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Abstract

In this paper we consider the estimation of the weights of optimal portfolios from
the Bayesian point of view under the assumption that the conditional distribution
of the logarithmic returns is normal. Using the standard priors for the mean vector
and the covariance matrix, we derive the posterior distributions for the weights of
the global minimum variance portfolio. Moreover, we reparameterize the model to
allow informative and non-informative priors directly for the weights of the global
minimum variance portfolio. The posterior distributions of the portfolio weights are
derived in explicit form for almost all models. The models are compared by using
the coverage probabilities of credible intervals. In an empirical study we analyze

the posterior densities of the weights of an international portfolio.

Keywords: global minimum variance portfolio; posterior distribution; credible interval;
Wishart distribution.



1 Introduction

Starting with the seminal paper of [36] the classical mean-variance portfolio theory has
drawn much attention in academic literature. Generally speaking, the theory allows us
to determine the optimal portfolio weights which guarantee the lowest risk for a given
expected portfolio return. Under Gaussian asset returns, the problem is equivalent to
minimizing the expected quadratic utility of the future wealth. In practice, however,
the model frequently led to investment opportunities with modest ex-post profits and
high risk. To clarify this and to develop improved trading strategies several issues were
addressed (cf., [39], [40], [14], [7], [11], [18], [42]). The first strand of research analyses the
estimation risk in portfolio weights, which arises if we replace the unknown parameters
of the distribution of asset returns with their sample counterparts. The results on the
finite sample distributions can be used in different ways. First, we can develop a test to
check if the weights of a particular asset significantly deviate from prespecified values,
e.g. test for efficiency (see [29], [43], [16], [2], [13]). Second, we can test the significance of
the investment in a given asset, e.g. significance of international diversification (see [21]).
Third, we may assess the sensitivity of portfolio weights to changes in the parameters of
the asset returns as in [9], [19], [10], etc.

The main contribution of Markowitz from the financial perspective is the recognition
of the importance of diversification. From a statistical point of view the portfolio theory
stresses the importance of the variance as a measure of risk and particularly the impor-
tance of the structure of the covariance matrix for diversification purposes. Markowitz’s
approach allows us to determine the minimum variance set of portfolios and the sets of
efficient portfolios. While the minimum variance set consists of those portfolios which
possess the minimum variance for a chosen level of the expected return, the efficient set
contains the portfolios with the highest level of the expected return for each level of risk.
As a result, the choice of an optimal portfolio depends on the investor’s attitude towards
risk, i.e. on his/her level of risk aversion.

The global minimum variance (GMV) portfolio is a specific optimal portfolio which
possesses the smallest variance among all portfolios on the efficient frontier. This portfolio
corresponds to the fully-risk averse investor who aims to minimize the variance without
taking the expected return into consideration. The importance of the GMV portfolio in
financial applications was well motivated by [37] who pointed out that the estimates of
the variances and the covariances of the asset returns are much more accurate than the
estimates of the means. Later, [9] showed that the sample efficient portfolio is extremely
sensitive to changes in the asset means, whereas [19] concluded for a real data set that
errors in means are over ten times as damaging as errors in variances and over twenty
times as errors in covariances. For that reason many authors assume equal means for the
portfolio asset returns or, in other words, the GMV portfolio. This is one reason why this

is extensively discussed in literature (Chan et al. 1999). Moreover, the GMV portfolio



has the lowest variance of any feasible portfolio. Further evidences about the practical
application of the GMV portfolio can be found in [28].

The second strand of research opts for the Bayesian framework. The Bayesian setting
resembles the decision making of market participants and the human way of information
utilization. Similarly, investors use the past experiences and memory (historical event,
trends, etc.) for decisions at a given time point. These subjective beliefs flow into the
decision making process in a Bayesian setup via specific priors. From this point of view
the Basesian framework is potentially more attractive in portfolio theory (see [3]). The
first applications of Bayesian statistics in portfolio analysis were completely based on
uninformative or data-based priors, see [48], [47]. [6] provided an excellent review on
early examples of Bayesian studies on portfolio choice. These contributions stimulated a
steady growth of interest in Bayesian tools for asset allocation problems. [30], [32], [4] ,
[41] used the Bayesian framework to analyze the impact of the underlying asset pricing
or predictive model for asset returns on the optimal portfolio choice. [46], [31], [23], [24],
[12] concentrated on shrinkage estimation, which allows to shift the portfolio weights to
prespecified values, which reflect the prior beliefs of investors. [15] gives a state of the
art review of the modern portfolio selection techniques, paying a particular attention to
Bayesian approaches.

In the majority of the mentioned papers the authors defined specific priors for the
model parameters and the subsequent evaluation of posterior distributions or asset al-
location decisions was performed numerically. The reason is that the involved integral
expressions are too complex for analytic derivation. In this paper we derive explicit for-
mulas for the posterior distributions of the global minimum-variance portfolio weights for
several non-informative and informative priors on the parameters of asset returns. Fur-
thermore, using a specific reparameterization we obtain non-informative and informative
priors for the portfolio weights directly. This appears to be more consistent with the de-
cision processes of investors. The corresponding posterior distributions are presented too.
The established results are evaluated within a simulation study, which assesses the cover-
age probabilities of credible intervals, and within an empirical study, where we concentrate
on the posterior distributions of the weights of an internationally diversified portfolio.

The rest of the paper is structured as follows. Bayesian estimation of the GMV
portfolio using preliminary results is presented in Section 2. The posterior distributions
for the GMVP are derived and summarized in Theorem 1. In Section 3 we propose
informative and non-informative prior distributions for the weights of the GMVP and
the corresponding posterior distributions (Theorem 2 and Theorem 3). In Section 4 the
credible intervals and credible sets for the previous posterior distributions are obtained.
The results of numerical and empirical studies are given in Section 5, while Section 6
summarizes the paper. The appendix (Section 7) contains the proof of Theorem 1 and

additional technical results.



2 Bayesian vs. frequentist portfolio selection

We consider a portfolio of k assets. Let X; = (X, ..., X;)T be the k-dimensional random
vector of log-returns at time ¢ = 1,...,n. For small values of returns, the simple and the
log-returns behave similarly. Let w = (w1, ...,w;)T be the vector of portfolio weights,
where w; denotes the weight of the j-th asset, and let 1 be the vector of ones. It has to
be emphasized that if log-returns are close to 0, then we can approximate the portfolio
return as a weighted sum of individual log-returns very accurately leading to (see [34], p.
66) X ~ XK | w;X;.

Furthermore, it is common in portfolio theory to assume that the asset returns are
independently and normally distributed with mean vector g and covariance matrix 3.
The assumption is frequently violated for more frequently sampled returns, for example
daily or intra-day returns, but appears to be rather precise for returns over longer horizons,
for example, weekly or monthly. Additionally, the normal distribution is more suitable
for log-returns since the simple returns are bounded from below by -1.

