INTRODUCTION TO s sonsprime
AN ALYSIS Assignment 3

Instructor: Sofia Tirabassi

§ Homework 3 §

This homework is worth 10 points that is 1 bonus point. You are welcome to collaborate with your classmates
to find a solution, but write and submit your own solution.

Problem 1: Stieltjes Integral

(1) (1 pt.) Show that the function f : [0,1] — [0,1] defined by
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Is not in R(id).

(2) (2 pts) Let o and a_ the following functions on [0, 1].
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Show that a bounded function f is in R(a4) N R(a_) if and only if f is continuous at 2

(3) (2 pts.) Let a the function on [0, 1] defined by
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Problem 2: Sequences of functions
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Show that f € R(«) on [0, 1] and compute

(1) (1 pt.) Suppose that f, : R — R is a sequence of continuous functions that converges uniformly over
the rational numbers, show that it converges uniformly over the real numbers.

(2) (1 pt. ) Verify that the sequence of function f,(z) = (1 %) converges uniformly for every closed and
bounded interval in R (with the Euclidean distance dE) (x,y) =]z -yl

(3) (1 pt.) Study the convergence (both pointwise and uniform) of the following sequence of function

fulw) = 21— 2)"
for z € [0, 1]

This assignment is due 23:59 July 28th, 2024 and the date of submission is July 18, 2024.




ASSIGNMENT 3 —

Problem 3: Series of functions

(1) (1 pt.) Study the convergence (both pointwise and uniform) of the following series of function
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for z € [0, 1]

(2) (1 pt.) Let :Lri% anx™ a power series with positive radius of convergence R. Show that for every

0 < r < R the series converges uniformly in the interval [—r, r].
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