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Assignment 1

S Homework 1 S

Problem 1: (2 pts) LUP

Show that {x ∈ Q|x ≥ 0, x2 > 2} has no greatest lower bound in Q. Use this to deduce that Q does not sarisfy
the least upper bound property.

Solution: Let S ..= {x ∈ Q|x ≥ 0, x2 > 2}. First note that 1 is clearly a lower bound of S since for any q ∈ S
we have q2 > 2 > 12 and f(x) = x2 is an increasing function on the positive rational numbers. Thus we have
reduced the problem to showing that S has rational greatest lower bound l ≥ 1.

For this, I first claim that any positive lower bound l of S has the property l2 ≤ 2. To see this note that for
any l with l2 > 2 we can define

m ..= l +
1

2l
(2− l2) < l

but

m2 = l2 + (2− l2) +

(
1

2l
(2− l2)

)2

= 2 +

(
1

2l
(2− l2)

)2

> 2

since the expression in the parenthesis is not 0 by assumption. It is also clear that m > 0 since

l +
1

2l
(2− l2) =

l

2
+

1

l
>

l

2
> 0.

Hence m ∈ S and m < l which contradicts l being a lower bound of S.

Next, I claim that if l is a positive lower bound of S with l2 < 2 then l is not a greatest lower bound. To show
this, let 1 ≤ l be a lower bound of S with l2 < 2. Then define

m ..= l +
2− l2

4l
.

Clearly we have m > l. Furthermore, we have

2−m2 = 2− l2 − (2− l2)

2
− (2− l2)2

16l2
=

2− l2

16l2
(
9l2 − 2

)
.

Since l > 1 (meaning that 9l2− 2 > 7) and 2− l2 > 0 both factors in the above expression are positive and thus
2−m2 > 0. This means that for any q ∈ S we have

q2 −m2 > 2−m2 > 0.

Since m, q are positive and f(x) = x2 is an increasing function on the positive rational numbers this implies
that q > m and thus m is a lower bound of S. Since m > l this means that l is not a greatest lower bound of S.

This means that if l is a greatest lower bound for S we must have l2 = 2. I claim that no l ∈ Q has this property.
If this is true then no l ∈ Q can be a greatest lower bound of S and so we are done. To prove this claim let
a
b ∈ Q be reduced as far as possible (i.e. GCD(a, b) = 1). Then

(
a
b

)2
= 2 implies that a2 = a · a = 2b2. Since 2

is prime this means that 2 divides one of the factors on the left hand side, both of which are a, i.e. 2 divides a.
Thus we can write a = 2c where c is some integer. This gives 2b2 = (2c)2 = 4c2. Dividing both sides by 2 gives
b2 = 2c2. By the same argument as before 2 divides b. However, this is a contradiction since GCD(a, b) = 1
and thus no l ∈ Q has the property l2 = 2. This completes the proof.

This assignment is due 23:59 June 29th, 2024 and the date of submission is July 8, 2024.
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For the second part note that by Rudin, theorem 1.11, if an ordered set has the least upper bound property it
has it has the greatest lower bound property. By the proof above there is a subset of Q with a lower bound but
not a greatest lower bound. Therefore Q does not have the greatest lower bound property and thus it does not
have the least upper bound property.

Remarks: Some additional comments are in order here to make it easier to see how I came up with these steps
and hopefully make it clearer to you how one can go about solving a similar exercise. To me, the most difficult
part in this proof is how to construct m from l both in the first and second step. The idea I use in both cases
is to start with l and try to find a rational number somewhere between l and

√
2. I will tell you how I did this

for the first part, i.e. l2 > 2, and then hint at how it can be done for the second part. The idea is to first define
f(x) = x2 − 2. The derivative of this function, f ′(x) = 2x is strictly increasing on the interval x > 0 and in
particular when x2 > 2. Thus, the tangent line T (l) through any point (l, f(l)) on the graph of f will lie strictly
below the graph of f and meet the graph only at the point (l, f(l)). This means that if (x, y) ∈ T (l) is a point
on the tangent line then y ≤ f(x) with equality if and only if x = l. In particular if m is the x-coordinate at
which T (l) meets the x-axis (i.e. (m, 0) ∈ T (l) then we have m < l and f(m) = m2 − 2 > 0. This m is precisely
the point m I used for the solution For the second part the function f(x) does not work. Do you see why? If
not try using f(x) = 2 − x2 to find a point m from l where l2 < 2 and you will hopefully see why m2 > 2.
Plotting a graph might be helpful. Instead we do the same thing but with the function g(x) = (x2 − 2)2. The
derivative of this function is increasing on the interval 1 < l <

√
2 but not on the entire interval l <

√
2. This

is why I first had to mention that l = 1 is a lower bound so we may assume l ≥ 1.