Let X be a positive definite matrix. The GMV portfolio is the unique solution of the

optimization problem
w!Sw — min st. wil=1. (1)

In general we allow for short sales and therefore for negative weights. The solution of (1)

is given by

DI |

—— 2
17311 2)

Waemv =

Since ¥ is an unknown parameter, the formula in (2) is infeasible for practical purposes.
Given a sample of size n of historical returns xy,...,x,, we can compute the sample

covariance matrix

1
n—1

S — i(xi - %)(x; — )7,

where X = % > 1 X;. The sample estimator of the GMV portfolio weights is constructed
by replacing ¥ with S in (2) and it is given by
S—'1

W S — 3

WeMV = 91811 3)
In this paper we take a more general setup by considering arbitrary linear combinations
of the GMV portfolio weights. Let L be an arbitrary p x k& matrix of constants, p < k,
and define
LY !'1
17311

(4)
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The sample estimator of 8 is given by

~ N LS!'1
O =Lwawy = qrg-y

(5)

In practice, the investors concentrate on the point estimators 6 without realizing the
estimation risk induced by estimated parameters X and S. This risk is extremely damaging
for asset allocation since it renders wrong or misspecified portfolios (see [9]). In order to
assess the estimation risk we must consider w1 and 6 as a random quantity. AsXand S
deviate from the true parameters g and 32, so can the estimated portfolio deviate from the
weights of the true optimal portfolio leading to poor out-sample performance in practice.
The variation in the parameters can also have others sources than pure estimation reasons.
In the time series framework it is frequently observed that the parameters are not constant
over time. Frequently these dynamics are modeled either by an appropriate time series
process or by a regime switching process. Although this type of dynamics is difficult
to implement here directly, it allows for some additional information which should be
exploited for portfolio decisions.

Thus a very important objective is not only to quantify and formalize the information
about the parameters, but also to take it into account already while computing the optimal
portfolio composition. Methodologically the Bayesian framework offers a convenient and
appropriate set of tools. Within this framework we rely on our beliefs or prior information
about the parameters of the model and formalize these beliefs in form of prior distribu-
tions. The most frequently applied priors for g and X in the financial literature are the
diffuse prior (see, e.g., [5], [17], and [33]), the conjugate prior ([22]), and the hierarchical
prior ([25]) which we introduce next. The diffuse prior is an uninformative prior, which
implies that the statistician has no additional information about the stochastic nature of
the unknown parameters. The conjugate prior is an informative prior and we assume that
the mean returns follow a normal distribution and the covariance matrix follows a inverse
Wishart distribution. These assumptions are reasonable, since the priors coincide with
the distributions of X and S. The hierarchical prior is a more complex prior which allows
for additional distributional assumptions about the precision of the priors for g and 3.

For every prior we can compute the posterior distributions of the portfolio weights,
which takes the prior distributions of the parameters into account. This means that we
provide not only the point estimate of the optimal portfolio weights as it is usual done
in practice, but the whole distribution. The mean of this distribution provides us with
a new Bayesian estimator of the portfolio weights, which accounts for the priors beliefs
of the investor. These results allow us to run tests for portfolio weights and construct
credible sets. The latter are the confidence intervals where the true portfolio weights lies
with high probability. We can use these findings to test the significance of the investment
in a particular asset. Detailed discussion and results are provided in Section 3.

From financial perspective it might be difficult to formulate and to motivate a specific



prior for the parameters but it is common to have some beliefs about the optimal portfolio
composition. For example one might formulate the prior beliefs in form of the equally
weighted portfolio, which shows superior out-of-sample long-term performance as reported
frequently. Alternatively, the prior portfolio composition might be proportional to the
market capitalizations of the underlying assets or some prespecified portfolio targeted
by an investment fund. This valuable information shall complement the mean-variance
portfolio. The second contribution of this paper is that we develop the Bayesian estimation
of the GMV portfolio with priors for the portfolio weights. By formalizing the beliefs
regarding the desired portfolio in form of a prior distribution of portfolio weights, we
provide methodology for constructing the posterior distribution of the GMV portfolio
weights. The next section provides details on the assumptions and the main results on

posterior distributions.

3 Priors for the parameters of the asset returns

In this section we provide details on priors for the parameters of the asset returns and
derive the posterior distribution of the GMV portfolio weights and give expressions for
the point estimates.

Diffuse prior: We start with the standard diffuse prior on g and ¥, applied in
portfolio theory by [5], [17], and [33]. The prior densities of this non-informative prior is
given by

_Etl
pa(p, X) oc [Z|72. (6)

The Bayesian models based on the diffuse prior are usually not worse in comparison
to the classical methods of portfolio selection. However, when some of the k risky assets
have longer histories than others, then Bayesian approaches may exploit this additional

information and lead to different results (see [43]).

Conjugate prior: The second considered prior is the conjugate prior. In contrast
to the diffusion prior (6), the conjugate prior is an informative prior which considers a
normal prior for p (conditional on ¥) and an inverse Wishart prior for ¥. It is expressed

as
po(l) o[22 exp { =5 (1 — )= 0 = 1)}
and
Pe(2) o |B|77/% exp {—;tr[Schl]} :

where p. is the prior mean; s, is a parameter reflecting the prior precision of p ; v. is a

similar prior precision parameter on ¥; S, is a known prior matrix of 3. Then the joint



prior for both parameters is

Re

(v . 1 B
pelpas B) o[£ 2 exp { =5~ )5 (0 - ) - JuISET) ()

[22] proposed an interesting application of the conjugate prior where all securities
possess identical expected returns, variances and pairwise correlation coefficients - the
so-called 1/N rule. They showed that the conjugate prior works better than a non-
informative prior as well as better than the strategies obtained from the frequentist point

of view.

Hierarchical prior: Next, we consider the hierarchial Bayes model which was
suggested by [25]. They demonstrated that a fully hierarchical Bayes procedure produces

promising results warranting more study. The priors are given by

_ K _
plulen®) o 15 ep {2 — )= u—en))
—k(vp—k—1)/2

1
ph(Z) X 77|§]|1/;L/26Xp {—2”7131'[8}12_1]}
pr(§) o 1

pr(n) o< n " lexp {—52} ,
n

where kj, is a parameter reflecting the prior precision of wu; vy, is a similar prior precision
parameter on X; Sy is a known prior matrix of 3; €; and €, are prior constants.

Then the joint prior of w, 3, &, and n is expressed as

— K -
(B 6m) o (S exp {72 - g1)}
—k(vp—k—1)/2

n _i -1
X m—yhﬁexp { 2ntr[ShE ]}

X n‘gl_l exp {—22}

1
o |E|_(”h+1)/2 exp {_Ztr[shz—l]}
n

—k(vp—k— —€1— R - c
X k(vp—k—1)/2 1exp{_2h(u_§1)TE 1(“‘_51)_7’2} (8)

Let t,(m,a,B) and f; (m.aB)(-) denote the distribution and the density of p-dimensional
t-distribution with m degrees of freedom, location vector a, and dispersion matrix B. In
Theorem 1 we present the posterior distributions of @ under the diffuse, the conjugate
and the hierarchial priors.

