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Abstract

Consider a large uniformly mixing dynamic population, which has constant
birth rate and exponentially distributed lifetimes, with mean population size n.
A Markovian SIR (susceptible → infective → recovered) infectious disease, having
importation of infectives, taking place in this population is analysed. The main
situation treated is where n → ∞, keeping the basic reproduction number R0 as
well as the importation rate of infectives fixed, but assuming that the quotient of
the average infectious period and the average lifetime tends to 0 faster than 1/ log n.
It is shown that, as n→∞, the behaviour of the 3-dimensional process describing
the evolution of the fraction of the population that are susceptible, infective and
recovered, is encapsulated in a 1-dimensional regenerative process S = {S(t); t ≥ 0}
describing the limiting fraction of the population that are susceptible. The process
S grows deterministically, except at one random time point per regenerative cycle,
where it jumps down by a size that is completely determined by the waiting time
since the previous jump. Properties of the process S, including the jump size and
stationary distributions, are determined.

1University of Nottingham, School of Mathematical Sciences, University Park, Nottingham NG7 2RD,
UK,

2Stockholm University, Department of Mathematics, 106 91 Stockholm, Sweden.



1 Introduction

The mathematical theory for the spread of infectious diseases has a long history and is by
now quite rich (e.g., [Diekmann et al. (2013)]). One of the more common type of disease
models is called SIR (susceptible → infective → recovered) meaning that individuals are
at first Susceptible. If infected (by someone) they immediately become Infectious (being
able to spread the disease onwards). After some time an infectious individual Recovers,
which also means that the individual is immune to further infection from the disease. Such
models were originally studied for populations assuming homogeneous mixing, but during
the last few decades considerable effort has been put into analysing epidemic models in
communities which are not homogeneously mixing but instead may be described using
some type of social structure, such as a community of households (e.g. [Ball et al. (1997)])
or a random network describing possible contacts (e.g. [Newman(2002)]). The vast major-
ity of papers devoted to these type of problems assume a fixed community and community
structure.

In the current paper we treat the situation where the population is dynamic in the
sense that people die and new individuals are born, or more precisely immigrate into the
population. Further, we assume that there is also importation of infectious individuals
(randomly in time according to a homogeneous Poisson process), implying that the disease
never vanishes forever. In order to facilitate analytical progress we consider only the case
of a homogeneously mixing community, which in network terminology corresponds to
treating the complete network.

Models for recurrent epidemics go back to the deterministic formulations of [Hamer(1906)]
and [Soper (1929)]. A stochastic treatment was given first in the pioneering work of [Bartlett(1956)],
who considered an SIR model with importation of both susceptibles and infectives, but
without disease-unrelated deaths. An alternative model, with disease-unrelated deaths
but no importation of infectives, has been studied extensively (e.g. [N̊asell(1999)] and
the references therein). Interest often centres on the time to extinction of infection and
the closely-related problem of the critical community size for an infection to persist in a
population.

We consider a Markovian SIR epidemic with demography and importation of infec-
tives, in which infectious individuals infect new individuals at constant rate and the
infectious period is exponentially distributed. We study limit properties of the epidemic
when the average population size n tends to infinity. Our focus lies on the case where
the limit is taken keeping the basic reproduction number R0 (i.e. the average number of
susceptibles infected by a single infective in an otherwise fully susceptible population of
size n) and the immigration rate of infectives fixed, whereas the quotient of the average
infectious period and the average lifetime tends to 0 faster than 1/ log n. For many infec-
tious diseases this quotient typically lies between 10−4 and 10−3, hence supporting this
asymptotic regime, but in the discussion we treat other asymptotic regimes briefly.

Under the above asymptotic regime, all epidemic outbreaks are short, having duration
that tends to 0 in probability as n → ∞. Further, as n → ∞, epidemic outbreaks are
either minor, having size of order op(n), or major, having size of exact order Θp(n). It
follows that, as n → ∞, the behaviour of the three-dimensional process describing the
evolution of the fraction of the population that are susceptible, infective and recovered, is
encapsulated in a one-dimensional regenerative process S = {S(t); t ≥ 0}, describing the
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limiting fraction of the population that are susceptible. During each cycle, the process S
makes one down jump, corresponding to the occurrence of a major outbreak, and except
for this increases deterministically, as minor outbreaks have no effect on S̄(n) in the limit as
n→∞. (Here, S̄(n) = {S̄(n)(t) : t ≥ 0}, where, for t ≥ 0, S̄(n)(t) = n−1S(n)(t) with S(n)(t)
being the number of susceptible individuals in the population at time t.) Note that S̄(n)

does not converge weakly to S in the Skorohod topology since the sample paths of S are
almost surely discontinuous but those of S̄(n) almost surely contain only jumps of size n−1,
so are close to being continuous. Thus to obtain rigorous convergence results, we consider
two processes, S̄

(n)
− and S̄

(n)
+ , which coincide with S̄(n), except during major outbreaks

during which they sandwich S̄(n), and prove that both S̄
(n)
− and S̄

(n)
+ converge weakly to

S in the Skorohod topology (Theorem 2.1). It then follows that certain functionals of
S̄(n) converge weakly to corresponding functionals of S (Corollary 2.1).

The paper is structured as follows. In Section 2, we define the model and the limiting
regenerative process, give an intuitive explanation of why S approximates S̄(n) for large
n and present the main convergence results. In Section 3, we derive some properties of
the limiting regenerative process: the jump size distribution, the associated renewal time
distribution and the stationary distribution. In Section 4, we present simulations sup-
porting the convergence result and illustrating various features of the limiting process. In
Section 5, we prove the main results. We end in Section 6 with a Discussion summaris-
ing our results and also exploring briefly additional questions, such as other asymptotic
regimes.

2 The epidemic model and main results

2.1 The Markovian SIR epidemic with demography and impor-
tation of infectives

We now define the Markovian SIR epidemic with demography and importation of in-
fectives (SIR-D-I). We consider the process to be indexed by a target population size n,
which we assume is a strictly positive constant. The population model is an immigration-
death process with constant immigration rate and linear death rate. For t ≥ 0, let N (n)(t)
denote the population size at time t. Then N (n)(t) increases at constant rate µn and de-
creases at rate µN (n)(t). The population size hence fluctuates around n, which is assumed
to be large.

The Markovian SIR-epidemic on this population is defined as follows. For t ≥ 0, let
S(n)(t), I(n)(t) and R(n)(t) denote the number of susceptibles, infectives and recovered,
respectively, at time t, so S(n)(t)+I(n)(t)+R(n)(t) = N (n)(t). We assume that I(n)(0) = 0
and that S̄(n)(0) → s0 as n → ∞, where s0 ∈ (0, 1] is constant. (The value of R(n)(0)
has no effect on the ensuing epidemic.) . A fraction κn of all births (i.e. immigrants)
are infectives and the remaining births are all susceptibles, so births of infectives occur
at rate µnκn and births of susceptibles occur at rate µn(1 − κn). While infectious, any
given infective infects any given susceptible at rate n−1λn, independently between each
distinct pair of individuals. Thus, approximately, each infective makes infectious contacts
at the points of a homogeneous Poisson process having rate λn, with contacts being with
individuals chosen independently and uniformly from the whole population; a contact
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with a susceptible individual results in that individual becoming infected, while a contact
with an infectious or removed individual has no effect. Each infectious individual recovers
and becomes immune at rate γn, implying that the infectious period is exponentially
distributed with rate parameter γn.

More formally, the process
{(
S(n)(t), I(n)(t), R(n)(t)

)
: t ≥ 0

}
is a continuous-time

Markov chain, with state space Z3
+ and transition intensities given by

q
(n)
(s,i,r),(s+1,i,r) = (1− κn)nµ,

q
(n)
(s,i,r),(s,i+1,r) = κnnµ,

q
(n)
(s,i,r),(s−1,i,r) = µs,

q
(n)
(s,i,r),(s,i−1,r) = µi,

q
(n)
(s,i,r),(s,i,r−1) = µr,

q
(n)
(s,i,r),(s−1,i+1,r) = n−1λnsi,

q
(n)
(s,i,r),(s,i−1,r+1) = γni,

corresponding to birth of a susceptible, birth of an infective, death of a susceptible, death
of an infective, death of a recovered, infection of a susceptible and recovery of an infective,
respectively.

We study specifically the case where the average population size n tends to infinity
in such a way that

(a) the total importation rate µnκn of infectives tends to a strictly positive constant
µκ, so κnn→ κ as n→∞; and

(b) the infection and recovery rates satisfy λn/γn → R0 > 1 and
λn/ log n→∞ as n→∞.

For ease of exposition, we assume that n is an integer, so sequences of epidemic processes
are indexed by the natural numbers. However, all of the results of the paper are easily
generalised to the case of a family of epidemic processes indexed by the positive real
numbers.

To conclude, the parameters of the model are: n, the average population size; µ,
where 1/µ is the average lifetime and µn is the population birth rate; λn, the infection
rate; γn, where 1/γn is the average length of the infectious period; and κn, the fraction
of births which are infectious, so µnκn is the birth (or importation) rate of infectives.

2.2 The limiting process S

Let S̄(n) =
{
S̄(n)(t) : t ≥ 0

}
, where S̄(n)(t) = n−1S(n)(t) is the “fraction” of the population

that is susceptible at time t. The process S = {S(t); t ≥ 0} can be viewed as the limit
of S̄(n) as n → ∞ under the above asymptotic regime. It is a Markovian regenerative
process (e.g. [Asmussen(1987)], Chapter V), with renewals occurring whenever S(t) =
1/R0. Between each renewal S(t) increases deterministically according to the differential
equation

S ′(t) = µ(1− S(t)), (2.1)
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except for one down jump (from above 1/R0 to below 1/R0). This implies that

S(u) = 1− (1− 1/R0)e
−µu (2.2)

before the jump (if u denotes the time from the last renewal). The random time T from
a renewal to the jump has distribution specified by

P(T ≤ t) = 1− exp

[
−µκ

∫ t

0

(
1− 1

R0S(u)

)
du

]
(t ≥ 0),

with S(u) given by (2.2), so

P(T ≤ t) = 1− e−µκt
(
R0e

µt −R0 + 1
) κ
R0 (t ≥ 0). (2.3)

The size of the jump is specified by the value S(T−) of the process just prior to the jump.
More precisely, S(T ) = S(T−)(1 − τ(S(T−))), where for s > R−10 , τ(s) is the unique
strictly positive solution to the equation (cf. [Diekmann et al. (2013)], equation (3.15))

1− τ = e−R0sτ . (2.4)

In epidemic theory τ(s) is known as the relative fraction infected among the initially
susceptible of an SIR epidemic outbreak in which a fraction s are initially susceptible and
the rest immune. Hence, the size of the down jump is S(T−)τ(S(T−)). After the down
jump, S(t) increases deterministically according to the same differential equation (2.1)
until the next renewal point, so

S(T + t) = 1− (1− S(T ))e−µt, 0 ≤ t ≤ µ−1 log[(1− S(T ))/(1− 1/R0)]

and the inter-renewal time is T + µ−1 log[(1 − S(T ))/(1 − 1/R0)]. Illustrations of S are
given in Section 4.

