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Abstract

In the paper we consider two types of utility functions often used in portfolio alloca-

tion problems, i.e. the exponential and quadratic utilities. We link the resulting optimal

portfolios obtained by maximizing these utility functions to the corresponding optimal

portfolios based on the minimum Value-at-Risk (VaR) approach. This allows us to pro-

vide analytic expressions for the risk aversion coefficients as functions of the VaR level.

The results are initially derived under the assumption that the vector of asset returns is

multivariate normally distributed and they are generalized to the class of elliptically con-

toured distributions thereafter. We find that the choice of the coefficients of risk aversion

depends on the stochastic model used for the data generating process. Finally, we take the

parameter uncertainty into account and present confidence intervals for the risk aversion

coefficients of the considered utility functions. The theoretical results are validated in an

empirical study. We conclude that investors fix their risk attitude in a two-step procedure:

first, they choose an appropriate light- or heavy-tailed distribution for the asset returns;

second, to hedge the remaining risk they choose higher or lower risk aversions respectively.
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1 Introduction

The von Neumann-Morgenstern expected utility theory provides a standard solution to modern

asset allocation problems. The aim of the investor is to maximize the expected utility of future

wealth with respect to the portfolio weights which denote the fractions of the individual assets

in the portfolio. The future wealth or portfolio return is random implying that the expected

utility depends on the parameters of the distribution used to model the data generating process

of the underlying assets. An issue, which has to be addressed by the investor, is the choice of the

functional form of the utility function. Typically, the analysis is constrained to the quadratic

or exponential utilities, which allow for an explicit solutions of the portfolio problem. Other

functions, like the power utility, require numerical techniques. Usually, most of the utility

functions depend on an additional parameter referred to as a risk aversion coefficient. The

value of this parameter is subjective and can be hardly justified by economic reasoning. In this

paper, we argue that the risk aversion coefficient can be linked to the distribution used as a

model for the data generating process and to the level of the Value-at-Risk (VaR) in which the

investor is interested in or is required to report.

The quadratic utility function is commonly applied in portfolio theory because of its nice

mathematical properties. First, an analytic solution is easy to obtain for the quadratic util-

ity function. Second, Tobin (1958) showed that the Bernoulli principle is satisfied for the

mean-variance solution only if one of the following two conditions is valid: the asset returns

are normally distributed or the utility function is quadratic. Moreover, the quadratic utility

presents a good approximation of other utility functions (see, e.g., Kroll et al. (1984), Brandt

et al. (2006)). Levy and Markowitz (1979) considered the expected utility function in terms

of the portfolio return and showed that it can be very well approximated by a function of the

mean and the variance of the portfolio return. For a portfolio with the weights w = (w1, ..., wk)
′

such that w′1 = 1 where 1 denotes the k-dimensional vector of ones, the quadratic utility is

given by

Uquad(Rw) = Rw −
γquad

2
R2

w = X′w − γquad
2

(X′w)2 , (1)

where X = (X1, ..., Xk)
′ is the k-dimensional vector of asset returns. The symbol γquad > 0

stands for the risk aversion coefficient.

The second utility function considered in the paper is the exponential utility function given

by

Uexp(Rw) = 1− e−γexpRw , (2)

where γexp > 0 is the corresponding risk aversion coefficient. If the asset returns are multivariate

normally distributed then the maximization of E(Uexp(Rw)) is equivalent to the so-called mean-

variance utility function expressed as (cf. Ingersoll (1987), Okhrin and Schmid (2006, 2008))

µ′w − γmv
2

w′Σw −→ max subject to w′1 = 1 , (3)

where µ = E(X) and Σ = V ar(X). Bodnar et al. (2013) compared the solutions resulting by

maximizing E(Uquad(Rw)), E(Uexp(Rw)), and (3) and found that although they are mathemat-

ically equivalent, this statement does not longer hold from the stochastic point of view.

Note that the choice of the values for both γquad and γexp in practice is unclear. There are

a few papers dealing with the estimation of the risk aversion coefficient from market data. For

instance, Jackwerth (2000) derives the implied absolute risk-aversion coefficient by estimating
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the risk-neutral and historical probabilities from option prices, while estimators relying on the

realized volatility were suggested by Bollerslev et al. (2011). It is important to note, that the

corresponding risk aversions characterize an aggregate and not an individual investor. The usual

values of γ’s considered in empirical applications lie between 1 and 50 (for the quadratic utility)

and the choice of the risk aversion coefficient is, usually, performed heuristically. Opposite to

these studies, our approach is motivated by the financial interpretations of the solution of the

expected utility maximization problems based on the utilities (1) and (2).