Theorem 1. Let Xy, ..., X, |, 3 be independently and identically distributed with Xq|p, 3 ~
Ni(p,X). Let L be a p x k matriz of constants, p < k and 1 denotes the vector of ones.
Then



(a) Under the diffuse prior ps(p, 2) the posterior for 0 is given by

1 LR,
0|X,,... X, ~t -1;,0; —— ,
X, p(” n—llTS—11>

where Rqg = S~ — S~1117S-1 /17811,

(b) Under the conjugate prior p.(u,X) the posterior for @ is given by

LV '1 1 LR.L”
0| Xy,... X, ~t, |1, —k—1; < - , 10
oo Xty (10 e ) ()
where
nX + Ko,
r, = ————,
n—+ K¢

V. = (n—=1)S+S.+ (n+ k)rerl +nX X" Kelb bl
R, = VvV !-v lui'vl/1'v'1.

(¢) Under the hierarchial prior p,(p, 3,£,n) the posterior for 0 is given by

+oo  p+oo
Ph (0|X1,,Xn) X /_Oo /0 ft ( 'LV;11 1 LRhLT>(9>

Vh+n—k—17 1TV;11 ) vp+n—k—1 1Tv;11
% n—k(l/h_k_l)/z_al_l exp {—82} dfd’l], (11)
n
where
nX + kp€l
r, = 1) = Tntrn

Vi = Vi(&n) = (n—1)S+77'8y — (n+ m)rarf +nX X' + m,2117,
R, = Ry n)=V,' -V, 117v,1/17v, 1.

The results of Theorem 1 shows that under the diffuse and the conjugate priors the
posterior distributions for the linear combinations of the GMV portfolio weights are mul-
tivariate t-distributions. Also, the posterior for the linear combinations of the GMV
portfolio weights under the hierarchial prior is presented by using a two-dimensional in-
tegral and the well-known univariate density functions. Moreover, using (11) we get the

stochastic representation of @ expressed as

4 IVt 1 LR, (¢ )L\, 12
SOV EnT T V= k=T \1TV T Ee)

where ¢ ~ Uniform(—o0, +00), n ~ Inverse — Gammal(ey, €3), to ~ t,(vp, +n—k—1,0,1)

and &, 1, tg are mutually independent. The symbol 2 denotes equality in distribution.



Applying the properties of the multivariate ¢-distribution we obtain that the Bayesian

estimators of @ under the diffuse prior (5) and under the conjugate prior (6) are

_ -~ LvV,1
ed =0 and 00 = m’ (13)
respectively. Under the hierarchial prior the Bayesian estimator of 6 is given by
~ +oo  ptoo
o = [ [ ] om(6IXi, .. X,)d6dsdy
RP J—oco JO
oo rtoo LvV,! 1
= / / n—k(uh—k—l)/2—€1—1 exp {_62} . h_l(ga 77) dfd?’] (14)
—o0 Jo n ) 1TV, (6 n)1

The last integral can be computed numerically. Alternatively, 6, can be approxi-
mated by using the stochastic representation (12). This is performed by generating a
sample of independent pseudo random variables ¢ and 7 with £ ~ Uniform(—oo, +00)
and n ~ Inverse — Gamma(eq, £2), calculating @ for each repetition using (12), and then

taking the average.

Objective-based prior: Next, we consider the objective-based prior on (u,X)

suggested by [44]. It is given by

2
_ S _
palbl) o 131720 { = (=1 B 5 = 7B |
ob
1
pu(®) o B exp { ~uSa B},
where v is the coefficient of relative risk aversion; w,, is suitable prior constant; o2 is a
scale parameter that indicates the degree of uncertainty about p; s? is the average of the
diagonal elements of X; v, and S,;, are prior constants. Then the joint prior distribution

of (u,X) is given by
1
pob(/% E) X |E|_(V0b+1)/2 exXp {_2tr[sob2_1]}

82 _
X exp {—%Q(M —1Ewe) E T (p - ’YEWob)} ; (15)
ob

which leads to the posterior distribution of (u,3) expressed as

pob(/“l’a 2|X1, e Xn) X L(X17 e Xn|l*l’7 E)pob(lj’a E)
1
B2 e {8+ (0 — 1DS)E )}
5° Ty—1
X €exp —ﬁ(u —1EWe) BT (p — 7EwW,)
Oob
n
5

=X (- X)),

9



where (see Appendix A)
n—1

LXKt X, ) o B2 exp { DX = p) £ (X = ) = P —ulsz ).
Integrating out p we get the posterior distribution of ¥ expressed as

1
Pob(B[Xy, ., Xp) o |E|(V"*’+”)/26xp{Ztr[(SobJr(n1)8)21]}

1 cToixe, S0 o7 $2\ 151
X expy—3 nX XX+ 5 WuXWe, — (n+ — | T X rey| o, (16)
Tob 9ob

where

9 _
ZyXwe, +nX
ob

Top = 2 .

Unfortunately, using the objective-based prior (15) we are not able to derive the an-
alytical expression for the posterior distribution for 8. Theoretically, the posterior of 0

can be obtained by making the transformation

= ().

~P_and integrating out v. However, because p,,(3[Xy, ..., X;,)

k(k—1)
2

where @ € RPandv € R
is a complicated function of 8, this leads to a difficult multiple integral with respect to v.
As a result, the Bayesian estimation of 6 is obtained via simulations based on (16).

[44] demonstrated that the portfolio strategies based on the objective-based prior work
better than the strategies under other priors. In particular, they proposed the application
of the objective-based prior to the portfolio weights of the general mean-variance portfolio

and reported good results.

4 Priors for the GMYV portfolio weights

In the previous section we concentrated on statistical models for g and 3, which were
subsequently used to derive the posterior distributions of a linear combination of portfolio
weights. Thus we specified prior information on k + k(k + 1)/2 parameters to make an
inference about @ of dimension p. In this section we reparameterize the model to make
statements directly about the priors of the portfolio weights. This procedure is also
more natural from a decision making perspective since investors sometimes have some
perception of the optimal or preferred portfolio composition.

More specifically, we consider a reparameterized model for the asset returns which is
used to derive an informative prior and a non-informative prior for the linear combina-
tions of the GMV portfolio weights. We provide explicit formulas for the corresponding

posterior distributions in the next step. It is noted that the posteriors derived under the

10



reparameterized model are usually the same as the posteriors obtained from the original
model since for any one-to-one mapping ¢ = ¢(8), the posterior p(¢|X1, ..., X,,) obtained
from the reparameterized model p(Xy, ..., X, |, A) must be coherent with the posterior
p(0]|X4, ..., X,,) calculated from the original model p(Xj, ..., X, |0, ). Moreover, if the
model has a sufficient statistic t = t(X), then the posterior p(8|Xy, ..., X,,) derived from
the full model p(Xjy,...,X,|0, ) is the same as the posterior p(8|t) obtained from the
equivalent model p(t|@, X) (cf. [8], p.5)).

