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Abstract

In this work we construct an optimal shrinkage estimator for the precision matrix
in high dimensions. We consider the general asymptotics when the number of variables
p → ∞ and the sample size n → ∞ so that p/n → c ∈ (0,+∞). The precision matrix
is estimated directly, without inverting the corresponding estimator for the covariance
matrix. The recent results from the random matrix theory allow us to find the asymp-
totic deterministic equivalents of the optimal shrinkage intensities and estimate them
consistently. The resulting distribution-free estimator has almost surely the minimum
Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the
pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities
and estimate them consistently. At the end, a simulation is provided where the suggested
estimator is compared with the estimators for the precision matrix proposed in the lit-
erature. The optimal shrinkage estimator shows significant improvement and robustness
even for non-normally distributed data.
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1 Introduction

The estimation of the covariance matrix, as well as its inverse (the precision matrix), plays
an important role in many disciplines from finance and genetics to wireless communications
and engineering. In fact, having a suitable estimator for the precision matrix we are able to
construct a good estimator for different types of optimal portfolios (see, Markowitz (1952), Elton
et al. (2009)). Similarly, in the array processing, the beamformer or the so-called minimum
variance distortionless response spatial filter is defined in terms of the precision matrix (see,
e.g., Van Trees (2002)). In practice, however, the true precision matrix is unknown and a
feasible estimator, constructed from data, must be used.

If the number of variables p is much smaller than the sample size n we can use the sample
estimator which is biased but a consistent estimator for the precision matrix (see, e.g., Bai
and Shi (2011)). This case is known in the multivariate statistics as the ”standard asymp-
totics” (see, Le Cam and Yang (2000)). There are many findings on the estimation of the
precision matrix when a particular distribution assumption is imposed. For example, the esti-
mation of the precision matrix under the multivariate normal distribution was considered by
Krishnamoorthy and Gupta (1989), Gupta and Ofori-Nyarko (1994, 1995a, 1995b), Kubokawa
(2005) and Tsukuma and Konno (2006). The results in the case of multivariate Pearson type
II distribution as well as the multivariate elliptically contoured stable distribution are obtained
by Sarr and Gupta (2009) as well as by Bodnar and Gupta (2011) and Gupta et al. (2013),
respectively.

Unfortunately, in practice p is often comparable in size to n or even is greater than n, i.e., we
are in the situation when both the sample size n and the dimension p tend to infinity but their
ratio keeps (tends to) a positive constant. This case often arises in finance when the number of
assets is comparable or even greater than the number of observations for each asset. Similarly,
in genetics, the data set can be huge comparable to the number of patients. Both examples
illustrate the importance of the results obtained for p, n→∞.

We deal with this type of asymptotics, called the ”large dimensional asymptotics” and also
known as the ”Kolmogorov asymptotics”, in the present paper. More precisely, it is assumed
that the dimension p ≡ p(n) is a function of the sample size n and p/n → c ∈ (0,+∞) as
n→∞. This general type of asymptotics was intensively studied by several authors (see, Girko
(1990, 1995), Bühlmann and van Geer (2011) etc.). In this asymptotics the usual estimators for
the precision matrix perform poorly and are not consistent anymore. There are some techniques
which can be used to handle the problem. Assuming that the covariance (precision) matrix
has a sparse structure, significant improvements have already been achieved (see, Cai et al.
(2011), Cai and Shen (2011), Cai and Zhou (2012)). For the low-rank covariance matrices see
the work of Rohde and Tsybakov (2011). An interesting nonparanormal graphic model was
recently proposed by Xue and Zou (2012). Also, in order to estimate the large dimensional
covariance matrix the method of block thresholding can be applied (see, Cai and Yuan (2012)).
If the covariance matrix has a factor structure then the progress has been made by Fan et al.
(2008).

However, if neither the assumption about the structure of covariance (precision) matrix nor
about a particular distribution is imposed, not many results are known in the literature which
are based on the shrinkage estimators in high-dimensional setting (cf., Ledoit and Wolf (2004),
Kubokawa and Srivastava (2008), Bodnar et al. (2014) and Wang et al. (2014)). The shrinkage
estimator was first developed by Stein (1956) and forms a linear combination of the sample
estimator and some target. The corresponding shrinkage coefficients are often called shrinkage
intensities. Ledoit and Wolf (2004) proposed to shrink the sample covariance matrix to the
identity matrix and showed that the resulting estimator is well-behaved in large dimensions.
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This estimator is called the linear shrinkage estimator because it shrinks the eigenvalues of the
sample covariance matrix linearly. Recently, Bodnar et al. (2014) proposed a generalization
of the linear shrinkage estimator, where the shrinkage target was chosen to be an arbitrary
nonrandom matrix and they showed the almost sure convergence of the derived estimator to
its oracle.

The aim of our paper is to construct a feasible estimator for the precision matrix using the
linear shrinkage technique and the random matrix theory. In contrast to well-known procedures,
we shrink the inverse of the sample covariance matrix itself instead of shrinking the sample
covariance matrix and then inverting it. The direct shrinkage estimation of the precision matrix
can be used in several important practical situations where the application of the inverse of
the shrinkage estimator of the covariance matrix does not perform well. For instance, this
could happen when the data generating process follows a factor model which is very popular in
economics and finance (cf., Bai (2003), Fan et al. (2008), Fan et al. (2012), Fan et al. (2013)).
In this case the largest eigenvalue of the covariance matrix is of order p and, consequently,
the inverse of the linear shrinkage estimator for the covariance matrix does not work well. In
the case when c > 1 the pseudo inverse of the sample covariance matrix is taken. The recent
results from the random matrix theory allow us to find the asymptotics of the optimal shrinkage
intensities and estimate them consistently.

The random matrix theory is a very fast growing branch of the probability theory with
many applications in statistics. It studies the asymptotic behavior of the eigenvalues of the
different random matrices under general asymptotics (see, e.g., Anderson et al. (2010), Bai
and Silverstein (2010)). The asymptotic behavior of the functionals of the sample covariance
matrices was studied by Mac̆enko and Pastur (1967), Yin (1986), Girko and Gupta (1994,
1996a, 1996b), Silverstein (1995), Bai et al. (2007), Bai and Silverstein (2010), Rubio and
Mestre (2011) etc.

We extend these results in the present paper by establishing the almost sure convergence
of the optimal shrinkage intensities and the Frobenius norm of the inverse sample covariance
matrix. Moreover, we construct a general linear shrinkage estimator for the precision matrix
which has almost surely the smallest Frobenius loss when both the dimension p and the sample
size n increase together and p/n→ c ∈ (0,+∞) as n→∞.

The suggested approach can potentially be applied in functional data analysis (cf., Ramsay
and Silverman (2005), Ferraty and Vieu (2006)). For instance, Ferraty et al. (2010) pointed out
that functional data can be seen as a special case of a high-dimensional vector. The estimation
of the covariance (precision) matrix of this high-dimensional vector can be used in determining
the prediction for the dependent variable as well as the corresponding predictive design points.

The rest of the paper is organized as follows. In Section 2 we present some preliminary
results from the random matrix theory and formulate the assumptions used throughout the
paper. In Section 3 we construct the oracle linear shrinkage estimator for the precision matrix
and verify the main asymptotic results about the shrinkage intensities and the Frobenius norm
of the inverse and pseudo-inverse sample covariance matrices. Section 4 is dedicated to the bona
fide linear shrinkage estimator for the precision matrix while Section 5 contains the results of
the simulation study. Here, the performance of the derived estimator is compared with other
known estimators for the large dimensional precision matrices. Section 6 includes the summary,
while the proofs of the theorems are presented in the appendix (Section 7).
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2 Assumptions and notations

The ”large dimensional asymptotics” or ”Kolmogorov asymptotics” include
p

n
→ c ∈ (0,+∞)

as both the number of variables p ≡ p(n) and the sample size n tend to infinity. In this case
the traditional sample estimator performs poorly or very poorly. The inverse of the sample

covariance matrix S−1n is biased, inconsistent for
p

n
→ c > 0 as n→∞ and it does not exist for

c > 1. For example, under the normality assumption S−1n has an inverse Wishart distribution
if c < 1 and (cf. Gupta and Nagar (2000))

E(S−1n ) =
n

n− p− 2
Σ−1n

In particular, for p = n/2 + 2 we have that c = 1/2 and E(S−1n ) = 2Σ−1n . In general, as c
increases the sample estimator of the precision matrix becomes worse.

