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Problem 1

(1) Let P be a partition of [0, 1] given by 0 = x1 ≤ x2 ≤ ... ≤ xn = 1 and let
α = id. We have that

Mi = sup
xi−1≤x≤xi

f(x) = 1

and
mi = inf

xi−1≤x≤xi

f(x) = 0

since every interval contains both rational and irrational numbers. We can then
compute

U(P, f, α) =

n∑
i=1

Mi(α(xi)− α(xi−1)) =

n∑
i=1

(xi − xi−1) = 1

and

L(P, f, α) =

n∑
i=1

mi(α(xi)− α(xi−1)) = 0.

Note that the above equalities hold for any partition P , thus∫ 1

0

fdα = 1 ̸= 0 =

∫ 1

0

fdα

meaning that f is not Riemann-integrable according to definition 6.2.

(2) First assume that f is continuous at 1
2 . Let P be a partition 0 = x1 ≤ ... ≤

xk−1 ≤ 1
2 ≤ xk ≤ ... ≤ xn = 1, note that α+(xi) − α+(xi−1) is 0 when i ̸= k

and 1 when i = k. From this we can compute

U(P, f, α+) = Mk

and
L(P, f, α+) = mk.

Since f is continuous there are points xmax and xmin in [xk−1, xk] such that
Mk = f(xmax) and mk = f(xmin).



For an arbitrary ε > 0 we can by continuity find a partition P such that∣∣f(x)− f( 12 )
∣∣ < ε

2 for all x ∈ [xk−1, xk], then we have in particular that

U(P, f, α+)− L(P, f, α+) = 1
2 |f(xmax)− f(xmin)|

≤ 1
2

(∣∣f(xmax)− f
(
1
2

)∣∣+ ∣∣f (
1
2

)
− f(xmin)

∣∣)
< 1

2 (
ε
2 + ε

2 ) = ε

so f ∈ R(α+) by theorem 6.6. In the same way we can show that f ∈ R(α−),
which concludes this direction of the proof.

For the other direction, assume that f ∈ R(α+), and consider a partition
P of the form 0 = x1 ≤ ... ≤ xk−1 ≤ xk = 1

2 ≤ xk+1 ≤ ... ≤ xn = 1, then
α(xi)− α(xi−1) = 0 when i ̸= k − i and α(xk)− α(xk−1) = 1 so we have

U(P, f, α+) = Mk = sup
xk−1≤x≤ 1

2

f(x)

and
L(P, f, α+) = mk = inf

xk−1≤x≤ 1
2

f(x).

Then for any ε > 0 we can choose a partition P such that

Mk −mk < ε,

which means that we can find a δ = 1
2 − xk−1 such that∣∣∣∣f(x)− f

(
1

2

)∣∣∣∣ ≤ Mk −mk < ε

whenever 1
2 − δ ≤ x ≤ 1

2 which means that f is left-continuous at 1
2 . Similarly

we can show that f ∈ R(α−) implies that f is right-continuous at 1
2 , which

proves the other direction.

(3) Since f is bounded and has finitely many discontinuities and only at points
where α is continuous, it follows from theorem 6.10 that f ∈ R(α).

To compute the integral we first note that α(x) = ex +3I(x− 1
2 ) where I is

the unit step function. We then use theorem 6.12 to get that∫ 1

0

fdα =

∫ 1

0

fd(ex) + 3

∫ 1

0

fd(I(x− 1

2
)).

To compute the first integral we use theorem 6.17 to get∫ 1

0

fd(ex) =

∫ 1

0

f(x)exdx =

∫ 1
3

0

xex + 2

∫ 1

1
3

xex

after which we use integration by parts to compute both integrals and get∫ 1

0

fd(ex) =

(
1− 2

3
e

1
3

)
+ 2

(
2

3
e

1
3

)
= 1 +

2

3
e

1
3 .



We now use theorem 6.15 to get that∫ 1

0

fd(I(x− 1

2
) = f(

1

2
) = 1

and now we can finally conclude that∫ 1

0

fdα = 1 +
2

3
e

1
3 + 3 = 4 +

2

3
e

1
3 .