4.1 Non-informative Prior

We begin with the Jeffreys non-informative prior. Using this prior we derive the posterior
distribution for the weights of the GMV portfolio. Let L = (L7,1)7, ¥ = LY 'L7,
(=171, S=LS L7, and ¥ = LY 'LT — LE_ 1172 LT Bocayge

17x-11
~ | L¥'LY L1 ¢ v/C+60" 0 an
1T 1Ty | 0" 1
we get that
~ LY 11172117
Y =¢ LY LT — = (|WP]. 1
/=] . (13

Since (n — 1)S|¥ ~ Wi(n — 1,%) (k-dimensional Wishart distribution with n — 1

degrees of freedom and covariance matrix ) and rank(L) = p + 1 we get from Theorem
3.2.11 of [38] that

(n=1)S T ~ Wyer (n+p—k571).
From the properties of the Wishart distribution (see [38]) it holds that
(n=1)7"S[Z ~ Wy (n—k+2(p+1),%).

This shows that S is a sufficient statistic for 3. Then the posterior p,(8|Xq,...,X,,)
obtained from the full model coincides with the posterior p,(8|(n — 1)~'S) calculated
from the equivalent model (cf. [8], p. 5)).

Next, we rewrite the likelihood function in terms of (8, ¥, (). It holds that

L(n-1)7"810.2,¢) o [£"H 0t [_”gliél} . (19)
Using (18) and

o Q=) q=) T
tr[ST'Y] = (tr §§i) %éi) ‘I'/“;OO 0

= t[S{W] + ¢(tr[S{067] + 2tx[S!;'07] + S, )),

11



where

o ~ LS 1117817\ !

sty = (LS L ey ) :

o ~yLS™M1 . _ ~ T

S§2) = - gl)ma Sg1): [ng)} )

o o 1Ts i rsioLs1q

Séz) _ (1TS 11) 1 + (1TS—1111)2 :

we get
1a n—k+p n—k+p n—1 (-)
log L((n —1)7'S|0, ¥, ¢) — log |¥| + flog( — Ttr[SH W]
-1 . ~(_ ~(_
_ tnzl) <”2 ) (tr[S1,00"] + 2tr[S{; 6" + S5;) (20)

Let ¢ = (07, vech(¥)”,¢)”. Then the Fisher information matrix I(8, ¥, () for the
parameters (6, ¥, () is given by (see Appendix B)

2 _ 1\-1Q
10,9.() = —F la 10gL<(”a¢;3bT Slo, ¥, O]
(TL —k+ p)C\Il_l 0p><p(p+1)/2 Op
= Op(p+1)/2xp H_TMGZ(‘II_I ® \Il_l)Gp Oppi1y/2 |
OT OT n—k+pc—2
p p(p+1)/2 2

where G, is the duplication matrix defined by vec(B) = G,vech(B) for any symmetric
B(p x p); vec denotes the operator which transforms a matrix into a vector by stacking
the columns of the matrix; vech stands for the operator that takes a symmetric p x p
matrix and stacks the lower triangular half into a single vector of length p(p + 1)/2; Opx,
is the p x p null matrix and 0, denotes the p-dimensional null vector.

since (see, e.g. [35])

(GIG,)GL (™ & W)G,(GLG,) | = 270=/2] |0
we get that
1(0, %, ()] o< P[P
Hence, the Jeffreys prior for (8, W, () is given by
Pa(6, 2, C) o (P2 | P2 (21)

Using the Jeffreys prior (21) we obtain the posterior distribution of (8, ¥, () expressed as

pn (6,%,¢(n—1)7'S)
< L((n—1)"810,%,¢)p.(6,%,0)

o (k)2 lgyy {—C(n; D (tr[ST,00"] + 2tr[S{; 0" + 55;))}

T
x |\P|(”_k)/2_1etr{—n2 s§1>\1/}.

12



Integrating out ¥ and ( the posterior distribution for 8 equals
pn (6 (n—1)7'S)

. -~ - —(n—k+2p)/2
x (tr[s<1;>90T] +2tr[S$)07] + s;j)

T 5 . T » —(n—k+2p)/2
x Gy-@w)(%n $Q+G+@&Q %& %RG+@$)S&Q>

. o NT fep N1,
3\ g S§2>_(Sg2)> (S§1>> Si2’ 3O\
< tp ”*k+p?*(s11) Sio%s n—k+p (Sn)

Rewriting the location vector and the dispersion matrix of the multivariate ¢-distribution

by using
—(Si)'sl,) = 6. (22)
Sty = (LR.L")™, (23)
i ~NT i\ =1~ PN
S - (S%)) (StY) sy = (s (24)

leads to the following result.

Theorem 2. Let Xy, ..., X, |p, X be independently and identically distributed with X;|p, 3 ~
Ni(p,X). Let L be a p X k matriz of constants with p < k. Then the posterior for the
GMYV portfolio weights @ under the Jeffreys non-informative prior p, (6, ¥, () is given by

(25)

- 1 LR,L”
Xy, .., X, ~ — ;0 .
0‘ 1 ) n tp <n k+p’0’n—k+p1T811>

Theorem 2 shows that the posterior for the GMV portfolio weights under the Jeffreys

non-informative prior p, (0, ¥, () has a p-variate t-distribution with n — k + p degrees of
1 LR4L

n—k+p17S-11"

the one obtained for the diffuse prior. The difference is present in the degrees of freedom

This result is similar to

freedom, location vector @ and dispersion matrix

of the t-distribution only.
Applying the properties of the multivariate t-distribution we get that the Bayesian

estimation of @ under the non-informative prior (21) is

~

0, =0,

which is the same as under the diffuse prior (6).

4.2 Informative Prior

Here we consider an informative prior for the GMV weights obtained under a hierarchical
Bayesian model. [45] developed a multiple response model for counts which is speci-
fied hierarchically and belongs to the fully Bayesian family. Here we consider a similar

hierarchical model.

13



The suggested informative prior is given by

0 ~ Np (W[,i_\:[l1>
v o~ WP(VDSI)

C ~ Gamma(5l,252),

where w; is the prior mean; v; is a prior precision parameter on W; S; is the known

matrix; 6; and d9 are prior constants. The joint prior is expressed as

~1/2
pr(0,¥, () ‘2‘1’1 exp{—g(B—WI)T\II(H—WI)}

1
% <51—1|\Il‘(1’1_p_1)/2 exp {—Qtr[sl_l‘l’] - 2{52} . (26)

Then the posterior distribution under the informative prior (26) is given by
pr(0,%.¢C|l(n=1)7'S) o L((n—1)"'8|6,%,¢)p:(6,%,(),
where the likelihood function is given in (20). Thus,

. 1
P (6,%.¢|(n—1)7'8) |\I’|(”_k+”1)/26tr{—2A\If}

5 g(nfk+2p+26172)/2 exp {_C(” —1) < 52_1 + tr[gﬁ)OHT]
2 n—1
b+ 2use7 4 55))),
where
A = A0,0)=¢O-w)O—w)" +S;"+ (n—1)(LRL") .
Integrating out ¥ and using the equalities (cf. [27], p. 205)
(Al =[S+ (n— )(LRLL") ™|
[1+¢(0 —wi)' (S;" + (n — )(LRGL") ™) (6 — wy)],
t[S{'067] +20(S,)67) + 85 = (6+(S1)18L)) 8 (0+(8))'81)
— (SR8 1S + 5%