2.3 Main results and heuristics

We first explain heuristically why S can be viewed as the limit of S̄(n) as n →∞ under
that asymptotic regime described in Section 2.1. Suppose that n is large. Then when
no infective is present, all that happens is that individuals die and new ones are born at
approximately the same rate µn. Recovered (immune) individuals that die are replaced
by susceptible individuals, so the fraction of susceptibles increases at rate µ(1− S̄(n)(t))
which explains the deterministic growth rate of S.

After an exponentially distributed holding time, with rate parameter µnκn ≈ µκ,
an infective is born into the community. If the fraction susceptible S̄(n)(t) is below
1/R0, then the effective reproduction number Re = R0S̄

(n)(t) is strictly less than one,
implying that, with probability tending to one as n → ∞, a large outbreak will not
occur, so S̄(n)(t) continues to grow approximately deterministically. If S̄(n)(t) > 1/R0

when a new born infective enters the community, then with approximate probability
1 − 1/(R0S̄

(n)(t)) that infective gives rise to a major outbreak that infects order Θ(n)
susceptibles (cf. [Diekmann et al. (2013)], pages 53 and 376), otherwise only a minor
outbreak, which infects order o(n) susceptibles, occurs and S̄(n)(t) continues to grow
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approximately deterministically. This explains the distribution for T , the time from a
renewal until a down jump in S, which has time varying intensity given by µκ multiplied
by the limiting major outbreak probability (cf. [Bartlett(1956)]).

If a major outbreak takes place, the size of the outbreak among the susceptibles is
given approximately by τ(S(T−))S(n)(T−) where S(T−) denotes the limiting (as n →
∞) fraction susceptible just prior to the outbreak and τ(s) is defined above (cf. [Diekmann et al. (2013)],
page 60). The duration of such a major outbreak is of order Θ(log n/λn) (cf. [Barbour(1997)])
which tends to 0 by assumption. Thus, if there is a major outbreak it happens momen-
tarily and, in the limit as n → ∞, the fraction susceptible after the outbreak, S(T ),
satisfies S(T ) = S(T−)(1− τ(S(T−)).

Although the above heuristic argument makes it plausible that the normalised sus-
ceptible process S̄(n) converges to the regenerative process S, there are two complicating
factors in making the argument fully rigorous. First, as explained in Section 1, it is not
true that S̄(n) ⇒ S as n→∞, where ⇒ denotes weak convergence in the space D[0,∞)
of right-continuous functions f : [0,∞)→ R having limits from the left (i.e. càdlàg func-
tions), endowed with the Skorohod metric (e.g. [Ethier and Kurtz(1986)], Chapter 3).
As explained also in Section 1, we overcome this problem by considering two processes,
S̄
(n)
− and S̄

(n)
+ , which coincide with S̄(n) except during major outbreaks, when they sand-

wich S̄(n), and show that S̄
(n)
− ⇒ S and S̄

(n)
+ ⇒ S(·) as n → ∞; see Theorem 2.1. The

second complicating factor is that the results referred to above concerning the probabil-
ity, size and duration of a major outbreak are for an epidemic in a static population,
whereas our population is dynamic. The results carry over to our setting because, in the
limit as n → ∞, the time scale of an epidemic outbreak is infinitely faster than that of
demographic change, but proofs need to be adapted accordingly.

Before stating our main theorem, some more notation is required. Recall that I(n)(t)
is the number of infectives at time t in the SIR-D-I epidemic with average population
size n and that we consider epidemics with no infective at time 0, i.e. with I(n)(0) = 0.

Let t
(n)
0 = u

(n)
0 = 0. For k = 1, 2, · · · , let t

(n)
k = inf{t ≥ u

(n)
k−1 : I(n)(t) ≥ log n} and

u
(n)
k = inf{t ≥ t

(n)
k : I(n)(t) = 0}. Thus, provided n is sufficiently large, the kth major

outbreak starts at approximately time t
(n)
k and ends at time u

(n)
k . (The choice of log n to

delineate major outbreaks is essentially arbitrary. Our proofs work equally well if log n
is replaced by any function g(n) which satisfies g(n)→∞ and n−

1
2 g(n)→ 0 as n→∞.)

For t ≥ 0, let

S̄
(n)
− (t) =

 S̄(n)(t) if t /∈ [t
(n)
i , u

(n)
i ) for some i,

min
t
(n)
i ≤t′≤u

(n)
i
S̄(n)(t′) if t ∈ [t

(n)
i , u

(n)
i ), i = 1, 2, · · · ,

and

S̄
(n)
+ (t) =

 S̄(n)(t) if t /∈ [t
(n)
i , u

(n)
i ) for some i,

max
t
(n)
i ≤t′≤u

(n)
i
S̄(n)(t′) if t ∈ [t

(n)
i , u

(n)
i ), i = 1, 2, · · · .

The following theorem is proved in Section 5.1.

Theorem 2.1 Suppose that limn→∞ S̄
(n)(0) = s0. Then, as n→∞,

S̄
(n)
− ⇒ S and S̄

(n)
+ ⇒ S,

where S(0) = s0.
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An immediate consequence of Theorem 2.1 is that suitable functionals of S̄(n) converge
weakly to corresponding functionals of S. For g, h ∈ D[0,∞), let g ≤ h denote g(t) ≤ h(t)
for all t ≥ 0. A functional H : D[0,∞) → R is called monotone if either Hf ≤ Hg for
all f, g ∈ D[0,∞) satisfying f ≤ g, or Hf ≤ Hg for all f, g ∈ D[0,∞) satisfying g ≤
f . The following corollary, which can clearly be generalised to suitable non-real-valued
functionals, follows immediately from Theorem 2.1 by using the continuous mapping
theorem (e.g. [Billingsley(1968)]). For H : D[0,∞) → R , let CH = {f ∈ D[0,∞) :
H is continuous at f}.

Corollary 2.1 Suppose that limn→∞ S̄
(n)(0) = s0, H : D[0,∞) → R is monotone and

P(S ∈ CH) = 1. Then

HS(n) D−→ HS as n→∞,

where S(0) = s0.

One functional which satisfies the conditions of Corollary 2.1 is the first passage time
functional Ha, defined for given a ∈ (0, 1) by

Haf =

{
inf{t ≥ 0 : f(t) ≥ a} if f(0) ≤ a,
inf{t ≥ 0 : f(t) ≤ a} if f(0) > a.

The functional Ha is clearly monotone and P (S ∈ CHa) = 1, cf. [Pollard(1984)], page
124.

Another functional satisfying the conditions of Corollary 2.1 is the occupancy time
functional Ha

t∗ , defined for any given t∗ > 0 and a ∈ (0, 1) by

Ha
t∗f =

∫ t∗

0
1{f(t)≤a} dt. (2.5)

This functional is again clearly monotone. The proof that P
(
S ∈ CHa

t∗

)
= 1 is given at

the end of Section 5.1.

3 Properties of the limiting process S

We now outline some properties of the regenerative process S which can be obtained from
renewal and regenerative process theory (e.g. [Asmussen(1987)], Chapters IV and V). As
described in Section 2.2 the stochastic part of the regenerative process is completely
specified by the waiting time T until the down jump, but it can be specified equivalently
by the jump size X = S(T−)−S(T ). Noting that τ(S(T−)) = (S(T−)−S(T ))/S(T−)),
it follows from (2.4) that

S(T )

S(T−)
= e−R0(S(T−)−S(T )) = e−R0X ,

whence

S(T−) =
X

1− e−R0X
=

XeR0X

eR0X − 1
and S(T ) =

X

eR0X − 1
,

7



which can be used to obtain the distribution of the jump size X. The jump size is strictly
less than τ(1), as S(t) < 1 for all t ≥ 0. Hence, for 0 < x < τ(1),

FX(x) = P(X ≤ x)

= P
(
S(T−) ≤ x

1− e−R0x

)
= P

(
T ≤ −µ−1 log

[
1− x/(1− e−R0x)

1− 1/R0

])
(using (2.2))

= 1−

 R0

(
1− x− e−R0x

)
(R0 − 1) (1− e−R0x)

κ [ (R0 − 1)x

1− x− e−R0x

] κ
R0

. (3.1)

The lifetime distribution for the renewal process describing successive visits of S to
1/R0 may be derived as follows. During a cycle, the regenerative process S starts at 1/R0

and grows deterministically, according to (2.1), until the time T of the down jump. After
this down jump it again grows deterministically, according to (2.1), until it reaches 1/R0,
when the next renewal occurs. If we change the order of these two parts, the process
starts at S(T ) and grows deterministically until it reaches S(T−). The lifetime T ∗ hence
equals the time it takes for the deterministic curve defined by (2.1) to travel from S(T )
to S(T−) This time equals

T ∗ = µ−1 log

(
1− S(T )

1− S(T−)

)
= µ−1 log

(
eR0X − 1−X

(1−X)eR0X − 1

)
.

This is a monotonic increasing function of X, so the renewal time distribution can be
obtained numerically using the expression FX(x) given by (3.1).

