

A tree T with branch length ¢ is an ultrametric tree if all leaves have the same
distance to the root and u <7 v implies 6(u) < §(v).

(T,5) represents map D: X x X — R iff §(v) = 1D(x,y) forall x,y € X
with v = lcar(x, y).

D: X x X — Ry is an ultrametric if for all x, y, z € X it holds that
(1) D(x,y)=0 <= x=y

(2) D(x,y) = D(y,x)

(3) D(x,y) < max{D(x,z),D(y,z)}

Lemma (3-point condition)

A symmetric map D: X x X — Rxo Is an ultrametric if and only if the two
largest distances among D(x, y), D(x, z), D(y, z) are equal

proof - whiteboard

21/51

UPGMA and ultrametrics

A tree T with branch length ¢ is an ultrametric tree if all leaves have the same
distance to the root and u <7 v implies 6(u) < §(v).

(T,5) represents map D: X x X — R iff §(v) = 1D(x,y) forall x,y € X
with v = lcar(x, y).

D: X x X — Ry is an ultrametric if for all x, y, z € X it holds that
(1) D(x,y)=0 <= x=y

(2) D(x,y) = D(y,x)

(3) D(x,y) < max{D(x,z),D(y,z)}

Lemma (3-point condition)

A symmetric map D: X x X — Rxo Is an ultrametric if and only if the two
largest distances among D(x, y), D(x, z), D(y, z) are equal

proof - whiteboard

There is an ultrametric tree (T, d) that represents D if and only if D is an
ultrametric.

proof - whiteboard

21/51

Drawbacks:

Constant Molecular-Clock Assumption: The “speed of evolution”, i.e.,
mutation rates are constant along all branches.

PaSS.'bQ érand«b.m&% 2 roles
feme L;s&—a«g: 1
UPEMA- .
-

22/51

Neighbor-Joining (NJ)

>

NJ is another very sophisticated distance-based method to compute
unrooted trees developed by Saitou and Nei (1987)

NJ does not make a Constant Molecular-Clock Assumption

NJ is based on the concept of minimum-evolution, i.e., the resulting tree
will have minimum total branch length.

The idea is simple but the details are by far not trivial!

23/51

Neighbor-Joining (NJ)

» NJ is another very sophisticated distance-based method to compute
unrooted trees developed by Saitou and Nei (1987)

> NJ does not make a Constant Molecular-Clock Assumption

> NJ is based on the concept of minimum-evolution, i.e., the resulting tree
will have minimum total branch length.

» The idea is simple but the details are by far not trivial!

Main Idea:

Start with star-tree and stepwise seperate verices that are quite close to each
other and at the same time together quite far away from the remaining leaves
until a fully-resolved unrooted tree has been built.

23/51

Neighbor-Joining (NJ)

For a given distance matrix D: X x X — R with n = | X|, the matrix D*
denotes the NJ-matrix that is definded by:

D;; = (n— 2)D;; — TotalDistp (i) — TotalDistp ()

where TotalDistp (X) = 3, x\ (y D(X, y) forall x € X.

24/51

Neighbor-Joining (NJ)

For a given distance matrix D: X x X — R with n = | X|, the matrix D*
denotes the NJ-matrix that is definded by:

D;; = (n— 2)D;; — TotalDistp (i) — TotalDistp ()
where TotalDistp (X) = 3, x\ (y D(X, y) forall x € X.

Intuition:

242

1 2 d
Ghour bece. - >< 27/41 Q%M‘ﬁwdw‘
4 2

24/51

Neighbor-Joining (NJ)

For a given distance matrix D: X x X — R with n = | X|, the matrix D*
denotes the NJ-matrix that is definded by:

D;; = (n— 2)D;; — TotalDistp (i) — TotalDistp ()
where TotalDistp (X) = 3, x\ (y D(X, y) forall x € X.

Intuition:

24/51

Neighbor-Joining (NJ)

For a given distance matrix D: X x X — R with n = | X|, the matrix D*
denotes the NJ-matrix that is definded by:

D;; = (n— 2)D;; — TotalDistp (i) — TotalDistp ()
where TotalDistp (X) = 3, x\ (y D(X, y) forall x € X.

