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Abstract

In this paper, we investigate the properties of the optimal portfolio in the sense of

maximizing the Sharpe ratio (SR) and develop a procedure for the calculation of the risk

of this portfolio. This is achieved by constructing an optimal portfolio which minimizes the

Value-at-Risk (VaR) and at the same time coincides with the tangency (market) portfolio

on the efficient frontier which is related to the SR portfolio. The resulting significance

level of the minimum VaR portfolio is then used in the determination of the risk of both

the market portfolio and the corresponding SR portfolio. However, the expression of

this significance level depends on the unknown parameters which have to be estimated in

practice. It leads to an estimator of the significance level whose distributional properties

are investigated in detail. Based on these results, a confidence interval for the suggested

risk measure of the SR portfolio is constructed and applied to real data. Both theoretical

and empirical findings document that the SR portfolio is very risky since the corresponding

significance level is smaller than 90% in most of the considered cases.
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1 Introduction

The problem of optimal portfolio selection has become very popular since the seminal paper

of Markowitz in 1952. The main portfolio characteristics, which are used in the portfolio

optimization suggested by Markowitz, are the expected return and the risk. The expected

portfolio return is usually determined as the mean return. In contrast to the expected return,

the specification of the portfolio risk appears to be a more complicated task. In Markowitz’s

portfolio theory, the variance is taken as a risk measure. Then optimal portfolios are constructed

by minimizing the variance for a given level of the expected return or by maximizing the

expected return for a given value of the variance. However, these optimization problems take

into account only one characteristic of the portfolio, while the second is fixed.

Another possibility is to maximize the Sharpe ratio (SR) which is defined as a ratio of the

expected portfolio return to the standard deviation (cf., Sharpe (1966, 1994)). It is noted that

the optimal portfolio in the sense of maximizing the SR belongs to the efficient frontier in the

case without a risk-free asset, i.e. it can be obtained as a solution of Makowitz’s optimization

problem. However, the choice of the variance in the definition of the SR is heavily criticized

by both researchers and practitioners of the financial sector. The main argument is that the

variance is not always an appropriate measure of risk since high returns might increase the

variance. Better risk measures are based on the probability or the value of losses. In other words,

it is desirable to have measures which depend only on the positive values of the loss function

or negative values of the return and are known as downside risk measures (cf. Krokhmal et

al. (2011)). Recent developments in risk theory suggest that quantile-based measures are well-

suited functions to quantify risk. The most popular of each are the Value-at-Risk (VaR) and

Conditional VaR (CVaR), also known as the expected shortfall (cf. Pflug (2000)). The portfolio

selection problems based on minimizing the portfolio VaR (CVaR) have recently been considered

in a number of literature studies (cf. Alexander and Baptista (2002, 2004), Rockafellar et

al. (2006a,b), Kilianová and Pflug (2009)), whereas Bodnar et al. (2012, 2013b) took into

account the problem of parameter uncertainty when the minimum VaR and the minimum

CVaR portfolios are constructed.

Because the variance (standard deviation) is not an appropriate risk measure, several mod-

ifications of the SR were suggested in the literature. The most popular ones are the Treynor

ratio and the Sortino ratio, defined as ratios of the expected return to the portfolio beta and

the portfolio semi deviation, respectively. Recently, Bodnar and Zabolotskyy (2013) considered

a generalization of the SR where the standard deviation is replaced by the VaR. Moreover, it

was shown that under the assumption of normality imposed on the asset return distribution,

the portfolio with the highest SR coincides with the portfolio that maximizes the modification

of the SR based on the VaR. Similar results are also true in case of the modification of the

SR where the portfolio standard deviation is replaced by the CVaR. Moreover, it appears that

the resulting portfolio does not depend on the confidence level used in the calculation of the

VaR (CVaR). This finding is in line with the results presented in Rockafellar et al. (2006a,b,c,

2007) who proved that the one-fund theorem, the capital asset pricing model (CAPM), and
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the existence of a market equilibrium hold for general deviations measures like standard lower

semideviation, lower range semideviation, CVaR deviation, etc.

Alexander and Baptista (2002, 2004) showed that the minimum VaR (CVaR) optimal port-

folio lies on the efficient frontier constructed in the case without a risk-free asset, if the asset

returns are normally distributed. The inverse implication is also true, i.e. each Markowitz’s

(mean-variance) optimal portfolio can be presented as a solution of the minimization problem

based on the VaR (CVaR). Because the optimal portfolio in the sense of maximizing the SR is

also mean-variance efficient, there exists a confidence level for which this portfolio is also the

minimum VaR (CVaR) portfolio (cf. Bodnar and Zabolotskyy (2013)). This means that the

problem of optimal portfolio selection based on maximizing the SR can be interpreted as the

problem of VaR (CVaR) minimization. Determining the confidence level of the VaR (CVaR) in

the latter optimization problem is the main goal of the present paper. Because the confidence

level used in the calculation of the VaR (CVaR) is directly related to the portfolio risk, it allows

us to answer the question how risky the optimal portfolio with the highest SR is. Moreover,

using the recommended values of the confidence level specified by the Basel Committee on

Banking Supervision enables us to draw a conclusion wether the optimal portfolio in the sense

of maximizing the SR could be considered as an investment opportunity at all or wether it

leads to the portfolio which could possess high losses with a relatively high probability. This

would not be acceptable.