The stationary distribution of S can be obtained using regenerative process theory
(e.g. [Asmussen(1987)], Chapter V, Section 3). During a regenerative cycle, the process
S traverses s if and only if s lies between S(T ) and S(T−). If it does, the density for the
time spent there is inversely proportional to the derivative µ(1− s). Consequently, if we
let fS∗(s) denote the density of the stationary distribution of S, we have

fS∗(s) =
c

µ(1− s)
P(s ∈ [S(T ), S(T−)]) (1− τ(1) < s < 1), (3.2)

where c (= 1/E[T ∗]) is the normalizing constant making this a pdf. If s ∈ [1/R0, 1), then
s ∈ [S(T ), S(T−)] if and only if T ≥ µ−1 log((1 − R−10 )/(1 − s). If s ∈ (1 − τ(1), 1/R0),
then s ∈ [S(T ), S(T−)] if and only if X ≥ g−1(s), where g : (0, τ(1))→ (1−τ(1), 1/R0) is
defined by g(x) = x/(eR0x−1). It then follows using (2.3) and (3.1) that, with s̃ = g−1(s),

fS∗(s) =


c
[
R0(1−s̃−e−R0s̃)
(R0−1)(1−e−R0 s̃)

]κ [
(R0−1)s̃

1−s̃−e−R0 s̃

] κ
R0 if 1− τ(1) < s < 1/R0,

c
(

1−s
R0−1

)κ(1− 1
R0

)
Rκ

0s
κ
R0 if 1/R0 ≤ s < 1.

In the next section the density fS∗(s) is calculated numerically and shown to agree with
corresponding empirical values from simulations.

8



4 Numerical illustrations

We now present briefly some numerical and simulation results, which illustrate conver-
gence of the epidemic process as well as properties of the limiting stationary distribution
of the fraction susceptible S∗. In Figure 1 the epidemic is simulated for 100 years in a
population of n = 10, 000 individuals. In all figures, R0 = 2 implying that the effective
reproduction number Re = R0S̄

(n)(t) is supercritical as soon as the population fraction
susceptible exceeds 1/R0 = 0.5. The average lifetime is 1/µ = 75 years and γ = 50, so
the average length of the infectious period is about 1 week. In the left panels of Figure 1,
κ = 20, so the rate at which new infectives enter the population (µκ) equals 1 per 3.75
years, and in the right panels κ = 200, so new infectives enter the population at rate
22
3

per year. The upper panels show the fraction of the population that is susceptible
over the 100 period and the lower panels show the corresponding fraction that is infec-
tive. Observe that when κ = 20 major outbreaks are less frequent but larger than when
κ = 200, and that there are appreciably more minor outbreaks when κ = 100. Note
also that epidemics are rarer than the importation rate of infectives suggests, for two
reasons. First, major outbreaks can occur only when S̄(n)(t) > 1/R0 = 0.5, and secondly,
when S̄(n)(t) is above this threshold, major outbreaks do not occur each time an infective
enters the community. In the lower left panel of Figure 1 some minor outbreaks caused
by importation of infectives can also be seen.

In Figure 2 realisations of the corresponding limiting processes are plotted. The same
parameter values are used in both figures. The stochastic features of the epidemic and
the limiting process are in agreement, suggesting that the limiting behaviour has kicked
in when n = 10, 000. Note that, unlike in Figure 1, there are no near-vertical lines as
outbreaks are now instantaneous.

We now illustrate properties of the stationary distribution of the fraction susceptible
S∗, both for the epidemic with n = 1, 000 and n = 10, 000, as well as for the limiting
process. For the three processes, and for three different values of κ, we simulate the
epidemic and limiting processes for 10,000 years and in Figure 3 we plot bar charts of
the relative time spent with specified fraction susceptible. The processes are simulated
over a very long time span so that the empirical distribution of the fraction susceptible is
close to the corresponding stationary distribution. (Recalling the functional Ha

t∗ defined
at the end of Section 2.3, note that by standard regenerative process theory, for any fixed

a ∈ (0, 1), 1
t∗
Ha
t∗S

a.s.−→ P(S∗ ≤ a) as t∗ →∞ and, by Corollary 2.1, 1
t∗
Ha
t∗S̄

(n) D−→ 1
t∗
Ha
t∗S

as n→∞.) The values of µ, γ and R0 are the same as in Figure 1. (Note that the value
of γ, and hence also λ (= R0γ), is the same for both values of n.) The chosen values of κ
are κ = 1, 3 and 100, corresponding to importation of infectious individuals on average
one every 75, 25 and 0.75 years, respectively. In the plots we have also computed fS∗(s),
the stationary distribution of the limiting process, numerically as described in Section 3.

It is seen that the bar charts from the epidemics resemble the limiting stationary
distribution fS∗(s), except when n = 1, 000 and κ = 100. When κ is small, few outbreaks
take place, so even if the outbreaks are large, the population fraction of susceptibles
is close to 1 most of the time, which explains why the stationary distribution S∗ is
concentrated at values close to 1. For moderate values of κ, the stationary distribution
has positive mass for nearly all s values between 1−τ(1) = 0.2032 (the fraction susceptible
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Figure 1: Simulation of the SIR-D-I epidemic with n = 10, 000 individuals, R0 = 2.
In the left panels κ = 20 and κ = 200 in the right panels. The average life length
is 1/µ = 75 years and mean infectious period is 1/γ ≈ 1 week. The fraction of the
population susceptible (upper panels) and infective (lower panels) is plotted over a 100
year period in both cases. The dashed line in the upper panels shows the critical fraction
susceptible so that the effective reproduction number Re = 1. Note that the scales for the
fraction of the population infective are different in the two lower panels; major outbreaks
are appreciably larger in the left figure.
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Figure 2: Simulation of the limiting process S for the same parameter values as in the
epidemics in Figure 1.
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Figure 3: Bar charts of the relative time spent with fraction s susceptible for the epidemic
(with n = 1, 000 and n = 10, 000) as well as the limiting process. Also plotted is the
stationary distribution of limiting process fS∗(s). Parameter values are: average life
length equals 1/µ = 75 years, R0 = 2, mean infectious period 1/γ ≈ 1 week and κ = 1, 3
and 100. Bar charts are based on simulation over 10,000 years.
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after a major outbreak starting with the entire population being susceptible) and 1. The
stationary distribution is seen to be concentrated around 1/R0 when κ is large, owing
to the fact that a new major outbreak occurs quite soon after the population fraction of
susceptibles exceeds 1/R0, with the effect that the size of major outbreaks is generally
small. These observations imply that the stationary distribution is not stochastically
decreasing (nor increasing) in κ.

5 Proofs

5.1 Proof of Theorem 2.1

Let (Ω,F , P ) be a probability space on which is defined a homogeneous Poisson process
η on (0,∞) having rate µκ and let 0 < r1 < r2 < · · · denote the times of the points in η.

For n = 1, 2, · · · , let η(n) denote the point process with points at 0 < r
(n)
1 < r

(n)
2 < · · · ,

where r
(n)
k = κ

nκn
rk (k = 1, 2, · · · ). Let E(n) denote the epidemic process indexed by n.

Then η(n) gives the points in time when infectives immigrate into the population in E(n).
We construct E(n) (n = 1, 2, · · · ) and S by first conditioning on η.

The process S is constructed as follows. Recall the definition of τ(s) at 2.4. Between
the points of η, S(t) increases deterministically according to the differential equation (2.1).
For k = 1, 2, · · · , S has a down jump to S(rk−)[1−τ(S(rk−))] at time rk with probability
max(1−(R0S(rk−))−1, 0) (independently for successive k), otherwise S continues to grow
according to (2.1). Thus, S can be described as follows. Let t1 < t2 < · · · be the times
of the down jumps of S, so these form a subset of the points of η. Let

f(x, t) = 1− (1− x)e−µt (0 < x < 1, t > 0),

so, for fixed x, the solution of (2.1) with S(0) = x is f(x, t). Let t0 = 0 and suppose that
s0 = S(0) is given. Then, for k = 0, 1, · · · ,

S(t) = f(sk, t− tk) (tk ≤ t < tk+1), (5.1)

where, for k = 1, 2, · · · , the initial value sk = s̃k(1 − τ(s̃k)), with s̃k = S(tk−) =
f(sk−1, tk − tk−1). The precise definition of the construction of E(n) (n = 1, 2, · · · ) is
not relevant at this stage.

We prove Theorem 2.1 by first proving the corresponding result for processes condi-
tioned on η.

Lemma 5.1 Suppose that limn→∞ S̄
(n)(0) = s0. Then, for P-almost all η,

S̄
(n)
− |η ⇒ S and S̄

(n)
+ |η ⇒ S as n→∞. (5.2)

In order to prove Lemma 5.1, we need some more notation and an extra lemma
(Lemma 5.2, below). Recall that, for n = 1, 2, · · · , we assume I(n)(0) = 0, that t

(n)
0 =

u
(n)
0 = 0 and that, for k = 1, 2, · · · , t(n)k = inf

{
t ≥ u

(n)
k−1 : I(n)(t) ≥ log n

}
and u

(n)
k =

inf
{
t ≥ t

(n)
k : I(n)(t) = 0

}
. For n = 1, 2, · · · , let s

(n)
0 = S̄(n)

(
u
(n)
0

)
and, for k = 1, 2, · · · ,

let s
(n)
k = S̄(n)

(
u
(n)
k

)
.

c
(n)
k = min

t
(n)
k
≤t≤u(n)

k

S̄(n)(t) and c̃
(n)
k = max

t
(n)
k
≤t≤u(n)

k

S̄(n)(t)
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Lemma 5.2 Suppose that limn→∞ S̄
(n)(0) = s0. Then the following hold for P-almost all

η.

(i) For k = 1, 2, · · · , u
(n)
k |η

D−→ tk, t
(n)
k |η

D−→ tk, s
(n)
k |η

D−→ sk,

c
(n)
k |η

D−→ sk and c̃
(n)
k |η

D−→ s̃k as n→∞.

(ii) For k = 0, 1, · · · ,

sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣S̄(n)(t)− f
(
c
(n)
k , t− u(n)k

)∣∣∣ |η D−→ 0 as n→∞. (5.3)

(iii) tk →∞ as k →∞.