Intuition:

D* is “common net divergence”
24/51

Neighbor-Joining (NJ)

Keep track of branch-length:

Want to have for all edges incident to the newly-merged leaves i and j the
corresponding branch-length ¢; and §;

To this end define: A;; = TetalRistn()—TotalDistp ()

Small computation (whiteboard) shows that

= %(D,'J + A,"j) and (5,‘ = %(Di,]’ - A,',j)

Hence, taking total length in a smart way allows us to compute the single
branch length in each step.

25/51

Neighbor-Joining (NJ)

Algorithm:

Neighbor-Joining(D)
If(Dis 1 x 1 matrix) then stop
Construct D* from D
Take i, such that D}; is minimum
Compute A}, §;, ;
“Refine” tree (initially start with star-tree)

D + “adjusted” D, that is, i-th and j-th colomn/row are combined into
new m-th colomn/row with entries D¢ ;m = Dk = w
Vk #£i,j,m

Call Neighbor-Joining(D)

Exmpl - whiteboard

26/51

Neighbor-Joining (NJ)

Algorithm:

Neighbor-Joining(D)
If(Dis 1 x 1 matrix) then stop
Construct D* from D
Take i, such that D}; is minimum
Compute A}, §;, ;
“Refine” tree (initially start with star-tree)

D + “adjusted” D, that is, i-th and j-th colomn/row are combined into
new m-th colomn/row with entries D¢ ;m = Dk = w
Vk #£i,j,m

Call Neighbor-Joining(D)
Exmpl - whiteboard
Q: Does this always work in such a perfect way?

A: No, it depends on the distances D!

26/51

NJ and additive metrics

D: X x X — Rxq is an additive metric if for all x, y, a, b € X it holds that
(1) D(x,y)=0 <= x=y
(2) D(x,y) = D(y,x)
(3) D(x,y)+ D(a,b) < max{D(x,a)+ D(y, b), D(x,b) + D(y,a)}

Intuition:
X a
Dxy)+ D(+e) }
L) é Mﬁxi b
s pessiu lnwprebobion
15 :
{ v 4) when 45.7.;,«4 at Vv »
we had 44 e bonlio s 4»1-.:!2
: * & ety A T %7

27/51

NJ and additive metrics
D: X x X — Rxq is an additive metric if for all x, y, a, b € X it holds that
(1) D(x,y) =0 <= x=y
(2) D(x,y) = D(y,x)
(3) D(x,y)+ D(a, b) < max{D(x,a)+ D(y, b), D(x,b) + D(y, a)}

Intuition:
X a
Dxy)+ D(ab) }
E é Mﬁxi b
s pessiu lnwprebobion
15 :
{ v 4) when 45.7.;(4.‘1- at Vv »
we had 44 e bonlio s 4»1-.:!2
: * & ety A T %7

A tree T with branch-length § is additive for matrix D if

diStT(iJ) = Zedges along unique path connecting i,j 5(17/) = Di»/ for all leaves /, |

There is an additive tree (T, 0) that represents D if and only if D is an additive
metric. [without proof]

27/51

NJ is based on the concept of minimum-evolution, i.e., the resulting tree will
have minimum total branch length.

If D is an additive metric, NJ computes a tree (T, §) that represents D.

The correctness of the output tree topology is even guaranteed as long as the
distance matrix is 'nearly additive’, specifically if each entry in the distance
matrix differs from the true distance by less than half of the shortest branch

length in the tree

Although quite fast, it has a drawback: NJ often assigns negative length to
some of the branches.

28/51

Summary: Distance-Based Methods

» Distance-based Methods work well on near-additive or ultrametric data

> The latter is often violated, however, these methods are quite useful as
heuristics

» We examined two fundamental approaches, but plenty of other methods
exist

Observation:

When we use sequence-alignments then we can obtain distances and use
Distance-based Methods to compute a tree even with branch-length.

BUT: we loose all information about possible ancestral states!

— other methods ?

29/51

Character-Based Methods

30/51

Character-Based Methods

Before the “Era of DNA” half a centure ago, researches constructed trees
from anatomical/physiological properties called characters.

31/51

Character-Based Methods

Before the “Era of DNA” half a centure ago, researches constructed trees
from anatomical/physiological properties called characters.