In the paper, we link the optimal portfolio obtained from a particular utility function to the

minimum V aR optimal portfolio. The latter portfolio is determined by the significance level

α, which can be fixed relying on the regulatory recommendations. This allows us to derive

analytic expressions for γquad(.) and γexp(.) as functions of the VaR level. Thus, we quantify the

investor’s attitude towards risk and justify the values of the risk aversion coefficients which are

usually used in practice. Furthermore, we argue that modelling the risk attitude is a step-two

procedure. First, the investor selects a model for the asset returns. If he opts for a light-tailed

distribution, for example the normal distribution, then in order to take into account potentially

high losses from large returns, he has to choose a higher risk aversion in the second step. If,

however, he chooses a heavy-tailed distribution, then the risk aversion can be smaller. This

effect is documented in the empirical study.

The rest of the paper is organized as follows. In Section 2, we present the main results of the

paper. Here, the analytical expressions for γquad and γexp are presented under the assumption

that the asset returns are multivariate normally distributed. In Section 3, these findings are

extended to non-normal distributions. The influence of the parameter uncertainty is analyzed in

Section 4, while the results of the empirical study are shown in Section 5. Concluding remarks

are presented in Section 6. In the appendix (Section 7) all proofs are given.

2 Risk aversion for Gaussian returns

The results of this section are derived assuming that the asset returns are multivariate normally

distributed, i.e. X ∼ Nk(µ,Σ), whereas the findings under a more general class of distributions

are presented in the next section.

We consider two investors who aim to maximize the expected quadratic utility function

given by

E(Uquad(Rw))→ max subject to w′1 = 1 (4)

and the expected exponential utility function expressed as

E(Uexp(Rw))→ max subject to w′1 = 1 , (5)

respectively.

Merton (1969) proved that if the asset returns are multivariate normally distributed then the

maximization of the expected exponential utility function is equivalent to the maximization of

the mean-variance utility (3). The solution of (3) coincides with the Markowitz efficient frontier

which is a parabola in the mean-variance space (Merton (1972)) uniquely determined by the

three parameters (cf. Bodnar and Schmid (2008b, 2009))

RGMV =
1′Σ−1µ

1′Σ−11
, VGMV =

1

1′Σ−11
, and s = µ′Rµ with R = Σ−1 − Σ−111′Σ−1

1′Σ−11
(6)
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The quantities RGMV and VGMV are the expected return and the variance of the global minimum

variance (GMV) portfolio that determine the location of the parabola’s vertex in the mean-

variance space, while s is the slope parameter of the parabola. It measures the overall market

profitability, i.e. it is equal to the squared excess return of a portfolio on the efficient frontier

in comparison to the GMV portfolio for a unit increase in the variance.

The maximization of the exponential utility function, i.e. (5), leads to the optimal portfolio

with the weights

wEU =
Σ−11

1′Σ−11
+ γ−1expRµ . (7)

Similarly, the solution of (4) is given by

wQU =
A−11

1′A−11
+ γ−1quadRAµ , (8)

where A = E(XX′) and RA = A−1 − A−111′A−1

1′A−11
. Bodnar et al. (2013) derived another

expression for the weights of the optimal portfolio in the sense of maximizing the expected

quadratic utility function expressed as

wQU =
Σ−11

1′Σ−11
+ γ̃−1quadRµ , (9)

with (see, Bodnar et al. (2013, Theorem 1))

γ̃quad =
1 + s

γ−1quad − 1−RGMV

(10)

In the next step we use another way of constructing an optimal portfolio on the efficient

frontier which characterizes the investor’s attitude towards risk in a more natural way. A

suitable candidate is the minimum value-at-risk (mean-VaR) portfolio suggested by Alexander

and Baptista (2002, 2004). The VaR at the confidence level α ∈ (0.5, 1) (V aRα) is defined as

a portfolio loss satisfying

P{X′w < −V aRα} = 1− α .