Furthermore, we take the problem of parameter uncertainty into account when the confi-

dence level of the optimal portfolio in the sense of maximizing the SR is determined. It appears

that under the assumption of elliptically contoured distributed asset returns, this confidence

level is only a function of the mean vector and the covariance matrix of the asset returns.

However, these two quantities are unknown in practice and have to be replaced by the corre-

sponding estimators. It leads to an estimator of the confidence level. In this paper, we derive

the asymptotic distribution of the resulting estimator which is then used for determining the

confidence interval. Moreover, using a one-to-one correspondence between interval estimation

(confidence interval) and test theory (Lehmann and Romano (2005)), the obtained results di-

rectly lead to a test for the confidence level of the optimal portfolio with the highest SR. The

theoretical results of this paper are implemented in an empirical study. Here, we show that the

optimal portfolio in the sense of maximizing the SR is usually very risky in comparison to the

recommended (for example Basel Committee on Banking Supervision, Risk Metrics) levels of

risk which should be used in practice.

The rest of the paper is organized as follows. In the next section, we link the optimal

portfolio in the sense of maximizing the SR with the minimum VaR portfolio which lies on

the same place of the efficient frontier constructed in the case without a risk-free asset as

the tangency portfolio which is related to the SR portfolio. The confidence level used in the

calculation of the minimum VaR portfolio is determined in Theorem 1. In Section 3, we take the

parameter uncertainty into account and construct an estimator for the suggested risk measure of

the SR portfolio. Its distributional properties are investigated in Theorem 2 and an asymptotic

confidence interval is constructed. In Section 4, the theoretical results are implemented in an
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empirical study. Final remarks are presented in Section 5.

2 Maximum SR Portfolio as a Minimum VaR Portfolio

Let X be the k-dimensional vector of risky asset returns with E(X) = µ and V ar(X) = Σ. We

assume that a risk-free asset with return r0 is available and the investor constructs his portfolio

by investing into the k risky assets and the risk-free asset.

The objective of the investor is to maximize the Sharpe ratio given by

SRw =
Rw − r0√

Vw
, (1)

where Rw = µ′w + w0r0 and Vw = w′Σw are the expected return and the variance of the

portfolio with the weights (w′, w0)
′. Throughout the paper it is assumed that the whole investor

wealth is invested into the selected risky assets and the risk-free asset as well as that the short

selling is allowed, i.e. w′1 + w0 = 1 where 1 stands for the k-dimensional vector of ones.

The maximization of (1) under the condition w′1 + w0 = 1 leads to the set of optimal

portfolios known as the efficient frontier in the case of the presence of a risk-free asset. The

weights of these optimal portfolios are given by (see, e.g., Luenberger (1998))

wSR =

 ηµ′wTP

(1− η)

 , (2)

where

wTP =
Σ−1(µ− r01)

1′Σ−1(µ− r01)
(3)

are the weights of the tangency portfolio. This portfolio lies on the intersection of the efficient

frontier constructed in the case without a risk-free asset, which is a parabola in the mean-

variance space (c.f. Merton (1972)), and the efficient frontier in the case with a risk-free asset,

which is a tangency line to the above parabola. It is also known as the market portfolio. The

coefficient η specifies the optimal portfolio from the efficient frontier constructed in the case

with a risk-free asset. If η ∈ (0, 1), then a part of the investor wealth is invested into the

risk-free asset which reduces the portfolio risk. If η > 1, then the investor is more risky than

the one who invests into the TP.

In order to capture the risk of portfolio (2), we first specify the risk of the TP used in its

construction. The weights of the TP can be rewritten in the following way

wTP =
Σ−11

1′Σ−11
+

(
Σ−1(µ− r01)

1′Σ−1(µ− r01)
− Σ−11

1′Σ−11

)

=
Σ−11

1′Σ−11
+

1

1′Σ−1(µ− r01)

(
Σ−1(µ− r01)1′Σ−11−Σ−111′Σ−1(µ− r01)

1′Σ−11

)

=
Σ−11

1′Σ−11
+

VGMV

RGMV − r0
Qµ , (4)

where Q = Σ−1 − Σ−111′Σ−1/1′Σ−11; RGMV = 1′Σ−1µ/1′Σ−11 and VGMV = 1/1′Σ−11 are

the expected return and the variance of the global minimum variance (GMV) portfolio which is
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the optimal portfolio with the smallest possible variance in case without a risk-free asset. The

expression (4) determines also the weights of the optimal portfolio which maximizes the mean-

variance utility function µ′w− γ
2

w′Σw (cf. Bodnar and Schmid (2011)) with the coefficient of

the investor’s risk aversion equal to γ = (RGMV − r0)/VGMV . It is noted that the maximization

of the mean-variance utility leads to the same set of optimal portfolios which is obtained by

solving Markowitz’s optimization problem in the case without a risk-free asset under some

conditions (see, e.g., Baron (1977), Bodnar et al. (2013a)). As a result, the TP lies on the

efficient frontier in case without a risk-free asset, i.e. it is mean-variance efficient.

Recently, Alexander and Baptista (2002) proved that any mean-variance optimal portfolio in

the case without a risk-free asset can also be obtained as a solution to the problem of minimizing

the portfolio VaR at some confidence level α. The VaR at the confidence level α ∈ (0.5, 1),

namely V aRα, is formally defined as the rate of return such that

P{Xw < −V aRα} = 1− α ,

where Xw = X′w. Changing α, the investor gets different optimal portfolios from the efficient

frontier in the case without a risk-free asset, where α = 1 corresponds to the GMV portfolio.