X

together with (22)-(24) we get
pr(6,¢|(n—1)7'8) (27)

’A|—(n—k—l—p—l—l/[+1)/2<(n—k+2p+261—2)/2

—1 55 ~(— ~(_ (-
x exp{—(n ; ) <2n o+ u(S1007] + 2u(S,)67) + 5,) |

X [1 —+ C(O - W[)T<S;1 + (n _ 1)(LRdLT)71)71(0 . WI)]f(nkarpﬂqul)/Q

—1
% C(n—k+2p+261—2)/2 exp {_(n—21)c ( 05 : 117811
n —

+ (6-8) (@LR.L") (6 ?)))} . (28)
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Let Uf(a, b, z) denote the confluent hypergeometric function [1] expressed as
1 00
Ua,b,z) = —/ ot —2tH (1 4+ t)o o de
(@.0.2) = s [ explath1 41

fora=(n—k+2p+201)/2,b=(p+26 —v;+1)/2, and z = g(0) with

1 <(0 — a)T (LR,dLT)*1 (9 _ @) 1TS 11 > i 621
2 (0 —w)T(S; "+ (n— 1)(LRLT)1)~1(0 — wy)

>—‘

9(0) =
Then, the posterior for 8 is given by

pI(BI(n — 1)71§)
o /[1 +¢(0—w)T(S7! + (n— D(LRLT) )10 — wy)|~(n-FtptvtD)/2

X

(b 2p201-2)/2 {_(71—21)C ((9 ~9) (LR.L)" (6-6)

+ ('St + 7;52_11)}(1(
o« [(0—wp)T(S;!+ (n — 1)(LRGLT) ™) 710 — wy)|(nkt2pt20)/2
U((n =k +2p+261)/2; (p+ 261 — v1 +1)/2; g(6)).

X

This result is summarized in Theorem 3.

Theorem 3. Let Xy, ..., X,,|p, 2 be independently and identically distributed with X;|p, 3 ~
Ni(p,X). Let L be a p x k matriz of constants with p < k. Then the posterior for 6
under the informative prior pr(0, ¥, () is given by

pr(01Xy,..,X,) o [(@—wp)T(S;H+ (n—1)(LRLY) )16 — WI)](n*k+2p+261)/2
x U((n—k+2p+28)/2;(p+26 —vr+1)/2;9(0)) (30)

where g(0) is given in (29).

Theorem 3 shows that the posterior for the GMV portfolio weights under the infor-
mative prior p;(0, ¥, () is given using a well-known special mathematical function. Using
(30), the Bayesian estimator of @ is obtained

0, = / Op1(0/X,, ..., X,,)d, (31)
RP

which is a p-dimensional integral. This integral can be evaluated numerically.
Next, we derive another expression for 6; which is based on a one-dimensional integral

independent of p. Using
O(/ 7= 1 7b‘r/2d7_
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and (27), the posterior distribution under the informative prior is given by

+oo
1 (974 ’(n B 1)§) ~ / Fn—kebptvr—1)/2 ¢ (n—k+2p+261-2)/2
0

X exp { (n—1)¢ <52_11 +178711 + (0 - é)T (LR,LT)™! (0 - 5)) }

2 n—

X exp {-%[1 0 —w) (ST + (n — 1)(LRGLT)1) "1 (0 - w,)]} dr.

Let
P, = (S;'+ (n—1)(LRL")),
P, = (n—1)LRL")™,
ro= 8"+ m-1@a"sT')
Vi(r) = (TP1+Py)7,
ri(7) = (TPy + Py) (7P1w; + Pyf),
hy(r) = r+7wiPiw; 48 Pob —r(r) (Vi(r) rs(7).
Then
pr(0,¢,7|(n—1)7'S) o exp {—;(9 —r ()" (éVI(7)> 1 (6 — I‘](T))}
oy [ 0)
w  pOREI=D/2 o {—;} . (32)
Using (32) we get a very useful stochastic representation for 6 expressed as
6 £ xi(r) + ¢ A(Vi() P2, (33)
where
zo ~ Np(0p, L), (34)
(|7 ~ Gamma ((n —k+2p+261)/2, th)> , (35)
T ~ Gamma((n—k+p+v;—1)/2,2). (36)

The application of (33) leads to
0, = E0|X,,...X,)=E(EO|,(, X1, ... X)) X1, ... X,)
= E(r;/(1)Xy,...,X,)
+oo ~
= /0 (TP + Pz)_l(P29 + TP1W1) fGamma((n—k-+p+vr+1)/2,2)(7)dT,

which is a one-dimensional integral and can easily approximated numerically. Finally, we
note that @; ca also be approximated by using the stochastic representation (33). This
is achieved by drawing a sample of zg, ¢, and 7 with the joint distribution as specified in
(34)-(36), calculating @ from (33), and then taking the average.
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5 Credible Sets

In this section we derive credible sets for the GMV portfolio weights based on the posterior

distributions obtained in the previous sections.

5.1 Credible Intervals for a GMYV Portfolio Weight

Without loss of generality we deal with the first weight of the GMV portfolio only and
note that the credible intervals for other weights can be obtained similarly. Let L = e =
(1,0,...,0). Then under the diffuse prior (6) the posterior for § = eI X711/17¥7'1 is

expressed as

(37)

TSfll 1 TR
01Xq,.... X, ~t (n —1; €1 . €] del> .

"17S-11'n —117S-11
Let t,,.3 be the S-quantile of the t¢-distribution with m degrees of freedom. The ap-

plication of (9) leads to the (1 — «)-credible interval Cy for the first weight of the GMV
portfolio given by

Q-1 eTRde1 rg-1 eTRdel
Cd!els 1 IRV e;ST'1 IR VAS| gz | (39)

_ b 1 t
TS Vi1 yars 1 " IS T a1 ViTs 1

Similarly, under the conjugate prior (7) the (1 — a)-credible interval C.. of 0 is

o [elTVCq 1 VelReer

UV Veern—k-1,/1Tv 11

eIV 11 1 yeiReer
2fl/c—i-n—k:—1;1—0(/2 y (39>

+
1"V 11 uv.+n—k—1 \/1TV511

Vc+n—k—1;o</2;

while under the non-informative prior (21) it is given by
efS™1 1 \/erideelt
17S-'1 /n—k+p+/17S-11

el'sS™11 1 Vel Rae
n—k+p;l—a/2| - (40)

Cp, =

n—k-+p;a/2;

t
17S-11 + vn—k+pv/17S-11

Under the hierarchial prior (8) and the informative prior (26) the (1 — a)-credible
intervals (', and C} for the GMV portfolio weight are given by

Ch = [@nap2(0X1, o X )i Ghit—aj2 (01 X1, ., X)) (41)
and
Cr = |ara2(01X1, . Xn) qraapp(01X1, .., X0)| | (42)
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where gp.5(0; X4, ..., X,,) is the f-quantile of the posterior for a GMV portfolio weight
(11) under the hierarchial prior (8); qr.5(0; Xy, ..., X,,) is the S-quantile of the posterior
for a GMV portfolio weight (30) under the informative prior (26). The quantiles for both
posteriors py (0| Xy, ..., X,,) and pr(60]|Xy, ..., X,,) are obtained via simulations by using the

stochastic representations (12) and (33), respectively.

