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Abstract

A simple class of stochastic models for epidemic spread in finite,
but large, populations is studied. The purpose is to investigate how
assumptions about the distribution of times between primary and sec-
ondary infections influences the outcome of the epidemic. Of particu-
lar interest is how assumptions of individual variability in infectious-
ness relates to variability of the epidemic curve. The main concern
is the proportion of the population that finally are infected and the
time scale at which the epidemic evolves. The theoretical results are
illustrated by simulations.
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1 Introduction

Epidemics are complex processes. The possibility for an infection to spread
in a population is related both to medical-biological properties deciding the
interplay by an infectious person and the infectious agent and to social factors
involved in contacts between infectious and susceptible individuals. Any
mathematical model will at best be an approximation. The usefulness of
a model depends on to what extent it helps in understanding interesting
features of the spread.

In this paper we will consider assumptions about randomness. It is a
common understanding that chance plays an important part in spread of
infections. Epidemics in large populations are mass phenomena and we can
expect that the influence of chance on overall properties will, due to some
form of the theorem of large numbers, even out. If this is the case it is crucial
to understand for which properties it is sufficient to consider mean properties
and how, in that case, they are related to the stochastic properties of the
infectious agent and the population. It is worth pointing out that it is well-
known that randomness influences the outcomes of an epidemic even in large
populations. An example is that it always is a positive probability that the
spread stops early with only a few infected. Another random outcome is the
time it takes for an epidemic to grow large.

The assumptions used to build a model have to be considered carefully.
They should include features that are related to the phenomena under study.
If the aim is, as it normally should be, restricted to a study of a few aspects it
is also recommendable that the assumptions are as simple as possible. A con-
sequence is that the model should only use assumptions that are important
for the predictions of the model.

In this paper we will use a simple model for the spread of an infection
to study the impact of some basic assumptions of how an infectious agent is
transmitted. The aim is to describe human-to-human spread of an infection
in a large closed population. The model used has a long history and is
basically a stochastic version of the Kermack-MacKendrick model (Kermack
et al. (1927)) applied to a finite population. It is described in section 2.
We will here follow the formulation and terminology of Svensson (2007).
There are several treatments of models with similar structure, see e.g. Becker
(1993).

The assumptions are related to how many persons an infected person
may infect and when secondary infections occur. The times that elapses
from a person is infected till he infects other persons plays an important
part both in applied and theoretical studies of epidemic spread (see e.g. Fine
(2003), Wallinga et al. (2007), Kenah et al (2008), and, Tomba et al. (2010)).
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These times enter into the model studied here through the generation time
distribution. In section 4 different approaches to assumptions about this
distribution are considered.

The epidemic is assumed to start with the introduction of one (newly)
infected person into the population. The focus of the study is how the as-
sumptions are reflected in the appearance of the epidemic curve, which de-
scribes how many persons in a population that are infected at time t after
the infection entered the population.

The appearance of the epidemic curves are analysed using martingale
theory in section 5. Simulated epidemic curves are presented and discussed
in section 6. We will in particular be concerned with the proportion of the
population that finally will be infected and at which time scale the epidemic
evolves.

In section 7 we consider non-parametric estimates of basic parameters in
the model based on one observed epidemic curve. Since the epidemic curve
is based on times of infection that are seldom observed this may seem an
unrealistic theoretical exercise. However, the possibilities to estimate the
parameters that defines the model shows what can be recovered from an
observation and thus also which assumptions has identifiable impacts on the
predictions of the model.

2 A simple epidemic model

We will assume that the epidemic takes place in a closed, finite population
with n members. At time t = 0, one newly infected person enters the popu-
lation and starts the infectious spread.

The spread is assumed to depend on two, possible random, entities, λ
and K. Here λ is a non-negative (random) number that decides the ”total
amount of infectivity” spread by an infected person, K is a (random) pos-
itive measure, with total mass 1, defined on [0,∞[. K describes how the
infectiousness is distributed in time. The assumption that K is a random
measure implies that it is not the same for all infected individuals. It is
chosen (independently for all persons) according to a distribution on all pos-
sible measures. Let K(t) = K([0, t[). We will refer to K(t) as the contact
distribution function. For simplicity we assume that there exist a density so
that

K(t) =

t∫
0

κ(s)ds. (2.1)

The functions λκ(t) are referred to as infectiousness functions by Becker
(1993).
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Observe that both λ and K are considered to be random and that they
may be dependent. In the following analysis we will tacitly assume that all
measures and functions are regular enough to admit operations, e.g. exchange
of order of integration, that simplifies calculations.

In the model it is assumed that for a given infectious individual the num-
ber of possibly infectious contacts in the interval I = [a, b[, after infection, is
Poisson distributed with mean λK(I) (conditional on λ and K). The number
of all possible infectious contacts taken by one infected individual will follow
a mixed Poisson distribution i.e. it is Poisson distributed with the random
mean λ.