If X is multivariate normally distributed then V aRα is calculated implicitly and it is given by

V aRα = −w′µ− z1−α
√

w′Σw ,

where zβ = Φ−1(β) is the β-quantile of the standard normal distribution. In practice, the

values of α are usually taken from the interval [0.95, 1). The VaR is a standard method of

risk monitoring suggested by the Basel Committee on Banking Supervision. Alexander and

Baptista (2002) went beyond taking of VaR for monitoring purposes, but use the VaR as a risk

proxy in portfolio management. The optimization problem is given by

V aRα = −w′µ− z1−α
√

w′Σw→ min, subject to 1′w = 1. (11)

Alexander and Baptista (2002) proved that the solution of (11) lies on the efficient frontier and

presented the expression for the weights of this portfolio. Bodnar et al. (2012) rewrote the

formula for the weights of the minimum VaR portfolio in the form of (7) expressed as

wV aR;α = wGMV +

√
VGMV√
z21−α − s

Rµ . (12)

The above results can be summarized as follows:
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• It is important to note that all three solutions of the maximization problems in (4), (5)

and (11) (cf. Bodnar et al. (2013)) lie on the Markowitz efficient frontier.

• Equations (7), (9) and (12) show that all optimal portfolios have the same structure.

Moreover, from (10) we conclude that the maximization of the expected quadratic utility

function with the risk aversion coefficient γquad leads to the same portfolio as the max-

imization of the expected exponential utility function with the risk aversion coefficient

γexp = γ̃quad where the latter is given in (10).

• The risk aversion coefficients γquad, γexp and the α value of VaR are related. The explicit

relation depends on the parameters of the efficient frontier, RGMV , s and VGMV only.

Using (12) we are able to specify the closed-form expressions for risk aversion coefficients

γquad and γexp used in (1) and (2), respectively, such that the corresponding portfolios coincide

with the mean-VaR portfolio. The results is summarized in the following theorem.

Theorem 1. Let X ∼ Nk(µ,Σ). Then

γexp =

√
z21−α − s√
VGMV

, (13)

γquad =

(
1 +RGMV +

1 + s

γexp

)−1
=

1 +RGMV +
(1 + s)

√
VGMV√

z21−α − s

−1 . (14)

The proof of Theorem 1 follows directly from the expressions for the weights given in (7),

(9), and (12). For a given level of α the investor attempts to minimize the losses, which

corresponds to the upper boundary of the most negative α·% of losses. Thus, α reflects the risk

attitude of the investor. If α is small, then (s)he minimizes the extreme losses and, hence, the

investor is very risk averse. If α is large or close to 0.5, then the investor cares about losses in

general without paying particular attention to large losses. This implies that his risk aversion

is moderate. In general it holds that both risk aversion are monotonously increasing in α.

On the first sight, the dependence of the risk aversion on the portfolio characteristics appears

to be surprising. However, this evidence is natural since the investor is averse to a particular

amount of loss or of risk, implying non-constant γ’s. For a very risky portfolio the investor

is more risk averse, than for a portfolio with a moderate risk. Moreover, the maximization of

the expected quadratic utility function as well as of the expected exponential utility function

leads to the portfolios which lie on the efficient frontier. As a results, the investor’s attitude

towards risk is expected to depend on the situation of the capital market, i.e. on the position of

the efficient frontier in the mean-variance space which is fully determined by three parameters

RGMV , VGMV , and s.

3 Determination of the Risk Aversion Coefficients for

Elliptically Contoured Distributed Asset Returns

In this section we extend the results of Section 2 to elliptically contoured (EC) distributions.

This is a large class of multivariate distributions which includes the multivariate normal and
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t distributions as special cases. This class has been already discussed in financial literature.

For instance, Owen and Rabinovitch (1983) extend Tobin’s separation theorem, Bawa’s rules

of ordering certain prospects to EC distributions. While Chamberlain (1983) showed that

elliptical distributions imply the mean-variance utility functions, Berk (1997) argued that one

of the necessary conditions for the validity of the capital asset pricing model (CAPM) is an

elliptical distribution for the asset returns. Furthermore, Zhou (1993) extended findings of

Gibbons et al. (1989) by applying their test to EC distributed returns. A further test for the

CAPM under elliptical assumptions is proposed by Hodgson et al. (2002). The application of

matrix variate elliptically contoured distributions in portfolio theory is initiated by Bodnar and

Schmid (2008a) and Bodnar and Gupta (2009).