Example:

wings nrof legs

winged stick-insect yes 6

|

) o7) :)
7\(wing-less stick-insect no 6

v, \

??% giant centipide no 42

31/51

Character-Based Methods

Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters

> Input: An n x m character table for ntaxa and m characters

> Output: A tree in which taxa with similar character values occur near
each other

32/51

Character-Based Methods

Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters

> Input: An n x m character table for ntaxa and m characters
> Output: A tree in which taxa with similar character values occur near
each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

32/51

Character-Based Methods

Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters

> Input: An n x m character table for ntaxa and m characters

> Output: A tree in which taxa with similar character values occur near
each other

This is by-far not a precise mathematical definition, but it reflects the idea
very well

Example:
wings nrof legs

T, winged stick-insect yes 6

)z‘ wing-less stick-insect no 6

32/51

Character-Based Methods

Character-Based Phylogeny Problem: Reconstruct a phylogeny from
characters
> Input: An n x m character table for ntaxa and m characters
> Output: A tree in which taxa with similar character values occur near
each other

This is by-far not a precise mathematical definition, but it reflects the idea

very well
Example:
wings nrof legs
T’ winged stick-insect yes 6
/ wing-less stick-insect no 6

e

wmju(wing- e

32/51

Character-Based Methods

wings nrof legs

| T winged stick-insect yes 6
) 73(wing-less stick-insect no 6
/'

S

WI"’de "’""‘J'{Mo

33/51

Character-Based Methods

wings nrof legs

T winged stick-insect yes 6
Y wing-less stick-insect no 6
/\

w,'njz.d wing-let

This is quite reasonable and is in line with Dollo’s law of irreversibility
(1893): Evolution doesn'’t reinvent the same organ (e.g. wings)

33/51

Character-Based Methods

wings nrof legs

| T winged stick-insect yes 6
Y wing-less stick-insect no 6
/\
w,'njz.d wing- L

This is quite reasonable and is in line with Dollo’s law of irreversibility
(1893): Evolution doesn'’t reinvent the same organ (e.g. wings)

Let’s have a look to the currently best-approximated phylogeny of
stick-insects

33/51

haracter-Based Methods

Evolutionary History of Stick-Insects:

Oligotoma nigra
Teratembia n. sp.

Timermna knulii

peruana
Libethra regularis
Diapheromera sp.
Diapheromera femorata
Baculum thaii

Gratidia fritzschei
Sceptrophasma hispidula

S. langikawicensis

Baculini spec. indet.
Medauroidea extradentatum
Medaura sp.
a

martini

Bacillius rossius

Carausius morosus
Eurycantha insularis
Phyllium bioculatum
Neohirasea maerens
Neohirasea sp.

Sipyloidea sipylus
Pseudodiacantha macklottii

Phobaeticus heusii
Lamponius guerini
Dimorphodes prostasis
Tropiderus childrenii
Eurycnema goliath
Ctenomorphodes briareus
Extatosoma tiaraturn
Anisomorpha ferruginea
Pseudophasma rufipes
Aretaon asperrimus
Sungaya inexpectata
Agathemera crassa
Heteropteryx dilatata
Haaniella dehaanii

Y Wing gain
A Wing loss
0 Winged

B Wingless

What can you observe?

34/51

haracter-Based Methods

Evolutionary History of Stick-Insects:

Oligotoma nigra
Teratembia n. sp.
Timermna knulii

O peruana
Libethra regularis
Diapheromera sp.
Diapheromera femorata
Baculum thaii

Gratidia fritzschei

Sceplrophasma hispicula Wings were gained or lost

S. langikawicensis

Baculini spec. indet. H H H H
e 71iMes in stick-insects alone!
Medaura sp.

o marti What happened?
Bacillius rossius

Carausius morosus

Eurycantha insularis

Phyllium bioculatum

Neohirasea maerens

Neohirasea sp.

Sipyloidea sipylus

Pseudodiacantha macklottii

Lopaphus perakensis

Lopaphus sphalerus

Phobaeticus heusii

Lamponius guerini

Dimorphodes prostasis

Tropiderus childrenii

Eurycnema goliath

Ctenomorphodes briareus

Extatosoma tiaraturn

Anisomorpha ferruginea
Y Wing gain Pssudophasma rufipes
A Wing loss Aretaon asperrimus
inged Sungaya inexpectata
B Wingless Agathemera crassa

Heteropteryx dilatata
Haaniella dehaanii

What can you observe?

34/51

Evolutionary History of Stick-Insects:

Oligotoma nigra
Teratembia n. sp.
Timermna knulii

Or peruana

Y Wing gain

Libethra regularis
Diapheromera sp.
Diapheromera femorata
Baculum thaii

Gratidia fritzschei
Sceptrophasma hispidula
S. langikawicensis
Baculini spec. indet.
Medauroidea extradentatum
Medaura sp.