Problem 2

(1) Let f(x) = limn→∞ fn(x) for rational x, and for irrational x we choose
a sequence qn → x with qn ∈ Q and define f(x) = limk→∞ f(qk). Then by
theorem 7.12 f |Q is continuous and by the definition of f(x) for irrational x we
see that f is continuous on all of R.

For any ε > 0 and real number x we can find a δ > 0 such that |f(x)− f(y)| <
ε
3 and |fn(x)− fn(y)| < ε

3 whenever |y − x| < δ since f and fn are continuous.
Now let y be a rational number such that |y − x| < δ, then by uniform conver-
gence there is some natural number N such that |fn(y)− f(y)| ≤ ε

3 whenever
n > N , so then we have for all n > N that

|fn(x)− f(x)| ≤ |fn(x)− fn(y)|+ |fn(y)− f(y)|+ |f(y)− f(x)| < ε

using the triangle inequality together with the above. This shows that fn → f
uniformly.

(2) We first note that for all x ∈ R we have

lim
n→∞

(
1 +

x

n

)n

= ex

so fn → f pointwise where f(x) = ex. Note that fn and f are all continuous.
Now we want to show that the convergence is uniform on an arbitrary interval

[a, b]. If n > −a we have that 1+ x
n > 0, so we can apply the AM-GM inequality

to get that

1 +
x

n+ 1
=

1 + n
(
1 + x

n

)
n+ 1

≥
((

1 +
x

n

)n) 1
n+1

and then raising both sides to the power of n+ 1 we find that fn+1(x) ≥ fn(x)
for all x ∈ [a, b] whenever n > −a. We have thus shown that the sequence
is eventually monotone, and then theorem 7.13 proves that the convergence is
uniform on [a, b].

(3) First note that fn(0) = fn(1) = 0 for all n, and for x ∈ (0, 1) we get

lim
n→∞

x(1− x)n = x lim
n→∞

(1− x)n = x · 0 = 0

since 0 < 1− x < 1, so fn → 0 pointwise.



For every n the function fn is differentiable for all x ∈ [0, 1], so its maximum
value is attained either at an endpoint of the interval (where fn(x) is zero) or
at a point where f ′

n(x) = 0. We can compute

f ′
n(x) = (1− x)n − nx(1− x)n−1 = (1− x)n−1(1− (1 + n)x)

from which we can see that f ′
n(x) = 0 only for x = 1

1+n , whence

sup
x∈[0,1]

fn(x) = fn(
1

1 + n
) =

1

1 + n

(
n

1 + n

)n

=
1

1 + n

(
1 +

1

n

)−n

so

lim
n→∞

sup
x∈[0,1]

fn(x) = 0 · 1
e
= 0

which shows that fn → 0 uniformly by theorem 7.9.

Problem 3

(1) Let

fn(x) =
1

n(1 + nx2)
.

For x = 0 we get fn(x) =
1
n so

∑∞
n=1 fn does not even converge at this point.

Now consider x ∈ (0, 1]. Since

0 ≤
∞∑

n=1

fn(x) ≤
∞∑

n=1

1

n2x2
=

1

x2

∞∑
n=1

1

n2
=

π2

6x2

we see that the series converges pointwise on all of (0, 1].
We also have that the series converges uniformly on [ε, 1] for any ε > 0, this

follows from theorem 7.10 since

|fn(x)| ≤
1

n2ε2

for all x ∈ [ε, 1].
The convergence is not uniform on all of (0, 1], however. We can see this by

noting that
N∑

n=M

fn(x)

is a continuous function on [0, 1] and then computing

sup
x∈(0,1]

N∑
n=M

fn(x) = max
x∈[0,1]

N∑
n=M

1

n(1 + nx2)
=

N∑
n=M

1

n

and since the harmonic series is divergent it is not Cauchy, and thus by the
above our series is not uniformly Cauchy, hence not uniformly convergent.



(2) Recall that the radius of convergence is defined as

R =
1

lim supn→∞ |an|
1
n

.

For all x ∈ [−r, r] we have |anxn| ≤ |an|rn and

∞∑
n=0

|an|rn

converges since r < R and since the radius of convergence of

∞∑
n=0

|an|xn

is also
1

lim supn→∞ |an|
1
n

= R.

This shows that the series
∑∞

n=0 anx
n converges uniformly in [−r, r] by theorem

7.10.