Finally I also want to mention that this exercise is much easier to solve if you decide to use real numbers. For
this first note that

√
2 is clearly a lower bound for S in R. Next note that for any real number r >

√
2 there

exists a rational number q such that
√
2 < q < r which implies that 2 < q2, i.e. q ∈ S. Hence, r is not a lower

bound for S whenever r >
√
2 and thus

√
2 is the greatest lower bound of S. By the last part of my solution,√

2 is not a rational number. Therefore, for any rational lower bound l of S we have l <
√
2 which means that

there exists some m such that l < m <
√
2. This is also a lower bound for S and thus l is not a greatest lower

bound. This argument holds in more generality. If S ⊆ Q is a set such that the greatest lower bound l ∈ R of
S is not a rational number then S has no greatest lower bound in Q.

Problem 2: (1 pt) Cardinality

Show that the set of sequences with values in {♣,♡} is not countable.

Solution: Let S be the set of sequences with values in {♣,♡} and let T be the set of sequences with values
in {0, 1}. I claim that there is a bijection F : S → T . To construct this first note that there is a bijection
f : {♣,♡} → {0, 1} defined by f(♣) = 0 and f(♡) = 1 with inverse g defined by g(0) = ♣ and g(1) = ♡. Using
this we can define F be the function that sends

F : {an}n∈N 7→ {f(an)}n∈N.

Now I claim that
G : T → S, {bn}n∈N 7→ {g(bn)}n∈N

is an inverse of F . To see this note that

G(F ({an}n∈N)) = G({f(an)}n∈N) = {g(f(an))}n∈N = {an}n∈N,

and similarly
F (G({bn}n∈N)) = F ({g(bn)}n∈N) = {f(g(bn))}n∈N = {bn}n∈N.

Thus, G ◦ F = idS and F ◦ G = idT which means that G is the inverse of F and thus F is a bijection. Since
F : S → T is a bijection and we know from Rudin, theorem 2.14, that T is uncountable it follows that S is
uncountable.

Remarks: Most of you used the same argument as Rudin does in the proof of theorem 2.14 to solve this
problem. This is of course also a valid solution.
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Problem 3: Closure

Let {Ek}k∈N be subsets of a metric space (X, d). Show the following statements

(1) (1 pts) If B = ∪n
k=1Ek then B = ∪n

k=1Ek

(2) (1 pts) If B = ∪k∈NEk then B ⊇ ∪k∈NEk

Solution: I will start with part 2. This statement is true for k ∈ I where I is any index set, not just I = N.
That is, if B = ∪k∈IEk then B ⊇ ∪k∈IEk. To see this first note that by definition, B ⊇ B ⊇ Ek for every
k ∈ I. Hence B is a closed subset containing Ek which implies that B ⊇ Ek by definition of the closure. This
is true for every k and thus B ⊇

⋃
k∈I Ek.

For part 1, first note that this proves that if B =
⋃n

k=1 Ek then B ⊇
⋃n

k=1 Ek. To show the other inclusion note
that

⋃n
k=1 Ek is a finite union of closed sets and hence it is closed. Since

⋃n
k=1 Ek ⊇

⋃n
k=1 Ek = B this means

that
⋃n

k=1 Ek ⊇ B by definition of the closure. This completes the proof.

Remarks: To me the definition of the closure of a set A is the intersection of all closed sets containing A and
so, the statement that if A ⊆ C and C is closed then A ⊆ C follows immediately from the definition. However,
it seems this is not the definition Rudin uses and instead this result is a theorem which I would reference here
but sadly I do not have access to the book at the time of writing this. Regardless, this is true.

Problem 4: Pre-images

Let f : X → Y be a function and let Aα is a collection of subsets of Y , with α in an index set I. Recall that,
if A ⊆ Y , the pre-image of A through f is

f−1(A) := {x ∈ X | f(x) ∈ A}.