In this section, we restrict ourselves to the class of EC distributions for which the density

function exists. The vector of asset returns X is said to be elliptically contoured distributed if

its density function is given by

fX(x) = ckg((x− µ)D−1(x− µ)) , (15)

where ck > 0 is a constant which depends on the specific type of elliptically contoured dis-

tribution, i.e. on the function g(.), and the dimension of the vector X only. This assertion

we denote by X ∼ Ek(µ,D, g). The symbol µ is the location vector, while D denotes the

dispersion matrix. If the second moment of X exists then

µ = E(X) and Σ = Cov(X) = ωD ,

i.e. µ is the mean vector and the covariance matrix is proportional to D with ω = E(r2) (see

16). The stochastic representation of the random vector X is a convenient tool for simulation

purposes. If the density function exists for all k ≥ 1 then the stochastic representation of X is

given by (cf. Fang and Zhang (1990))

X
d
= µ + rD1/2Z , (16)

where Z ∼ Nk(0k, Ik) is independent of the scalar nonnegative random variable r. The symbol

0k denotes the k-dimensional zero vector, while Ik stands for the identity matrix of order k.

Moreover, from (16) it holds that r fully determines the type of elliptical contoured distribution.

Using (16) we can calculate the expected quadratic utility and the expected exponential

utility under the assumption that the asset returns follow an EC distribution. For the quadratic

utility function it holds that

E(Uquad(Rw)) = E(X)′w − γquad
2

E
(
(X′w)2

)
= µ′w − γquad

2
w′Aw . (17)

Consequently, the optimization problem based on (17) subject to 1′w = 1 is the same as the

one in the case of the multivariate normally distributed asset returns. As a result, its solution

is given by (9).

Similarly, using that Rw|r ∼ N(µ′w, r2w′Dw) for the exponential utility function we get

E(Uexp(Rw)) = 1− E
(
e−γexpRw

)
= 1− E

(
E
(
e−γexpRw |r

))
= 1− E

(
e−γexpµ

′w+
γ2expw

′Dw

2
r2
)
,
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where the last identity is obtained observing that the conditional expectation is the moment

generating function of the univariate normal distribution at point −γexp. Hence,

E(Uexp(Rw)) = 1− e−γexpµ′wE
(
e
γ2expw

′Dw

2
r2
)

= 1− e−γexpµ′wmr2

(
γ2expw

′Dw

2

)

= 1− e−γexpµ′wmr2

(
γ2expw

′Σw

2E(r2)

)
, (18)

where mr2(t) = E
(
etr

2
)

is the moment generating function of r2. As a result, the maximization

of the expected exponential utility function is equivalent to

µ′w − 1

γexp
log

(
mr2

(
γ2expw

′Σw

2E(r2)

))
→ max subject to 1′w = 1 . (19)

Lemma 1. Let X ∼ Ek(µ,D, g) with the moment generating function of r2 given by mr2(.).

Then the solution of the optimization problem (19) is given by

wEU =
Σ−11

1′Σ−11
+ γ̃−1expRµ , (20)

where γ̃exp is the solution of (with respect to κ)

κψ′
(
γ2exp(VGMV + κ2s)

2E(r2)

)
=
E(r2)

γexp
(21)

with ψ(x) = log (mr2(x)).

The proof of Lemma 1 is given in the appendix. The results of Lemma 1 are very interesting

from the practical point of view. Although the maximization of the expected exponential

utility function results in a challenging non-linear multivariate optimization problem, it can be

simplified to an univariate one whose solution is determined by solving (21) with respect to κ.

This result continues to be true independently how large is the dimension of the constructed

portfolio. Finally, we note that if the asset returns are multivariate normally distributed then

r = 1 and, consequently, E(r2) = 1, mr2(x) = ex, and ψ′(x) = 1. Putting these results together,

from (21) we get κ = γ−1exp.

Next, we compare the solution of the maximization problems (4) and (5) under the assump-

tion of elliptically distributed asset returns with the one obtained by minimizing the VaR at the

confidence level α. In the case of elliptically contoured distribution, the VaR of the portfolio

with weights w is given by

V aRα = −w′µ− d1−α
√

w′Dw = −w′µ− d1−α√
E(r2)

√
w′Σw ,

where d1−α depends on k and g(.) only and it is independent of w. Minimizing V aRα with

respect to w leads to the following expression for the weights

wV aR;α = wGMV +

√
VGMV√

d21−α/E(r2)− s
Rµ . (22)
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Using (22) we are able to specify the closed-form expressions for the risk aversion coefficients

γquad and γexp. It holds that

Theorem 2. Let X ∼ Ek(µ,D, g) with the moment generating function of r2 given by mr2(.).

