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1 Introduction

The aim of this paper is to present asymptotic power series expansions for
quasi-stationary distributions of non-linearly perturbed semi-Markov pro-
cesses in discrete time, to show how the coefficients in these expansions can
be calculated from explicit recursive formulas, and to illustrate the results in
the special case of discrete time Markov chains.

Quasi-stationary distributions are useful for studies of stochastic systems
with random lifetimes. Usually, for such systems, the evolution of some
quantity of interest is described by some stochastic process and the lifetime of
the system is the first time this process hits some absorbing subset of the state
space. For such processes, the stationary distribution will be concentrated on
this absorbing subset. However, if we expect that the system will persist for
a long time, the stationary distribution may not be an appropriate measure
for describing the long time behaviour of the process. Instead, it might be
more relevant to consider so-called quasi-stationary distributions. This type
of distributions are obtained as limits of transition probabilities which are
conditioned on that the process has not yet been absorbed.

Models of the type described above arise in many areas of applications
such as epidemics, genetics, population dynamics, queuing theory, reliability,
and risk theory. For example, the number of individuals in some popula-
tion may be modelled by some stochastic process and we can consider the
extinction time of the population as the lifetime. In epidemic models, the
process may describe the evolution of the number of infected individuals in
some population and we can regard the end of the epidemic as the lifetime.

We consider, for every ε ≥ 0, a discrete time semi-Markov process ξ(ε)(n),
n = 0, 1, . . . , on a finite state space X = {0, 1, . . . , N}. It is assumed that the
process ξ(ε)(n) depends on ε in such a way that its transition probabilities
are functions of ε which converge pointwise to the transition probabilities for
the limiting process ξ(0)(n). Thus, we can interpret ξ(ε)(n), for ε > 0, as a
perturbation of ξ(0)(n). Furthermore, it is assumed that the states {1, . . . , N}
is a communicating class for ε small enough.

Under conditions mentioned above, some additional assumptions of fi-
nite exponential moments for distributions of transition times, and a non-
periodicity condition for the limiting semi-Markov process, a unique quasi-
stationary distribution, independent of the initial state, can be defined for
each sufficiently small ε by the following relation,

π
(ε)
j = lim

n→∞
Pi{ξ(ε)(n) = j |µ(ε)

0 > n}, i, j 6= 0,

where µ
(ε)
0 is the first hitting time of state 0.
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In the present paper we are interested in the asymptotics of the quasi-
stationary distribution as the perturbation parameter ε tends to zero. Specif-
ically, an asymptotic power series expansion for the quasi-stationary distri-
bution is constructed.

We allow for non-linear perturbations, i.e., the transition probabilities
may be non-linear functions of ε. We do however restrict our consideration
to smooth perturbations by assuming that certain mixed power-exponential
moment functionals for transition probabilities, up to some order k, can
be expanded in asymptotic power series with respect to ε. In this case,
we show that the quasi-stationary distribution has the following asymptotic
expansion,

π
(ε)
j = π

(0)
j + πj[1]ε+ · · ·+ πj[k]εk + o(εk), j 6= 0, (1.1)

where the coefficients πj[1], . . . , πj[k], can be calculated from explicit recur-
sive formulas. These formulas are functions of the coefficients in the ex-
pansions of the moment functionals mentioned above. The existence of the
expansion (1.1) and the algorithm for computing the coefficients in this ex-
pansion is the main result of this paper.

It is worth mentioning that the asymptotics given by relation (1.1) simul-
taneously cover three different cases. In the simplest case, there exists ε0 > 0
such that transitions to state 0 is not possible for any ε ∈ [0, ε0]. In this case,
relation (1.1) gives asymptotic expansions for stationary distributions. Then,
we have an intermediate case where transitions to state 0 is possible for all
ε ∈ (0, ε0] but not possible for ε = 0. In this case we have that µ

(ε)
0 →∞ in

probability as ε→ 0. In the mathematically most difficult case, we have that
transitions to state 0 is possible for all ε ∈ [0, ε0]. In this case, the random

variables µ
(ε)
0 are stochastically bounded as ε→ 0.