We use the following notations in the paper:

• Σn stands for the covariance matrix, Sn denotes the corresponding sample covariance
matrix.2 The population covariance matrix Σn is a nonrandom p-dimensional positive
definite matrix.

• ||A||2F = tr(AA′) denotes the Frobenius norm of a square matrixA, ||A||tr = tr
[
(AA′)

1/2
]

stands for its trace norm, while ||A||2 is the spectral norm.

• The pairs (τi,νi) for i = 1, . . . , p denote the collection of eigenvalues and the corresponding
orthonormal eigenvectors of the covariance matrix Σn.

• Hn(t) is the empirical distribution function (e.d.f.) of the eigenvalues of Σn, i.e.,

Hn(t) =
1

p

p∑
i=1

1{τi≤t} (2.1)

where 1{·} is the indicator function.

• Let Xn be a p×n matrix which consists of independent and identically distributed (i.i.d.)
real random variables with zero mean and unit variance. The observation matrix is defined
as

Yn = Σ
1
2
nXn. (2.2)

Only the matrix Yn is observable. We know neither Xn nor Σn itself.

• The pairs (λi,ui) for i = 1, . . . , p are the eigenvalues and the corresponding orthonormal
eigenvectors of the sample covariance matrix3

Sn =
1

n
YnY

′
n =

1

n
Σ

1
2
nXnX

′
nΣ

1
2
n . (2.3)

• Similarly, the (e.d.f.) of the eigenvalues of the sample covariance matrix Sn is defined as

Fn(λ) =
1

p

p∑
i=1

1{λi≤λ} ∀ λ ∈ R . (2.4)

2Since the dimension p ≡ p(n) is a function of the sample size n, the covariance matrix Σn also depends on
n via p(n). That is why we make use of the subscript n for all of the considered objects in order to emphasize
this fact and to simplify the notation in the paper.

3The sample mean vector x̄ was omitted because the 1-rank matrix x̄x̄′ does not influence the asymptotic
behavior of the spectrum of sample covariance matrix (see, Bai and Silverstein (2010), Theorem A.44).
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• In order to handle the case when c > 1 we introduce the dual sample covariance matrix
defined as

S̄n =
1

n
Y′nYn =

1

n
X′nΣnXn (2.5)

with the corresponding (e.d.f.) defined by

F̄n(λ) =
1

n

n∑
i=1

1{λi≤λ} ∀ λ ∈ R . (2.6)

Note that the matrix S̄n has the same nonzero eigenvalues as Sn, they differ only in |p−n|
zero eigenvalues.

The main assumptions, which we mention throughout the paper, are as follows

(A1) We assume that Hn(t) converges to a limit H(t) at all points of continuity of H.

(A2) The elements of the matrix Xn have uniformly bounded 4 + ε, ε > 0 moments.

(A3) For all n large enough there exists the compact interval [h0, h1] in (0,+∞) which contains
the support of Hn.

All of these assumptions are quite general and are satisfied in many practical situations.
The assumption (A1) is essential to prove the Marc̆henko-Pastur equation (see, e.g., Silverstein
(1995)) which is used for studying the asymptotic behavior of the spectrum of general random
matrices (see, e.g., Bai and Silverstein (2010)). The fourth moment is needed for the proof
of Theorem 3.2 and Theorem 3.3. The assumption (A3) ensures that both the matrix Σn

and its inverse Σ−1n have uniformly bounded spectral norms at infinity. It means that Σn has
the uniformly bounded maximum eigenvalue and its minimum eigenvalue is greater than zero.
Rubio et al. (2012) pointed out that (A2) and (A3) are only some technical conditions which
can be further violated.

In order to investigate the (e.d.f) Fn(λ) the Stieltjes transform is used. For nondecreasing
function with bounded variation G the Stieltjes transform is defined as

∀z ∈ C+ mG(z) =

+∞∫
−∞

1

λ− z
dG(λ) . (2.7)

In our notation C+ = {z ∈ C : Im(z) > 0} is the half-plane of complex numbers with strictly
positive imaginary part and any complex number is defined as z = Re(z) + iIm(z). More
about the Stieltjes transform and its properties can be found in Silverstein (2009).

The Stieltjes transform of the sample (e.d.f.) Fn(λ) for all z ∈ C+ is given by

mFn(z) =
1

p

p∑
i=1

+∞∫
−∞

1

λ− z
δ(λ− λi)dλ =

1

p
tr{(Sn − zI)−1} (2.8)

where I is a suitable identity matrix and δ(·) is the Dirac delta function.

3 Optimal linear shrinkage estimator for the precision

matrix

3.1 Case c < 1

In this section we construct an optimal linear shrinkage estimator for the precision matrix under
high-dimensional asymptotics. The estimator is an oracle one, i.e., it depends on unknown
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quantities. The corresponding bona fide estimator is given in Section 4. We use a procedure
similar to Bodnar et al. (2014) where the optimal linear shrinkage estimator for the covariance
matrix was constructed. The general linear shrinkage estimator of the precision matrix Σ−1n for
c < 1 is given by

Π̂GSE = αnS
−1
n + βnΠ0 with sup

p

1

p
||Π0||2F ≤M . (3.1)

Note that we need the condition c < 1 to keep the sample covariance matrix Sn invertible. The
assumption4 that the target matrix Π0 has a uniformly bounded normalized trace norm, i.e.,

there exists M > 0 such that sup
p

1

p
||Π0||2F ≤ M , is rather general and it is actually needed to

keep the coefficient βn bounded for large dimensions p. This condition can be replaced with an
equivalent assumption on βn. Note that the target matrix can also be random but independent
of Yn. In practice, Π0 = I is used when no information about the precision matrix is available.
On the other hand, the information about the structure of the precision matrix can be included
into Π0, like, e.g., sparsity. In order to present the results in the most general case, throughout

this section we assume only that Π0 satisfies sup
p

1

p
||Π0||2F ≤M . The choice of the target matrix

Π0 is not treated in the paper in detail and it is left for future research.5

Our aim is now to find the optimal shrinkage intensities which minimize the Frobenius-norm
loss for a given nonrandom target matrix Π0 expressed as

L2
F = ||Π̂GSE −Σ−1n ||2F = ||Σ−1n ||2F + ||Π̂GSE||2F − 2tr

(
Π̂GSEΣ−1n

)
. (3.2)

As a result, using (3.1) the following optimization problem has to be solved

α2
n||S−1n ||2F + 2αnβntr(S−1n Π0) + β2

n||Π0||2F − 2αntr(S−1n Σ−1n )− 2βntr(Σ−1n Π0) −→ min

with respect to αn and βn .

Next, taking the derivatives of L2
F with respect to αn and βn and setting them equal to zero

we get
∂L2

F

∂αn
= αn||S−1n ||2F + βntr(S−1n Π0)− tr(S−1n Σ−1n ) = 0 , (3.3)

∂L2
F

∂βn
= αntr(S−1n Π0) + βn||Π0||2F − tr(Σ−1n Π0) = 0 . (3.4)

The Hessian of the L2
F has the form

H =

(
||S−1n ||2F tr(S−1n Π0)

tr(S−1n Π0) ||Π0||2F

)
(3.5)

which is always positive definite, since

det(H) = ||S−1n ||2F ||Π0||2F − (tr(S−1n Π0))
2 (3.6)

≥ ||S−1n ||2F ||Π0||2F − ||S−1n ||22(tr(Π0))
2
Jensen
≥ (||S−1n ||2F − ||S−1n ||22)||Π0||2F > 0 ,

where the last inequality in (3.6) is well-known (see, e.g., Horn and Johnson (1985)).