Then

γquad =

1 +RGMV +
(1 + s)

√
VGMV√

d21−α/E(r2)− s

−1 .
Let ψ(x) = log (mr2(x)). Then γexp is the solution of

γexpψ
′
(
γ2exp(VGMV + κ2s)

2E(r2)

)
=
E(r2)

κ
,

with κ =
√
VGMV√

d21−α/E(r2)−s
.

The proof of Theorem 2 is given in the appendix.

4 Estimation and Inference Procedure

In this section we deal with the problem of parameter uncertainty. The parameters of asset

returns, i.e. µ and Σ, are unknown and have to be estimated from a sample. Replacing the

population parameters with their sample counterparts in the equations for the risk aversion

coefficients we obtain the estimated risk aversion coefficients. In order to access their statistical

properties we derive useful stochastic representations of the estimated risk aversion coefficients.

Let X1, ...,Xn be a sample of asset returns used to estimate the parameters µ and Σ by

µ̂ =
1

n

n∑
j=1

Xj and Σ̂ =
1

n− 1

n∑
j=1

(Xj − µ̂)(Xj − µ̂)′ . (23)

Substituting µ̂ and Σ̂ from (23) in (6), the estimators for the three parameters of the

efficient frontier RGMV , VGMV , and s are obtained, namely,

R̂GMV =
1′Σ̂

−1
µ̂

1′Σ̂
−1

1
, V̂GMV =

1

1′Σ̂
−1

1
, ŝ = µ̂′R̂µ̂ with R̂ = Σ̂

−1
− Σ̂

−1
11′Σ̂

−1

1′Σ̂
−1

1
. (24)

Because µ̂ and Σ̂ are random quantities, the estimated characteristics in (24) are random too.

Assuming that the asset returns are iid and normal, Bodnar and Schmid (2008b, 2009) derived

the exact distributions of R̂GMV , V̂GMV , and ŝ. Let φ(·) be the density function of the standard

normal distribution. By fχ2
n
(·) we denote the density of the χ2-distribution with n degrees of

freedom, while fFn1,n2,λ(·) stands for the density of the non-central F -distribution with n1 and

n2 degrees of freedom and the non-centrality parameter λ. The symbol fN(µ,σ2)(.) is used for

the density function of the normal distribution with mean µ and variance σ2.

In the following lemma we summarize some results of Bodnar and Schmid (2008b, 2009).

Particularly, we provide the exact joint and marginal distributions of R̂GMV , V̂GMV , and ŝ.
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Lemma 2. Let X1, . . . ,Xn be a random sample of independent vectors such that Xi ∼ Nk(µ,Σ)

for i = 1, . . . , n and n > k. Let Σ be positive definite. Then it holds that

a) V̂GMV is independent of (R̂GMV , ŝ).

b) (n− 1)V̂GMV /VGMV ∼ χ2
n−k.

c) n(n−k+1)
(n−1)(k−1) ŝ ∼ Fk−1,n−k+1,n s.

d) R̂GMV |ŝ = y ∼ N
(
RGMV ,

1+ n
n−1

y

n
VGMV

)
.

e) The joint density function of R̂GMV , V̂GMV , and ŝ is given by

fR̂GMV ,V̂GMV ,ŝ
(x, y, z) =

n(n− k + 1)

(k − 1)VGMV

fχ2
n−k

(
n− 1

VGMV

z)

× f
N(RGMV ,

1+ n
n−1 y

n
VGMV )

(x)fFk−1,n−k+1,n s
(
n(n− k + 1)

(n− 1)(k − 1)
y) .

The application of the closed-form expressions for the risk aversion coefficients derived in

Theorem 1 leads to the following estimators of these quantities given by

γ̂exp =

√
z21−α − ŝ√
V̂GMV

, (25)

γ̂quad =

1 + R̂GMV +
(1 + ŝ)

√
V̂GMV√

z21−α − ŝ

−1 . (26)

The formulas (25) and (26) show that the risk aversion coefficients can be estimated only

if ŝ < z21−α. Moreover, the corresponding population quantities can be interpreted if s < z21−α
only. These two observations show that we are not able to derive the unconditional distributions

of γ̂exp and γ̂exp but only the corresponding conditional distributions provided that ŝ < d21−α.