We will consider epidemics in a finite and closed population. The con-
tacted persons are chosen randomly in the population. An infectious contact
results in a secondary case if the contact is taken with a susceptible person,
i.e. a person that has not been previously infected.

The basic reproduction number, R0, is often defined as the mean
number of secondary cases to an infected individual in a totally susceptible
population. We will in this paper define it as the mean number of possible
infectious contacts. In the class of models considered here the two definitions
are equivalent. Thus

R0 = E(λ). (2.2)

The expectation of random functions λκ, normalized to have total mass
1 is called the basic generation time density i.e.

g(t) =
E(λκ(t))

R0

. (2.3)

We can also define the basic generation time distribution

G(t) =

t∫
0

g(s)ds =
E(λK(t))

R0

. (2.4)

The function G measures how large proportion of the infectivity a random
infected has emitted at time t after infection.

We will also consider the mean generation time

T0 =

∞∫
0

tg(t)dt. (2.5)

Later we will be concerned with the variability of the epidemic process.
For this reason we introduce the variance function

V (t) =
Var(λK(t))

R2
0

. (2.6)
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Note that

V0 = V (∞) =
Var(λ)

R2
0

(2.7)

is the square of the coefficient of variance of the random variable λ.

3 Models of the generation time density

The generation time density plays an important part in the model. Its role is
to explain the times between a primary infection and its secondary infections.
We will consider two approaches to motivate assumptions of this density.

3.1 Models with non-random generation time density

A common assumption is that the relative infectivity of an infected persons
develops without individual variation. This implies that the function κ(t) is
constant, i.e.

κ(t) = g(t), (3.1)

The intensity of the Poisson process that generates possible infectious con-
tacts of an infectious person at time t after infection is λg(t) where λ is a
random variable.

3.2 Models with latent and infectious times

In SEIR-models it is assumed that an infection is followed by a period, called
the latent period, during which the infected person do not transmit the in-
fection. The latent period is then followed by an infectious period. Both the
latent and infectious periods may have random individual duration. In this
paper we shall, for simplicity, only consider models where the infectivity is
assumed to be constant throughout the infectious time.

LetX be the duration of the latent period, Y the duration of the infectious
period, and α the infectivity during the infectious period. Then

λκ(t) = αI(X < t ≤ X + Y ). (3.2)

With this formulation λ = αY is the individual total infectivity, and

κ(t) = I(X < t ≤ X + Y )/Y. (3.3)

According to (2.3) the basic generation time density g equals

g(t) =
P(X + Y > t)− P(X > t)

E(Y )
=

P(X ≤ t)− P(X + Y ≤ t)

E(Y )
. (3.4)
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A simple calculation yields that the mean generation time

T0 = E(X)− E(Y 2)

2E(Y )
. (3.5)

4 Models with a specific basic generation time

density

Many important properties of the epidemic curve depend on R0 and g. As
seen in the previous section a given generation time density, g, may be mo-
tivated in several ways. An often used assumption is that all individuals
spreads the infection according to a non-random function coinciding with g.
This is always possible provided that g is a non-negative function with total
mass 1.

Another possibility, described in section 3.2, is to derive g as the outcome
of a model using latent and infectious times and constant infectivity during
the infectious period. In such models g can, according to (3.4), be represented
as the difference between two functions which are both either decreasing or
increasing.

First observe that if g is a decreasing function there will always exist a
model with no latent time and constant infectivity under the infectious time
that generates this generation time density. The density of the infectious
time equals −g′(t)/g(0).

If g is a non-decreasing function it can always be represented as the
difference between two decreasing functions. If furthermore g(0) = 0 we can
construct an X (i.e. the random latent time), and a Y (i.e. the random
infectious time) which gives the basic generation density g. The construction
is built on the representation:

g(t) = −
∞∫
t

I(g′(s) > 0)g′(s)ds−
∞∫
t

I(g′(s) < 0)g′(s)ds. (4.1)

If g(0) = 0 then
∞∫
0

I(g′(s) > 0)g′(s)ds = −
∞∫
0

I(g′(s) < 0)g′(s)ds. Let Z be a

random variable such that

P(Z > t) =
−
∞∫
t

I(g′(s) < 0)g′(s)ds

∞∫
0

I(g′(s) > 0)g′(s)ds
, (4.2)
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and X a random variable such that

P(X > t) =

∞∫
t

I(g′(s) > 0)g′(s)ds

∞∫
0

I(g′(s) > 0)g′(s)ds
. (4.3)

The random variable Z is stochastically larger than X. Thus there exist a
random variable Y such that Z = X + Y . We may then regard X as the
duration of the latent period and Y as the duration of the infectious period.
Here

E(Y ) =
1

∞∫
0

I(g′(s) > 0)g′(s)ds
. (4.4)

With this construction we cannot be sure that the latent and infectious
times are independent. To investigate if and when this is possible we will use
arguments involving Laplace transforms.