If X ∼ Nk(µ,Σ), then the VaR can be presented as a function of the first two moments of

X. It holds that

V aRα(Xw) = −w′µ− z1−α
√

w′Σw , (5)

where zβ = Φ−1(β) is the β-quantile of the standard normal distribution. In a general situation,

the quantile z1−α should be replaced by d1−α(w) satisfying

P

{
Xw −w′µ√

w′Σw
< d1−α(w)

}
= 1− α .

This leads to

V aRα(Xw) = −w′µ− d1−α(w)
√

w′Σw . (6)

In the following, we assume that the quantity d1−α(w) is not a function of w, i.e. d1−α(w) =

d1−α. This property applies to many distributions used to model the asset returns, like, e.g.,

for elliptically contoured distributions (cf. Fang and Zhang (1990, Theorem 2.6.3), Gupta et

al. (2013)). In this case, d1−α(w) does not depend on w and it can be taken from the table for

a chosen type of elliptically contoured distribution or approximated via a Monte Carlo study

where only the type of elliptically contoured distribution has to be fixed. It is remarkable to

note that the expressions (5) and (6) are also used in the calculation of CVaR under elliptically

contoured distributions where the constant z1−α (d1−α) should be replaced by another one

which is the function of the significance level α only (cf., Fang and Zhang (1990)). This is an

important property which allows us to deal with the VaR as a risk measure only and note that

similar results can also be obtained in the case of CVaR.

For an arbitrary distribution of the asset returns, the expression (6) can also be considered

as an upper bound of the VaR, obtained by applying Chebyshev’s inequality (see Alexander and

Baptista (2002, Section 3.2)). See also, Bonami and Lejeune (2009) and Grechuk et al. (2010)

for further applications of the classical and generalized Chebyshev’s inequalities in finance.
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In this case, d1−α(w) = 1/
√

1− α and the constructed portfolio corresponds to the worst-case

scenario. For instance, the upper bound for the VaR at the confidence level α = 0.95 is obtained

by (6) with d1−α(w) = 4.4721 (cf. Alexander and Baptista (2002, p. 1179)).

The minimum VaR portfolio at the confidence level α is obtained by minimizing the portfolio

VaR subject to the constraint that the whole wealth is invested into the selected risky assets

(cf. Alexander and Baptista (2002)). It leads to

V aRα(Xw)→ min, subject to 1′w = 1 . (7)

The exact solution of (7) was derived by Alexander and Baptista (2002) assuming that the asset

returns are multivariate normally distributed. Here, we make use of the equivalent expression

suggested by Bodnar et al. (2013b) obtained under the assumption of elliptically contoured

distributions. It is given by

wV aR =
Σ−11

1′Σ−11
+

√
VGMV√
d21−α − s

Qµ, (8)

where

s = µ′Qµ = µ′Σ−1µ− R2
GMV

VGMV

is the slope parameter of the efficient frontier in the case without a risk-free asset. Because

both the TP and the minimum VaR portfolio lie on the efficient frontier, then there exists such

an αTP that these portfolios coincide. We summarize this result in Theorem 1.

Theorem 1. Let X be elliptically contoured distributed with the quantile function dβ of
Xw −w′µ√

w′Σw
for some w and Xw = w′X. We assume that µ 6= µ1. Then1

d21−αTP = (µ− r01)′Σ−1(µ− r01) . (9)

The proof of Theorem 1 follows from the definitions of RGMV , VGMV , and s as well as from

the equality
VGMV

RGMV − rf
=

√
VGMV√

d21−αTP − s

and from the fact that

s = µ′Qµ = (µ− r01)′Q(µ− r01)

because Q1 = 0. It is remarkable that if µ = µ1, then the TP coincides with the GMV

portfolio. In this case, the confidence level of the TP is the same as one of the GMV portfolio,

i.e. αTP = 1 if µ = µ1 independently of r0.

1From the properties of elliptically contoured distribution we get that the distribution of
Xw −w′µ√

w′Σw
is

independent of the vector w.
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Let F denote the univariate marginal distribution function of the elements in X. Then from

Theorem 1 we get

αTP = F
(
γ
√

(µ− r01)′Σ−1(µ− r01)
)
. (10)

The factor γ =
√
−ψ′(0)/2, where the function ψ is defined in the expression of the characteristic

function of X by E (exp(it′X)) = exp(iµ′t)ψ(t′t), appears in the expression since the marginal

quantiles of an elliptical distribution are defined from the distribution of
Xw −w′µ√

w′Dw
, where

D = Σ/γ is a dispersion matrix.

It is noted that the quantity αTP can be interpreted as a risk measure of the TP in the

sense that the TP minimizes the VaR at confidence level αTP . If another confidence level is

used in the calculation of VaR, then another portfolio has to be chosen because the TP is no

longer optimal in this case. In particular, if αTP is significantly smaller than 1, say αTP < 0.9,

then the application of the TP becomes questionable since it could lead to large losses with a

high probability.

Since the weights of the SR portfolio in (2) are defined as a linear combination of the TP

weights, we also obtain that for any η the expected return of the SR portfolio is a linear function

of the TP return. As a result, for any η, the risk of the SR portfolio can be defined by αTP

following the discussion above. This observation follows directly from the fact that for any

other α 6= αTP the TP does not minimizes the VaR and, consequently, the corresponding SR

portfolio would not be optimal in terms of the VaR.