Following the approach of Bodnar et al. (2012) we first establish the conditional distributions

of γ̂quad and γ̂exp given ŝ = s∗ and generalize thereafter.

From the results of Lemma 2 we obtain the following stochastic representations of R̂GMV

and V̂GMV given ŝ = s∗, denoted by R̂∗GMV and V̂ ∗GMV . They are expressed as

R̂∗GMV
d
= RGMV +

√
1

n
+

s∗

n− 1

√
VGMV ξ1 , V̂ ∗GMV

d
=
VGMV

n− 1
ξ2 , (27)

where ξ1 ∼ N(0, 1) and ξ2 ∼ χ2
n−k are independently distributed. Then the stochastic repre-

sentations of γ̂exp and γ̂quad under the condition s∗ = ŝ, denoted by γ̂∗exp and γ̂∗quad respectively,

are obtained and they are presented in Theorem 4.

Theorem 3. Let X1, . . . ,Xn be a random sample of independent vectors such that Xi ∼
Nk(µ,Σ) for i = 1, . . . , n and n > k. Let Σ be positive definite. Then it holds that

γ̂∗exp
d
=

√
z21−α − s∗

√
n− 1

√
VGMV

√
ξ2

, (28)

γ̂∗quad
d
=

1 +RGMV +

√
1

n
+

s∗

n− 1

√
VGMV ξ1 +

(1 + s∗)
√
VGMV

√
ξ2√

n− 1
√
z21−α − s∗

−1 . (29)
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The results of Theorem 3 possess several interesting applications. First, for simulating

γ̂∗exp and γ̂∗quad it is not necessary to generate n independent k-variate normally distributed

random vectors. It is enough to simulate two independent random variables ξ1 and ξ2 from the

well-known univariate distributions and then to apply the expressions of Theorem 3. Second,

Theorem 4 is very useful for the derivation of the densities of γ̂∗exp and γ̂∗quad.

5 Extension to Robust Portfolio Selection

The obtained results can be further extended to a general portfolio selection problem, i.e. to

the case of the investor who aims to maximize the expected utility function expressed as

maxE(u(X′w)) subject to w′1 = 1 , (30)

where u(.) is a utility function. If the distribution of asset returns is partially known then

the portfolio selection problem (30) can be reformulated with robust optimization technique as

follows (cf. Fabozzi et al. (2010))

max min
X∼(µ,Σ)

E(u(X′w)) subject to w′1 = 1 , (31)

where the notation X ∼ (µ,Σ) indicates that the distribution of X belongs to the class of

k-dimensional distributions with mean vector µ and covariance matrix Σ.

Let

V (w) = min
X∼(µ,Σ)

E(u(X′w)) (32)

denote the value of the inner minimization problem for given weights w. Popescu (2007) proved

that (32) is equivalent to an optimization problem with univariate distributions with a given

mean and variance, i.e.

V (w) = min
Rw∼(µw,σ2

w)
E(u(Rw)) . (33)

Moreover, if V (w) is continuous, non-decreasing in µw, non-increasing in σ2
w, and quasi-

concave, then (31) is equivalent to the following quadratic optimization problem (cf. Popescu

(2007))

max γµ′w − (1− γ)w′Σw subject to w′1 = 1 , (34)

where γ ∈ [0, 1]. Moreover, if w(γ) is the solution of (34) then V (w(γ)) is continuous and

unimodal in γ.

For a portfolio with the weights w and for a confidence level α ∈ (1/2, 1], Fabozzi et al.

(2010) considered the robust version of the VaR, the so-called RVaR. Within our notations, the

RVaR at the confidence level α is defined by

RV aRα = max
Rw∼(µw,σ2

w)
V aRα . (35)

The application of Chebyshev’s inequality leads to (see Alexander and Baptista (2002, Section

3.2))

RV aRα = −w′µ + d1−α(w)
√

w′Σw, (36)

where d1−α = 1/
√

1− α. The solutions of the optimization problem (34) and

RV aRα → min subject to w′1 = 1

10



provide us the probabilistic interpretation of γ. Following the proof of Theorem 1 we get

γ =

1 +

√
d21−α − s

2
√
VGMV

−1 . (37)

6 Empirical illustration

For illustration purposes we use monthly data for country indices from MSCI Developed Markets

Indexes and from MSCI Emerging Markets Indexes. The markets cover 23 and 21 countries

respectively and the time span from June 2004 till March 2014, resulting in 117 observations.