The expansion (1.1) is proved for continuous time semi-Markov processes
in Gyllenberg and Silvestrov (1999, 2008). However, the discrete time case is
interesting in its own right and deserves a special treatment. In particular,
a discrete time model is often a natural choice in applications where mea-
sures of some quantity of interest are only available at given time points, for
example days or months. The proof of the continuous time case, as well as
the proofs of the present paper, are based on the theory of non-linearly per-
turbed renewal equations. For results related to continuous time in this line
of research, we refer to the comprehensive book by Gyllenberg and Silvestrov
(2008), which also contains an extensive bibliography of work in related areas.
The corresponding theory for discrete time renewal equations has been de-
veloped in Gyllenberg and Silvestrov (1994), Englund and Silvestrov (1997),
Silvestrov and Petersson (2013), and Petersson (2014a, b, 2015).
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Quasi-stationary distributions have been studied extensively since the
1960’s. For some of the early works on Markov chains and semi-Markov
processes, see, for example, Vere-Jones (1962), Kingman (1963), Darroch
and Seneta (1965), Seneta and Vere-Jones (1966), Cheong (1968, 1970), and
Flaspohler and Holmes (1972). A survey of quasi-stationary distributions for
models with discrete state spaces and more references can be found in van
Doorn and Pollett (2013).

Studies of asymptotics for first hitting times, stationary distributions,
and other characteristics for Markov chains with linear and analytic pertur-
bations have attracted a lot of attention, see, for example, Simon and Ando
(1961), Schweitzer (1968), Găıtsgori and Pervozvanskĭı (1975), Courtois and
Louchard (1976), Latouche and Louchard (1978), Delebecque (1983), La-
touche (1991), Stewart (1991), Hassin and Haviv (1992), Yin and Zhang
(1998, 2003), Altman, Avrachenkov, and Núñez-Queija (2004), Avrachenkov
and Haviv (2004), and Avrachenkov, Filar, and Howlett (2013). Recently,
some of the results of these papers have been extended to non-linearly per-
turbed semi-Markov processes. Using a method of sequential phase space
reduction, asymptotic expansions for expected first hitting times and station-
ary distributions are given in Silvestrov and Silvestrov (2015). This paper
also contains an extensive bibliography.

Let us now briefly outline the structure of the present paper. In Section 2
we define perturbed discrete time semi-Markov processes and formulate our
main result. Then, systems of linear equations for some important moment
functionals are derived in Section 3 and in Section 4 we give some asymptotic
solidarity properties. In Section 5 it is shown how we can use the renewal
theorem to get a formula for the quasi-stationary distribution. In Section 6 we
construct asymptotic expansions for some mixed power-exponential moment
functionals. These expansions are fundamental for the proof of the main
result which is given in Section 7. Finally, we illustrate the results applied
to discrete time Markov chains in Section 8.

2 Main Result

In this section we define perturbed discrete time semi-Markov processes and
formulate the main result of the present paper.

For every ε ≥ 0, let (η(ε)
n , κ(ε)

n ), n = 0, 1, . . . , be a discrete time Markov
renewal process, i.e., a homogeneous Markov chain with state space X × N,
where X = {0, 1, . . . , N} and N = {1, 2, . . .}, an initial distribution Q

(ε)
i =

P{η(ε)
0 = i}, i ∈ X, and transition probabilities which do not depend on the
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current value of the second component, given by

Q
(ε)
ij (k) = P{η(ε)

n+1 = j, κ
(ε)
n+1 = k | η(ε)

n = i, κ(ε)
n = l}, i, j ∈ X, k, l ∈ N.

In this case, it is known that η(ε)
n , n = 0, 1, . . . , is also a Markov chain with

state space X and transition probabilities,

p
(ε)
ij = P{η(ε)

n+1 = j | η(ε)
n = i} =

∞∑
k=1

Q
(ε)
ij (k), i, j ∈ X.

Let us define τ (ε)(0) = 0 and τ (ε)(n) = κ
(ε)
1 + · · · + κ(ε)

n , for n ∈ N.
Furthermore, for n = 0, 1, . . . , we define ν(ε)(n) = max{k : τ (ε)(k) ≤ n}.
The discrete time semi-Markov process associated with the Markov renewal
process (η(ε)

n , κ(ε)
n ) is defined by the following relation,

ξ(ε)(n) = η
(ε)

ν(ε)(n)
, n = 0, 1, . . . ,

and we will refer to Q
(ε)
ij (k) as the transition probabilities of this process.