Another important finding which follows from Theorem 1 is the determination of r0(α) for

which the TP minimizes the VaR at confidence level α. This result is obtained by noting that

if r0 decreases, then the TP moves towards the GMV portfolio along the efficient frontier in the

case without a risk-free asset. We observe a similar behaviour for the minimum VaR portfolio

as α increases. Hence, we get

r0(α) ≤ RGMV −
√
VGMV

√
d21−α − s . (11)

Finally, we point out that a similar result to the one given in Theorem 1 can also be obtained

for other optimal portfolios which are obtained by maximizing a modification of the SR (cf.,

Jorion (1997), Campbell et al. (2001), Bodnar and Zabolotskyy (2013)). For instance, the

solution of the portfolio optimization problem based on the analogue of the SR where the

standard deviation is replaced by the VaR coincides with the solution obtained by maximizing

(1) in the case of normally distributed asset returns independently of the confidence level used

in the computation of VaR. Similarly, the result presented in Theorem 1 can be extended to

other portfolio optimization problems where the variance (standard deviation) is replaced by

more sophisticated measures of risk (see, e.g., Rockafellar et al. (2006a,b)). The latter problem

is not treated in the present paper and it is left for future research.
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3 Estimation of the Confidence Level for the SR Portoflio

Although we obtain a closed-form expression for the confidence level of the TP portfolio in

(10), this formula cannot be applied directly in practice since both µ and Σ are unknown

parameters of the asset return distribution. These two quantities have to be estimated using

historical data. Here, we make use of the sample estimators expressed as

µ̂ =
1

n

n∑
i=1

Xi and Σ̂ =
1

n− 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)′ (12)

where X1, ...,Xn are independent realizations of the vector of asset returns.

Replacing the unknown parameters µ and Σ in (10) by the corresponding estimators given

in (12), we get an estimator of αTP denoted by α̂TP which is expressed as

α̂TP = F

(
γ

√
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
. (13)

In this section, we also consider an estimator for the upper bound of r0(α) given in (11). It is

expressed as

ÛB(α) = R̂GMV −
√
V̂GMV

√
d21−αTP − ŝ . (14)

Assuming that the asset returns are independently and multivariate elliptically contoured

distributed, the asymptotic distributions of α̂TP and ÛB(α) are derived. These results are

summarized in Theorem 2.

Theorem 2. Let X1, ...,Xn be independently and elliptically contoured distributed with uni-

variate marginal distribution function F (univariate marginal density f) and let µ 6= µ1. Let

the characteristic function of X be given by E (exp(it′X)) = exp(iµ′t)ψ(t′t). Then,

a) the asymptotic distribution of α̂TP is given by

√
n(α̂TP − αTP )

d−→ N (0, σ2
α) (15)

with

σ2
α = γ2

(
1 +

ψ′′(0)

2 (ψ′(0))2
(µ− r01)′Σ−1(µ− r01)

)
f 2
(
γ
√

(µ− r01)′Σ−1(µ− r01)
)
. (16)

b) the asymptotic distribution of ÛB(α) is given by

√
n(ÛB(α)− UB(α))

d−→ N (0, σ2
UB) (17)

with

σ2
UB = VGMV d

2
1−αTP

2 + d21−αTP
ψ′′(0)

(ψ′(0))2

2(d21−αTP − s)
. (18)
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Proof. From Theorem 1.2.18 of Muirhead (1982) and Theorem 3.15 of Gupta et al. (2013), we

get

√
n

 µ̂− µ

vech(Σ̂)− vech(Σ)

 d−→ N (0,Ω)

as n −→∞ where the symbol vech stands for the vech operator, i.e., vech(A) = (a11, ..., ak1, ...,

aii, ..., aki, ...akk)
′ for an arbitrary symmetric matrix A = (aij), and

Ω =

 Σ 0

0 ψ′′(0)

(ψ′(0))2
D+
k (Ik2 + Kk)(Σ⊗Σ)D+ ′

k

 .
In the following we make use of the operator vec defined by vec(A) = (a11, ..., ak1, ..., a1i, ..., aki,

a1k, ..., akk)
′. The symbol Ik2 denotes the identity matrix of order k2; Kk is a commutation

matrix; Dk is a k2 × k(k + 1)/2 duplication matrix such that Dkvech(A) = vec(A) and D+
k =

(D′kDk)
−1D′k with the property D+

k vec(A) = vech(A) (c.f., Harville (1997)). Finally, the

symbol ⊗ denotes the Kronecker product.