Let

Lg =

∞∫
0

e−trg(t)dt (4.5)

be the Laplace transform of the basic generation density. If we have a model
as described in section 3.2 where X and Y are independent then

Lg(r) = M(r)
1− L(r)

rE(Y )
, (4.6)

where M is the Laplace transform of X, i.e. the latent time, and L is the
Laplace transform of Y , i.e. the infectious time.

Now (1−L(r))/(rE(Y )) is the Laplace transform of a decreasing density
function. From this we can conclude that a basic generation time density g
can be obtained from a model with independent latent and infectious times
if and only if the density g, can be obtained as a convolution between two
densities where at least one is decreasing. It is worth observing that there
are densities that cannot be represented in this way. This is true e.g. for
indecomposable densities. One such example is the Beta-distribution with
m+ n < 2. Such densities cannot be the result of assumptions as in section
3.2 (see e.g. Linnik et al (1977)).

In case Lg can be divided into two components where G̃ is the density of
the second decreasing component then the infectious period can be modelled
as having the density −G̃′(t)/G̃(0) and the latent period having the density
of the other component.

There may be several models with independent latent and infectious times
that result in the same generation time density. A simple example is if X

7



is exponential distributed with mean γ and Y is exponentially distributed
with mean µ. The same generation time distribution is obtained if X is ex-
ponentially distributed with mean µ and Y exponentially distributed with
mean γ. Due to the fact that an exponential distribution has a decreasing
density for any model where the latent and infectious times are assumed to
be independent and the latent time is exponential distributed there exists
another model, with independent latent and infectious times where the in-
fectious time is exponential distributed, with the same basic generation time
density.

4.1 Two examples

4.1.1 Exponentially distributed latent and infectious times

An often used assumption is that the latent and infectious times are in-
dependent and exponential distributed. This may be unrealistic for most
known infections but has the advantage that it makes the mathematical cal-
culations rather easy. Assume that the latent time, X ∼ exp(γ) and the
infectious times Y ∼ exp(µ). Then

g(t) =
γµ

γ − µ
(exp(−µt)− exp(−γt)) (4.7)

G(t) = 1− γ

γ − µ
exp(−µt) +

µ

γ − µ
exp(−γt). (4.8)

Observe that the functions are symmetric in γ and µ, and the same gen-
eration time density holds if the parameters are interchanged. Together with
the value of the basic reproduction number, R0, the pair (γ, µ) defines the
model.

Elementary calculations yield

T0 =
1

γ
+

1

µ
. (4.9)

The variance function defined by (2.6) will not be symmetric in γ and µ.

V (t) = 1 +
2γµ

(γ − µ)2
(exp(−µt)− exp(−γt)) (4.10)

−(
γ

γ − µ
exp(−µt)− µ

γ − µ
exp(−γt))2 − 2t

γµ

γ − µ
exp(−µt).

If the values of γ and µ are interchanged V (t) will be larger for all 0 < t <∞
if µ < γ. Regardless of γ and µ

V0 = 1. (4.11)
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4.1.2 Gamma-distributed latent and infectious times

Assume that the latent time, X, is Gamma-distributed, Γ(r, γ) and the infec-
tious time, Y is Gamma-distributed, Γ(s, γ). This implies that E(X) = r/γ
and E(Y ) = s/γ. The generation time density is given by the simple relation
(3.4). This function will have a rather complicated expression. In this model

T0 =
r

γ
+
s+ 1

2γ
, (4.12)

and

V0 =
1

s
. (4.13)

Simple manipulation yields that the same generation time distribution
is obtained if Y is exponential distributed with intensity γ and X has the
distribution given as an equal mixture of the s Gamma-distributions Γ(r, γ),
. . . , Γ(r + s − 1, γ). Since the generation time density is the same we also
have the same mean generation time, T0. However the variability is different
and in this case

V0 = 1. (4.14)

5 The epidemic curve

The epidemic curve is described by a counting process, N , where N(t) is the
number of infected individuals up till time t. For the stochastic construction
of this counting process and related martingales see appendix A.