5.2 Elliptical Credible Sets

Let F;; denote the F-distribution with 7 and j degrees of freedom. In Theorem la we
prove that 6 follows a p-variate multivariate ¢-distribution with n — 1 degrees of freedom,
location parameter 8 and scale parameter ﬁl‘ﬁﬂ‘is]f under the diffusion prior (6). This
result provides a motivation for considering the following elliptical credible set expressed

as
-1 ~ -1~
{r e 1—-(178S'1)(@ —1)” (LR,LT) "@-1)< Fp,nl;la} ,
p

where Fj ;.5 denotes the S-quantile of F-distribution with ¢ and j degrees of freedom.
The above result follows from the fact that 8|X;, ..., X,, ~ t, (n -1, @, H%LRdLT) and

1 1781
~ —1 ~
consequently T, = ”le(lTS”l)(O —r)7 (LRdLT> (@ —r)~ F,, 1.
Similarly, the elliptical credible set under the conjugate prior (7) is given by

ve+tn—k—1
p

{r €R: (17V;'1)(6 — )" (LRCLT)‘1 6-r1)< prn_k_l;l_a} ,

while under the non-informative prior (21) it is given by

{r e B TS )(6 - (LR (6 1) < F} .

Finally, using the stochastic representations (12) and (33) for € under the hierarchial
prior (8) and under the informative prior (26), the elliptical credible sets are obtained

numerically by applying the bootstrap method (see [20], p.174).

6 Numerical and empirical illustrations

6.1 Numerical study

In this section we assess the performance of different priors within a numerical study. We
compute the coverage probabilities of credible intervals for the portfolio weights based
on the posterior distributions from the previous sections. For this purpose we compute
the 95% credible intervals explicitly if the corresponding quantiles come from a known
distribution. Alternatively, as in the case of hierarchical and informative priors, the

quantiles are computed via simulations using the respective stochastic representation.
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The number of repetitions is set to 1000. In the next step we simulate 10000 samples
of asset returns, compute the corresponding portfolio weights and count the fraction of
times the weights are covered by the credible intervals.

The comparison is done for p = 1, L = ef, p = 0.01-(1,2,....,k)T and ¥ =
(p"‘_ﬂ)i,j:l,”’k, where p takes values between -1 and 1. Since dimension of the portfo-
lio is particularly of interest we consider k € {5, 10,20,50}. The sample size n is set to
50, which is a typical value in financial literature and corresponds to roughly two months
of daily data or a year of weekly data, respectively. In all considered cases we take the
following parameters for the conjugate prior v, = k. = n, u. = 0 and S. = Ij; for the
hierarchial prior ¢; = 0.0001, €5 = 0.0001 (as in [25]), kp = v, = n and S;, = Iy; for the
informative prior 0; = 1 and d = 0.5, v; = n, w; = 1/k, S; = 1.

The coverage probabilities as functions of p for different values of k£ are plotted in
Figure 1. The informative and the hierarchical priors in particular obviously lead to
too wide credible intervals, causing the coverage probability to be almost one. This
holds in all dimensions and for all values of p in case of the hierarchical prior, whereas
an extreme behaviour of the informative prior is present only for large values of k£ and
negative correlation. The conjugate prior causes too narrow credible intervals leading to
coverage probabilities much lower than 95%. The higher is k, the larger is the discrepancy.
The diffuse prior shows a stable behavior with respect to p and heavily undershoots the
true coverage probability only for high k. In contrast to the previous priors, the non-

informative prior does uniformly the best job with a minor bias even for k = 50.

6.2 Empirical illustration

Within the empirical illustration we consider the weekly logarithmic returns for four
international financial indices DAX, NIKKEI, S&P500 and FTSE for the period from
22.01.1985 till 27.01.2015 resulting in 1567 observation points. The empirical study is
twofold. First, we assess the posterior distribution of the GMV portfolio weights. Second,
we evaluate a trading strategy based on Bayesian estimates for the weight. Within the
study we consider both the priors for the asset returns and the priors for portfolio weights.
To diversify the study and to show the robustness of the results we choose two types of
priors. The first prior mimics the classical statistical approach when a historical sample is
used to estimate the parameters of priors relying on the empirical Bayes approach. Here
we use a sample of length 255 (5 years of weekly data) preceding the estimation period.
The second type of the prior utilizes the evidence that the equally weighted portfolio shows
a good performance out-of-sample. Thus here we take the equally weighted portfolio as
the second prior in our study. In the case of priors for the parameters of asset returns this
corresponds to equal mean returns, equal variances and equal correlations for all assets.
To assess the posterior distribution we take the observation from 16.03.2010 till 27.01.2015
as the in-sample period, and the data form 26.04.2005 till 09.03.2010 as a prerun. The
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Figure 1: Coverage probabilities for 95% credible intervals based on different priors as a

function of p in different dimensions k.
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mean, the covariance matrix and the corresponding global minimum variance portfolio

weights for the prior sample are equal to

Horior = (12.505, —3.120, —1.195, 4.792)" x 107%,
8.743 6.361 6.380 6.614
6.361 13.144 5.123 6.460
6.380 5.123 6.892 5.367
6.614 6.460 5.367 6.955

Sprior = 1074X

These parameters are used as input parameters in the prior distributions, i.e. p. =
Hopriors Sc¢ = Sp = Sprior, Wi = Wyrior, €tc. For the working sample the corresponding

parameters are equal to:

X = (23.176, 20.377, 22.604, 7.665) x 10™*,
8.620 5.072 4.920 5.814
5.072 10.041 3.564 3.907
4.920 3.564 4.225 3.942
5814 3.907 3.942 5.165

S = 107*x

Note that the prior period covers the global financial crisis, which was followed by a
relatively calm period starting from 2010. This is mirrored in the estimated parameters.
The average returns in the crisis period are much lower and for two markets even negative.
The volatilities appear to reflect the turmoil performance of financial markets heavily.

Keeping other hyperparameters as in the simulation study, we compute the posterior
densities for each weight, thus setting L. being equal to basis vectors e; for i = 1,...,4.
Due to poor coverage of the hierarchical prior we drop it from the analysis here. The
plots of all densities based on non-informative and informative priors are given in Figure
2 for the historical prior and in 3 for the prior based on the equally weighted portfolio.
Due to low dimension, both priors lead obviously to very close posteriors centered around
the sample weights. We expect stronger deviation with increasing k. The conjugate prior
fails to incorporate the prior information appropriately and leads to the density similar to
the density of the non-informative prior. In contrast to this observation, the informative
prior clearly utilizes the prior information leading to shifted and wider densities. This is
consistent with our expectations. The densities with the equally weighted portfolio as a
prior show clearly the shift in the weights to 0.25. The same is however not observed for
the conjugate prior. Here the large sample size reduces the influence of the prior.