Next, we derive the asymptotic distribution of R̂GMV , V̂GMV , and ŝ which is further used

in the proof of the theorem. From the proof of Theorem 1 in Bodnar et al. (2009), we get

∂RGMV

∂µ
=

Σ−11

1′Σ−11
,

∂VGMV

∂µ
= 0 ,

∂s

∂µ
= 2Qµ ,

∂RGMV

∂vech(Σ)
=

∂(vecΣ−1)′

∂vechΣ
(VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1)) ,

∂VGMV

∂vech(Σ)
= −V −2GMV

∂(vecΣ−1)′

∂vechΣ
(1⊗ 1) ,

∂s

∂vech(Σ)
= −∂(vecΣ−1)′

∂vechΣ

(
R2
GMV (1⊗ 1)− 2RGMV (1⊗ µ) + (µ⊗ µ)

)
,

where (cf., Harville (1997, p. 368))

∂(vec(Σ−1))′

∂vechΣ
= −D′k(Σ

−1 ⊗Σ−1)D+
k
′
D′k . (19)

The application of the delta-method (cf., Theorem 3.7 in DasGupta (2008)) leads to

√
n



R̂GMV

V̂GMV

ŝ

−

RGMV

VGMV

s


 d→ N




0

0

0

 ,


σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 ,
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where

σ2
1 = ((∂RGMV /∂µ)′ (∂RGMV /∂(vechΣ))′)Ω((∂RGMV /∂µ)′ (∂RGMV /∂(vechΣ))′)′ ,

σ12 = ((∂RGMV /∂µ)′ (∂RGMV /∂(vechΣ))′)Ω((∂VGMV /∂µ)′ (∂VGMV /∂(vechΣ))′)′ ,

σ13 = ((∂RGMV /∂µ)′ (∂RGMV /∂(vechΣ))′)Ω((∂s/∂µ)′ (∂s/∂(vechΣ))′)′ ,

σ2
2 = ((∂VGMV /∂µ)′ (∂VGMV /∂(vechΣ))′)Ω((∂VGMV /∂µ)′ (∂VGMV /∂(vechΣ))′)′ ,

σ23 = ((∂VGMV /∂µ)′ (∂VGMV /∂(vechΣ))′)Ω((∂s/∂µ)′ (∂s/∂(vechΣ))′)′ ,

σ2
3 = ((∂s/∂µ)′ (∂s/∂(vechΣ))′)Ω((∂s/∂µ)′ (∂s/∂(vechΣ))′)′ .

We get that

σ2
1 = (∂RGMV /∂µ)′Σ(∂RGMV /∂µ)

+
ψ′′(0)

(ψ′(0))2
(∂RGMV /∂(vechΣ))′D+

k (Ik2 + Kk)(Σ⊗Σ)D+ ′
k (∂RGMV /∂(vechΣ))

=
1

1′Σ−11
+

ψ′′(0)

(ψ′(0))2
(VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1))′

(
∂(vecΣ−1)′

∂vechΣ

)′

× D+
k (Ik2 + Kk)(Σ⊗Σ)D+ ′

k

∂(vecΣ−1)′

∂vechΣ
(VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1))

= VGMV +
ψ′′(0)

(ψ′(0))2
(VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1))′

× DkD
+
k (Σ−1 ⊗Σ−1)DkD

+
k (Ik2 + Kk)(Σ⊗Σ)D+ ′

k D′k(Σ
−1 ⊗Σ−1)D+

k
′
D′k

× (VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1)) .

Taking into account that for arbitrary k × k matrix A the following equalities hold

DkD
+
k =

1

2
(Ik2 + Kk) = Nk ,

Nk(A⊗A) = (A⊗A)Nk ,

DkD
+
k (A⊗A)Dk = (A⊗A)Dk ,

Nk = N2
k = N′k

we get

DkD
+
k (Σ−1 ⊗Σ−1)DkD

+
k Nk(Σ⊗Σ)D+ ′

k D′k(Σ
−1 ⊗Σ−1)D+

k
′
D′k

= (Σ−1 ⊗Σ−1)Nk(Σ⊗Σ)(Σ−1 ⊗Σ−1) = Nk(Σ
−1 ⊗Σ−1) .

It implies that

σ2
1 = VGMV +

ψ′′(0)

(ψ′(0))2
(VGMV (1′ ⊗ µ′)−RGMV VGMV (1′ ⊗ 1′))

× (Ik2 + Kk)(Σ
−1 ⊗Σ−1) (VGMV (1⊗ µ)−RGMV VGMV (1⊗ 1))

= VGMV +
ψ′′(0)

(ψ′(0))2
sVGMV ,

where we use the property that for an arbitrary k × n matrix A and an arbitrary k × 1 vector

a it holds that Kk(A⊗ a) = (a⊗A).
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Analogically, the quantities σ12, σ13, σ23, σ
2
2, and σ2

3 are calculated. Hence,

√
n



R̂GMV

V̂GMV

ŝ

−

RGMV

VGMV

s


 d−→ N (0,Ξ) . (20)

Ξ =


VGMV (1 + s ψ′′(0)

(ψ′(0))2
) 0 0

0 2V 2
GMV

ψ′′(0)

(ψ′(0))2
0

0 0 4s+ 2s2 ψ′′(0)

(ψ′(0))2


a) Rewriting (13), we get

α̂TP = F

(
γ

√
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
= F

γ
√√√√ŝ+

(R̂GMV − r0)2

V̂GMV

 .