Let Ki, i = 0, . . . , n be a sequence of contact distribution functions and λi
the corresponding infectivities. Here Ki is the contact distribution function
of the i’th infected and K0 the contact distribution function of the individual
which introduce the infection into the population. Let κi, i = 0, . . . , n be the
corresponding densities. Now N(t) is a counting process with intensity

η(t) = (1−N(t−)/n)

 t∫
0

λN(u)κN(u)(t− u)dN(u) + λ0κ0(t)

 . (5.1)

By subtracting the integrated intensity from the counting process we
obtain a martingale:

N(t)−
t∫

0

η(s)ds. (5.2)
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Another martingale, which has an essential role in the study of the epi-
demic is

M(t) =

t∫
0

dN(s)

1−N(s−)/n
−

t∫
0

λN(s)KN(s)(t− s)dN(s)− λ0K0(t). (5.3)

The first integral is a straight-forward function of the N(t). Observe that

the second integral equals the integral of
s∫
0
λN(u)κN(u)(s− u)dN(u) between

0 and t.
Considering the quadratic variation process, [M ](t) we find that

Var(M(t)) = E

 t∫
0

dN(s)

(1−N(s−)/n)2

 . (5.4)

We will also study the process that arise when the random functions
λiκi(s) are substituted by their expectations, R0g(t), (see the definition
(2.3)).

Z(t) =

t∫
0

dN(s)

1−N(s−)/n
−R0

 t∫
0

G(t− s)dN(s) +G(t)

 . (5.5)

In appendix A it is proved that

E(Z(t)) = 0, (5.6)

and

Var(Z(t)) = E

 t∫
0

dN(s)

(1−N(s−)/n)2
+R2

0(

t∫
0

V (t− s)dN(s) + V (t))

 .
(5.7)

If f(s) be a non-random continuous function

Mf (t) =

t∫
0

f(s)
dN(s)

1−N(s−)/n
(5.8)

−
t∫

0

f(s)

s∫
0

λN(s)κN(s)(s− u)dN(u)ds− λ0
t∫

0

f(s)κ0(s)ds
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is a martingale with mean 0. With the same substitution as above we obtain
the new process

Zf (t) =

t∫
0

f(s)dN(s)

1−N(s−)/n
(5.9)

−R0

 t∫
0

f(s)

s∫
0

g(s− u)dN(u)ds+

t∫
0

f(s)g(s)ds

 .
In appendix A it is proved that

E(Zf (t)) = 0. (5.10)

We will be interested in processes, Zfr(t), with fr(s) = exp(−rs). We
find that

Zfr(t) =

t∫
0

exp(−rs)dN(s)

1−N(s−)/n
(5.11)

−R0

 t∫
0

exp(−ru)Hr(t− u)dN(u) +Hr(t)

 ,
where

Hr(t) =

t∫
0

exp(−rs)g(s)ds. (5.12)

We find that

Hr(∞) =

∞∫
0

exp(−rs)g(s)ds = Lg(r) (5.13)

as a function of r is the Laplace transform of the generation time density.
Thus

Zfr(∞) =

∞∫
0

e−rt
dN(t)

1−N(t−)/n
(5.14)

−R0

 ∞∫
0

e−rsdN(s) + 1

Lg(r)
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Another interesting process is Zf (t) with f(s) = s,

Zf (t) =

t∫
0

sdN(s)

1−N(s−)/n
(5.15)

−R0

 t∫
0

J(t− u)N(u) +

t∫
0

uG(t− u)dN(u) + J(t)

 ,
where

J(t) =

t∫
0

sg(s)ds. (5.16)

Here

J(∞) =

∞∫
0

tg(s)ds = T0, (5.17)

is the mean generation time. It follows that

Zf (∞) =

∞∫
0

t
dN(t)

1−N(t−)/n
(5.18)

−R0

(N(∞) + 1)T0 +

∞∫
0

tdN(t)

 .

6 Properties of the epidemic curve

In this section we discuss some elementary properties of the epidemic process
modelled as above and study how they are related to the assumptions of the
model.

We will focus the interest on epidemics with large outbreaks, i.e., where
the infection is spread to an non-negligible positive proportion of the popu-
lation. There is a positive probability that the epidemic never takes on, i.e.
stops with only a few infected persons. Let δ be the probability of a large
outbreak. If Lλ(s) = E(exp(−λs)) is the Laplace transform of λ then δ is
the largest solution of the equation:

1− δ = Lλ(δ). (6.1)

This follows since the epidemic curve initially behaves like a branching pro-
cess since then almost all contacts will be taken to susceptible persons. The
probability for extinction of a branching process depends on the generating
function of the number of offspring (here possible infectious contacts) (see
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e.g. Haccou et al (2005)). The generating function equals Lλ(1− s). Equa-
tion (6.1) always has the solution δ = 0. A positive solution exists if and
only if R0 > 1.