4The similar assumption is presented by Bodnar et al. (2014) but with sup
p
||Π0||2F ≤ M . Note that the

assumption sup
p

1/p||Π0||2F ≤M is more general.

5In practice, however, one has to be careful with the choice of the target matrix Π0. If it is close in some
sense to S−1n , negative shrinkage intensities might occur.
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Thus, the optimal α∗n and β∗n are given by

α∗n =
tr(S−1n Σ−1n )||Π0||2F − tr(Σ−1n Π0)tr(S

−1
n Π0)

||S−1n ||2F ||Π0||2F −
(
tr(S−1n Π0)

)2 , (3.7)

β∗n =
tr(Σ−1n Π0)||S−1n ||2F − tr(S−1n Σ−1n )tr(S−1n Π0)

||S−1n ||2F ||Π0||2F −
(
tr(S−1n Π0)

)2 . (3.8)

Now, we formulate our first main result in Theorem 3.1 which states that the normalized
Frobenius norm of the inverse sample covariance matrix 1/p||S−1n ||2F tends almost surely to a
nonrandom quantity.

Theorem 3.1. Assume that (A1) and (A3) hold and
p

n
→ c ∈ (0, 1) for n → ∞. Then the

normalized Frobenius norm of the inverse sample covariance matrix ψn =
1

p
||S−1n ||2F almost

surely tends to a nonrandom ψ which is given by

ψ =
1

(1− c)2

+∞∫
−∞

dH(τ)

τ 2
+

c

(1− c)3

 +∞∫
−∞

dH(τ)

τ

2

. (3.9)

The proof is given in the Appendix. Theorem 3.1 presents an important result which in-
dicates that the Frobenius norm of the inverse sample covariance matrix is asymptotically
nonrandom as well as it depends on H and concentration ratio c only. Moreover, Theorem 3.1
gives us an intuitive hint how to find the asymptotic equivalent representation of ||S−1n ||2F . The
corresponding result is presented in Theorem 3.2.

Theorem 3.2. Let the assumptions (A1)-(A3) hold and
p

n
→ c ∈ (0, 1). Then as n→∞,

1

p

∣∣∣∣∣∣||S−1n ||2F −
(

1

(1− c)2
||Σ−1n ||2F +

c

p(1− c)3
||Σ−1n ||2tr

)∣∣∣∣∣∣ −→a.s. 0 . (3.10)

Additionally, for the quantity tr(S−1n Θ) with a symmetric positive definite matrix Θ which
has uniformly bounded trace norm as n→∞,∣∣∣∣∣∣tr(S−1n Θ)− 1

1− c
tr(Σ−1n Θ)

∣∣∣∣∣∣ −→a.s. 0 for
p

n
→ c ∈ (0, 1) . (3.11)

The theorem is proved in the Appendix. Theorem 3.2 provides us the asymptotic behavior
of the Frobenius norm of the inverse sample covariance matrix and of the functional tr(S−1n Θ).
It shows that the consistent estimator for the Frobenius norm of the precision matrix under
the general asymptotics is not equal to its sample counterpart. Using Theorem 3.2 we can
easily determine the asymptotic bias of the sample estimator which consists of the two types of
biases. The multiplicative bias is violated by multiplying ||S−1n ||2F by (1 − c)2. After that, the

additive bias is dealt by subtracting
c

p(1− c)
||Σ−1n ||2tr. The sample estimator of the functional

tr(S−1n Θ) is also not a consistent estimator for tr(Σ−1n Θ). The consistent estimator is obtained
by multiplying tr(S−1n Θ) by the constant (1− c).

Results similar to those given in Theorem 3.1 and Theorem 3.2 are also available for the
estimation of the population covariance matrix (cf. Bodnar et al. (2014)). However, in the
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case of the covariance matrix, the sample estimator for the Frobenius norm possesses only the

additive bias
c

p
tr(||Σ−1n ||tr), while tr(SnΘ) is a consistent estimator for tr(ΣnΘ).

Next, we show that the optimal shrinkage intensities α∗n and β∗n are almost surely asymptotic

equivalent to nonrandom quantities α∗ and β∗ under the large-dimensional asymptotics
p

n
→

c ∈ (0, 1).

Corollary 3.1. Assume that (A1)-(A3) hold and
p

n
→ c ∈ (0, 1) for n → ∞. Then for the

optimal shrinkage intensities α∗n and β∗n

|α∗n − α∗| −→ 0 a. s. , (3.12)

where

α∗ = (1− c)
||Σ−1n ||2F ||Π0||2F −

(
tr(Σ−1n Π0)

)2(
||Σ−1n ||2F +

c

p(1− c)
||Σ−1n ||2tr

)
||Π0||2F −

(
tr(Σ−1n Π0)

)2 (3.13)

and
|β∗n − β∗| −→ 0 a. s. , (3.14)

with

β∗ =
tr(Σ−1n Π0)

||Π0||2F

(
1− α∗

1− c

)
(3.15)

Note that both the asymptotic optimal intensities α∗ and β∗ are always positive as well as
α∗ ∈ (0, 1 − c) due to inequality (3.6) and c ∈ (0, 1). Using these results we are immediately
able to estimate α∗, β∗ consistently which is shown in Section 4.

3.2 Case c > 1

In this subsection we deal with the problem of the estimation of the precision matrix when
the dimension p is greater than the sample size n, i.e., c > 1. This case is very difficult to
handle because of the loss of information as c becomes greater than one. Moreover, the sample
covariance matrix Sn is not invertible and thus the estimator S−1n must be replaced by a suitable
one. This is usually done by using the generalized inverse matrix S+

n instead of S−1n . In this
case the general shrinkage estimator has the form

Π̂GSE = α̃nS
+
n + β̃nΠ0 with sup

p

1

p
||Π0||2F ≤M . (3.16)

The optimal shrinkage intensities α̃∗n and β̃∗n are determined following the procedure of Section
3.1. They are given by

α̃∗n =
tr(S+

nΣ−1n )||Π0||2F − tr(Σ−1n Π0)tr(S
+
nΠ0)

||S+
n ||2F ||Π0||2F −

(
tr(S+

nΠ0)
)2 , (3.17)

β̃∗n =
tr(Σ−1n Π0)||S+

n ||2F − tr(S+
nΣ−1n )tr(S+

nΠ0)

||S+
n ||2F ||Π0||2F −

(
tr(S+

nΠ0)
)2 . (3.18)

In Theorem 3.3 we derive the asymptotic properties of two quantities used in (3.17) and
(3.18 ), namely tr(ΘS+

n ) and ||S+
n ||2F .
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Theorem 3.3. Let the assumptions (A1)-(A3) hold and
p

n
→ c ∈ (1,+∞). Then as n→∞,

∣∣∣∣∣∣1p ||S+
n ||2F − c−1x′(0)

∣∣∣∣∣∣ −→a.s. 0, where x′(0) =
1

1

x2(0)
− c

p
tr
[(

Σ−1n + x(0)I
)−2] (3.19)

and x(0) is the unique solution of the equation

1

x(0)
=
c

p
tr
[(

Σ−1n + x(0)I
)−1]

(3.20)

Additionally, for the quantity tr(ΘS+
n ) with a symmetric positive definite matrix Θ which

has uniformly bounded spectral norm, as n→∞,∣∣∣∣∣∣1p tr(ΘS+
n )− c−1y(Θ)

∣∣∣∣∣∣ −→a.s. 0 for
p

n
→ c ∈ (1,+∞) , (3.21)

where y(Θ) is the solution of

1

y(Θ)
=
c

p
tr
[(

Σ−1/2n ΘΣ−1/2n + y(Θ)I
)−1]

(3.22)

The proof of Theorem 3.3 is given in the Appendix. The results of Theorem 3.3 show that
using the generalized inverse technique it is not clear how to estimate the functionals of Σ−1n
consistently. The asymptotic values obtained in Theorem 3.3 are far away from the desired
ones. In order to correct these biases, we need to solve the non-linear equations (3.20) and
(3.22), respectively, which appears to be a difficult task. Finally, we notice, that the quantities
x(0) and x′(0), however, can be estimated consistently using Theorem 3.3.