(1) ( 1 pt) Show that f−1(
⋃

α∈I Aα) =
⋃

α∈I f−1(Aα)

(2) (1 pts) Show that f−1(
⋂

α∈I Aα) =
⋂

α∈I f−1(Aα)

Solution: For part 1, let x ∈ f−1(
⋃

α∈I Aα). Then f(x) ∈
⋃

α∈I Aα which means that f(x) ∈ Aβ for some
index β ∈ I by definition of a union. Since f(x) ∈ Aβ we have, by definition, x ∈ f−1(Aβ) ⊆

⋃
α∈I f−1(Aα),

i.e. x ∈
⋃

α∈I f−1(Aα) and thus, f−1(
⋃

α∈I Aα) ⊆
⋃

α∈I f−1(Aα). Similarly, if x ∈
⋃

α∈I f−1(Aα) then
x ∈ f−1(Aβ) for some β ∈ I. This implies that f(x) ∈ Aβ ⊆

⋃
α∈I Aα. Thus, x ∈ f−1(

⋃
α∈I Aα) which

implies that f−1(
⋃

α∈I Aα) ⊇
⋃

α∈I f−1(Aα). Since we have shown f−1(
⋃

α∈I Aα) ⊆
⋃

α∈I f−1(Aα) and
f−1(

⋃
α∈I Aα) ⊇

⋃
α∈I f−1(Aα) we must have f−1(

⋃
α∈I Aα) =

⋃
α∈I f−1(Aα). This completes the proof.

The second part is analogous.

Problem 5: Compact spaces

(1) (1 pt) Show that 0 ∪ { 1
n |n ∈ Z+} is compact in R.

(2) (1 pt) Determine whether { 1
n |n ∈ Z+} is compact in R. Justify your answer

Solution: Let {Uα}α∈I be an open cover of 0∪{ 1
n |n ∈ Z+}. By definition of an open cover there is some α ∈ I

we have 0 ∈ Uα. I will let Uα0
denote this open set. Since Uα0

is open and 0 ∈ Uα0
there is some open interval

(−b, b) ⊆ Uα0
where 0 < b by the definition of an open set. By Rudin, theorem 1.20, any real number b > 0 has

the property that there is some N ∈ Z+ such that nb > 1, or equivalently b > 1
n , for every n > N . Thus, there

exists some n ∈ Z+ such that 1
n ∈ (−b, b) for every n > N . Now, for every integer 1 ≤ i ≤ n let Uαi ∈ {Uα}α∈I

be any element of the open cover such that 1
i ∈ Uαi

. Then V0 ∪ Uα1
∪ · · · ∪ UαN

contains all elements of
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0 ∪ { 1
n |n ∈ Z+} and thus {Uα}α∈I has a finite subcover. By definition, this means that 0 ∪ { 1

n |n ∈ Z+} is
compact.

The set { 1
n |n ∈ Z+} is not compact. To prove all we must do is to find an open cover with no finite open subcover.

I claim that {Un}n∈Z+ where Un
..= ( 1

n+1 ,∞) has this property. Clearly this is an open cover since 1
n ∈ Un

for every n. Now, let Ui1 , . . . , UiN be some finite subset of the cover. Then let m ..= max(i1, i2, . . . , iN ) + 1.
Then we have 1

m < 1
ik+1 for each ik and therefore 1

m /∈ Uik for every Uik . Hence, Ui1 , . . . , UiN is not a cover of
{ 1
n |n ∈ Z+} and therefore {Un}n∈Z+ does not have a finite subcover

Problem 6: (1 pt) Connected spaces

Show that the union of circles (not disks!) with center (0, 0) and rational radii < 1 is a nonconnected set of R2

with the Euclidean distance.

Solution: Let X denote the space of all such circles and let ξ be any real but not rational number in the interval
(0, 1), i.e. ξ ∈ (0, 1) \Q. Note that it is true in general that for any real numbers x < y there is some irrational
number z such that x < z < y but I could not find any reference for this in Rudin so if you do not think this is
obvious then just take ξ =

√
2
2 which we know is irrational from exercise 1. Now, define A ..= {x ∈ X|d(x, 0) < ξ}

and let B ..= {x ∈ X|d(x, 0) > ξ}. First note that since every point x ∈ X has the property d(x, 0) ∈ Q we
have in particular that d(x, 0) ̸= ξ A = {x ∈ X|d(x, 0) ≤ ξ} and B = {x ∈ X|d(x, 0) ≥ ξ}. Thus, A,B
are closed and therefore A = A, B = B. By definition A ∩ B = ∅ and thus A ∩ B = A ∩ B = ∅. Finally,
A ∪ B = {x ∈ X|d(x, 0) ̸= ξ} = X since ξ is not rational. By definition of connectedness this means that X is
not connected.

Remarks: I have based this solution on Rudin’s definition of connectedness. However, it is more common to
say that a space X is not connected if it has two open subsets A,B with A ∪ B = X and A ∩ B = ∅. This is
an equivalent definition and using this all we have to do is conclude that A,B are both open.

The claim that for any real numbers x < y there is some irrational number z such that x < z < y is a good
exercise.

Hint: Start by showing that there is an irrational number w (e.g. exercise 1). Then construct z as wq where q
is some appropriately chosen rational number.
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