Proof. See Section 5.2. 2

Proof of Lemma 5.1. First note that since results concerning convergence in distri-
bution in the Euclidean space Rk carry over in all essential respects to convergence in
distribution in R∞ (see [Billingsley(1968)], page 19), the Skorohod representation theo-
rem implies that we may assume that the convergence in Lemma 5.2 holds almost surely.
Let A ∈ F be the set ω ∈ Ω such that (i) for k = 1, 2 · · · ,

lim
n→∞

u
(n)
k (ω) = tk(ω), lim

n→∞
t
(n)
k (ω) = tk(ω), lim

n→∞
s
(n)
k (ω) = sk(ω),

lim
n→∞

c
(n)
k (ω) = sk(ω) and lim

n→∞
c̃
(n)
k (ω) = s̃k(ω);

(ii) for k = 0, 1, · · · ,

lim
n→∞

sup
u
(n)
k

(ω)≤t<t(n)
k+1

(ω)

∣∣∣S̄(n)(t, ω)− f
(
s
(n)
k (ω), t− u(n)k

)
(ω)

∣∣∣ = 0; (5.4)

and (iii) tk(ω)→∞ as k →∞. Then P(A|η) = 1 for P-almost all η.
For g, h ∈ D[0,∞), d(g, h) denotes the distance between g and h in the Skorohod

metric (see [Ethier and Kurtz(1986)], Chapter 3.5). Let η satisfy P(A|η) = 1. We show
that for all ω ∈ A,

lim
n→∞

d(S̄
(n)
− (ω), S(ω)) = 0 and lim

n→∞
d(S̄

(n)
+ (ω), S(ω)) = 0.

It then follows that, under the Skorohod metric, both S̄
(n)
− |η and S̄

(n)
+ |η converge almost

surely to S, which implies (5.2).
By Proposition 5.3 on page 119 of [Ethier and Kurtz(1986)], to show that d(gn, g)→ 0

as n → ∞ it is sufficient to show that for each T > 0, there exists a sequence (λn) of
strictly increasing functions mapping [0,∞) onto [0,∞) so that

lim
n→∞

sup
0≤t≤T

|λn(t)− t| = 0 (5.5)

and
lim
n→∞

sup
0≤t≤T

|g(λn(t))− gn(t)| = 0. (5.6)
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For ease of exposition we now suppress dependence on ω. Fix T ≥ t1 and let m =
max{k : tk ≤ T}, so 1 ≤ m <∞.. Then, there exists δ > 0 such that u(n)m < T + δ for all

sufficiently large n. For such n, let λ
(n)
− be the piecewise-linear function joining the points

(0, 0), (t
(n)
1 , t1), · · · , (t(n)m , tm), (T + δ, T + δ), with λ

(n)
− (t) = t for t > T + δ. Similarly, let

λ
(n)
+ be the piecewise-linear function joining the points (0, 0), (u

(n)
1 , t1), · · · , (u(n)m , tm), (T+

δ, T + δ), with λ
(n)
+ (t) = t for t > T + δ. (Note that λ

(n)
+ (t) ≤ λ

(n)
− (t) with strict inequality

for t ∈ (0, T + δ).) The functions λ
(n)
− and λ

(n)
+ are strictly increasing and satisfy (5.5),

since t
(n)
k → tk and u

(n)
k → tk as n → ∞ (k = 1, 2, · · · ,m). Thus, to complete the proof

we show that
lim
n→∞

sup
0≤t≤T

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣ = 0 (5.7)

and
lim
n→∞

sup
0≤t≤T

∣∣∣S (λ(n)+ (t)
)
− S̄(n)

+ (t)
∣∣∣ = 0. (5.8)

Considering (5.7) first, note that for k = 1, 2, · · · ,m, since S
(
λ
(n)
− (t)

)
is increasing

on [t
(n)
k , u

(n)
k ] and S̄

(n)
− (t) = c

(n)
k for all t ∈ [t

(n)
k , u

(n)
k ),

sup
t
(n)
k
≤t<u(n)

k

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣

≤ max
{∣∣∣S (λ(n)− (t

(n)
k )

)
− c(n)k

∣∣∣ , ∣∣∣S (λ(n)− (u
(n)
k )

)
− c(n)k

∣∣∣}
→ 0 as n→∞, (5.9)

since λ
(n)
− (t

(n)
k ) = tk, c

(n)
k → sk = S(tk) and λ

(n)
− (u

(n)
k ) → tk (as u

(n)
k → tk and λ

(n)
− is

continuous), so S
(
λ
(n)
− (u

(n)
k )

)
→ sk as S is right-continuous.

Also, for k = 1, 2, · · · ,m− 1,

sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣ ≤ A(n, k) +B(n, k),

where
A(n, k) = sup

u
(n)
k
≤t<t(n)

k+1

∣∣∣S (λ(n)− (t)
)
− f

(
s
(n)
k , t− u(n)k

)∣∣∣
and

B(n, k) = sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣f (s(n)k , t− u(n)k

)
− S̄(n)

− (t)
∣∣∣ .

Now λ
(n)
− (t) ∈ [tk, tk+1) for t ∈ [u

(n)
k , t

(n)
k+1), so using (5.1),

A(n, k) = sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣f (sk, λ(n)− (t)− tk
)
− f

(
s
(n)
k , t− u(n)k

)∣∣∣
≤ sup

u
(n)
k
≤t<t(n)

k+1

∣∣∣f (sk, λ(n)− (t)− tk
)
− f

(
sk, t− u(n)k

)∣∣∣
+ sup

u
(n)
k
≤t<t(n)

k+1

∣∣∣f (sk, t− u(n)k

)
− f

(
s
(n)
k , t− u(n)k

)∣∣∣ . (5.10)
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A simple argument using the mean value theorem shows that, for x ∈ [0, 1] and t, t′ ≥ 0,

|f(x, t)− f(x, t′)| ≤ (1− x)µ|t− t′|. (5.11)

Now

sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣λ(n)− (t)− tk − (t− u(n)k )
∣∣∣ ≤ sup

u
(n)
k
≤t<t(n)

k+1

∣∣∣λ(n)− (t)− t
∣∣∣+ ∣∣∣tk − u(n)k

∣∣∣
→ 0 as n→∞,

as λ
(n)
− satisfies (5.5) and u

(n)
k → tk as n→∞. It then follows using (5.11) that the first

term on the right hand side of (5.10) tends to 0 as n → ∞. Also, for x, y ∈ [0, 1] and
t ≥ 0,

f(x, t)− f(y, t) = (y − x)e−µt,

so the second term on the right hand side of (5.10) tends to 0 as n→∞, since s
(n)
k → sk

as n→∞. Thus, A(n, k)→ 0 as n→∞.

Note that S̄
(n)
− (t)− = S̄(n)(t) for t ∈ [u

(n)
k , t

(n)
k+1), so (5.4) implies that B(n, k) also

converges to 0 as n→∞, whence

sup
u
(n)
k
≤t<t(n)

k+1

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣→ 0 as n→∞. (5.12)

Combining (5.9) and (5.12) yields that,

lim
n→∞

sup
u
(n)
1 ≤t<t

(n)
m

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣ = 0. (5.13)

A similar argument to the derivation of (5.12) yields

lim
n→∞

sup
0≤t<u(n)1

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣ = lim

n→∞
sup

t
(n)
m ≤t≤T

∣∣∣S (λ(n)− (t)
)
− S̄(n)

− (t)
∣∣∣ = 0,

which together with (5.13) yields (5.7), as required.
The proof of (5.8) is similar to that of (5.7) and hence omitted. 2

Proof of Theorem 2.1. We prove the result for S̄
(n)
− . The proof for S̄

(n)
+ is identical.

Recall that if Xn (n = 1, 2, · · · ) and X are random elements of D[0,∞) then Xn ⇒ X
as n → ∞ if and only if E [f(Xn)] → [f(X)] as n → ∞ for all bounded, uniformly con-
tinuous functions f : D[0,∞)→ R (see, for example, [Ethier and Kurtz(1986)], Chapter
3, Theorem 3.1). Let f : D[0,∞) → R be any such function. Then Lemma 5.1 implies
that, for P-almost all η,

lim
n→∞

E
[
f(S̄

(n)
− )|η

]
= E [f(S)|η] .

Hence, by the dominated convergence theorem,

lim
n→∞

E
[
f(S̄

(n)
− )

]
= lim

n→∞
Eη

[
E
[
f(S̄

(n)
− )|η

]]
= Eη

[
lim
n→∞

E
[
f(S̄

(n)
− )|η

]]
= Eη [E [f(S)|η]]

= E [f(S)] .

This holds for all bounded, uniformly continuous f : D[0,∞) → R, so S̄
(n)
− ⇒ S as

n→∞, as required. 2
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We end this subsection by showing that the occupancy time functional Ha
t∗ , defined

at (2.5), satisfies P
(
S ∈ CHa

t∗

)
= 1. Recall that t1 < t2 < · · · denote the jump times of

S. Let v1 = inf{t ≥ 0 : S(t) = a} and, for k = 2, 3, · · · , let vk = inf{t > vk−1 : S(t) = a}.
Let C ∈ F be the set of ω ∈ Ω such that tk(ω) (and hence also vk(ω)) tends to ∞
as k → ∞. Then, by Lemma 5.2 (iii), P(C) = 1. We show that if gn ∈ D[0,∞)
(n = 1, 2, · · · ) and limn→∞ d(gn, S(ω)) = 0, then limn→∞H

a
t∗gn = Ha

t∗S(ω), for ω ∈ C,

whence P
(
S ∈ CHa

t∗

)
= 1.

Suppose that ω ∈ C. Dropping the explict dependence of S on ω, since limn→∞ d(gn, S) =
0, by Proposition 5.3 on page 119 of [Ethier and Kurtz(1986)], there exists a sequence
(λn) of strictly increasing functions mapping [0,∞) onto [0,∞) such that

lim
n→∞

sup
0≤t≤t∗

|λn(t)− t| = 0 and lim
n→∞

sup
0≤t≤t∗

|S(λn(t))− gn(t)| = 0. (5.14)

Now

|Ha
t∗gn −Ha

t∗S| =
∣∣∣∣∣
∫ t∗

0
1{gn(t)≤a} − 1{S(t)≤a} dt

∣∣∣∣∣ ≤ An +Bn,

where

An =
∫ t∗

0

∣∣∣1{gn(t)≤a} − 1{S(λn(t))≤a}
∣∣∣ dt

and

Bn =
∫ t∗

0

∣∣∣1{S(λn(t))≤a} − 1{S(t)≤a}
∣∣∣ dt.