In an important special case when the matrix Θ = ξη′ for some ξ and η with bounded
Euclidean norms we get the following result summarized in Proposition 3.1 which is proved in
the Appendix.

Proposition 3.1. Under the assumptions of Theorem 3.3 and Θ = ξη′ for some ξ and η with
bounded Euclidean norms it holds

1

p

∣∣∣∣∣∣η′S+
n ξ −

c−1

c− 1
η′Σ−1n ξ

∣∣∣∣∣∣ −→a.s. 0 for
p

n
→ c ∈ (1,+∞) , (3.23)

It is remarkable to note that the results of Proposition 3.1 are very similar to those presented
in Theorem 3.2 if Θ = ξξ′. Here, the constant 1− c need to be replaced by c(c− 1).

Next we use the asymptotic results of Theorem 3.3 for finding the asymptotic equivalents
to the optimal shrinkage intensities α̃∗n and β̃∗n given in (3.17) and (3.18), respectively.

Corollary 3.2. Assume that (A1)-(A3) hold and
p

n
→ c ∈ (1,+∞) for n→∞. Then for the

optimal shrinkage intensities α∗n and β∗n from (3.17) and (3.18) holds

|α∗n − α∗| −→ 0 a. s. , (3.24)

where

α∗ =
y(Σ−1n )||Π0||2F − y(Π0)tr(Σ−1n Π0)

x′(0)||Π0||2F − c−1y2(Π0)
(3.25)
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and
|β∗n − β∗| −→ 0 a. s. , (3.26)

with

β∗ =
tr(Σ−1n Π0)x

′(0)− y(Σ−1n )y(Π0)

cx′(0)||Π0||2F − y2(Π0)
(3.27)

Even if the target matrix Π0 is chosen as a one-rank matrix, i.e., Π0 = ξη′, we are not able
to provide consistent estimates for α∗ and β∗ without an additional assumption imposed on
Σn. One of possible assumptions for which α∗ and β∗ are consistently estimable is Σn = σI as

illustrated in Corollary 3.4 below. If Σn = σI, then for
1

p
||S+

n ||2F and
1

p
tr(S+

n ) we get

Corollary 3.3. Under the assumptions of Theorem 3.3 assume additionally that Σn = σI.
Then it holds as n→∞ ∣∣∣∣∣∣1p ||S+

n ||2F −
σ−2

(c− 1)3

∣∣∣∣∣∣ −→a.s. 0 , (3.28)

Additionally, for the quantity tr(S+
n ) as n→∞ the norm∣∣∣∣∣∣1p tr(S+

n )− c−1

(c− 1)
σ−1

∣∣∣∣∣∣ −→a.s. 0 for
p

n
→ c ∈ (1,+∞) . (3.29)

The proof of Corollary 3.3 is based on the fact that the equation (3.20) has the explicit

solution x(0) =
σ−1

c− 1
if Σn = σI. The rest calculations are only technical ones. It is interesting

to note that the result of Corollary 3.3 coincides with the corresponding one of Theorem 3.2
for c < 1 if Σn = σI.

Next we apply Corollary 3.3 with Σn = σI and Π0 = I to construct the asymptotic equiva-
lents to the optimal shrinkage intensities α̃∗n and β̃∗n given in (3.17) and (3.18), respectively.

Corollary 3.4. Assume that (A1)-(A3) hold, Σn = σI, Π0 = I and
p

n
→ c ∈ (1,+∞) for

n→∞. Then for the optimal shrinkage intensities α∗n and β∗n from (3.17) and (3.18) holds

α̃∗n −→ 0 a. s. and β̃∗n −→ σ−1 a. s. . (3.30)

Corollary 3.4 implies that the oracle optimal shrinkage estimator for the precision matrix in
the case c > 1 and Σn = σI is equal to

Π̂GSE = Σ−1n = σ−1I . (3.31)

The quantity σ−1 =
1

p
tr(Σ−1n ) can be easily estimated using the result of Corollary 3.3. Namely,

the consistent estimator of σ−1 is given by

σ̂−1 = p/n
p/n− 1

p
tr(S+

n ) . (3.32)

However, in the general case when Σn and Π0 are arbitrary, the results of Corollary 3.3 and
Corollary 3.4 do not hold anymore. For this reason, we consider the oracle estimator given by
(3.16) in the simulation study of Section 5.
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4 Estimation of unknown parameters

In this section we present consistent estimators for the asymptotic optimal shrinkage intensities
derived in Section 3. The results of Theorem 3.2 allow us to estimate consistently the functionals
of type tr(Σ−1n Θ) and the Frobenius norm of the precision matrix. The consistent estimator
for the functional θn(Θ) = tr(Σ−1n Θ) is given by

θ̂n(Θ) = (1− p/n)tr(S−1n Θ) (4.1)

which is a generalization of the so-called G3-estimator obtained by Girko (1995). In particular,
in the case when Θ = ξη′ for some vectors ξ and η with bounded Euclidean norm, Girko (1995)
showed that the corresponding estimator θ̂n(ξη′) tends to θn(ξη′) in probability. In contrast,
Theorem 3.2 ensures the consistency of θ̂n(Θ) for more general forms of Θ which should not
be of rank 1.

Again, using (4.1) and Theorem 3.2 we construct a consistent estimator for ρn = 1/p||Σ−1n ||2F
which is given by

ρ̂n =
(1− p/n)2

p
||S−1n ||2F −

1− p/n
pn

||S−1n ||2tr . (4.2)

Note that the result (4.2) is entirely new and it was not mentioned in the literature up to now.
Moreover, it is noted that for the derivation of (4.2) we do not need the existence of the 4th
moment (see, the assumption (A2) in Section 2).

Using both the estimators (4.1) and (4.2), we are able now to construct the optimal linear
shrinkage estimator (OLSE) for the precision matrix which is given by

Π̂OLSE = α̂∗nS
−1
n + β̂∗nΠ0 with sup

p
1/p||Π0||tr ≤M , (4.3)

where

α̂∗n = (1− p/n)
pρ̂n||Π0||2F − θ̂2n(Π0)(

pρ̂n +
p/n

p(1− p/n)
θ̂2n(I)

)
||Π0||2F − θ̂2n(Π0)

= (1− p/n)

1−

p/n

p(1− p/n)
θ̂2n(I)||Π0||2F(

pρ̂n +
p/n

p(1− p/n)
θ̂2n(I)

)
||Π0||2F − θ̂2n(Π0)



= 1− p/n−

1

n
||S−1n ||2tr||Π0||2F

||S−1n ||2F ||Π0||2F − (tr(S−1n Π0))
2 . (4.4)

and

β̂∗n =
θ̂n(Π0)

||Π0||2F

(
1− α̂∗n

1− p/n

)
=

tr(S−1n Π0)

||Π0||2F
(1− p/n− α̂∗n) . (4.5)

The bona fide OLSE estimator (4.3) is optimal in the sense that it minimizes the Frobenius
loss. It means that the estimators α̂∗n and β̂∗n tend almost surely to their oracle asymptotic
values (3.13) and (3.15) as n→∞, respectively. According to Corollary 3.1 the oracle optimal
intensities α∗n and β∗n given in (3.7) and (3.8) behave similarly. It is a remarkable property of
the OLSE estimator which indicates that the bona fide OLSE estimator tends almost surely to
its oracle one. Moreover, using the inequality (3.6) it can be easily verified that the estimated
optimal shrinkage intensities α̂∗n and β̂∗n are almost surely positive and α̂∗n has the support
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(0, 1 − p/n). Only in the case when p/n → c = 0 as n → ∞ the shrinkage intensities satisfy
α̂∗n → 1 and β̂∗n → 0. In this case the OLSE estimator coincides with the sample estimator
which is consistent for the standard asymptotics.