The application of (20) and the delta method lead to

√
n(α̂TP − αTP )

d−→ N (0, σ2
α)

where

σ2
α =

f
(
γ
√
s+ (RGMV − r0)2/VGMV

)
2
√
s+ (RGMV − r0)2/VGMV


2

γ2

×
(

2
(RGMV − r0)

VGMV

, −(RGMV − r0)2

V 2
GMV

, 1

)
Ξ


2(RGMV − r0)/VGMV

−(RGMV − r0)2/V 2
GMV

1



=

f
(
γ
√
s+ (RGMV − r0)2/VGMV

)
2
√
s+ (RGMV − r0)2/VGMV


2

γ2

×
(

4
(RGMV − r0)2

VGMV

(
1 + s

ψ′′(0)

(ψ′(0))2

)
+ 2

(RGMV − r0)4

V 2
GMV

ψ′′(0)

(ψ′(0))2
+ 4s+ 2s2

ψ′′(0)

(ψ′(0))2

)

=
2 ψ′′(0)

(ψ′(0))2
(s+ (RGMV − r0)2/VGMV )

2
+ 4 (s+ (RGMV − r0)2/VGMV )

4 (s+ (RGMV − r0)2/VGMV )

× f 2
(
γ
√
s+ (RGMV − r0)2/VGMV

)
γ2

=

(
1 +

1

2

(
s+ (RGMV − r0)2/VGMV

) ψ′′(0)

(ψ′(0))2

)
f 2
(
γ
√
s+ (RGMV − r0)2/VGMV

)
γ2

=

(
1 +

ψ′′(0)

2 (ψ′(0))2
(µ− r01)′Σ−1(µ− r01)

)
f 2
(
γ
√

(µ− r01)′Σ−1(µ− r01)
)
γ2 .

b) Similarly, we get
√
n(ÛB(α)− UB(α))

d−→ N (0, σ2
UB)

11



where

σ2
UB =

1, −

√
d21−αTP − s
2
√
VGMV

,

√
VGMV

2
√
d21−αTP − s

Ξ


1

−

√
d21−αTP

−s

2
√
VGMV√

VGMV

2
√
d21−αTP

−s


= VGMV

(
1 + s

ψ′′(0)

(ψ′(0))2

)
+
d21−αTP − s

2
VGMV

ψ′′(0)

(ψ′(0))2

+

(
4s+ 2s2

ψ′′(0)

(ψ′(0))2

)
VGMV

4(d21−αTP − s)

= VGMV d
2
1−αTP

2 + d21−αTP
ψ′′(0)

(ψ′(0))2

2(d21−αTP − s)

Consistent estimators for σ2
α and σ2

UB are provided in Theorem 3.

Theorem 3. Let X1, ...,Xn be independently and elliptically contoured distributed with uni-

variate marginal distribution function F (univariate marginal density f) and let µ 6= µ1. Let

ψ(.) denote the characteristic function of X, i.e. ψ(t) = E (exp(it′X)). Then, for n→∞

σ̂2
α =

(
1 +

ψ′′(0)

2 (ψ′(0))2
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
f 2

(√
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
a.s.−→ σ2

α (21)

and

σ̂2
UB = V̂GMV d

2
1−αTP

2 + d21−αTP
ψ′′(0)

(ψ′(0))2

2(d21−αTP − ŝ)
a.s.−→ σ2

UB . (22)

Proof. The statement of the theorem follows directly from the proof of Theorem 2 and the

Continuous Mapping Theorem (see, e.g., Theorem 1.14 in DasGupta (2008)).

The application of Theorems 2 and 3 leads to the following (1 − β)-confidence interval for

αSR expressed as[
F

(
γ

√
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
− σ̂α√

n
z1−β/2, F

(
γ

√
(µ̂− r01)′Σ̂

−1
(µ̂− r01)

)
+
σ̂α√
n
z1−β/2

]
,

(23)

where σ̂α is given in (22). In a similar way, we construct the confidence interval for the upper

bound of r0. However, in this case we are interested in the upper one-sided interval which is

expressed by (
−∞, R̂GMV −

√
V̂GMV

√
d21−αTP − ŝ+

σ̂UB√
n
z1−β

]
. (24)

It is noted that the results of Theorems 2 and 3 also hold if the assumption of independence

is replaced by the condition of weak dependence or by the assumption of a strictly stationary

process (cf. Bodnar et al. (2013b)).
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3.1 Numerical Illustration

In this subsection, we analyse the finite sample distributional properties of α̂TP . Theorem 2

shows that the asymptotic density function of α̂TP depends only on the type of elliptical dis-

tribution and on the quadratic form δ = (µ − r01)′Σ−1(µ − r01). Since the first quantity is

assumed to be known in practical applications, the practitioners have only to calibrate the den-

sity function with respect to possible values of δ in order to study the asymptotic distributional

properties of α̂SR via simulations. Another important question is to investigate how fast the

finite sample distribution of α̂TP converges to the corresponding asymptotic one.

In Figures 1 and 2 we present the results by considering k ∈ {5, 15, 25} and n ∈ {120, 250, 500,

1000}. Several values of δ are considered for each choice of k and n, namely δ ∈ {0.1, 0.3} in

Figure 1 and δ ∈ {0.5, 0.7} in Figure 2. This range of the values for δ corresponds to the results

of the empirical study presented in Section 4 (see Figure 4).

In all plots, we present the asymptotic density of
√
n(α̂TP − αTP )/σα derived in Theorem

2 as well as the kernel density estimators with the Epanechnikov kernel calculated from the

generated samples of size n ∈ {120, 250, 500, 1000} from k ∈ {5, 15, 25} dimensional multivari-

ate t-distribution with 5 degrees of freedom. The location vector and the scale matrix of the

t-distribution are fixed in such a way that the corresponding values of δ are obtained. The

results of the simulation study are based on 104 independent repetitions.

The resulting densities appear to be roughly symmetric which is also true in case of a

large-dimensional portfolio of 25 assets when the sample size is relatively small with respect

to the portfolio dimension, namely n = 120. This finding illustrates that the finite sample

density of
√
n(α̂TP − αTP )/σα can be well approximated by a normal distribution and the

resulting approximation performs very well also for moderate sample sizes. We also observe

that the values of
√
n(α̂TP − αTP )/σα are shifted to the right in case of p = 15 and p = 25.