Let D = [0, t∗] ∩ ({t1, t2, · · · } ∪ {v1, v2, · · · }). Then D has Lebesgue measure zero and
1{S(λn(t))≤a} − 1{S(t)≤a} → 0 as n → ∞, for t ∈ [0, t∗] \ D, since limn→∞ λn(t) = t,
by the first equation in 5.14, and S is continuous at such t. Thus limn→∞Bn = 0 by
the dominated convergence theorem. A similar argument, using in addition the second
equation in 5.14, shows that limn→∞An = 0. Thus, limn→∞H

a
t∗gn = Ha

t∗S, as required.

5.2 Proof of Lemma 5.2

We prove Lemma 5.2 by splitting the SIR-D-I epidemic process E(n) into cycles, where
now a cycle begins at the end of a major outbreak and finishes at the end of the following
major outbreak. Thus a cycle consists of two stages: stage 1, during which the susceptible
population grows approximately deterministically until there are at least log n infectives
present; and stage 2, comprising the major outbreak caused by these log n infectives,
during which the susceptible population crashes.

Recall that, as n→∞, the point process η(n), describing immigration times of infec-
tives in E(n) converges almost surely to the point process η governing times when down
jumps may occur in the limiting process S. Lemma 5.4 considers the initial stage 1 and
shows, using birth-and-death processes that sandwich the process of infectives, that for
P-almost all η, as n→∞, for successive importations of infectives until a major outbreak
occurs, the probability a given importation triggers a major outbreak converges to the
probability that the corresponding importation results in a down jump in the limiting
process S. Consequently, the time until there are at least log n infectives in E(n) converges
weakly to the time of the first down jump in S, since η(n) converges almost surely to η.
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Further, application of the law of large numbers for density dependent population pro-
cesses ( [Ethier and Kurtz(1986)], Chapter 11) shows that up until the first down jump
of S, the scaled process of susceptibles, S̄(n) = n−1S, converges weakly in the uniform
metric to S, since minor epidemics infect order op(n) individuals.

Lemmas 5.5 and 5.6 concern the limiting size and duration of a typical major outbreak.
Lemma 5.5 considers outbreaks in which the initial number of infectives is of exact order
n, for which the above-mentioned law of large numbers is applicable. This is then used to
prove Lemma 5.6, which considers major outbreaks triggered by log n infectives. Finally,
Lemma 5.2 follows easily by induction using Lemmas 5.4 and 5.6, since E(n) is Markov.

The proof involves extensive use of birth-and-death processes that bound the process
of infectives in the epidemic model (cf. [Whittle(1955)]). We first give some notation
concerning birth-and-death processes and then state a lemma, proved in Appendix A,
concerning properties of sequences of such processes.

Let Zα,β,k = {Zα,β,k(t) : t ≥ 0} denote a linear birth-and-death process, with Zα,β,k(0) =
k, birth rate α and death rate β. For x > k, let τα,β,k(x) = inf{t > 0 : Zα,β,k(t) ≥ x},
where τα,β,k(x) = ∞ if Zα,β,k(t) < x for all t > 0. (Throughout the paper we adopt
the convention that the hitting time of an event is infinite if the event never occurs.)
Let τα,β,k(0) = inf{t > 0 : Zα,β,k(t) = 0} denote the duration of Zα,β,k. For t ≥ 0,
let Bα,β,k(t) denote the total number of births during (0, t] in Zα,β,k, and let Bα,β,k(∞)
denote the total progeny of Zα,β,k, not including the k ancestors. Further, for x > 0, let
τ̂α,β,k(x) = inf{t > 0 : Bα,β,k(t) ≥ x}.

Lemma 5.3 Suppose that αn = aβn (n = 1, 2, · · · ), where a > 0 is constant and
log n/βn → 0 as n→∞.

(a) If a < 1, then

(i) for all t > 0,
lim
n→∞

P (ταn,βn,1(0) > t) = 0;

(ii) limn→∞ P (ταn,βn,1(log n) =∞) = 1; and

(iii) for any c > 0,

ταn,βn,dcne(0)
p−→ 0 as n→∞.

(b) If a > 1, then

(i) limn→∞ P (ταn,βn,1(log n) < ταn,βn,1(0)) = 1− 1
a
,

limn→∞ P (ταn,βn,1(0) < ταn,βn,1(log n)) = 1
a
;

(ii) min (ταn,βn,1(log n), ταn,βn,1(0))
p−→ 0 as n→∞;

(iii) limn→∞ P
(
Bαn,βn,1 (min {ταn,βn,1(log n), ταn,βn,1(0)}) < n

1
3

)
= 1; and

(iv) for any c > 0,

τ̂αn,βn,dlogne(cn)
p−→ 0 as n→∞.

Before proceeding some more notation is required. For k = 1, 2, · · · , let χk =
1{S(rk)<S(rk−)} be the indicator function of the event that the kth point in η yields a down

jump in S. For n = 1, 2, · · · and k = 1, 2, · · · , let w
(n)
k = inf

{
t ≥ r

(n)
k : I(n)(t) ≥ log n or I(n)(t) = 0

}
and χ

(n)
k = 1{I(w(n)

k
)≥logn}.
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Lemma 5.4 Suppose that S̄(n)(0)
p−→ s0 as n → ∞. Then the following hold for P-

almost all η.

(i) For k = 1, 2, · · · ,

lim
n→∞

P
(
χ
(n)
k = 1 and χ

(n)
i = 0 for all i < k|η

)
= P(χk = 1 and χi = 0 for all i < k|η).

(ii) For k = 1, 2, · · · , as n→∞,

sup
0≤t<w(n)

k

∣∣∣S̄(n)(t)− f(s0, t)
∣∣∣ 1{χ(n)

k
=1 and χ

(n)
i =0 for all i<k}|η

D−→ 0.

(iii) For k = 1, 2, · · · , as n→∞,

w
(n)
k 1{χ(n)

k
=1 and χ

(n)
i =0 for all i<k}

D−→ rk1{χk=1 and χi=0 for all i<k}.

Proof. For ease of presentation we suppress explicit conditioning on η in the proof.
First note that P

(
S(r1−) = R−10

)
= 0, since r1 is a realisation of a continuous random

variable. Assume without loss of generality that there is no recovered individual at
time t = 0. For t ≥ 0, let S

(n)
0 (t) be the number of susceptibles at time t under the

assumption that the immigration rate for susceptibles is µn(1−κn) and the immigration

rate for infectives is 0, and let S̄
(n)
0 (t) = S

(n)
0 (t)/n. Then, for any t > 0, application

of Theorem 11.2.1 of [Ethier and Kurtz(1986)] (using the more general definition of a
density dependent family given by equation (11.1.13) of that book) yields that, for any
ε > 0,

lim
n→∞

P

(
sup
0≤u≤t

∣∣∣S̄(n)
0 (u)− f(s0, u)

∣∣∣ < ε

)
= 1. (5.15)

Recall that E(n) denote the epidemic process with average population size n. Consider
the epidemic initiated by the immigration of an infective at time r

(n)
1 in E(n) and let

ŝ
(n)
1 = S̄(n)(r

(n)
1 ). For ease of exposition, translate the time axis of E(n) so that the origin

corresponds to r
(n)
1 . With this new time origin,

{
I(n)(t) : t ≥ 0

}
can be approximated by

a linear birth-and-death process
{
Ĩ(n)(t) : t ≥ 0

}
having death rate γn + µ and (random)

time-dependent birth rate given by λnS̄
(n)
0 (t). This approximation ignores depletion in

the number of susceptibles owing to infection, so
{
Ĩ(n)(t) : t ≥ 0

}
is an upper bound for{

I(n)(t) : t ≥ 0
}

.

Let ŝ1 = f(s0, r1) and fix ε ∈ (0, ŝ1). Note that, with the change of origin, S̄
(n)
0 (0) =

ŝ
(n)
1 . Then, using (5.15), for any δ ∈ (0, 1), there exists t̂ = t̂(ε, δ) > 0 and n0 = n0(ε, δ)

such that

P

(
sup
0≤t≤t̂

∣∣∣S̄(n)
0 (t)− ŝ1

∣∣∣ < ε

2

)
≥ 1− δ

2
for all n ≥ n0. (5.16)

For n ≥ n0 and 0 ≤ t ≤ t̂ , with probability at least 1 − δ
2
, the process

{
Ĩ(n)(t) : t ≥ 0

}
is bounded below and above by the birth-and-death processes Zα̃−n (ε),βn,1

and Zα̃+
n (ε),βn,1

,
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respectively, where α̃−n (ε) = λn(ŝ1− ε
2
), α̃+

n (ε) = λn(ŝ1+ ε
2
) and βn = γn+µ. Further, since

limn→∞ α̃
−
n (ε)/βn = R0(ŝ1 − ε

2
), for all sufficiently large n, the birth-and-death process

Zα̃−n (ε),βn,1
is bounded below by the birth-and-death process Zα−n (ε),βn,1

, where α−n (ε) =
R0(ŝ1− ε)βn. Similarly, for all sufficiently large n, the birth-and-death process Zα̃+

n (ε),βn,1

is bounded above by the birth-and-death process Zα+
n (ε),βn,1

, where α+
n (ε) = R0(ŝ1 + ε)βn.

Suppose first that R0ŝ1 < 1. Then for all ε ∈ (0, ε0), where ε0 = R−10 − ŝ1, the
birth-and-death process Zα+

n (ε),βn,1
is subcritical, so by Lemma 5.3(a)(i), for all t > 0,

lim
n→∞

P
(
τα+

n (ε),βn,1
(0) ≤ t

)
= 1. (5.17)

Setting t = t̂ shows that, for all sufficiently large n, with probability at least 1−δ, {Ĩ(n)(t) :
t ≥ 0}, and hence also {I(n)(t) : t ≥ 0}, is bounded above by Zα+

n (ε),βn
throughout its

entire lifetime. Thus,

lim inf
n→∞

P
(
χ
(n)
1 = 0

)
≥ lim inf

n→∞
P
(
Zα+

n (ε),βn,1
(t) < log n for all t ≥ 0

)
− δ

= 1− δ,

by Lemma 5.3(a)(ii). Hence, since δ ∈ (0, 1) is arbitrary,

lim
n→∞

P
(
χ
(n)
1 = 0

)
= 1 = P (χ1 = 0) .