If we compare the estimates of the optimal shrinkage intensities given in (4.4) and (4.5)
with the corresponding ones calculated for the population covariance matrix given in Bodnar
et al. (2014) then we conclude that the corresponding estimators are different although the
structure remains somewhat similar. In the simulation study of Section 5 both estimators for
the precision matrix are compared with each other and it is shown that it is better to shrink
the inverse sample covariance matrix itself than to shrink the sample covariance matrix and
then to invert it.

4.1 Choice of Π0.

The next question is the choice of the nonrandom target matrix Π0 which should be positive
definite with uniformly bounded normalized trace norm. Unfortunately, the answer on this
question depends on the underlying data because the choice of the target matrix is equivalent
to the choice of the hyperparameter for the prior distribution of Σ−1n . This problem is well-
known in Bayesian statistics. The application of different priors leads to different results. So
it is very important to choose the one which works fine in most cases. The naive one is Π0 = I
where I is the identity matrix. Obviously, the oracle OLSE estimator has the prior matrix as
the true precision matrix Σ−1n and is a consistent estimator for the precision matrix as shown in
Proposition 4.1. Obviously, including some new information about the true covariance matrix
Σn into the prior can lead to a significant increase of performance (see, Bodnar et al. (2014)).
In our simulation study, however, we take Π0 = I as a reasonable prior in the case when no
additional information is available.

Consider the OLSE estimator as a matrix function Π̂OLSE(Π0) : Mp → M̃p, where Mp is the
space of p-dimensional positive definite symmetric matrices and M̃p is the corresponding space
of the p-dimensional positive definite symmetric random matrices. In the following proposition
we present some properties of the OLSE estimator as a function of the prior matrix Π0.

Proposition 4.1. For the OLSE estimator Π̂OLSE(Π0) it holds that

i). the function Π̂OLSE(Π0) is scale invariant, i.e., for arbitrary σ > 0 Π̂OLSE(σΠ0) =
Π̂OLSE(Π0).

ii). Π̂OLSE(1/pI) is a consistent estimator for the precision matrix Σ−1n = σI for arbitrary
σ > 0 and c ∈ (0,+∞).

iii). Π̂OLSE(Σ−1n ) is a consistent estimator for the precision matrix Σ−1n .

5 Simulation Study

In this section we provide a Monte Carlo simulation study to investigate the performance of
the suggested OLSE estimator for the precision matrix.

Before we proceed, four benchmark estimators for the precision matrix used in the simula-
tions are introduced. The first one has been suggested by Bodnar et al. (2014) and it is called
the OLSE estimator for the population covariance matrix.

Recall, that the optimal linear shrinkage estimator (OLSE) for the covariance matrix Σn for
c ∈ (0,+∞) is given by

Σ̂OLSE = α̃∗Sn + β̃∗Σ0 with ||Σ0||tr ≤M , (5.1)
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where Σ0 is the positive definite symmetric target matrix,

α̃∗ = 1−

1

n
||Sn||2tr||Σ0||2F

||Sn||2F ||Σ0||2F −
(
tr(SnΣ0)

)2 and β̃∗ =
tr(SnΣ0)

||Σ0||2F
(1− α̃∗) . (5.2)

Bodnar et al. (2014) proved that their Σ̂OLSE estimator possesses asymptotically almost surely
the smallest Frobenius loss over all linear shrinkage estimators. Moreover, they showed by
simulations that if the target matrix is Σ0 = 1/pI then the estimator Σ̂OLSE is asymptotically
equivalent to the linear shrinkage estimator proposed by Ledoit and Wolf (2004) for normally
distributed data. Of course, in order to compare this estimator with the suggested OLSE
estimator for the precision matrix Π̂OLSE from (4.3) we have to invert Σ̂OLSE.

The second considered estimator for the precision matrix is the scaled standard estima-
tor (SSE), which is presented by several authors Stein (1975), Mestre and Lagunas (2006),
Srivastava (2007) and Kubokawa and Srivastava (2008). It is given by

Π̂SSE =
n− p− 2

n− 1
S−1n δ(p<n) +

p

n− 1
S+
n δ(p≥n) (5.3)

where S+
n is the Moore-Penrose inverse of Sn and δ(·) is a Dirac delta function. Next we consider

the estimator proposed by Efron and Morris (1976)

Π̂EM =
n− p− 2

n− 1
S−1n +

p2 + p− 2

(n− 1)tr(Sn)
I . (5.4)

The last one is the empirical Bayes estimator proposed by Kubokawa and Srivastava (2008)

Π̂KS = p ((n− 1)Sn + tr(Sn)I)−1 . (5.5)

Next, we compare the performance of the considered estimators. As a performance measure
we take the PRIAL (Percentage Relative Improvement in Average Loss). For an arbitrary
estimator of the precision matrix, M̂, the PRIAL is defined by

PRIAL(M̂) =

(
1− E||M̂−Σ−1n ||2F

E||S−1n −Σ−1n ||2F

)
· 100% . (5.6)

Thus, by definition (5.6), PRIAL(S−1n ) is equal to zero and PRIAL(Σ−1n ) is equal to 100%.
In our simulations we take Σn as a non-diagonal matrix. We separate its spectrum in three

parts with 20% of the eigenvalues equal to 1, 40% equal to 3 and 40% equal to 10. In terms of
the corresponding cumulative distribution function of the eigenvalues of Σn (cf. Section 2) it
holds that

HΣn
n (t) = 1/5δ[1, ∞)(t) + 2/5δ[3, ∞)(t) + 2/5δ[10, ∞)(t) , (5.7)

where δ is the Dirac delta function. The matrix of eigenvectors of the population covariance
matrix Σn we simulate from the Haar distribution6. Doing so we leave the spectral structure
of population covariance matrix unchanged for all dimensions p whereas the eigenvectors may
vary.

6If V has a Haar measure over the orthogonal matrices, then for any unit vector x ∈ Rp, Vx has a uniform
distribution over the unit sphere Sp = {x ∈ Rp; ||x|| = 1}.
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Figure 1: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior (target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008)) for
p = 5k, k ∈ {1, . . . , 20}, c = 1/3. The results are based on 1000 independent realizations.

In Figure 1 we present the results of the first simulation study in case of the normally
distributed data and c = 1/3. The suggested oracle estimator is shown as a solid blue line,
while the corresponding bona fide estimator is a dashed blue line. For the bona fide estimator
we observe a fast convergence rate to its, i.e., it converges in PRIAL already for the dimension
p ≥ 50. It is remarkable that the bona fide OLSE estimator for the precision matrix Π̂OLSE

with the naive prior Π0 = I dominates the corresponding inverted OLSE estimator Σ̂
−1
OLSE.

The standard scaled estimator (SSE) and the one proposed by Efron and Morris (1976) lie

close and they are a little better than the inverted OLSE estimator Σ̂
−1
OLSE. The KS estimator

(Kubokawa and Srivastava (2008)) seems to be the worst one in this case.
In Figure 2 we present the results of simulations under the normal distribution for c = 1/2,

whereas Figure 3 shows the results in case c = 0.8. For c = 1/2 we observe a better overall
performance for all of the considered estimators for the precision matrix. The OLSE estimator
(4.3) is again the best one for c = 1/2. The inverted OLSE estimator is becoming better than
the other competitors. The worst one in this case is the KS estimator.