Figure 6 gives examples of epidemic curves corresponding to large out-
breaks. The curves are generated by simulating outcomes of an epidemic
model. The generation time density used is of the kind described in section
4.1.1 with the latent time exponentially distributed with mean 1 and the in-
fectious time exponentially distributed with mean 2. The expected lengths of
the periods roughly corresponds to what is assumed in studies of the spread
of influenza if the time unit is days. The simulations are made with the basic
reproduction number, R0 = 2. The epidemic curves differ but they share
some features. In the initial phase the epidemics increases at an exponential
rate and finally the curves level out by approaching approximately the same
level.

We denote the proportion of the population that is infected through the
epidemic by π̂ = N(∞)/n. A well-known relation (see Andersson et al
(2000)) is

− ln(1− π̂)−R0π̂ → 0, (6.2)

as n→∞.
It should be observed that both the probability of a large outbreak and

the final size of a large epidemic only depend on the distribution of λ and
not on the basic generation time density. Heuristically, we can understand
that these features are not related to time.

In contrast, the speed at which the epidemic grows will depend on the
times between primary and secondary infections. At the start the epidemic
process can be approximated by a branching process. Such processes have
been thoroughly studied and much is known of their probabilistic behaviour.
These results may be transferred to the initial behaviour of the epidemic
curve.

A basic result is that the epidemic curve increases at exponential rate,
i.e., N(t) is in the initial phase proportional to exp(rt) (see Haccou et al
(2005) and Kimmel et al (2002)). A more exact result is that N(t) grows as
W exp(rt) where W is a random variable and r is a constant. The Malthus
parameter, r, can be found as the solution to the Euler-Lotka equation:

R0

∞∫
0

exp(−rt)g(t)dt = 1. (6.3)

Observe that the Malthus parameter depends on both the basic generation
time density and on the basic reproduction number, R0. In the study of
epidemics the doubling time of the epidemic, D, i.e. the time it takes for
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the number of infected to double, are often used instead of the Malthus
parameter. There is a relation between these two numbers,

D =
ln(2)

r
. (6.4)

After the initial phase comes a period in which a non-negative proportion
of the population has been infected. During the most intense phase there
will be a large number of infectious persons, spreading the infection and a
large number of persons still susceptible.

7 Nonparametric estimates

We will consider the possibilities to estimate basic parameters of the model.
The estimates will be based on one observation of an entire epidemic curve.
If the outbreak stopped with only a small number of infected it would not
be possible to obtain any reasonable good estimates. For this reason we will
only consider epidemics which grows large. We will use moment estimators
suggested by the relation (5.10) based on Zf (∞) (see (5.9)) for different
choices of f .

7.1 Estimate of R0

An obvious estimate of the basic reproduction number is the solution to the
equation (6.2).

R̃0 =
− ln(1− π̂)

π̂
, (7.1)

where π̂ = N(∞)/n.
Another approach is to use the function Z(t) defined by (5.5) at t = ∞

to motivate the moment estimator

R̂0 =

∞∫
0

dN(s)
1−N(s−)/n

N(∞) + 1
. (7.2)

The two estimates, R̃0 and R̂0 are asymptotically equivalent since

1

n

t∫
0

dN(s)

1−N(s−)/n
≈ − ln(1−N(t)/n) (7.3)

if N(t) and n are large.
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From (5.7) it follows that an estimate of the variance of the estimator is

1

(N(∞) + 1)2

∞∫
0

dN(s)

(1−N(s−)/n)2
+

R2
0V0

N(∞) + 1
. (7.4)

An asymptotically equivalent expression is

1

nπ̂

(
1

1− π̂
+R2

0V0

)
(7.5)

To calculate the variance we will need to know or have an estimate of
R2

0V0 = Var(λ).

7.2 Estimates of the generation time distribution and
related parameters

We can find an estimate of, Lg(r), i.e. the Laplace transform of the generation
time density using the process defined by (5.11). A moment estimator can
be derived from the equation (5.14)

L̂g(r) =

∞∫
0
e−rt dN(t)

1−N(t−)/n

R̂0

(
∞∫
0
e−rtdN(t) + 1

) . (7.6)

This is the same relation that is derived in Kermack et al. (1927).
Since there is a one-to-one relation between a function and its Laplace

transform we may find an estimate of g by inverting the estimated Laplace
transform. However, it is not trivial to invert the Laplace transform. The in-
verse uses the entire estimated function and we cannot expect the estimate to
be very precise for all r. The estimate for large values of r will mainly depend
on the first few times of infections which of course will be very random.

The Malthusian parameter can be estimated with r̂, defined by the rela-
tion

R̂0L̂g(r̂) = 1. (7.7)

In figure 7.2 it is the intersection between the horizontal line and the esti-
mated function.