O martini

Bacillius rossius
Carausius morosus
Eurycantha insularis
Phyllium bioculatum
Neohirasea maerens
Neohirasea sp.

Sipyloidea sipylus
Pseudodiacantha macklottii
Lopaphus perakensis
Lopaphus sphalerus
Phobaeticus heusii
Lamponius guerini
Dimorphodes prostasis
Tropiderus childrenii
Eurycnema goliath
Ctenomorphodes briareus
W Extatosoma tiaratum

B Anisomorpha ferruginea
W Pseudophasma rufipes

A Wing loss B Arstaon asperrimus
0 Winged B Sungaya inexpectata
§ Wingless B Agathemera crassa

W Heteropteryx dilatata
W Haaniella dehaanii

Wings were gained or lost
7times in stick-insects alone!

What happened?

Evolution did not reinvent
wings from scratch!

The genetic information of hav-
ing wings is not lost, but “sup-
pressed” and “switched-on/off”
which can be justifed by exam-
aining the genomes.

Character-Based Methods

What can you observe?

34/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.

SECIES
Chimp
Human
Seal
Whale

ALIGNMENT

ACGTAGGCCT
ATGTAAGACT
TCGAGAGCAC
TCGAAAGCAT

n species

N———
m characters

35/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.

SECIES ALIGNMENT

Chimp ACGTAGGCCT

Human ATGTAAGACT 1 species

Seal TCGAGAGCAC P

Whale TCGAAAGCAT
N———
m characters

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

chimp human seal whale

35/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.
SECIES ALIGNMENT
Chimp ACGTAGGCCT
Human ATGTAAGACT 1 species
Seal TCGAGAGCAC P
Whale TCGAAAGCAT
N———
m characters
27222222227
222222272727 222222272727
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

chimp human seal whale

35/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.
SECIES ALIGNMENT
Chimp ACGTAGGCCT
Human ATGTAAGACT 1 species
Seal TCGAGAGCAC P
Whale TCGAAAGCAT
N————
m characters
ACGAAAGCCT
ACGTAAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
chimp human seal whale

Let us assign sequencesto T

35/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.
SECIES ALIGNMENT
Chimp ACGTAGGCCT
Human ATGTAAGACT 1 species
Seal TCGAGAGCAC P
Whale TCGAAAGCAT
N———
m characters
ACGAAAGCCT
1 2
ACGTAAGCCT TCGARAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

chimp human seal whale

Let us assign sequencesto T

Parsimony-Score: Sum of Hamming-distances along edges in T

35/51

Character-Based Methods

We do not consider here morphological features as characters but genetic

data.
SECIES ALIGNMENT
Chimp ACGTAGGCCT
Human ATGTAAGACT 1 species
Seal TCGAGAGCAC P
Whale TCGAAAGCAT
N———
m characters
ACGAAAGCCT
1 2
ACGTAAGCCT TCGARAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

chimp human seal whale

Parsimony-Score = 8

Parsimony-Score: Sum of Hamming-distances along edges in T

35/51

Small Parsimony Problem

= Find the most parsimonious labeling of internal nodes of given tree.

36/51

Small Parsimony Problem

= Find the most parsimonious labeling of internal nodes of given tree.

In: A rooted tree T whose leaves are labeled by a string of length m

Out: A labeling of all inner vertices by strings of length m that minimizes the
tree’s parsimony score

36/51

Small Parsimony Problem

= Find the most parsimonious labeling of internal nodes of given tree.

In: A rooted tree T whose leaves are labeled by a string of length m

Out: A labeling of all inner vertices by strings of length m that minimizes the
tree’s parsimony score

Assuming the columns of a multiple alignment are independent from each
other we can simplify the problem as follows:

In: A rooted tree T whose leaves are labeled by a single symbol

Out: A labeling of all inner vertices by single symbol that minimizes the tree’s
parsimony score

And repeat the latter for each of the m columns.

36/51

Small Parsimony Problem

= Find the most parsimonious labeling of internal nodes of given tree.

In: A rooted tree T whose leaves are labeled by a string of length m

Out: A labeling of all inner vertices by strings of length m that minimizes the
tree’s parsimony score

Assuming the columns of a multiple alignment are independent from each
other we can simplify the problem as follows:

In: A rooted tree T whose leaves are labeled by a single symbol

Out: A labeling of all inner vertices by single symbol that minimizes the tree’s
parsimony score

And repeat the latter for each of the m columns.