To assess the impact of the dimension we consider portfolios consisting of k = 2, 5, 10, 15

assets. For simplicity we select the assets for the first part of the study in the alphabetic

order. The characteristics of the frontier are summarized in Table 1. As expected the variance

of the GMV portfolio VGMV decreases with increasing k, the return RGMV and the slope s

increase. Furthermore, the return and variance of the global minimum variance portfolio are

lower for the developed markets, compared to the emerging markets, which is consistent with

our expectations.

Developed markets Emerging markets

k VGMV RGMV s VGMV RGMV s

2 0.0049632 0.0088234 0.0225480 0.0044765 0.0072103 0.0019479

5 0.0026577 0.0136901 0.0597653 0.0036172 0.0071194 0.0292601

10 0.0021298 0.0090921 0.1335025 0.0030592 0.0103470 0.0956051

15 0.0010852 0.0029841 0.2105829 0.0014732 0.0099718 0.1044366

full 0.0006360 0.0054814 0.2927886 0.0012206 0.0075236 0.1441346

Table 1: Characteristics of the mean-variance frontier for the first k developed markets (left)

and emerging markets (right) for the period from June 2004 to March 2014

Gaussian returns

The risk aversion coefficients γquad and γexp for Gaussian returns as functions of α are shown in

Figure 1. We conclude that they are monotonously increasing in α. Thus if an investor is more

concerned with extreme losses, then his implied risk aversion is higher. On the other hand the

risk aversions are higher for less risky, i.e. larger and better diversified, portfolios. This seems

to be counterintuitive, but in fact this evidence supports the idea that looking at high level

VaR for less risky portfolios artificially inflates the aversion to risk. The same is observed by

comparing the results for developed and emerging markets, where for the latter the implied

risk aversion is lower despite of higher volatility. In general, for α > 0.95 the risk aversion is

high and the portfolio attains the GMV portfolio. Even for small values of α the risk aversion

is much higher than the frequently used values from 1 to 10 for γexp. This implies that if the

investors are interested in the commonly used 99%-Value-at-Risk, then they are much more

risk averse, than imposed in the empirical studies.

In order to make the study robust to the choice of the indices we fix α at 99% and sample

200 portfolios of different sizes from both pools of indexes. For each portfolio we compute the

11
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Figure 1: The risk aversion coefficients γquad (top) and γexp (bottom) as functions of α for

portfolios consisting of the first k developed markets (left) and emerging markets (right).

corresponding risk aversion coefficients and plot their histograms in Figure 2. We conclude that

the above conclusions are robust to the choice of markets. Small portfolios lead to systematically

lower risk aversions compared to larger portfolios. Additionally we observe bimodal histograms,

implying two classes of markets leading to different risk aversions.

Elliptical returns

To illustrate the theoretical results for elliptical distributions we concentrate on the multivariate

Laplace distribution. It is obtained by assuming that r2 follows exponential distribution with

intensity equal to 1. In a univariate framework the resulting distribution of Xi is the Laplace

distribution with the density 1
2

√
2
λ
exp

{
−
√

2
λ
|xi − µi|

}
. The 1− α quantile of this distribution

is used as the d1−α-quantile in Theorem 2. Technical details on the multivariate Laplace distri-

bution can be found in Eltoft et al. (2006), whereas Kotz et al. (2001) discuss the application

of the multivariate Laplace distribution in portfolio theory.

The Laplace distribution has heavier tails compared to the normal and thus is a reasonable

alternative in financial applications. Explicit application of this distribution is technically

demanding due to complex expressions for the density (see Eltoft et al., 2006). In our case,

however, the stochastic representation allows us to work with r only. The corresponding risk

aversion coefficients γquad and γexp as functions of α are shown in Figure 4. Similarly to the

normal distribution, the risk aversion attains very high values even for modest levels of α.

However, it is important to note that the values of the coefficients are lower than for the

normal distribution. This implies that the investor reflects his aversion to risk in two steps: he

12
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Figure 2: Histograms of risk aversion coefficients γquad (top) and γexp (bottom) for α = 0.99

and portfolios consisting of k = 2 (left), k = 5 (middle) and k = 15 (right) randomly sampled

emerging markets.

selects an appropriate model for the asset returns and the remaining risk aversion is captured

by the risk aversion coefficient. If he opts for a light tailed distribution, then he is forced to

choose a higher aversion coefficient to hedge against high losses. Alternatively, a heavy-tailed

distribution takes high losses into account and allows for lower risk aversions.