7.3 Estimate of T0

We can use the estimate of the Laplace transform to estimate the mean the
generation time distribution. T0 equals minus the derivative of the Laplace
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transform at r = 0. An alternative derivation of (an identical estimate)
is obtained by using the process defined by (5.15). The moment estimator
based on (5.18) is

T̂0 =

∞∫
0
tdN(t)/(1−N(t−)/n)− R̂0

∞∫
0
tdN(t)

∞∫
0
dN(t)/(1−N(t−)/n)

. (7.8)

7.4 Examples of estimation in some simulations

To illustrate the nonparametric estimates of R0, T0, and r, 1000 simulations
for each of five models where performed. In all cases the population size
are n = 1000, and the basic reproduction number R0 = 2. The first model
assumes that there is no variation in individual infectivity and in models 2–6
different assumptions regarding the latent and infectious periods are made.

Model 1: The generation time distribution is assumed to be non-random,
i.e., the same for all individuals and g(t) = γµ

γ−µ(exp(−µt) − exp(γt)) where
γ = 1 and µ = 2. This generation time density gives T0 = 3 and r = 0.281.
Since the model is non-random V0 = 0.

Model 2: It is assumed that latent and infectious times, X and Y , are
independent, and that X is exponential distributed with mean 1 and Y ex-
ponential with mean 2. This results in the same generation time density as
in model 1. In this model V0 = 1.

Model 3: It is assumed that latent and infectious times, X and Y , are
independent, and that X is exponential distributed with mean 2 and Y ex-
ponential with mean 1. This results, as pointed out above, in the same
generation time density as in model 2 and consequently in model 1. In this
model V0 = 1.

Model 4: It is assumed that latent and infectious times, X and Y , are
independent, and that X is Γ(2, 4)-distributed and Y is Γ(2, 0.6)-distributed.
Some calculations yield that this model gives the same mean generation time,
T0 and the same Malthusian parameter r as the first three models. In this
model V0 = 1/2.

Model 5: It is assumed that latent and infectious times, X and Y are in-
dependent, and that X is Γ(1, 1)-distributed, i.e X is exponential distributed
with mean 1, and Y is Γ(2, 1)-distributed. In this model V0 = 1/2.
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Table 1: Results from 1000 simulations of model 1, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 1.993 0.0792 0.0774
T0 3 2.913 0.276 0.285
r 0.281 0.311 0.046 -

Table 2: Results from 1000 simulations of model 2, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 2.000 0.109 0.106
T0 3 2.924 0.367 0.388
r 0.281 0.334 0.060 -

Model 6: It is assumed that latent and infectious times, X and Y are
independent, and that X is an even mixture of an Γ(1, 1)-distribution and a
Γ(2, 1)-distribution. Y is is exponential distributed with mean 1. This model
has the same basic generation time density as model 5 (see section 4.1.2). In
this model V0 = 1.

For each of the 1000 simulated epidemic curves estimates of R0, T0, and
r were calculated as well as estimates of variances of R̂0 and T̂0. With the
exception of the model in which it is assumed that the generation density is
non-random the underlying model has to be known in order to estimate the
variances of the estimates. The tables give the means of the estimates and
their empirical standard deviations. For the basic reproduction number and
the mean generation times also the mean of the estimated standard deviations
are given. They illustrate that single realizations of an epidemic curve can
give valid information of the amount of variation that can be expected. It

Table 3: Results from 1000 simulations of model 3, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 1.997 0.109 0.106
T0 3 2.933 0.390 0.389
r 0.281 0.330 0.067 -
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Table 4: Results from 1000 simulations of model 4, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 1.995 0.100 0.093
T0 3 2.937 0.341 0.344
r 0.281 0.318 0.049 -

Table 5: Results from 1000 simulations of model 5, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 1.999 0.094 0.093
T0 2.5 2.440 0.279 0.281
r 0.325 0.372 0.064 -

Table 6: Results from 1000 simulations of model 6, with n = 1000.

Parameter True value mean sd mean of estimated sd
R0 2 1.999 0.110 0.106
T0 2.5 2.445 0.320 0.319
r 0.325 0.387 0.075 -
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Table 7: Mean ratio between sources of variability in the 1000 simulated
epidemics

Model R0 T0
1 0 0
2 0.82 0.84
3 0.82 0.85
4 0.41 0.43
5 0.41 0.44
6 0.82 0.84

is also seen, comparing the results for models 1–3 and models 5 and 6 that
models with the same generation time density can generate epidemic curves
with different variability.

From the tables it is seen that the estimates of R0 and T0 are close to
their true values and that the estimates of their precisions made from the
individual realizations are close to the variation between realisations. How-
ever, the suggested estimate of the Malthusian parameter seems to be biased
and tend to overestimate the true value of the parameter.