To evaluate the goodness of the suggested estimators we simulate a real trading strat-
egy. Compared are the estimators based on the conjugate, hierarchical, non-informative

and informative priors for the weights. The prior information reflects our belief into the
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Figure 2: Posterior densities for the portfolio weights of DAX, NIKKEI, S&P500 and
FTSE for the period from 16.03.2010 till 27.01.2015 based on the diffuse (top left),
the conjugate prior (top right), the non-informative (bottom left), and the informative
prior (bottom right). The priors are based on historical observations from 26.04.2005 till
09.03.2010
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Figure 3: Posterior densities for the portfolio weights of DAX, NIKKEI, S&P500 and
FTSE for the period from 16.03.2010 till 27.01.2015 based on the the conjugate prior
(left) and the informative prior (right). The priors correspond to the equally weighted

portfolio.
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conjugate hierarchical non-inf informative eq

fi, X 107* 8.7145 9.2926 9.0381 9.2451 10.0631

G, x 1072 2.1293 2.2394 2.1446 2.1596 2.8007
Sharpe ratio x1072 | 4.0927 4.1496 4.2143 4.2809 4.4135
VaR 95% x10~2 -6.0889 -6.6330 -6.0865 -6.9071 -7.0855
VaR 99% =102 -3.3035 -3.4347 -3.3142 -3.3805 -3.5642
ES 95% x 1072 -9.3079 -10.0754  -9.3323 -9.4014 -9.4391
ES 99% x10~2 -5.3715 -5.5685 -5.3862 -5.4119 -5.7093

Table 1: Performance measures of the alternative trading strategies based on different
estimates of the portfolio weights from 22.01.1985 till 27.01.2015. The estimation window
is set to 51. The priors correspond to the equally weighted portfolio.

equally weighted portfolio, which is our benchmark. The diffuse priors lead to numeri-
cally identical point estimates as the non-informative prior and thus is dropped from the
analysis here. At each moment of time we estimate the required parameters using the
previous 51 observations (one year of weekly data). The portfolio is hold one time period,
i.e. one week. At the beginning of the next week we compute the realized portfolio return.
This procedure is repeated for the complete data set. Using the obtained time series of
portfolio returns, we compute the following performance measures: mean portfolio re-
turn, standard deviation of the portfolio return, Sharpe ratio, Value-at-Risk (VaR) and
expected shortfall (ES) at 95% and 99% levels. The results are summarized in Table 1.
The equally weighted portfolio has the highest average return, but clearly underperforms
the remaining alternatives in terms of risk. Among the Bayesian strategies the estimators
based on the conjugate prior seem to have the best risk measures, but the lowest average
return. To assess the dynamics of the weights we plot the corresponding times series in
Figure 4. The behavior of the weights captures the volatile periods on financial markets
with rapid drops in more risky assets. The hierarchical prior leads to extremely volatile
portfolio weights, leading to an unrealistic and expensive strategy. The informative prior
for the weights utilizes the equally weighted prior and results in portfolio weights which
are much closer to 0.25 (weight of the equally weighted portfolio). Note that the estimator
with non-informative prior numerically coincides with the classical frequentist estimator

of the portfolio weights.

7 Summary

In this paper we analyse the global minimum variance portfolio within a Bayesian frame-
work. This setup allows us to incorporate prior beliefs of the investors and to incorporate
these into the portfolio decisions. Assuming different priors for the asset returns we derive

explicit formulas for the posterior distributions of linear combinations of GMV portfolio
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Figure 4: Time series of alternative estimators of optimal portfolio weights. Length of the

estimation window is set to 51. The priors correspond to the equally weighted portfolio.
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weights. In particular, we consider non-informative (diffuse) and informative (conjugate
and hierarchical) priors. Furthermore, relying on a suitable model transformation, we
suggest a prior directly for the portfolio weights. The results are evaluated within a nu-
merical study, where we assess the coverage probabilities of credible intervals, and within
an empirical study, where we consider the posterior densities for the weights of an inter-
national portfolio. Additionally, we run a simulated trading strategy with real data and
evaluate the strategies with a series of performance measures. Both studies showed good
results of the suggested priors and revealed the need for further analysis, particularly the

extension to the general mean-variance portfolio.

8 Appendix

8.1 Appendix A: Proof of Theorem 1

First, we present an important lemma which is used in the proof of Theorem 1.

Lemma 1. Let
E|X1, PN Xn ~ IWk(To,VO)

with Vo = Vo(Xy, ..., X,,) and let L be a p x k matriz of constants. Then

LY 1
17311

LV:'1 1 LR,LT
|X1,...,Xn"\-'tp<7'0—k’—1' 0 ; 0 >,

1TV M g — k= 117V
where Rg = V' — V11TVt /1TvV 1.

Proof of Lemma 1: From Theorem 3.4.1 of [26] it holds that 371Xy, ..., X, has a
k-dimensional Wishart distribution with (79— k—1) degrees of freedom and the covariance
matrix V.

Let L = (L7,1)7 and A = LY 'LT = {A;}i,-12 with Aj; = LE7'LT, Ay =
LY, Ay = 172717 and Ay = 17S7'1. Similarly, let H = LVy'LT = {Hy;}ij—10
with H;; = LV,'LY, Hyp = LV, ', Hyy = 17V 'LT and Hyy = 17V 1.

Since XXy, ..., X, ~ Wi(ro—k —1,Vy?1) and rank(L) = p+1 < k, the application
of Theorem 3.2.5 by Muirhead (1982) leads to A ~ W,1;(79 — k — 1, H). Moreover, using
Theorem 3.2.10 of [38] , we obtain

LE¥7'1 Ay
17311 n AQQ

AQQ, Xl, ceey Xn ~ Np<H12H521, H11.2A521), (43)

where H11.2 == H11 - H12H21/H22.
The application of Theorem 3.2.8 by [38] leads to I’%ﬁ ~ X2 _x_1- Consequently,

AQQ‘Xl, 7Xn ~ F((TO — k’ — 1)/2,2[’[22),
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i.e. Agy is gamma distributed with shape parameter (7 — k — 1)/2 and scale parameter
2H22.