Q: Why Parsimony?
A: Ocham’s razor (1347) The simplest explanation is usually the best one.

[in a very simplified version]

36/51

Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.
We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already

been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v, stored in a candidate set Xy .

37/51

Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v, stored in a candidate set Xy .

In (1b), Assume an inner vertex v with children u and w. If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v.
1. (Bottom-up phase)

1a. (Leaves) for each leaf ¢, set X, = {label of ¢}

1b. (Inner vertices)
Xu N X, if Xy N Xy # 0

X, =
"7] Xy U Xy, otherwise

37/51

Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v, stored in a candidate set Xy .

In (1b), Assume an inner vertex v with children v and w. If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v.

1. (Bottom-up phase)
1a. (Leaves) for each leaf ¢, set X, = {label of ¢}

1b. (Inner vertices)
Xu N X, if Xy N Xy # 0

X, =
v Xu U X, otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a
top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one
element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol
assigned to u.
If ais contained in Xy, assign it to node v as well.
Otherwise, arbitrarily assign any state from X, to node v.

37/51

Fitch Algorithm (Walther M. Fitch, 1971)

Given a binary tree with leaves labeled by a symbol.

We traverse the tree from the leaves to the root such that when a vertex is processed, all its children have already
been processed. Obviously the root is the last node processed by this traversal. During this phase, we collect
putative states for the labeling of each vertex v, stored in a candidate set Xy .
In (1b), Assume an inner vertex v with children v and w. If u and w share common candidates, these are
candidates for v as well. Otherwise, the candidates of both children have to be considered as candidates for v.
1. (Bottom-up phase)

1a. (Leaves) for each leaf ¢, set X, = {label of ¢}

1b. (Inner vertices)
Xu N X, it XuN Xy 0

X, =
v Xu U X, otherwise

The most parsimonious reconstruction of character-states (symbols) at the inner vertices is then obtained in a
top-down pass according to the following rules:

2. (Top-down refinement)
2a. (Root) If the candidate set of the root contains more than one
element, arbitrarily assign one of these symbols to the root.
2b. (Other vertices) Let v be a child of node u, and let a denote the symbol
assigned to u.
If ais contained in Xy, assign it to node v as well.
Otherwise, arbitrarily assign any state from X, to node v.

For the proof of correctness we refer to “Hartigan, Minimum mutation fits to a given tree. Biometrics, 1973” were a
generalized version of this algorithm is studied that also deals with non-binary tree and to find all co-optimal
solutions.

37/51

Fitch Algorithm (Walther M. Fitch, 1971)

1a. (Leaves) for each leaf ¢, set X, = {label of ¢}
1b. (Inner vertices)]

o X0 X X0 X £ 0
"7) Xy U X, otherwise

2a. (Root) If the candidate set of the root contains more than one element, arbitrarily
assign one of these symbols to the root.

2b. (Other vertices) Let v be a child of node u, and let a denote the symbol assigned
to u.

If ais contained in Xy, assign it to node v as well.

Otherwise, arbitrarily assign any state from X, to node v.

(?_)TOP . DowN:

ol c
(=0 60) 4 { A

Sankoff Algorithm (David Sankoff, 1971)

Given a (not necessarily binary) tree with leaves labeled by a symbol.

The tree is traversed bottom-up. During this traversal, assume we process a vertex u. Define s(u) as the cost of the
min. pars.-score for the subtree T(u) rooted at u. Let s5(u) be the cost of the best labeling of T(u) when uis
required to be labeled with symbol a. Obviously, s(u) = ming sa(u).

1. (Bottom-up phase)
1a. (Leaves) The symbol for each leaf ¢ is fixed and we put
sa(¢) = 0 if label of £ is a and, otherwise, sa(¢) = co
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by

Sa(U) = (8p(V) + 1ap)

LN
child v of g2 MO

2. (Top-down refinement) The optimal assignment of states to the internal nodes is
then obtained in a backtracing phase.

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex
u (say, u was labeled with state a) is assigned a state b that
yielded the minimum in the bottom-up pass, i.e., where

Lo+ 85(v) = min(Lap + Spy (V)

Correctness is exercise, but follows essential from the fact that we consider all possiblities.