As is seen in the derivations in appendix B the variability of the estimates
comes from two sources. There is one part of the variability that comes,
loosely speaking, from the Poisson processes generating the contacts and
there is another variability that comes from variation in individual infectious
functions. This is clearly illustrated by the expression of the asymptotic
variance of the estimate of the basic reproduction number given by (7.5).
The first gives approximately the contribution 1/(π(1 − π)) and the other
R2

0V0/π. If n is large and R0 = 2 equation (6.2) will give π ≈ 0.80.
In table 7 the mean ratio between the two sources of variation for the

epidemic curves simulated from models 3–6 are given. For R0 these ratio
should equal (1−π)R2

0V0 ≈ 0.8/s, where s is the value of the shape parameter
of the Gamma-distribution for the infectious time.

8 Some remarks

We have studied the behaviour of epidemics simulated from models were the
assumptions involve strong stochastic elements. It turns out that some of
the most obvious features of the epidemic curve from an epidemic that grows
large depend on means. The basic reproduction number and the generation
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time density decides the final proportion of infected in the population and
the initial rate of increase of the number of infected. Both these entities are
derived as means of individual random properties of infected individuals.

The same basic reproduction number and generation time density can be
the result of different models. Even if these means are identical the processes
are different. In this paper we have illustrated the differences by calculating
variability of estimates of R0 and T0 for different models. More generally
models will differ with respect to the variability around a ”mean epidemic
curve”. It should be possible to study this variability if the generation time
density could be estimated with sufficient precision. This could possible be
done, more easily, if the models considered are restricted, e.g. by using a
parametric model for the contact distribution functions.

Another conclusion from the analysis above is that in some cases variabil-
ity between different realizations of the same process can be estimated with
data from a single realization. This is, of course, due to the fact that a single
epidemic curve is the result of a large number of realizations of independent
random variables, even if they are not observed individually. However, it is
to be expected that there are strong limits to how much one epidemic curve
discloses of these variables. This is a question that remains to be studied.
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Figure 6.1: Four epidemic curves simulated from the same model. The right
end of the curves indicate the last time of infection. The population size is
10,000 and R0 = 2.
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Figure 7.1: Estimated Laplace transforms of the basic generation timed es-
timated from a simulated epidemic curve. Dashed line is the true transform
and the dotted line represents 1/R̃0.
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A Appendix A

The processes studied in this paper can be constructed in the following way.
The random elements (λ0, K0), (λ1, K1), . . . , (λn, Kn) are assumed to be mea-
surable relative to F0. The pairs are assumed to be independent. Here λi,
i = 0, . . . , n, are non-negative real numbers and Ki, i = 0, . . . , n, are distri-
bution functions with support on [0,∞[, i.e., Ki(s) = 0 when s < 0. The
distributions Ki are assumed to have densities κi.

A counting process N is adopted to the filtration {F}∞t=0 and has the
predictable intensity function η(t) given by (5.1). Let τ1, . . . , τn be the jump
times of the process where τ0 = 0 and τm = ∞ if t > N(∞). Typically the
filtration is a history of the process N including the random elements that
describes the infectivities of the infected.

It is convenient to use the representation

η(t) = (1−N(t−)/n)
n∑
i=0

λiκi(t− τi). (A.1)

The martingale M defined by (5.3) can be written as

M(t) =

t∫
0

dN(s)

1−N(s−)/n
−

n∑
i=0

λiKi(t− τi). (A.2)

Let
Ai(t) = λiKi(t)−R0G(t). (A.3)

According to the definition (see (2.4)) of the basic generation time distribu-
tion, G, we have

E(Ai(t)) = 0. (A.4)

It follows that

E(
n∑
i=0

Ai(t− τi)) =
n∑
i=0

E(Ai(t− τi)) =
n∑
i=0

E(E(Ai(t− τi) | τi) = 0. (A.5)

The process Z defined by (5.5) can be written

Z(t) = M(t)−
n∑
i=0

Ai(t− τi). (A.6)

Since E(M(t)) = 0 (5.6) it follows that

E(Z(t)) = 0. (A.7)

23



To find an expression of the variance function of Z we first observe that,

Var(
n∑
i=0

Ai(t− τi)) = E

(
Var

n∑
i=0

Ai(t− τi) | τ0, . . . , τn)

)
(A.8)

=
n∑
i=0

R2
0E (V (t− τi))

= R2
0

E

 t∫
0

V (t− u)dN(u)

+ V (t)

 ,
where the function V is defined by (2.6).

Also, since E(M(t)) = 0 and

Cov(M(t),
n∑
i=0

Ai(t− τi)) =
n∑
i=0

E(M(t)Ai(t− τi)) (A.9)

=
n∑
i=0

E(E(M(t)Ai(t− τi) | Fτi)

=
n∑
i=0

E(M(τi)Ai(t− τi)) = 0.

The last sum equals 0 since the martingale M is independent of Ai up till
the jump time τi.