Consequently, the estimator α̂TP overestimates the true value of αTP . The situation is improved

when n increases.

In Table 1, we provide a further analysis of the stochastic behaviour of α̂TP . Here, the

probabilities P (α̂TP > α) with α ∈ {0.9, 0.95, 0.99} are presented for different values of n

(n = 120 – panel 1, n = 250 – panel 2, n = 500 – panel 3, n = 1000 – panel 4) and for the

values of k and δ considered in Figures 1 and 2. We observe that the calculated probabilities

are very close to zero in most of the considered cases. Significant deviations are present only

for k = 25 and δ = 0.7. This result illustrates that the optimal portfolio in the sense of

maximizing the SR could be less risky only if a large-dimensional portfolio is constructed as

well as the value of δ is sufficiently large. However, this observation seems to be related to the

positive bias which is present in α̂TP , but not to the true value of αTP . The property disappears

when n increases. Furthermore, also in this case the maximum SR portfolio corresponds to the

minimum VaR portfolio at the significance value smaller than 0.9 with a high probability. This

is an unpleasant property of the maximum SR portfolio and questions its practical applicability.

The positive bias observed in the densities of
√
n(α̂TP − αTP )/σα, especially for k = 25, is

mainly related to the bias which is present in the estimation of δ = (µ− r01)′Σ−1(µ− r01). If

13
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Figure 1: Exact and asymptotic densities of
√
n(α̂TP − αTP )/σα for k ∈ {5, 15, 25}, n ∈

{120, 250, 500, 1000}, and δ ∈ {0.1, 0.3}.

we additionally assumed that the asset returns are normally distributed, then it holds that

n(n− k)

(n− 1)k
(µ̂− r01)′Σ̂

−1
(µ̂− r01) ∼ Fk,n−k,nδ ,

i.e. it has a non-central F -distribution. From the properties of the non-central F -distribution
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c) δ = 0.5, k = 25 f) δ = 0.7, k = 25
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Figure 2: Exact and asymptotic densities of
√
n(α̂TP − αTP )/σα for k ∈ {5, 15, 25}, n ∈

{120, 250, 500, 1000}, and δ ∈ {0.5, 0.7}.

(cf., Johnson et al. (1995, p. 481)) we get

E((µ̂− r01)′Σ̂
−1

(µ̂− r01)) =
k(n− 1)

(n− k − 2)n
+

n− 1

n− k − 2
δ ,

and, hence, the unbiased estimator for δ is given by

n− k − 2

n− 1
(µ̂− r01)′Σ̂

−1
(µ̂− r01)− k

n
. (25)
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n = 120

k = 5 k = 15 k = 25

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7

α = 0.9 0 0 0.0017 0.0326 0 0.0004 0.022 0.1759 0 0.0091 0.1474 0.4956

α = 0.95 0 0 0 0 0 0 0 0 0 0 0.0002 0.0036

α = 0.99 0 0 0 0 0 0 0 0 0 0 0 0

n = 250

k = 5 k = 15 k = 25

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7

α = 0.9 0 0 0 0.0009 0 0 0.0004 0.0095 0 0 0.0011 0.0433

α = 0.95 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.99 0 0 0 0 0 0 0 0 0 0 0 0

n = 500

k = 5 k = 15 k = 25

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7

α = 0.9 0 0 0 0 0 0 0 0 0 0 0 0.0001

α = 0.95 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.99 0 0 0 0 0 0 0 0 0 0 0 0

n = 1000

k = 5 k = 15 k = 25

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7

α = 0.9 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.95 0 0 0 0 0 0 0 0 0 0 0 0

α = 0.99 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Probabilities P (α̂SR > α) with α ∈ {0.9, 0.95, 0.99} for k ∈ {5, 10, 25, 50}, δ ∈
{0.1, 0.3, 0.5, 0.7}, and n ∈ {120 (panel 1), 250 (panel 2), 500 (panel 3), 1000 (panel 4)}.

However, the estimator (25) can also be negative with a positive probability, especially when n

is not large enough. As a result, the following finite-sample adjusted version of α̂TP is given by

α̂∗TP = F

γ
√

max{0, n− k − 2

n− 1
(µ̂− r01)′Σ̂

−1
(µ̂− r01)− k

n
}

 . (26)

In Figure 3, we present the performance of
√
n(α̂∗TP − αTP )/σα. The calculations are done

for the same of the parameters as the ones used in Figures 1 and 2 for k = 25. We observe

a considerable improvement in the convergent rate of the finite-sample adjusted estimator for

αTP as given in (26) with respect to the sample one presented in (13).

4 Empirical Study

In this section we apply the theoretical results of the paper to real data which consist of weekly

asset returns of 30 stocks included into the Dow Jones index from 01.01.2009 to 31.12.2013. As

a risk-free asset we use the 3 month US treasury bill. Based on the considered data, several

optimal portfolios of different sizes are constructed and their properties are investigated. In

order to obtain a better understanding, we make use of the rolling window estimation with the

window size of n = 110.