Figure 3 for c = 0.8 shows that all estimators provide the superior performance. The inverse
of the OLSE estimator from Bodnar et al. (2014) is surprisingly the best one for c = 0.8 and
converges to the oracle OLSE estimator. It must be noted that the bona fide OLSE estimator
converges to its oracle slower than the inverted OLSE estimator. The KS estimator is slightly
behind the inverted OLSE estimator, whereas the SSE and the EM estimators have roughly
the same behavior and they are clearly worse than the others. Nevertheless, from the results
of the last simulation show that all of the considered estimators are close to the true precision
matrix.
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Figure 2: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior (target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008)) for
p = 5k, k ∈ {1, . . . , 20}, c = 1/2. The results are based on 1000 independent realizations.
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Figure 3: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior (target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008)) for
p = 5k, k ∈ {1, . . . , 20}, c = 0.8. The results are based on 1000 independent realizations.
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Figure 4 is dedicated to the case when the underlying distribution departs from the normal
one. Here, we consider the t-distribution with 10 degrees of freedom. The estimators and their
priors are the same as used in Figure 1. For c = 1/3 we observe that the overall performance
of all considered estimators is even better as in the case of the normal distribution in Figure
1. As usual, the OLSE estimator with the prior I is ranked first. It is remarkable that the
suggested bona fide OLSE estimator converges much slower to its oracle. In contrast to Figure
1 where the convergence was very fast (p ≥ 50), Figure 4 ensures the convergence for at least
p ≥ 100. It seems that the convergence rate is influenced by heavy tails, i.e., the heavier the
tails are the slower is the convergence of the bona fide OLSE estimator to its oracle. The second
place belongs to the inverted bona fide Σ̂OLSE with the prior 1/pI. On the third and on the
forth places we rank the SSE and the EM estimators. The worst one, as in Figure 1, is the
KS estimator. As a result, even in the non-normal case the proposed OLSE estimator for the
precision matrix shows remarkable stability and robustness. The simulation results for c = 1/2
and c = 0.8 (see, Figures 5 and 6) are very similar to those obtained for the normal distribution
in Figures 2 and 3. Only the convergence of the bona fide estimator to its oracle is slower.
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Figure 4: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior(target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008))
for p = 5k, k ∈ {1, . . . , 20}, c = 1/3. The data are generated from the t-distribution with 10
degrees of freedom. The results are based on 1000 independent realizations.
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Figure 5: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior(target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008))
for p = 5k, k ∈ {1, . . . , 20}, c = 1/2. The data are generated from the t-distribution with 10
degrees of freedom. The results are based on 1000 independent realizations.

20 40 60 80 100

97
.0

97
.5

98
.0

98
.5

99
.0

99
.5

10
0.

0

c=0.8

Matrix dimension p

P
R

IA
L,

 %

Oracle OLSE
Bona Fide OLSE
Bodnar et al. (2014)
Scaled Standard Estimator
Efron and Morris (1976)
Kubokawa and Srivastava (2008)

Figure 6: PRIALs for the oracle and bona fide estimator Π̂OLSE with the prior(target) matrix
Π0 = I, the inverse of the bona fide estimator Σ̂OLSE with the prior 1/pI, the scaled standard
estimator (SSE), EM (Efron and Morris (1976)) and KS (Kubokawa and Srivastava (2008))
for p = 5k, k ∈ {1, . . . , 20}, c = 0.8. The data are generated from the t-distribution with 10
degrees of freedom. The results are based on 1000 independent realizations.
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At last, Figure 7 contains the example when c = 2.5 for the normally distributed data. Here
we use the oracle OLSE estimator proposed in Section 3.2 and compare it with the bona fide
inverse OLSE, the SSE and the KS estimators. The PRIAL is defined in the similar way as
(5.6), only the matrix S−1 is changed to the generalized inverse S+

n . Similarly, in case of S+
n

the PRIAL is equal to zero. The best estimator is the oracle OLSE with the simple prior I.
The inverted OLSE is not far behind. The KS estimator is placed on the third place, while
the SSE estimator seems to be worse than the Moore-Penrose inverse of S+

n and, therefore, it
is not visible on the picture. The result of the suggested oracle OLSE estimator is remarkable
because it shows that if we could consistently estimate the shrinkage intensities given by (3.17)
and (3.18), then the resulting bona fide OLSE estimator would probably converge to the oracle
one and dominates the other estimators. This task is not an easy one and it is left for future
research. Nevertheless, from Figure 7 we conclude that the inverted OLSE estimator proposed
is still a very good feasible alternative for c > 1.
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Figure 7: PRIALs for the oracle estimator Π̂OLSE with the prior Π0 = I, the inverse of the bona
fide Σ̂OLSE with the prior 1/pI, the scaled standard estimator (SSE), EM (Efron and Morris
(1976)) and KS (Kubokawa and Srivastava (2008)) for p = 5k, k ∈ {1, . . . , 20}, c = 2.5. The
data are generated from the normal distribution. The results are based on 1000 independent
realizations.

As a result, the simulation results as well as the theoretical findings show that the OLSE
estimator Π̂OLSE is a great alternative not only to the sample estimator, to the inverted linear
shrinkage estimator proposed by Ledoit and Wolf (2004) and its generalization of Bodnar et. al
(2014), but also to the other estimators suggested in literature. The case of c > 1 is even more
important for the practical purposes but it seems to be more difficult to handle analytically.
This can be done in an efficient way if the population covariance matrix is a multiple of identity.
In general case a good alternative would be the inverse OLSE estimator given in (5.1), but it
is not optimal for the precision matrix. This point will be treated in future research.
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6 Summary

In this paper, we deal with the problem of the estimation of the precision matrix for large
dimensional data is considered. Our particular interest is the case when both the dimension of
the precision matrix p→∞ and the sample size n→∞ such that p/n→ c ∈ (0,+∞). Using
the results from the random matrix theory and the linear shrinkage technique we develop an
estimator for the precision matrix which is distribution-free, robust and possesses almost surely
the smallest Frobenius loss asymptotically. In particular, we prove that the Frobenius norms of
the inverse and of the generalized inverse sample covariance matrices as well as of the optimal
shrinkage intensities tend to the nonrandom quantities under high dimensional asymptotics.
In order to get the optimal linear shrinkage estimator for the precision matrix we estimate
the unknown quantities consistently. The performance of the suggested OLSE estimator is
compared with other known estimators for the precision matrix via the simulation study.
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7 Appendix

Here the proofs of the theorems are given.

Proof of Theorem 3.1. The proof of the theorem is based on the Marchenko-Pastur theorem
proved by Silverstein (1995).

Theorem 7.1. [Silverstein (1995)] Assume that on the common probability space assump-
tion (A1) is satisfied for p

n
→ c ∈ (0,+∞) as n → ∞. Then almost surely Fn(t)

a.s.⇒ F (t) as
n→∞. Moreover, the Stieltjes transform of F satisfies the following equation

mF (z) =

+∞∫
−∞

1

τ(1− c− czmF (z))− z
dH(τ) , (7.1)

in the sense that mF (z) is the unique solution of (7.1) for all z ∈ C+.

Consider the asymptotics of the quantity

1

p
tr
(
S−2n

)
=

∂

∂z

1

p
tr
[
(Sn − zI)−1

]∣∣∣∣∣
z=0

=
∂

∂z
mFn(z)

∣∣∣∣∣
z=0

. (7.2)

Using Theorem 7.1 we note that mFn(z) tends almost surely to a nonrandom limit function
mF (z) which is the unique solution of the MP equation (7.1) First, we show that the limit

z → 0+ can be taken under the integral sign in (7.1). Let m(z) = −1− c
z

+ cmF (z) then using

the assumption (A3) we rewrite equality (7.1) in the following way

mF (z) =

+∞∫
−∞

−1

z(τm(z) + 1)
dH(τ) =

h1∫
h0

−1

z(τm(z) + 1)
dH(τ) =

h1∫
h0

s(z, τ)

τ
dH(τ) , (7.3)
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where the function s(z, τ) =
−τ

z(τm(z) + 1)
is the Stieltjes transform of a positive measure

on R+ with total mass τ (see, Paul and Silverstein (2009)). Using the properties of Stieltjes
transform s(z, τ) = s(z, τ) and lim

z→0+
s(z, τ) = lim

z→0+
s(z, τ) we get

γ2(c) ≡ lim
z→0+

|s(z, τ)|2 = lim
z→0+

s(z, τ)s(z, τ) =
(

lim
z→0+

s(z, τ)
)2

=
(

1

1− c

)2

. (7.4)

The last equality in (7.4) follows from boundedness of mF (0) = lim
z→0+

mF (z) for c < 1 (see,

Silverstein and Choi (1995)).
Let B be a compact ball around 0. Then, the application of the inequality (cf. Silverstein

(2009))