The martingale M has the quadratic variation

[M ](t) =

t∫
0

dN(s)

/(1−N(s−)/n)2
.

Thus (5.7) holds, i.e.

Var(Z(t)) = E([M ](t)) + Var(
n∑
i=0

Ai(t− τi)). (A.10)

The process Zf defined by (5.9) can be analysed in a similar way. We can
write

Zf (t) = Mf (t)−
n∑
i=0

Bi(t, τi). (A.11)

Here

Bi(t, τi) =

t∫
0

f(s) (λiκi(s− τi)−R0g(s− τi)) ds. (A.12)
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With arguments analogous to the ones used above we can prove that

E(Bi(t, τi) = E (E(Bi(t, τi) | τi) = 0. (A.13)

From this follows (5.10), i.e. E(Zf (t)) = 0. We can also derive an expression
of the variance

Var(Zf (t)) = E([Mf ](t)) + Var(
n∑
i=0

Bi(t, τi)). (A.14)

B Appendix B

In this appendix we will derive approximate expression for the variances of
the nonparametric estimates of R0 and T0.

First we discuss estimates of R0 defined by equation (7.2). We can write

(N(∞) + 1)
(
R̂0 −R0

)
=

 ∞∫
0

dN(t)

1−N(t−)/n
−

N(∞)∑
i=0

λi

 (B.1)

+

N(∞)∑
i=0

λi − (N(∞) + 1)R0


According to (A.10) and (5.7) with t =∞ the variance of this expression can
be estimated by

∞∫
0

dN(t)

(1−N(t−)/n)2
+ (N(∞) + 1)Var(λ) (B.2)

Thus the variance of R̂0 can be approximated by

1

N(∞) + 1


∞∫
0

dN(t)
(1−N(t−)/n)2

N(∞) + 1
+ Var(λ)

 (B.3)

The discussion of estimates of T0 will be restricted to the two types of
models described in section 3. For the estimator T̂0 defined by (7.8) we obtain

∞∫
0

dN(t)

1−N(t−)/n

(
T̂0 − T0

)
= W1 +W2 −W3 −W4, (B.4)
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where

W1 =

∞∫
0

tdN(t)

1−N(t−)/n
−

N(∞)∑
i=0

λi

∞∫
0

tκi(t− τi),

W2 =
N(∞)∑
i=0

λi

∞∫
0

tκi(t− τi)−R0

N(∞)∑
i=0

∞∫
0

tg(t− τi),

W3 =

 ∞∫
0

dN(t)

1−N(t−)/n
−

N(∞)∑
i=0

λi



∑N(∞)
i=0

∞∫
0
tg(t− τi)

N(∞) + 1

 ,
and

W4 =

N(∞)∑
i=0

λi − (N(∞) + 1)R0



∑N(∞)
i=0

∞∫
0
tg(t− τi)

N(∞) + 1

 .
Let

Q =

∑N(∞)
i=0

∞∫
0
tg(t− τi)

N(∞) + 1
= T0 +

∞∫
0
tdN(t)

N(∞) + 1
. (B.5)

If we for the moment treat Q as asymptotically constant as n → ∞ we
see that W1 and W3 are martingales and W2 and W4 conditionally on the
jump times only depends on the pairs (λi, κi). For the same reason as above
this implies that W1 −W3 and W2 −W4 are uncorrelated. The variance of
W1 −W3 can be estimated by

∞∫
0

t2dN(t)

(1−N(t−)/n)2
+Q2

∞∫
0

dN(t)

(1−N(t−)/n)2
− 2Q

∞∫
0

tdN(t)

(1−N(t−)/n)2
. (B.6)

This will be an estimate of the variance of
∞∫
0

dN(t)
1−N(t−)/n

(
T̂0 − T0

)
if there is

no randomness in the pairs (λi, κi). If this is not the case we have to consider
also the variance of W2 −W4. We will now derive an estimate in the case
where we have random and independent latent and infectious times and a
constant infectivity during the infectious period. This is the kind of model
described in section 3.2. First we find that

λi

∞∫
0

tκi(t− τi) = α

∞∫
0

tI(Xi < t− τi < Xi + Yi)dt = α
(
XiYi + Y 2

i /2 + Yiτi
)
,

(B.7)
and

λi = αYi. (B.8)
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Thus the variance of W2 −W4 can be estimated by

α2
N(∞)∑
i=0

Var(XiYi + Y 2
i /2 + Yiτi) +Q2Var(Yi) (B.9)

−2QCov(XiYi + Y 2
i /2 + Yiτi, Yi)).

27



References

Andersson H. and Britton T. (2000) Stochastic epidemic models and their
statistical analysis. Springer, New York.

Becker N.G. (1993) Martingale methods for the analysis of epidemic data..
Stat Methods Med Res, 2(1): 93–112.
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