Let D(n) = inf
{
t > 0 : I(n)(t) ≥ log n or I(n)(t) = 0

}
. Then it follows using (5.17) that

D(n) p−→ 0 as n→∞.
Suppose instead that R0ŝ1 > 1. Fix ε ∈ (0, ε1), where ε1 = ŝ1 − R−10 , and δ ∈ (0, 1).

Then, similar to above, there exists t1 such that, for all sufficiently large n, with proba-
bility at least 1− δ

2
,
{
Ĩ(n)(t) : t ≥ 0

}
is bounded above and below by Zα+

n (ε),βn
Zα−n (ε),βn

, re-

spectively, throughout the interval [0, t1]. For x > 0, let τ̃ (n)(x) = inf
{
t > 0 : Ĩ(n)(t) ≥ x

}
,

τ̃ (n)(0) = inf
{
t > 0 : Ĩ(n)(t) = 0

}
and D̃(n) = inf

{
t > 0 : Ĩ(n)(t) ≥ log n or Ĩ(n)(t) = 0

}
.

Note that the birth-and-death processes Zα−n (ε),βn,1
and Zα+

n (ε),βn,1
are both supercriti-

cal. Then, by Lemma 5.3(b)(ii), for all sufficiently large n, the process
{
Ĩ(n)(t) : t ≥ 0

}
is bounded below and above by Zα+

n (ε),βn
Zα−n (ε),βn

, respectively, throughout the interval

[0, D̃(n)]. Using Lemma 5.3(b)(i), it then follows that

lim inf
n→∞

P
(
τ̃ (n)(log n) < τ̃ (n)(0)

)
≥ lim inf

n→∞
P
(
τα−n (ε),βn,1

(log n) < τα−n (ε),βn,1
(0)
)
− δ

= 1− 1

R0(ŝ1 − ε)
− δ (5.18)

and

lim sup
n→∞

P
(
τ̃ (n)(log n) < τ̃ (n)(0)

)
≤ lim sup

n→∞
P
(
τα+

n (ε),βn,1
(log n) < τα−n (ε),βn,1

(0)
)
− δ

= 1− 1

R0(ŝ1 + ε)
− δ. (5.19)
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Letting both ε and δ converge down to 0 in (5.18) and (5.19) yields

lim
n→∞

P
(
τ̃ (n)(log n) < τ̃ (n)(0)

)
= 1− 1

R0ŝ1
= P (χ1 = 1) . (5.20)

Further, using Lemma 5.3(b)(ii), it follows that

D̃(n) p−→ 0 as n→∞. (5.21)

Recall that
{
Ĩ(n)(t) : t ≥ 0

}
is an upper bound for

{
I(n)(t) : t ≥ 0

}
. We now show

that the probability that the two processes coincide over [0, D̃(n)] converges to one as

n → ∞. In
{
Ĩ(n)(t) : t ≥ 0

}
births occur at time-dependent rate λnS̄

(n)
0 (t), whilst in{

I(n)(t) : t ≥ 0
}

infections occur at time-dependent rate λnS̄
(n)(t). Now S̄

(n)
0 (t) ≥ S̄(n)(t)

for all t ≥ 0, almost surely, so the two processes can be coupled by using an independent
sequence U1, U2, · · · of independent and identically distributed random variables that are
uniformly distributed on (0, 1), with the ith birth in

{
Ĩ(n)(t) : t ≥ 0

}
(which occurs at

time ti say) yielding an infection in
{
I(n)(t) : t ≥ 0

}
if and only if Ui ≤ S̄(n)(ti)/S̄

(n)
0 (ti).

For n = 1, 2, · · · and t > 0, let B̃(n)(t) be the total number of births in
{
Ĩ(n)(t) : t ≥ 0

}
during (0, t]. Recall that the probability that

{
Ĩ(n)(t) : t ≥ 0

}
is sandwiched between

the supercritical birth-and-death processes Zα+
n (ε),βn

and Zα−n (ε),βn
throughout [0, D̃(n)]

converges to one as n→∞. It then follows using Lemma 5.3(b)(iii) that

lim
n→∞

P
(
B̃(n)(D̃(n)) ≥ n

1
3

)
= 0. (5.22)

Also, since D̃(n) p−→ 0 as n→∞, it follows using (5.16) that, for any ε > 0,

lim
n→∞

P
(
S̄
(n)
0 (t) > ŝ1 − ε for all t ∈ [0, D̃(n)]

)
= 1. (5.23)

Suppose that B̃(n)(D̃(n)) < n
1
3 and, for fixed ε ∈ (0, ŝ1), S̄

(n)
0 (t) > ŝ1 − ε

2
for all

t ∈ [0, D̃(n)]. Then, S(n)(ti) ≥ S
(n)
0 (ti)−n

1
3 , for i = 1, 2, · · · , B̃(n)(D̃(n)), so if p

(n)
i denotes

the probability that the ith birth in
{
Ĩ(n)(t) : t ≥ 0

}
yields an infection in

{
I(n)(t) : t ≥ 0

}
,

then

p
(n)
i =

S(n)(ti)

S
(n)
0 (ti)

≥ 1− n
1
3

S
(n)
0 (ti)

≥ 1− n−
2
3

ŝ1 − ε
,

whence

B̃(n)(D̃(n))∏
i=1

p
(n)
i ≥

1− n−
2
3

ŝ1 − ε

B̃(n)(D̃(n))

≥

1− n−
2
3

ŝ1 − ε

n
1
3

≥ 1− n−
1
3

ŝ1 − ε
→ 1 as n→∞.
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Thus, recalling (5.22) and (5.23), the probability that
{
I(n)(t) : t ≥ 0

}
and

{
Ĩ(n)(t) : t ≥ 0

}
coincide over [0, D̃(n)] converges to one as n→∞, which, together with (5.20), yields

lim
n→∞

P
(
χ
(n)
1 = 1

)
= 1 = P (χ1 = 1) ,

and, together with (5.21), yields

D(n) p−→ 0 as n→∞.

We have thus proved parts (i) and (iii) for k = 1. Note that, since P (χk = 0 for all k = 1, 2, · · · ) =
0, when reverting to the original time axis, the probability that the total number of in-
dividuals infected during [0, w

(n)
1 ] in E(n) is less than n

5
12 tends to one as n→∞, which

combined with (5.15) proves part (ii) when k = 1. Parts (i), (ii) and (iii) for k > 1 follow

easily by induction since the processes
{

(S(n)(t), I(n)(t)) : t ≥ 0
}

(n = 1, 2, · · · ) and S are
Markov.

2

Before proceeding we state some well-known facts about the final outcome of the
deterministic general epidemic (e.g. [Andersson and Britton(2000a)] Chapter 1.4). For
t ≥ 0, let s(t) and i(t) denote respectively the density of susceptibles and infectives at
time t, so (s(t), i(t)) are determined by the differential equations

ds

dt
= −R0si,

di

dt
= R0si− i, (5.24)

with initial condition (s(0), i(0)) = (s0, i0), where s(0) > 0 and i(0) > 0. Note that time
is scaled so that the recovery rate is 1. Then s(t) decreases with t, limt→∞ i(t) = 0 and
limt→∞ s(t) = s∞(s0, i0), where s∞(s0, i0) is the unique solution in (0, 1) of

s∞ = s0e
−R0(s0+i0−s∞).

Note that s∞ is continuous in (s0, i0) and s∞(s0, i0) → s∞(s0, 0) as i0 ↓ 0, where (re-
call (2.4))

s∞(s0, 0) =

{
0 if R0so ≤ 1,
s0(1− τ(s0)) if R0so > 1.

In the following two lemmas, there is no importation of infectives in
{(
S(n)(t), I(n)(t)

)
: t ≥ 0

}
,

though births of susceptibles still occur at rate µn(1 − κn). For t ≥ 0, let Ī(n)(t) =
n−1I(n)(t).

Lemma 5.5 Suppose that
(
S̄(n)(0), Ī(n)(0)

)
p−→ (s0, i0) as n → ∞, where s0 >

1
R0

and

i0 > 0. Let u
(n)
1 = inf{t > 0 : I(n)(t) = 0}. Then, as n→∞,

(i) S̄(n)(u
(n)
1 )

p−→ s∞(s0, i0),

(ii) u
(n)
1

p−→ 0.
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Proof. For n = 1, 2, · · · and t > 0, let S̃(n)(t) = S(n)(t/γn) and Ĩ(n)(t) = I(n)(t/γn).

Let X(n) =
{
X(n)(t) : t ≥ 0

}
, where X(n)(t) =

(
S̃(n)(t), Ĩ(n)(t)

)
. The process X(n) is a

continuous-time Markov chain with transition intensities

q
(n)
(s,i),(s+1,i) = n

[
(1− κn)µ

γn

]
,

q
(n)
(s,i),(s−1,i) = n

[
µ

γn

s

n

]
,

q
(n)
(s,i),(s−1,i+1) = n

[
R0

s

n

i

n
+

(
λn
γn
−R0

)
s

n

i

n

]
,

q
(n)
(s,i),(s,i−1) = n

[
i

n
+

µ

γn

i

n

]
,

corresponding to a birth of a susceptible, a death of a susceptible, an infection of a
susceptible, and a recovery or death of an infective, respectively.