. . . . -1 . .
Hence, the posterior distribution of % is given by
+oo
D is-14 X X <Y) = / P is-1, Ao X X (Y|A22 - Z)pA22\X1 ..... Xn(z)dz
1Ts—11 Tyeers n 0 Ts—11 22,81 y000y n

(27T)_p/2|H11.2|_1/2
T((r0 — k — 1)/2)(2Ha) 0+ D72

/ * ptro—k-1)/2-1
0

z — _ — _
X €xp {—2 {Hm1 +(y — HipHy' ) HL(y — H12H221)} } dz
|12
F((p + 7o — k — 1)/2) To—lk—l }1{}222

T((ro—k—1)/2) [r(ro—k — 1)]p/2

_ +710—k—1)/2
. | ) H,, T 1 H,.. 1 ) & (p+70 )/
7'0—]{3—1 y H22 T(]—]C—l HQQ y H22 ’

where the last expression is the density of p-dimensional t-distribution with (7o — k — 1)

X

degrees of freedom, location vector H12H2_21, and scale matrix ﬁHll.gHil. Noting
that

LV;'1
17V

H12H2_21 -

LV, 117V LT 1
and  HyjoHy' = <LV51LT— 0 > )

17V, 17V
completes the proof of Lemma 1 [

Proof of Theorem 1: First, we rewrite the expression of the likelihood function
which is then used in the calculation of the posteriors. It holds that

n 1 & _
LK1 Xl B) o [2exp { ) 30 - 20K
=1
n—1

S e b S e SNBSS ]

a) In the case of the standard diffuse prior py(p,3), the posterior distribution of
(p,X) is given by

pa(p, X1 X1, ..., X)) o< L(Xq, o, Xy, X)palp, ).

Integrating out u leads to

Pa(EX1 e Xa) [ LXK Xl E)pali D)
-1

x| BT 2 exp {_n tr[SEl]}
n o— o
X / exp {—(X — )X - u)} dp
RF 2

-1
x |B|T" 2 exp {_n 5 tr[SEl]} :
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The application of Lemma 1 with 70 = n + k and Vy = (n — 1)S completes the proof
of Theorem 1la.

b) The posterior distribution of (@, ¥) under the conjugate prior is given by
pe(p, XXy, .., X)) o L(Xy, .y X |, 2)pe(p, ).
Integrating out p leads to
PEXs o X) o [ LXK Xl Dhpe(t, D

B ey [ u((n - 1)S +8,)5 1]}

n — i
< [ e {5 - TSR p)
Rk 2
Re

= ke — ) I (pe - u)} dp

1
x |E|f(yc+n+1)/2 exp {_2tr[vczl]}

N+ Ke _
<[ et - TS - ) s
Rk 2

|
x [S[TE 2ty {—QVCE—l} ,

where
nX, + K.,
re = 5
n + K¢

V. = (n—=1S+8S.+ (n+ k)rer! + ninif + Kelbo by .

The rest of the proof follows from Lemma 1 with 79 = . +n and Vo = V..
¢) Under the hierarchial prior p,(p, 3, &, 1), the conditional posterior distribution of
(p,X) given &, 1, Xy, ..., X, is

ph(“’a 2|§7 7, Xl> sy Xn) X L(Xb (XY Xn‘u’a E)Ph(% 2‘57 77)
1
X |2|_(Vh+n+1)/2 exp {_Qtr[n—lshz—l]}

koo — e K _
x T e L 1) - )}

n n—1

;X =)' 2 (X —p) -

X exp{ tr[SEl]} .

Integrating out u leads to
ph(zyé-a n, X17 ce Xn) X /Rk ph(l'l'a 2‘57 7, X17 teey Xn)dl'l’
o n*k(l/hfkfl)/Q‘E’f(Vthn)/? exp {_;tr[vhzl]} :

where

nX + kp€l

Vh = Vh(f,n) = (7’L — 1)S -+ n_lsh — (n + /ih)rhl‘}j; + TLK KT + /€h5211T.
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The application of Lemma 1 with 7y = 1, + n and Vy = V), and the integration over

&, n lead to the expression presented in Theorem 1c.

8.2 Appendix B: Derivation of the Fisher information matrix

Let ¢ = (68", vech(®)” ¢)”. Then the Fisher information matrix I(@, ¥, () is given by

82
1(0,% () = — L?cb@qb log L((n —1)7'S|6, ® g)]
where (see (20))
log L((n — 1)"'816, W, ¢) o "X P 1o 1] + ”_;Hp log

1, 1)/ a < .
no g - S (tr[ST,06"] + 26x(S1,)0"] + S5, ) .

It holds that

) 5 5
o l08 L((n=1)7'816,¥.() = —(n—1)¢8},0 — (n — )¢S},
2 ~(—
Seag7 08 L((n—1)7 810, w.¢) = —(n—1)¢8SY,
0 1  on—k+p. 4
aC log L((n — 1)~ S|0 U () = — ¢
_on-ld (tr[ST,00"] + 2tr[S1;)07] + S5 |
0? _ n—k+p 3
aQC log L((n — 1)S|9 () = —(
2 - ~(_ ~(_
sgac o8 L= 17816 w.0) = ~(n - 1)8590— (n—1)S{;’

From the properties of the differential of a determinant (cf. [35]) we obtain
d|¥| = |¥|(vec(¥ 1)) dvec(¥).
Using the relationship between vec and vech operators (see [27], p. 365) we get
vec(¥) = G,vech(¥),

and, hence,
d|¥| = |¥|(vech(¥"))"G! G,dvech(¥).

The last equality leads to

0¥ T \T -1
— =¥ h(W¥
dvech(P) ®[(G, Gy) " vech(¥7)
and, consequently,
Oln || . .
— G, G h(v).
Ovech(W) p Gpvech(¥7)
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The second order derivative is
0?In |P| dvech(¥1)
Ovech(W¥)d(vech(W¥))T P d(vecw)T
where the last equality follows from [27], p. 368 with H, = (G]G,)"'G]".

Thus using the previous results for the partial derivatives of a symmetric matrix, we

= G]G = —(G]G)H, (¥ ' @ TG,

get
dlog L((n —1)7'S|6, ¥, ()  on—k+p_ 4, n—1 S(0)
Hvech(W) = 5 G, G,vech(¥™) — vech(S;,’),
9%log L((n —1)7'S|6,®,¢) n—k+p poo 1
= —— L Glewtew
Ovech(¥)d(vech(¥))T 2 G, ( © )Gy
&?log L((n —1)7'S|0,®,¢) 0 &?log L((n —1)7'S|0,®,¢)
Ovech(¥)06" - Ovech(¥)d¢

The identity (n — 1)S™! ~ W,,1(n + p — k,37') and the properties of the Wishart
distribution (see [38]) lead to

" _ " _ ‘Il_l —‘I/_l
E[S’l] _ n-+p szlzn—irp k , TO
n—1 n—1 | —0"®¥! (1+6Tw 0
Hence,
(- +p—k__
~(— +p—Fk__
ESG) =1 g,
( 12) n—l )
BEY) = PP 1 gTw )

1

As a result the Fisher information matrix is given by

10, %, ()
—(n—k+p)¢Syy Opp(p+1)/2 ~(n—1)(81,0 +8,))
x —F Op(p+1)/2xp _n_TkerGg(‘I’_l ® ‘I’_I)Gp Op(p+1)/2
—(n—1)(81,0 +S,)” 0Fpi1)/2 e
(n—k+p)(e! 0pxp(p+1)/2 0y
x Op(p+1)/2xp n_§+pGg(‘I'_1 ® ‘I'_I)GP Op(p+1)/2
0, Oip1)2 I
O
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