For the semi-Markov process defined above we have that (i) κ(ε)
n are the

times between successive moments of jumps, (ii) τ (ε)(n) are the moments of
the jumps, (iii) ν(ε)(n) are the number of jumps in the interval [0, n], and
(iv) η(ε)

n is the embedded Markov chain.
It is sometimes convenient to write the transition probabilities of the

semi-Markov process as Q
(ε)
ij (k) = p

(ε)
ij f

(ε)
ij (k), where

f
(ε)
ij (k) = P{κ(ε)

n+1 = k | η(ε)
n = i, η

(ε)
n+1 = j}, k ∈ N, i, j ∈ X,

are the distributions of transition times.
We now define random variables for first hitting times. For each j ∈ X,

let ν
(ε)
j = min{n ≥ 1 : η(ε)

n = j} and µ
(ε)
j = τ(ν

(ε)
j ). Then, ν

(ε)
j and µ

(ε)
j

are the first hitting times of state j for the embedded Markov chain and
the semi-Markov process, respectively. Note that ν

(ε)
j and µ

(ε)
j are possibly

improper random variables taking values in the set {1, 2, . . . ,∞}.
Let us define

g
(ε)
ij (n) = Pi{µ(ε)

j = n, ν
(ε)
0 > ν

(ε)
j }, n = 0, 1, . . . , i, j ∈ X,

and
g

(ε)
ij = Pi{ν(ε)

0 > ν
(ε)
j }, i, j ∈ X.

Here, and in what follows, we write Pi(A
(ε)) = P{A(ε) | η(ε)

0 = i} for any event
A(ε). Corresponding notation for conditional expectation will also be used.
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The functions g
(ε)
ij (n) define discrete probability distributions which may

be improper, i.e.,
∑∞
n=0 g

(ε)
ij (n) = g

(ε)
ij ≤ 1.

Moment generating functions for distributions of first hitting times are
defined by

φ
(ε)
ij (ρ) =

∞∑
n=0

eρng
(ε)
ij (n) = Eie

ρµ
(ε)
j χ(ν

(ε)
0 > ν

(ε)
j ), ρ ∈ R, i, j ∈ X. (2.1)

We also define the following mixed power-exponential moment functionals
for transition probabilities,

p
(ε)
ij (ρ, r) =

∞∑
n=0

nreρnQ
(ε)
ij (n), ρ ∈ R, r = 0, 1, . . . , i, j ∈ X,

where we define Q
(ε)
ij (0) = 0. For convenience, we define p

(ε)
ij (ρ) = p

(ε)
ij (ρ, 0).

Let us now introduce the following conditions, which we will refer to
frequently throughout the paper:

A: (a) p
(ε)
ij → p

(0)
ij , as ε→ 0, i 6= 0, j ∈ X.

(b) f
(ε)
ij (n)→ f

(0)
ij (n), as ε→ 0, n ∈ N, i 6= 0, j ∈ X.

B: g
(0)
ij > 0, i, j 6= 0.

C: There exists β > 0 such that:

(a) lim sup0≤ε→0 p
(ε)
ij (β) <∞, for all i 6= 0, j ∈ X.

(b) φ
(0)
ii (βi) ∈ (1,∞), for some i 6= 0 and βi ≤ β.

D: g
(0)
ii (n) is a non-periodic distribution for some i 6= 0.

It follows from conditions A and B that {1, . . . , N} is a communicating

class of states for sufficiently small ε. Let us also remark that if p
(0)
i0 = 0 for

all i 6= 0, it can be shown that part (b) of condition C always holds under
conditions A, B, and C(a).

Under the conditions stated above, there exists, for sufficiently small ε,
so-called quasi-stationary distributions, which are independent of the initial
state i 6= 0, and given by the relation

π
(ε)
j = lim

n→∞
Pi{ξ(ε)(n) = j |µ(ε)

0 > n}, j 6= 0. (2.2)

In order to construct an asymptotic expansion for the quasi-stationary
distribution, we need a perturbation condition for the transition probabilities
Q

(ε)
ij (k) which is stronger than A. This condition is formulated in terms of the

moment functionals p
(ε)
ij (ρ(0), r), where ρ(0) is the solution of the characteristic

equation φ
(0)
ii (ρ) = 1, which is independent of i 6= 0 (see Section 4).
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Pk: p
(ε)
ij (ρ(0), r) = p

(0)
ij (ρ(0), r) + pij[ρ

(0), r, 1]ε + · · · + pij[ρ
(0), r, k − r]εk−r +

o(εk−r), for r = 0, . . . , k, i 6= 0, j ∈ X, where |pij[ρ(0), r, n]| < ∞, for
r = 0, . . . , k, n = 1, . . . , k − r, i 6= 0, j ∈ X.

The following theorem is the main result of this paper. The proof is given
in Section 7.