The transition intensities are written in the above form to indicate that the fam-
ily of processes

{
X(n) : n = 1, 2, · · ·

}
is asymptotically density dependent, as defined

by [Pollett(1990)]. Let E be any compact subset of [0,∞)2. Recall that κn → 0, γn →
∞ and λn

γn
→ R0 as n → ∞. Hence, as n → ∞, each of (1−κn)µ

γn
, sup(x,y)∈E

µ
γn
x,

sup(x,y)∈E

(
λn
γn
−R0

)
xy and sup(x,y)∈E

µ
γn
y converges to 0. It follows that the conditions

of Theorem 3.1 in [Pollett(1990)] are satisfied, whence, for any ε > 0 and any t > 0,

lim
n→∞

P

(
sup
0≤u≤t

∣∣∣∣ 1nX(n)(t)− x(t)
∣∣∣∣ < ε

)
= 1, (5.25)

where x(t) = (s(t), i(t)) is the solution of the deterministic general epidemic (5.24) having
initial condition (s(0), i(0)) = (s0, i0). Write s∞ for s∞(s0, i0). There exists ε0 > 0 such
that R0(s∞ + ε0) < 1, since otherwise limt→∞ i(t) would be strictly positive. Given
ε ∈ (0, ε0), choose ε′ > 0 so that

ε′
R0(s∞ + ε0)

1−R0(s∞ + ε0)
<
ε

8
. (5.26)

There exists t1 > 0 such that i(t1) < ε′ and s(t1) ∈ [s∞, s∞ + ε
3
). Then (5.25) implies

that

lim
n→∞

P
(∣∣∣∣ 1nS̃(n)(t1)− s∞

∣∣∣∣ < ε

2

)
= 1 and lim

n→∞
P
(

1

n
Ĩ(n)(t1) <

3

2
ε′
)

= 1,

so, reverting to the original time scale and letting tn = t1/γn,

lim
n→∞

P
(∣∣∣S̄(n)(tn)− s∞

∣∣∣ < ε

2

)
= 1 and lim

n→∞
P
(
Ī(n)(tn) <

3

2
ε′
)

= 1. (5.27)

Observe that, whilst S̄(n)(tn+t) ≤ s∞+ε, the process
{
I(n)(tn + t) : t ≥ 0

}
is bounded

above by the birth-and-death process Zα̃n,βn,d 32 ε′ne, where α̃n = (s∞+ε)λn and βn = γn+µ.

Now α̃n/βn → R0(s∞ + ε) as n → ∞, so, for all sufficiently large n, Zα̃n,βn,d 32 ε′ne is in

turn bounded above by Zαn,βn,d 32 ε′ne, where αn = R0(s∞ + ε0)βn.
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Recall that Bα,β,k and τα,β,k(0) denote the total number of births in and the extinction
time of Zα,β,k, respectively. Then

E [Bαn,βn,1] =
R0(s∞ + ε0)

1−R0(s∞ + ε0)
,

and, recalling (5.26), application of the strong law of large numbers yields

lim
n→∞

P
(

1

n
Bαn,βn,d 32 ε′ne <

ε

4

)
= 1. (5.28)

Also, Lemma 5.3(a)(iii) implies that

ταn,βn,d 32 ε′ne(0)
p−→ 0 as n→∞. (5.29)

Recall that
{
S
(n)
0 (t) : t ≥ 0

}
denotes the process that describes the number of suscep-

tibles in the absence of any infectives and suppose that S
(n)
0 (0) = S(n)(tn). For t ≥ 0, let

B
(n)
0 (t) and D

(n)
0 (t) be the total number of births and deaths, respectively, during (0, t] in{

S
(n)
0 (t) : t ≥ 0

}
. Using (5.15) and the fact that B

(n)
0 (t) has a Poisson distribution with

mean nµt, there exists t̂ = t̂(ε) > 0 such that

lim
n→∞

P
(
B

(n)
0 (t̂) <

nε

4

)
= 1 and lim

n→∞
P
(
D

(n)
0 (t̂) <

nε

4

)
= 1. (5.30)

The processes
{(
S(n)(tn + t), I(n)(tn + t)

)
: t ≥ 0

}
and Zαn,βn,d 32 ε′ne can be coupled so

that I(n)(tn+t) ≤ Zαn,βn,d 32 ε′ne(t) whilst S̄(n)(tn+t) ≤ s∞+ε. The first equations in (5.27)

and (5.30) imply that

lim
n→∞

P

(
sup
0≤t≤t̂

S̄(n)(tn + t) ≤ s∞ + ε

)
= 1,

so (5.29) implies that, with probability tending to 1 as n → ∞, the coupling holds

thoughout the lifetime of Zαn,βn,d 32 ε′ne. Recall that u
(n)
1 = inf{t > 0 : I(n)(t) = 0}.

The coupling implies that u
(n)
1 − tn ≤ ταn,βn,d 32 ε′ne, so part (ii) of the lemma follows

from (5.29), since tn → 0 as n → ∞. Further, S(n)(u
(n)
1 ) is at most the sum of S(n)(tn)

and the number of births in (tn, u
(n)
1 ], and at least the difference between S(n)(tn) and the

sum of the number of susceptible deaths in (tn, u
(n)
1 ] and Bαn,βn,d 32 ε′ne, so (5.27), (5.28)

and (5.30) imply that

lim
n→∞

P
(
s∞ − ε < S̄(n)(u

(n)
1 ) < s∞ +

3

4
ε
)

= 1,

proving part (i) of the lemma, since ε ∈ (0, ε0) can be arbitrarily small. 2

Lemma 5.6 Suppose that I(n)(0) = dlog ne (n = 1, 2, · · · ) and

S̄(n)(0)
p−→ s0 as n→∞, where s0 >

1
R0

. Let u
(n)
1 = inf

{
t > 0 : I(n)(t) = 0

}
,

c
(n)
1 = min

0≤t≤u(n)1

S̄(n)(t) and c̃
(n)
1 = max

0≤t≤u(n)1

S̄(n)(t).

Then, as n→∞,
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(i) S̄(n)(u
(n)
1 )

p−→ s0(1− τ(s0)), where the function τ(s) is defined at (2.4);

(ii) u
(n)
1

p−→ 0;

(iii) c
(n)
1

p−→ s0(1− τ(s0)) and c̃
(n)
1

p−→ s0.

Proof. Fix θ ∈ (0, 1) such that s0(1 − 3θ)R0 > 1. Then, whilst S̄(n)(t) ≥ s0(1 − 2θ),
{I(n)(t) : t ≥ 0} is bounded below by the birth-and-death process Zα̃n(θ),βn,dlogne, where
α̃n(θ) = λns0(1− 2θ) and βn = γn + µ. Now α̃n(θ)/βn → R0s0(1− 2θ) as n→∞, so, for
all sufficiently large n, Zα̃n(θ),βn,dlogne is in turn bounded below by Zαn(θ),βn,dlogne, where
αn(θ) = R0s0(1− 3θ)βn.

Recall that E(n) denotes the epidemic process indexed by n. For t > 0, let B(n)(t) be

the total number of infections in E(n) during (0, t]. Let τ
(n)
θ = inf

{
t > 0 : B(n)(t) ≥ θs0n

}
.

Define
{
S̄
(n)
0 (t) : t ≥ 0

}
as in the proof of Lemma 5.4. For t ≥ 0, let B

(n)
0 (t) and D

(n)
0 (t)

be the total number of births and deaths, respectively, during (0, t] in
{
S
(n)
0 (t) : t ≥ 0

}
.

As at (5.30), but note that S̄
(n)
0 (0) is different here, for any ε > 0 there exists t̂(ε) > 0

such that

lim
n→∞

P
(
B

(n)
0 (t̂(ε)) <

nε

4

)
= 1 and lim

n→∞
P
(
D

(n)
0 (t̂(ε)) <

nε

4

)
= 1. (5.31)

Also, since S̄(n)(0)
p−→ s0 as n→∞,

lim
n→∞

P
(
|S̄(n)(0)− s0| <

ε

2

)
= 1. (5.32)

Observe that, if τ
(n)
θ ≤ t̂(ε),

∣∣∣S̄(n)(0)− s0
∣∣∣ < ε

2
, B

(n)
0 (t̂(ε)) < nε

4
and D

(n)
0 (t̂(ε)) < nε

4
,

then

max
0≤t≤τ (n)

θ

S̄(n)(t) ≤ s0(1− θ) +
3

4
ε, (5.33)

obtained by making S̄(n)(0) and B
(n)
0 (t̂(ε)) as large as possible and assuming no susceptible

dies during [0, τ
(n)
θ ], and

min
0≤t≤τ (n)

θ

S̄(n)(t) ≥ s0 −
3

4
ε− n−1B(n)(τ

(n)
θ ), (5.34)

obtained by making S̄(n)(0) as small as possible, D
(n)
0 (t̂(ε)) as large as possible and as-

suming no susceptible is born during [0, τ
(n)
θ ].

Recall that, whilst S̄(n)(t) ≥ s0(1−2θ),
{
I(n)(t) : t ≥ 0

}
is bounded below by the birth-

and-death process Zαn(θ),βn,dlogne, so τ
(n)
θ ≤ τ̂

(n)
αn,βn,dlogne(s0θn), provided S̄(n)(t) ≥ s0(1 −

2θ) throughout [0, τ
(n)
θ ]. Now τ̂

(n)
αn,βn,dlogne(s0θn)

p−→ 0 as n → ∞, by Lemma 5.3(b)(iv),

so P
(
τ̂
(n)
αn,βn,dlogne(s0θn) < t̂(ε)

)
→ 1 as n→∞, for any ε > 0. Setting ε = s0θ in (5.34),

using (5.31), (5.32) and noting that n−1B(n)(τ
(n)
θ )

p−→ s0θ as n →∞, shows that

lim
n→∞

P

 min
0≤t≤τ (n)

θ

S̄(n)(t) ≥ s0(1− 2θ)

 = 1,
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so
τ
(n)
θ

p−→ 0 as n→∞. (5.35)

Further, since for any ε > 0, P
(
τ
(n)
θ < t̂(ε)

)
→ 1 as n→∞, it follows from (5.31)-(5.34)

that, for any ε > 0,

lim
n→∞

P
(
s0(1− θ)− ε < S̄(n)(τ

(n)
θ ) < s0(1− θ) + ε

)
= 1,

so
S̄(n)(τ

(n)
θ )

p−→ s0(1− θ) as n→∞. (5.36)

It is straightforward to couple the jump processes of
{

(I(n)(t), B(n)(t)) : t ≥ 0
}

and{
Zαn(θ),βn,dlogne(t), Bαn(θ),βn,dlogne(t) : t ≥ 0

}
to show that I(n)(τ

(n)
θ )

st
≥ Zαn(θ),βn,dlogne(τ̂

(n)
θ ),

where τ̂
(n)
θ = τ̂

(n)
αn,βn,dlogne(s0θn) and

st
≥ denotes stochastically greater than. Further, re-

calling that Zαn(θ),βn,dlogne has the same distribution as
{
ZR0(1−3θ),1,dlogne(βnt) : t ≥ 0

}
, it

follows using [Nerman(1981)],
Theorem 5.4, that

Zαn(θ),βn,dlogne(τ̂
(n)
θ )

Bαn(θ),βn,dlogne(τ̂
(n)
θ )

a.s.−→ 1− 1

R0s0(1− 3θ)
as n→∞.