Estimation risk

With the next example we illustrate the simulated density functions of the sample risk aversions

γ̂∗quad and γ̂∗exp by relying on Theorem 3. We use the same data as in the above examples and

condition on s∗ = ŝ, where ŝ is obtained individually for each portfolio. We observe that the

precision of the estimators is relatively high. Note that the number of assets has an opposite

impact on the precision for the two risk aversions. While for the exponential utility the densities

are narrower for small portfolios, they become wider for the quadratic utility.
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Figure 3: The risk aversion coefficients γquad (top) and γexp (bottom) as functions of α for port-

folios consisting of the first k developed markets (left) and emerging markets (right) assuming

multivariate Laplace distribution for the returns.
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7 Summary

In the paper we consider the exponential and quadratic utility functions which are frequently

applied in portfolio management. Since the VaR plays a key role in monitoring risk, many

investors follow the minimum VaR portfolio strategies. We link both approaches to obtain

a functional relationships between the risk aversions and the level of VaR. The results are

obtained assuming that the vector of asset returns is multivariate normally distributed and

they are generalized to the class of elliptically contoured distributions. The latter is particularly

important due to well known heavy-taildness of asset returns. Finally, we take the parameter

uncertainty into account and give conditional stochastic representation of the empirical risk

aversion coefficients. The theoretical results are validated in an empirical study. We found

evidence that investors model their risk attitude in a two-step procedure. At the first step they

choose an appropriate light- or heavy-tailed distribution for the asset returns. In the second

they hedge the remaining risk by choosing higher or lower risk aversions respectively.

8 Appendix

Proof of Lemma 1: First, we note that log(mr2(.)) is an increasing function since log(.) and

mr2(.) are both increasing. Using this result we show next that the solution of (19) lies in the

efficient frontier in the mean-variance space which consists of all portfolios such that it exists

no portfolio with a larger expected return and a smaller variance (cf., Alexander and Baptista

(2004, Definition 6)).

We prove the last statement by using the method from contradiction. Let w̃ be a solution

of (19) but the portfolio with the weights w̃ does not lie in the efficient frontier. Then it exists

a portfolio from the efficient frontier, say w̃0, such that E(Rw̃0) ≥ E(Rw̃) and V ar(Rw̃0) ≤
V ar(Rw̃) where at least one inequality is strict. Then

µ′w̃ − 1

γexp
log

(
mr2

(
γ2expw̃

′Σw̃

2E(r2)

))

= E(Rw̃)− 1

γexp
log

(
mr2

(
γ2expV ar(Rw̃)

2E(r2)

))

< E(Rw̃0)−
1

γexp
log

(
mr2

(
γ2expV ar(Rw̃0)

2E(r2)

))

which shows that

E(Uexp(Rw̃)) < E(Uexp(Rw̃0)) .

The last equality contradicts to the assumption that the portfolio with the weights w̃ maximizes

the expected exponential utility function.

Hence, the weights of the optimal portfolio in the sense of maximizing the expected expo-

nential utility is given by

wEU =
Σ−11

1′Σ−11
+ κRµ .

Substituting the last equality in (19) leads to

RGMV + κs− 1

γexp
log

(
mr2

(
γ2exp(VGMV + κ2s)

2E(r2)

))
(38)
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which has to be maximized with respect to κ. Let ψ(x) = log (mr2(x)). Equaling the derivative

of (38) to zero leads to

s− γexpκs

E(r2)
ψ′
(
γ2exp(VGMV + κ2s)

2E(r2)

)
= 0 .

Hence, κ is the solution of

κψ′
(
γ2exp(VGMV + κ2s)

2E(r2)

)
=
E(r2)

γexp
.

The lemma is proved.

Proof of Theorem 2: The equality for γquad follows from Theorem 1 and the fact that

the expression for the weights of the minimum VaR portfolio in case of elliptically contoured

distributions can be obtained from those in the case of normally distributed asset returns by

replacing z21−α with d21−α/E(r2), while the weights of the portfolio in the sense of maximizing

the expected quadratic utility portfolio do not depend on the type of elliptically contoured

distributions. The second result follows from (22) and Lemma 1. The theorem is proved.
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