39/51

Sankoff Algorithm (David Sankoff, 1971)

1a. (Leaves) The symbol for each leaf ¢ is fixed and we put s4(¢) = 0 if label of £ is a
and, otherwise, s3(¢) = oo

1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by

Sa(u) = i Sp(v 1
a() Z allsmll;]olsb(b()+ a,b)
child v of u

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in the
bottom-up pass, i.e., where

Lap + Sp(v) = min(lap + S (V)

40/51

Sankoff Algorithm (David Sankoff, 1971)

1a. (Leaves) The symbol for each leaf ¢ is fixed and we put s4(¢) = 0 if label of £ is a
and, otherwise, s3(¢) = oo
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by
Sa(u) = i Sp(v 1
() chilgof L Sxmglols b(b(v) + Lap)

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in the
bottom-up pass, i.e., where

Lap + Sp(v) = min(lap + S (V)

40/51

Sankoff Algorithm (David Sankoff, 1971)

1a. (Leaves) The symbol for each leaf ¢ is fixed and we put s4(¢) = 0 if label of £ is a
and, otherwise, s3(¢) = oo
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by
Sa(u) = i Sp(v 1
() chilgof L Sxmglols b(b(v) + Lap)

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in the
bottom-up pass, i.e., where

Lap + Sp(v) = min(lap + S (V)

40/51

Sankoff Algorithm (David Sankoff, 1971)

1a. (Leaves) The symbol for each leaf ¢ is fixed and we put s4(¢) = 0 if label of £ is a
and, otherwise, s3(¢) = oo
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by
Sa(u) = i Sp(v 1
() chilgof L Sxmglols b(b(v) + Lap)

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in the
bottom-up pass, i.e., where

Lap + Sp(v) = min(lap + S (V)

40/51

Sankoff Algorithm (David Sankoff, 1971)

1a. (Leaves) The symbol for each leaf ¢ is fixed and we put s4(¢) = 0 if label of £ is a
and, otherwise, s3(¢) = oo
1b. (Inner vertices) The recurrence relation to compute sa(u) for inner vertex u is
given by
Sa(u) = i Sp(v 1
() chilgof L Sxmglols b(b(v) + Lap)

2a. (Root) The root p is assigned a state a such that s(p) = sa(p).

2b. (Other vertices) In a top-down traversal, the child v of an already labeled vertex u
(say, u was labeled with state a) is assigned a state b that yielded the minimum in the
bottom-up pass, i.e., where

Lap + Sp(v) = min(lap + S (V)

T choice T not
2 possible!

40/51

Summary Fitch- and Sankoff-Algorithm

Both solve the small parsimony problem and run in polynomial-time.

The red-colored vertices are precisely the sets X, computed with the Fitch
alg.:

But Fitch is restricted to “unit costs” 1, which can be replaced in Sankoff’s
alg. by an arbitrary cost function.

In Sankoff’s alg. backtracking can be used to obtain all optimal solutions and
it works on non-binary trees.

41/51

Large Parsimony Problem

In: nstrings of length m

Out: Find a tree on nleaves together with a labeling of all inner vertices by
strings of length m that minimizes the tree’s parsimony score

This problem is NP-hard!
— heuristics are needed [not part of this lecture]

42/51

Consenus-Based Methods

43/51

Consensus-Based Methods

A simple example:
Assume we have partial information about similarities about between some
taxa A, B, C, D, E such as

» Aand B are closer related then Ato Cand Bto C
» C and D are closer related then Cto E and Dto E

44 /51

Consensus-Based Methods

A simple example:
Assume we have partial information about similarities about between some
taxa A, B, C, D, E such as

» Aand B are closer related then Ato Cand Bto C
» C and D are closer related then Cto E and Dto E

AN AN

Is there a rooted tree that reflects both observations?

44 /51

Consensus-Based Methods

A simple example:
Assume we have partial information about similarities about between some
taxa A, B, C, D, E such as

» Aand B are closer related then Ato Cand Bto C
» C and D are closer related then Cto E and Dto E

AN AN

Is there a rooted tree that reflects both observations?

44 /51

Consensus-Based Methods

Central Idea:

» Find a consensus tree that reflects all partial information as “best as
possible”.

Motivation:
» Combine many trees constructed from different data sets.

» Computationally expensive methods may yield highly accurate trees for
small, overlapping subsets of the objects.