Thus, since n−1Bαn(θ),βn,dlogne(τ̂
(n)
θ )

p−→ s0θ as n→∞,

lim
n→∞

P
(
Ī(n)(τ

(n)
θ ) > i−(θ)

)
= 1, (5.37)

where

i−(θ) =

[
1− 2

R0s0(1− 3θ)

]
s0θ.

A similar argument using an upper bounding birth-and-death process yields that

lim
n→∞

P
(
Ī(n)(τ

(n)
θ ) < i+(θ)

)
= 1, (5.38)

where

i+(θ) =

[
1 +

2

R0s0(1− 3θ)

]
s0θ.

Exploiting the Markov property of
{(
S(n)(t), I(n)(t)

)
: t ≥ 0

}
, (5.36)-(5.38) and Lemma 5.5(i)

imply that, for any ε > 0,

lim
n→∞

P
(
s∞(s0(1− θ), i−(θ))− ε < S̄(n)(u

(n)
1 ) < s∞(s0(1− θ), i+(θ)) + ε

)
= 1.

Letting θ ↓ 0, noting that i−(0+) = i+(0+) = 0 and using the continuity properties of
s∞, yield that, for any ε > 0,

lim
n→∞

P
(∣∣∣S̄(n)(u

(n)
1 )− s0(1− τ(s0))

∣∣∣ < ε
)

= 1,

proving part (i) of the lemma. Part (ii) follows immediately using (5.35),
(5.36), (5.38) and Lemma 5.5(ii). Part (iii) is an easy concequence of parts (i) and (ii)
and (5.31). 2
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Proof of Lemma 5.2. The lemma follows easily by induction using Lemmas 5.4 and

Lemmas 5.6. First note Lemma 5.4 (i) and (iii) imply that t
(n)
1 |η

D−→ t1 as n →∞, and

Lemma 5.4 (i) and (ii) imply that (5.3) holds for k = 0 and S̄(n)(t
(n)
1 −)|η p−→ s̃1 as n→∞.

Lemma 5.6 (ii) then yields that u
(n)
1 |η

D−→ t1 as n → ∞, Lemma 5.6 (i) yields that

s
(n)
1 |η

D−→ s1 as n → ∞, and Lemma 5.6 (iii) yields that c
(n)
1 |η

D−→ s1 and c̃
(n)
1 |η

D−→ s̃1
as n → ∞. Now

{(
S(n)(t), I(n)(t)

)
: t ≥ 0

}
is Markov, so, since S̄(n)(u

(n)
1 )|η p−→ s1 as

n → ∞, the above argument can be repeated for k = 2, 3, · · · . Part (iii) is immediate,
since {t1, t2, · · · } ⊆ {r1, r2, · · · }, where r1, r2, · · · are the times of the points in η. 2

6 Discussion

In the paper it is proved that for an SIR epidemic in a dynamic population (whose
size fluctuates around n), in which there is importation of infectives at a constant rate,
the normalised process of susceptibles converges to a regenerative process S as n →
∞. Further, properties of the limiting process S are derived. The asymptotic regime
considered is for the situation when the rate of importation of infectives κµ and the
basic reproduction number R0 remain constant with n, whereas the average length of the
infectious period 1/γn converges to 0 faster than 1/ log n (in most real-life epidemics, the
ratio of average infectious period and average lifetime lies between 10−4 and 10−3).

Other asymptotic regimes could of course also be considered. For example, if the
importation rate of infectives grows with n, then there will always be infectives present
in the population resembling an endemic situation. If the duration of an infectious period
remains fixed (or at least grows slower than log n), then the duration of a single outbreak
will be long and the typical time horizon will not go beyond the first outbreak. A more
complicated and interesting scenario seems to be for the asymptotic situation treated
in the current paper, but where the epidemic is initiated with a fraction 1/R0 of the
population susceptible and a large enough number of infectives. It then seems as if an
endemic equilibrium will stabilize, but determining and proving this rigorously remains
an open problem. For large but finite n, it is possible for the process to get stuck in
an endemic situation near the end of a major outbreak (with states similar to those
just described). Eventually the epidemic leaves this endemic state and returns to the
behaviour of the limiting process. In Figure 4 such a simulation is presented. The
parameter values are n = 100, 000, µ = 1/75, κ = 1 (so the importation rate of infectives
is one per 75 years), R0 = 2 and γ = 2 (so the average infectious period is 6 months).
The left and right plots show the fraction of the population that are susceptible and
infective, respectively, as functions of time. A quasi-endemic phase lasts roughly from
years 1, 300 to 3, 000. Observe that major outbreaks become smaller prior to the process
entering the quasi-endemic phase and fluctuations in the number of infectives increase in
amplitude prior to the end of the quasi-endemic phase. Beside studying other asymptotic
regimes, it could be of interest to increase realism in the model, for example, by relaxing
exponential distributions of infectious periods and lifetimes and allowing for a latent
state (cf. [Andersson and Britton(2000b)], who consider epidemics with importation of
susceptibles only) or by having some population structure, such as network or households
(see the challenges in [Pellis et al. (2015)] and [Ball et al. (2015)]).
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Figure 4: Plot of an epidemic exhibiting quasi-endemic behaviour.

A Proof of Lemma 5.3

Suppose that a < 1. Then, for t > 0,

lim
n→∞

P (ταn,βn,1(0) > t) = lim
n→∞

P (Zαn,βn,1(t) ≥ 1)

≤ lim
n→∞

E [Zαn,βn,1(t)]

= exp (−(1− a)βnt)→ 0 as n→∞,

since βn →∞ as n→∞, proving part (a)(i).

Observe that, for any k, {Zαn,βn,k(t) : t ≥ 0} D
= {Za,1,k(βnt) : t ≥ 0}, where

D
= denotes

equal in distribution. It follows that ταn,βn,1(log n)
D
= 1

βn
τa,1,1(log n), so

lim
n→∞

P (ταn,βn,1(log n) =∞) = lim
n→∞

P (τa,1,1(log n) =∞)

= 1,

since Za,1,1 is subcritical, proving part (a)(ii).
For any t > 0,

P
(
ταn,βn,dcne > t

)
= P

(
Zαn,βn,dcne(t) ≥ 1

)
≤ E

[
Zαn,βn,dcne(t)

]
= dcne exp (−(1− a)βnt)

→ 0 as n→∞,

since log n/βn → 0 as n→∞, proving part (a)(iii).

Suppose that a > 1. Note that, since {Zαn,βn,1(t) : t ≥ 0} D
= {Za,1,1(βnt) : t ≥ 0},

coupled realisations of {Zαn,βn,1 : n = 1, 2, · · · } can be obtained by setting Zαn,βn,1(t) =
Za,1,1(βnt) (n = 1, 2, · · · ; t ≥ 0). Now, see e.g. [Athreya and Ney(1972)], page 112, there
exists a random variable W ≥ 0, satisfying W = 0 if and only if Za,1,1 goes extinct, such
that

e−(a−1)tZa,1,1(t)
a.s.−→ W as t→∞. (A.1)
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Note that, for any x ≥ 0, ταn,βn,1(x) = β−1n τa,1,1(x). If W = 0, then τa,1,1(0) < ∞, so
ταn,βn,1(0) ↓ 0 as n → ∞, and maxt≥0 Za,1,1(t) < ∞, so τa,1,1(x) = ∞ for all sufficiently
large x, whence ταn,βn,1(log n) =∞ for all sufficiently large n. If W > 0, then τa,1,1(0) =
∞, so ταn,βn,1(0) =∞. Also, for any t > 0,

Zαn,βn,1(t) ≥ log n ⇐⇒ Za,1,1(βnt) ≥ log n

⇐⇒ e−(a−1)βntZa,1,1(βnt) ≥ e−(a−1)βnt log n.

Now e−(a−1)βnt log n → 0 as n → ∞, since limn→∞ log n/βn = 0, so, since W > 0, (A.1)
implies that Zαn,βn,1(t) > log n for all sufficiently large n. This holds for any t > 0, so
ταn,βn,1(log n)→ 0 as n→∞. Part (b)(i) follows since P(W = 0) = 1

a
and part (b)(ii) also

follows, indeed we have shown that, under the coupling, min (ταn,βn,1(log n), ταn,βn,1(0))
a.s.−→

0 as n→∞.
Further, it follows using [Nerman(1981)], Theorem 5.4, that

e−(a−1)tBa,1,1(t)
a.s.−→ a

a− 1
W as t→∞, (A.2)

where W is the same random variable as in (A.1). If W = 0, then Ba,1,1(∞) < ∞, so

Bαn,βn,1(ταn,βn,1(0)) = Ba,1,1(∞) < n
1
3 for all sufficiently large n. If W > 0, then (A.1)

and (A.2) imply that limt→∞Ba,1,1(t)/Za,1,1(t) = a
a−1 , so, since τa,1,1(log n)→∞ as n→

∞, limn→∞Bαn,βn,1(ταn,βn,1(log n))/ log n = a
a−1 , whence Bαn,βn,1(ταn,βn,1(log n)) < n

1
3 for

all sufficiently large n. Part (b)(iii) now follows.
A similar argument to the above shows that, ifW > 0, then for any c > 0, ταn,βn,1(cn)→

0 as n → ∞. Thus ταn,βn,dlogne(cn)
p−→ 0 as n → ∞, since Zαn,βn,dlogne is the sum of

dlog ne independent copies of Zαn,βn,1. Part (b)(iv) follows since ταn,βn,dlogne(cn + 1)
st
≥

τ̂αn,βn,dlogne(cn).
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