0 ≤ |s(z, τ)| ≤ 1

Im(z)
. (7.5)

leads to

0 ≤
∣∣∣∣∣s(z, τ)

τ

∣∣∣∣∣ ≤ γ(c)

h0
∀z ∈ B . (7.6)

Hence, using the inequality (7.6) together with (7.3) and the dominated convergence theorem
we conclude that the limit z → 0+ can be moved under the integral sign in (7.1). This fact
together with mF (0) <∞ implies that

mF (0) = lim
z→0+

mF (z) =
1

1− c

+∞∫
−∞

dH(τ)

τ
, (7.7)

where the integral exists due to assumption (A3).
The function mF (z) is analytic in C+ thus we take the derivative with respect to z from

both sides of equation (7.1) and get

m′F (z) =

+∞∫
−∞

τc(mF (z) + zm′F (z)) + 1

(τ(1− c− czmF (z))− z)2
dH(τ) . (7.8)

Rearranging terms in (7.8) we get

m′F (z)

1−
+∞∫
−∞

czτ

(τ(1− c− czmF (z))− z)2
dH(τ)

 (7.9)

=

+∞∫
−∞

τcmF (z) + 1

(τ(1− c− czmF (z))− z)2
dH(τ) .

The right side of (7.9) exists as z → 0+ due to (7.6), mF (0) < ∞, and the dominated conver-
gence theorem, thus the left hand side must also exist as z → 0+ and it implies that

m′F (0) =
1

(1− c)2

cmF (0)

+∞∫
−∞

dH(τ)

τ
+

+∞∫
−∞

dH(τ)

τ 2

 . (7.10)

The application of (7.7) completes the proof of Theorem 3.1.

Proof of Theorem 3.2. In order to prove Theorem 3.2 we need the following lemma.
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Lemma 7.1. [Lemma B.26, Bai and Silverstein (2010)] Let A be a p× p nonrandom
matrix and let X = (x1, . . . , xp)

′ be a random vector with independent entries. Assume that
E(xi) = 0, E|xi|2 = 1, and E|xi|l ≤ νl. Then, for any k ≥ 1,

E|X′AX− tr(A)|k ≤ Ck
(
(ν4tr(AA′))

k
2 + ν2ktr(AA′)

k
2

)
, (7.11)

where Ck is some constant which depends only on k.

Rubio and Mestre (2011) studied the asymptotics of the functionals tr(Θ(Sn − zI)−1) for
a deterministic matrix Θ with bounded trace norm at infinity. It is noted that the results of
Theorem 1 by Rubio and Mestre (2011) also hold under the assumption of the existence of 4th
moments which is weaker than the one given in the original paper. This statement is obtained
by using Lemma B.26 of Bai and Silverstein (2010) on quadratic forms which we recall for
presentation purposes as Lemma 7.1 above.

In order to obtain the statement of Theorem 1 by Rubio and Mestre (2011) under the
weaker assumption imposed on the moments, we replace Lemma 2 of Rubio and Mestre (2011)
by Lemma 7.1 in the case of k ≥ 1. This implies that Lemma 3 of Rubio and Mestre (2011)
holds also for k ≥ 1. Lemma 4 of Rubio and Mestre (2011) has already been proved under the
assumption that there exist 4 + ε moments. The last step is the application of Lemma 1, 2 and
3 of Rubio and Mestre (2011) with k ≥ 1. Finally, it can be easily checked that further steps of
the proof of Theorem 1 by Rubio and Mestre (2011) hold under the existence of 4+ε moments.
A partial case of the result proved by Rubio and Mestre (2011) is summarized in Theorem 7.2.

Theorem 7.2. [Rubio and Mestre (2011)] Assume that (A2) and (A3) hold and addi-
tionally some nonrandom matrix Θ has uniformly bounded trace norm at infinity then for
p/n→ c > 0 as n→∞∣∣∣tr (Θ(Sn − zI)−1

)
− tr

(
Θ(x(z)Σn − zI)−1

)∣∣∣ −→ 0 a. s. (7.12)

where x(z) is a unique solution in C+ of the following equation

1− x(z)

x(z)
=
c

p
tr
(
x(z)I− zΣ−1n

)−1
. (7.13)

Next we prove Theorem 3.2 directly. We investigate the asymptotic behavior of the following
quantities

γ1 = tr(S−1n Θ), (7.14)

γ2 =
1

p
||S−1n ||2F =

1

p
tr(S−2n ) . (7.15)

First, we consider the quantity γ1 given in (7.14) and rewrite it as γ1(z) = tr((Sn − zI)−1Θ)
for all z ∈ C+. Using Theorem 7.2 we get that for p

n
→ c ∈ (0, 1) as n→∞ holds∣∣∣γ1(z)− tr(Θ(x(z)Σn − zI)−1)
∣∣∣ −→ 0 a. s. (7.16)

and x(z) is the unique solution in C+ of the equation

1− x(z)

x(z)
=
c

p
tr(x(z)I− zΣ−1n )−1 . (7.17)

First, we show that
x(0) = lim

z→0+
x(z) = 1− c . (7.18)
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If we assume that x(0) =∞ then we get immediately the contradiction due to equation (7.17).
Similarly, from (7.17) we conclude that x(0) 6= 0. This implies that 0 < x(0) < ∞ and thus
taking the limit z → 0+ from both sides of (7.17) we get (7.18).

Note that lim
z→0+

γ1(z) = γ1 which together with (7.18) and (7.19) implies

∣∣∣∣γ1 − 1

1− c
tr(Σ−1n Θ)

∣∣∣∣ −→ 0 a. s. (7.19)

for
p

n
→ c ∈ (0, 1) as n→∞.

Next, we prove the following statement∣∣∣∣∣∣γ2 − 1

p

1

(1− c)2

(
||Σ−1n ||2F +

c

p(1− c)
(||Σ−1n ||2tr

)∣∣∣∣∣∣ −→ 0 a. s. (7.20)

for p
n
→ c ∈ (0, 1) as n→∞.

Using the triangle inequality we rewrite the difference in (7.20) in the following way∣∣∣∣∣∣γ2 − 1

p

1

(1− c)2

(
||Σ−1n ||2F +

c

p(1− c)
||Σ−1n ||2tr

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣γ2 − ψ

∣∣∣∣∣∣ (7.21)

+

∣∣∣∣∣∣ψ − 1

p

1

(1− c)2

(
||Σ−1n ||2F +

c

p(1− c)
||Σ−1n ||2tr

)∣∣∣∣∣∣ ,

where ψ =
1

(1− c)2
+∞∫
−∞

1

τ 2
dH(τ) +

c

(1− c)3

(
+∞∫
−∞

1

τ
dH(τ)

)2

is given in Theorem 3.1. Next we

show that the right side of (7.21) vanishes almost surely as n→∞. Using Theorem 3.1 we get∣∣∣∣∣∣γ2 − ψ
∣∣∣∣∣∣ −→ 0 a. s. for n→∞ . (7.22)

Next, we show that the second nonrandom term in (7.21) approaches to zero as n→∞. Using
assumption (A1) it holds that Hn(t) tends to H(t) at all continuity points of H(t). Thus,

1

p
||Σ−1n ||2F =

1

p
tr(Σ−2n ) =

1

p

p∑
i=1

1

τ 2i
=

+∞∫
−∞

1

τ 2
dHn(τ)

n→∞−→
+∞∫
−∞

1

τ 2
dH(τ) , (7.23)

where the last integral in (7.23) exists due to assumption (A3). Similarly, it holds that

1

p2
||Σ−1n ||2tr

n→∞−→

 +∞∫
−∞

1

τ
dH(τ)

2

. (7.24)

Using (7.23) and (7.24) we get∣∣∣∣∣∣ψ − 1

p

1

(1− c)2

(
||Σ−1n ||2F +

c

p(1− c)
||Σ−1n ||2tr

)∣∣∣∣∣∣ −→ 0 for n→∞ (7.25)

As a result, (7.22) and (7.25) complete the proof of Theorem 3.2.
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Proof of Corollary 3.1. It holds that

α∗n =

1

p
tr(S−1n Σ−1n )

1

p
||Π0||2F −

1

p
tr(Σ−1n Π0)

1

p
tr(S−1n Π0)

1

p
||S−1n ||2F

1

p
||Π0||2F −

(1

p
tr(S−1n Π0)

)2 . (7.26)

Using ‖1

p
Π0‖tr ≤

√
p‖1

p
Π0‖F =

1
√
p
‖Π0‖F ≤

√
M and ‖1

p
Σ−1n ‖tr ≤ ∞ from Assumption (A3),

we get from Theorem 3.2

1

p
||S−1n ||2F −→a.s.