» Most individual studies investigate relatively few species. Supertrees
allow us to deduce new evolutionary relationships.

whiteboard: DEF rooted triple, displayed, compatible

45/51

Rooted Trees, Triples and Compatibility

Rooted tree T:

a b x y z

connected,acyclic
graph

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T: Triples:

T displays a triple ab|z if the path from ato b
does not intersect the path from z to the root.

< lcar(a, b) <r lcar(a, c) = lcar(b, c)

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T: Triples:

T displays a triple ab|z if the path from ato b

))
% does not intersect the path from z to the root.
A
'\ < lcar(a, b) <r lcar(a, c) = lcar(b, c)
) }
‘\
A “
ll ‘\ '
° °
a b x y z

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T:

Triples:

T displays a triple ab|z if the path from ato b
does not intersect the path from z to the root.

< lcar(a, b) <r lcar(a, c) = lcar(b, c)

R(T) = {ab|x, ably, ab|z, xy|a. ..}

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T:

Triples:

T displays a triple ab|z if the path from ato b
does not intersect the path from z to the root.

< lcar(a, b) <r lcar(a, c) = lcar(b, c)
R(T) = {ab|x,ably,ab|z,xy|a...}

For a set R of triples let L(R) := Uy .cr{X, y, 2}

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T:

Triples:

T displays a triple ab|z if the path from ato b
does not intersect the path from z to the root.

< lcar(a, b) <r lcar(a, c) = lcar(b, c)
R(T) = {ab|x, ably,ab|z,xy|a...}
For a set R of triples let L(R) := Uy .cr{X, y, 2}

An arbitrary set R of triples is compatibe,
if there is atree T on L(R) with R C R(T)

46/51

Rooted Trees, Triples and Compatibility

Rooted tree T: Triples:
A T displays a triple ab|z if the path from ato b
% does not intersect the path from z to the root.
\Y
'\ < lcar(a, b) <r lcar(a, c) = lcar(b, c)
% R(T) = {ab|x, ably,ab|z,xy|a...}
’ \)
K '
P “‘ For a set R of triples let L(R) := Uyy|zer{X, Y, Z}.
[J []
a b x y z

An arbitrary set R of triples is compatibe,
if there is atree T on L(R) with R C R(T)

When is a set R of triples compatible?

46/51

Rooted Trees, Triples and Compatibility

R = {AB|C, CD|E} is compatible:

AN AN
(

R = {AB|C, CBJ|A} is not compatible.

47/51

Rooted Trees, Triples and Compatibility

How to test compatibilty of R?

48/51

Rooted Trees, Triples and Compatibility

How to test compatibilty of R?

Observation: Assume there is a rooted tree T that displays R.
If xy|z € R then x and y cannot be descendants of two distinct children of the

root pr
/SR

ot possibl

48/51

Rooted Trees, Triples and Compatibility

How to test compatibilty of R?

Observation: Assume there is a rooted tree T that displays R.
If xy|z € R then x and y cannot be descendants of two distinct children of the

root pr
/SR
1S . 7_

Central Idea:

> Determine for potential tree T on L(R) for R the set of leaves that are
descendants of children of the root.

Hence, we want to find a partition X, ..., X; of L(R):

xa Xa Xe

Note xy|z € R implies that x, y € X; forsome i € {1,...,¢}
» Then recurse on each such child.
48/51

Rooted Trees, Triples and Compatibility

Define for a set R of triples and a leaf set L the set
RL={xylze R: x,y,z€ L}
Example:
R = {ab|c, ab|d, ax|y}
R = {ablc, ax|y} for L = {a,b,c, x,y}
R =0foreg. L={ab,y}
Comparative graph G[R,L]:

Given set R of triples and a leaf set L.
Then G[R, L] has vertex set L and {x, y} is an edge iff 3 xy|z € A,

49/51

Rooted Trees, Triples and Compatibility

Define for a set R of triples and a leaf set L the set
RL={xylze R: x,y,z€ L}
Example:
R = {ab|c, ab|d, ax|y}
R = {ablc, ax|y} for L = {a,b,c, x,y}
R =0foreg. L={ab,y}
Comparative graph G[R,L]:

Given set R of triples and a leaf set L.
Then G[R, L] has vertex set L and {x, y} is an edge iff 3 xy|z € A,

49/51

Rooted Trees, Triples and Compatibility

Define for a set R of triples and a leaf set L the set
RL={xylze R: x,y,z€ L}
Example:
R = {ab|c, ab|d, ax|y}
R = {ablc, ax|y} for L = {a,b,c, x,y}
R =0foreg. L={ab,y}