In Figure 4, the estimated values of the quadratic form δ = (µ− r01)′Σ−1(µ− r01) for k ∈
{5, 10, 15, 20, 25, 30} are presented. We observe that these values are always smaller than 0.45

and they are increasing as k becomes larger. Moreover, the estimated values of the quadratic
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Figure 3: Exact and asymptotic densities of
√
n(α̂∗TP − αTP )/σα for k = 25, n ∈

{120, 250, 500, 1000}, and δ ∈ {0.1, 0.3, 0.5, 0.7}.

form lie in the range of δ as considered in the numerical illustration of Section 3. Using the

results presented in Table 1, a first conclusion can be drawn that the corresponding α̂TP with

a high probability are smaller than 0.9, i.e. the corresponding SR portfolios are very risky and

they are not in line with the recommendations of the Basel Committee on Banking Supervision.

More pronounced results are presented in Figure 5 where the confidence intervals at the

significance level β = 0.95 are constructed by using the results of Section 3.1. The upper

bounds of the calculated confidence intervals are always smaller than 0.85. This shows that not

only the estimated confidence levels of the VaR calculated for the SR portfolio, but also that

their population counterparts are significantly smaller than 0.9 with probability of 0.95.

Finally, in Figure 6 we present the estimated upper bounds for r0(0.95) with the upper limits

of the corresponding upper one-sided confidence intervals. The results of the figure document

that the SR portfolio is very risky and its risk cannot be reduced by considering a risk-free

asset with return r0 ≥ 0. The results of the empirical study confirm our previous conclusions

that the application of the SR portfolio in practice could lead to large losses with a relatively

high probability.
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Figure 4: Estimator of δ = (µ − r01)′Σ−1(µ − r01) for optimal portfolios of size k ∈
{5, 10, 15, 20, 25, 30} calculated by using the weekly asset returns of 30 stocks included into

the Dow Jones index from 01.01.2009 to 31.12.2013. The 3 month US treasury bill is used as

a risk-free asset. The rolling window estimation with the window size of n = 110 is performed.

5 Summary

Both the SR and the optimal portfolio, which is obtained by maximizing the SR, are popular

in the financial literature (see, e.g., Sharpe (1966, 1994), Schmid and Zabolotskyy (2008)). It

provides the investor with a simple and intuitively understandable strategy how to determine an

optimal portfolio. Moreover, the SR portfolio is in line with Markowitz’s optimization problem

since it lies on the efficient frontier in the mean-variance space in the case without a risk-free

asset and provides a reasonable alternative to the global minimum variance portfolio.

In contrast, the estimated SR portfolio does not possess desirable distributional properties.

Okhrin and Schmid (2006) proved that the distribution of its estimated weights are heavy-

tailed. Moreover, the sample weights of the portfolio with the highest SR do not possess a

first moment at all. An extension to this result was given by Schmid and Zabolotskyy (2008)

who showed that an unbiased estimator for the weights of the optimal portfolio in the sense of

maximizing SR does not exist. Finally, Bodnar and Schmid (2008) proved that the estimator

of the expected return of the SR portfolio does not have a first moment, while the estimator

for its variance does not possess moments of order greater than or equal to 1/2.

In the present paper we extend these results by showing that the difficulties already appear

when the population SR portfolio is determined. This conclusion is achieved by comparing the

TP related to the SR portfolio for the given return of the risk-free asset with the corresponding
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Figure 5: Confidence intervals for αTP in case of the SR portfolios of size k ∈
{5, 10, 15, 20, 25, 30} calculated by using the weekly asset returns of 30 stocks included into

the Dow Jones index from 01.01.2009 to 31.12.2013. The rolling window estimation with the

window size of n = 110 is used.

minimum VaR portfolio which also lies on the efficient frontier and coincides with the TP. The

confidence level of the ”equivalent” minimum VaR portfolio is then used to determine the risk

of the TP as well as the related SR portfolio. Both theoretical and empirical results show that

this significance level is smaller than 0.9 in almost all of the considered cases. As a result, the

19



a) k = 5 d) k = 20

0 50 100 150

−
4.

0
−

3.
5

−
3.

0
−

2.
5

−
2.

0

upper bound

UB̂(0.95)

0 50 100 150

−
2.

0
−

1.
8

−
1.

6
−

1.
4

−
1.

2
−

1.
0 upper bound

UB̂(0.95)

b) k = 10 e) k = 25

0 50 100 150

−
2.

4
−

2.
2

−
2.

0
−

1.
8

−
1.

6
−

1.
4

−
1.

2 upper bound

UB̂(0.95)

0 50 100 150

−
1.

8
−

1.
6

−
1.

4
−

1.
2

−
1.

0
−

0.
8

upper bound

UB̂(0.95)

c) k = 15 f) k = 30

0 50 100 150

−
2.

2
−

2.
0

−
1.

8
−

1.
6

−
1.

4
−

1.
2

−
1.

0

upper bound

UB̂(0.95)

0 50 100 150

−
1.

8
−

1.
6

−
1.

4
−

1.
2

−
1.

0
−

0.
8 upper bound

UB̂(0.95)

Figure 6: Confidence intervals for r0(0.95) in case of the SR portfolios of size k ∈
{5, 10, 15, 20, 25, 30} calculated by using the weekly asset returns of 30 stocks included into

the Dow Jones index from 01.01.2009 to 31.12.2013. The rolling window estimation with the

window size of n = 110 is used.

SR portfolio appears to be a very risky investment strategy and it should be used very carefully

in practice since its application could lead to large losses with a relatively high probability.
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