1

p

(
1

(1− c)2
||Σ−1n ||2F +

c

p(1− c)3
||Σ−1n ||2tr

)
,

1

p
tr(S−1n Σ−1n ) −→

a.s.

1

p

1

1− c
tr(Σ−2n ) =

1

p

1

1− c
‖Σ−1n ‖2F ,

1

p
tr(S−1n Π0) −→

a.s.

1

p

1

1− c
tr(Σ−1n Π0)

as p/n −→ c ∈ (0, 1) for n −→ ∞. Substituting these results into (7.26), we obtain the first
statement of the corollary. The second statement is proved in the same way.

Proof of Theorem 3.3. In the proof, we use a special case of the results derived by Rubio
and Mestre (2011) which are summarized in Theorem 7.3.

Theorem 7.3. [Rubio and Mestre (2011)] Assume that (A2) and (A3) hold and addi-
tionally some nonrandom n × n matrix Θ has uniformly bounded trace norm at infinity. Let
S̄n = X′nΣnXn. Then for p/n→ c > 0 as n→∞∣∣∣tr (Θ(S̄n − zI)−1

)
− tr (Θ)x(z)

∣∣∣ −→ 0 a. s. (7.27)

where x(z) is a unique solution in C+ of the following equation

1 + zx(z)

x(z)
=
c

p
tr
(
x(z)I + Σ−1n

)−1
. (7.28)

First we consider for c > 1 the asymptotics of the quantity

κ1 =
1

p
tr(S+

n ) =
c−1

n
tr(S̄−1n ) = lim

z→0+

c−1

n
tr
(
(S̄n − zI)−1

)
, (7.29)

where the n×n matrix S̄n is defines in Theorem 7.3. The second equality in (7.29) follows from
the fact that the matrices Sn and S̄n possess the same nonzero eigenvalues (see, e.g., Silverstein
(2009)). Note that the limit in (7.29) exists because c > 1. Using Theorem 7.3 for Θ = 1/nI
and setting z → 0+ we get almost surely for p/n→ c ∈ (1,+∞)∣∣∣∣∣κ1 − c−1x(0)

∣∣∣∣∣→ 0 as n→∞ (7.30)

and x(0) = lim
z→0+

x(z) satisfies the equation

1

x(0)
=
c

p
tr
(
x(0)I + Σ−1n

)−1
. (7.31)
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Note that x(0) always exists in case of c > 1. In order to find the asymptotics for the quantity
κ1(Θ) = 1/ntr(S+

nΘ) we recall the properties of the generalized inverse. Namely, if Θ is positive
definite then Θ1/2S+

nΘ1/2 is a generalized inverse of Θ−1/2SnΘ
−1/2 which has the same non-zero

eigenvalues as S̄∗ = X′Σ1/2
n Θ−1Σ1/2

n X. Consequently, since tr(S+Θ) = tr(Θ1/2S+
nΘ1/2) we get

the same result as in case of κ1 = 1/ntr(S+
n ) with Σ−1n be replaced by

(Σ1/2
n Θ−1Σ1/2

n )−1 = Σ−1/2n ΘΣ−1/2n . (7.32)

The second quantity of interest is

κ2 =
1

p
||S+

n ||2F =
c−1

n
||S̄−1n ||2F = c−1 lim

z→0+

∂

∂z

1

n
tr
(
(S̄n − zI)−1

)
. (7.33)

Again, we use Theorem 7.3 for
1

n
tr
(
(S̄n − zI)−1

)
, calculate the derivative with respect to z

and set it to zero. As a result, we obtain the following identity for p/n→ c ∈ (1,+∞)∣∣∣∣∣κ2 − c−1x′(0)

∣∣∣∣∣→ 0 as n→∞ , (7.34)

where
1

x′(0)
=

1

x2(0)
− c

p
tr
(
x(0)I + Σ−1n

)−2
(7.35)

and x(0) satisfies the equation (7.31). From (7.30) and (7.34) follows the statement of Theorem
3.3.

Proof of Proposition 3.1. Using Theorem 3.3 we get that
1

p
η′S+

n ξ =
1

p
tr(ξη′S+

n ) →
a.s.

c−1y(ξη′), where y(ξη′) satisfies the equation

1

y(ξη′)
=
c

p
tr
[(

Σ−1/2n ξη′Σ−1/2n + y(ξη′)I
)−1]

. (7.36)

Using the Sherman-Morrison formula (see, e.g., Horn and Johnson (1986)) we can rewrite
the the right-hand side of (7.36) in the following way

c

p
tr

 1

y(ξη′)
I− 1

y2(ξη′)

Σ−1/2n ξη′Σ−1/2n

1 +
1

y(ξη′)
η′Σ−1n ξ

 =
c

y(ξη′)

(
1− η′Σ−1n ξ

y(ξη′) + η′Σ−1n ξ

)
. (7.37)

Combining (7.36) with (7.37) and multiplying both sides by y(ξη′), we get

1− c−1 =
η′Σ−1n ξ

y(ξη′) + η′Σ−1n ξ
, (7.38)

which is a linear equation in y(ξη′) with the solution given by

y(ξη′) =
c−1

1− c−1
η′Σ−1n ξ =

1

c− 1
η′Σ−1n ξ . (7.39)

The last equality finishes the proof of Proposition 3.1.

Proof of Proposition 4.1. We write the proof in the case c < 1 because the case c > 1 is
already handled in Section 3.2.
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i). Consider the functionals α̂∗n(σΠ0) and β̂∗n(σΠ0). Using (4.4) and (4.5) it holds that

α̂∗n(σΠ0) = α̂∗n(Π0) (7.40)

β̂∗n(σΠ0) =
1

σ
β̂∗n(Π0) . (7.41)

Putting (7.40) and (7.41) together with σΠ0 in (4.3) completes the proof of the first part
of Proposition 4.1.

ii). From Corollary 3.1 it holds that

|α̂∗n(1/pI)− α∗(1/pI)| −→ 0 a. s. for n→∞ (7.42)

with

α∗(1/pI) = (1− c)
||Σ−1n ||2F ||1/pI||2F −

(
tr(Σ−1n 1/pI)

)2(
||Σ−1n ||2F +

c

p(1− c)
||Σ−1n ||2tr

)
||1/pI||2F −

(
tr(Σ−1n 1/pI)

)2 (7.43)

Using (7.43) and noting that Σ−1n = σI we get that

α∗(1/pI) = 0. (7.44)

Similarly, ∣∣∣β̂∗n(1/pI)− β∗(1/pI)
∣∣∣ −→ 0 a. s. for n→∞ (7.45)

and

β∗(1/pI) =
tr(Σ−1n 1/pI)

||1/pI||2F

(
1− α∗(1/pI)

1− c

)
, (7.46)

which together with (7.44) and Σ−1n = σI implies that

β∗(1/pI) = pσ. (7.47)

The equalities (7.44) and (7.47) with (4.3) complete the proof of the second part of Propo-
sition 4.1.

iii). From (3.13) and (3.15) in Corollary 3.1 it follows that

α∗n(Σ−1n ) = 0 and β∗n(Σ−1n ) = 1 (7.48)

and, hence,
α̂∗n(Σ−1n ) −→ 0 and β̂∗n(Σ−1n ) −→ 1 a.s. for n→∞ . (7.49)

Substituting (7.49) in (4.3) completes the proof of the third part of Proposition 4.1.
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