Comparative graph G[R,L]:
Given set R of triples and a leaf set L.
Then G[R, L] has vertex set L and {x, y} is an edge iff 3 xy|z € A,

2’ { a.‘/c) a.é/d) ax/yg

§(R, L=l abeidixy3) : ;‘I/j?',(;

(R L="{ay3) N, Y

a

GIR, L={a,x,di) = 5o -4

X o

49/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R
Hence, we want to find a partition Xy, ..., X, of L(R):

50/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R
Hence, we want to find a partition Xy, ..., X, of L(R):

—_— = =

Xa Xa Xe

Note xy|z € R implies that x, y € X; for some i € {1,...,¢}

IDEA: connect x and y as an edge and look at connected components!

50/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R

Hence, we want to find a partition Xy, ..., X, of L(R):
T T T |
Note xy|z € R implies that x, y € X; for some i € {1,...,¢}

IDEA: connect x and y as an edge and look at connected components!
This is precisely what is reflected by the Comparative graph G[R, L]!

50/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R

Hence, we want to find a partition Xy, ..., X, of L(R):
T T T |
Note xy|z € R implies that x, y € X; for some i € {1,...,¢}

IDEA: connect x and y as an edge and look at connected components!
This is precisely what is reflected by the Comparative graph G[R, L]!

(1
14

R={ax|b,ab|c,cd|y}

50/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R

Hence, we want to find a partition Xy, ..., X, of L(R):
T T T |
Note xy|z € R implies that x, y € X; for some i € {1,...,¢}

IDEA: connect x and y as an edge and look at connected components!
This is precisely what is reflected by the Comparative graph G[R, L]!

(1
14

R={ax|b,ab|c,cd|y}

[}
ha W;mﬂ

50/51

Rooted Trees, Triples and Compatibility

Is R = {ablc, ab|d, ax|y} compatible? Need to find tree T that displays R

Hence, we want to find a partition Xy, ..., X, of L(R):
T T T |
Note xy|z € R implies that x, y € X; for some i € {1,...,¢}

IDEA: connect x and y as an edge and look at connected components!
This is precisely what is reflected by the Comparative graph G[R, L]!

(1
14

‘Lab)dmﬂ 7>

q
tCurse § QEE‘(A\L‘%I] 8 ‘I b a X

R={ax|b,ab|c,cd|y}

50/51

BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v, T, L)

IF(|L] =1) /L= {x}
output rooted tree §
IF(|L] = 2) /L= {x,y}
output rooted tree obtained by attaching two vertices to v labelled x and y.
IF(|L] > 3)
Construct G[R, L]
Let Ly, ..., Lk be the vertex set of conn. comp. of G[R, L]

IF(k = 1) RETURN “R not compatible”
FOR(i=1,...,k)
call BUILD(R, v;, T}, L))
IF(BUILD(R, v;, T;, L;) outputs a tree T;)
attach T; to v via edge {v, v;}.

51/51

BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v, T, L)

IF(|L] =1) /L= {x}
output rooted tree §
IF(|L] = 2) /L= {x,y}
output rooted tree obtained by attaching two vertices to v labelled x and y.
IF(|L] > 3)
Construct G[R, L]
Let Ly, ..., Lk be the vertex set of conn. comp. of G[R, L]

IF(k = 1) RETURN “R not compatible”
FOR(i=1,...,k)
call BUILD(R, v;, T}, L))
IF(BUILD(R, v;, T;, L;) outputs a tree T;)
attach T; to v via edge {v, v;}.

Further Examples: Whiteboard

51/51

BUILD-algorithm

by Aho, Sagiv, Szymanski and Ullman (1981)

BUILD(R, v, T, L)

IF(|L] =1) /L= {x}
output rooted tree §
IF(|L] = 2) /L= {x,y}
output rooted tree obtained by attaching two vertices to v labelled x and y.
IF(|L] > 3)
Construct G[R, L]
Let Ly, ..., Lk be the vertex set of conn. comp. of G[R, L]

IF(k = 1) RETURN “R not compatible”
FOR(i=1,...,k)
call BUILD(R, v;, T}, L))
IF(BUILD(R, v;, T;, L;) outputs a tree T;)
attach T; to v via edge {v, v;}.

Further Examples: Whiteboard

BUILD runs in O(|L||R|)-time and is correct
proof sketch: whiteboard

51/51

	Intro
	intro