Theorem 2.1. If conditions A–D and Pk+1 hold, then we have the following
asymptotic expansion,

π
(ε)
j = π

(0)
j + πj[1]ε+ · · ·+ πj[k]εk + o(εk), j 6= 0,

where the coefficients πj[n], n = 1, . . . , k, j 6= 0, can be calculated from
explicit recursive formulas given by Lemmas 6.1–6.4 and Lemmas 7.1–7.3.

3 Systems of Linear Equations

In this section we derive systems of linear equations for some moment func-
tionals that will play an important role in what follows.

We first consider the moment generating functions φ
(ε)
ij (ρ), defined by

equation (2.1). By conditioning on (η
(ε)
1 , κ

(ε)
1 ), we get for each i, j 6= 0,

φ
(ε)
ij (ρ) =

∑
l∈X

∞∑
k=1

Ei(e
ρµ

(ε)
j χ(ν

(ε)
0 > ν

(ε)
j )|η(ε)

1 = l, κ
(ε)
1 = k)Q

(ε)
il (k)

=
∞∑
k=1

eρkQ
(ε)
ij (k) +

∑
l 6=0,j

∞∑
k=1

Ele
ρ(k+µ

(ε)
j )χ(ν

(ε)
0 > ν

(ε)
j )Q

(ε)
il (k).

(3.1)

Relation (3.1) gives us the following system of linear equations,

φ
(ε)
ij (ρ) = p

(ε)
ij (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ), i, j 6= 0. (3.2)

In what follows it will often be convenient to use matrix notation. Let us
introduce the following column vectors,

Φ
(ε)
j (ρ) =

[
φ

(ε)
1j (ρ) · · · φ

(ε)
Nj(ρ)

]T
, j 6= 0, (3.3)

p
(ε)
j (ρ) =

[
p

(ε)
1j (ρ) · · · p

(ε)
Nj(ρ)

]T
, j ∈ X. (3.4)

For each j 6= 0, we also define N×N -matrices jP
(ε)(ρ) = ‖jp(ε)

ik (ρ)‖ where
the elements are given by

jp
(ε)
ik (ρ) =

{
p

(ε)
ik (ρ) i = 1, . . . , N, k 6= j,

0 i = 1, . . . , N, k = j.
(3.5)

7



Using (3.3), (3.4), and (3.5), we can write the system (3.2) in the following
matrix form,

Φ
(ε)
j (ρ) = p

(ε)
j (ρ) + jP

(ε)(ρ)Φ
(ε)
j (ρ), j 6= 0. (3.6)

Note that the relations given above hold for all ρ ∈ R even in the case
where some of the quantities involved take the value infinity. In this case we
use the convention 0 · ∞ = 0 and the equalities may take the form ∞ =∞.

Let us now derive a similar type of system for the following moment
functionals,

ω
(ε)
ijs(ρ) =

∞∑
n=0

eρnPi{ξ(ε)(n) = s, µ
(ε)
0 ∧ µ

(ε)
j > n}, ρ ∈ R, i, j, s ∈ X.

First note that

ω
(ε)
ijs(ρ) = Ei

∞∑
n=0

eρnχ(ξ(ε)(n) = s, µ
(ε)
0 ∧ µ

(ε)
j > n)

= Ei

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=0

eρnχ(ξ(ε)(n) = s).

We now decompose ω
(ε)
ijs(ρ) into two parts,

ω
(ε)
ijs(ρ) = Ei

κ
(ε)
1 −1∑
n=0

eρnχ(ξ(ε)(n) = s) + Ei

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=κ
(ε)
1

eρnχ(ξ(ε)(n) = s). (3.7)

Let us first rewrite the first term on the right hand side of equation (3.7).

By conditioning on κ
(ε)
1 we get, for i, s 6= 0,

Ei

κ
(ε)
1 −1∑
n=0

eρnχ(ξ(ε)(n) = s)

=
∞∑
k=1

Ei

κ
(ε)
1 −1∑
n=0

eρnχ(ξ(ε)(n) = s)
∣∣∣∣κ(ε)

1 = k

Pi{κ(ε)
1 = k}

=
∞∑
k=1

δ(i, s)

(
k−1∑
n=0

eρn
)

Pi{κ(ε)
1 = k}.

It follows that

Ei

κ
(ε)
1 −1∑
n=0

eρnχ(ξ(ε)(n) = s) = δ(i, s)ϕ
(ε)
i (ρ), i, s 6= 0. (3.8)
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where

ϕ
(ε)
i (ρ) =

 Eiκ
(ε)
1 ρ = 0,

(Eie
ρκ

(ε)
1 − 1)/(eρ − 1) ρ 6= 0.

(3.9)

Let us now consider the second term on the right hand side of equation
(3.7). By conditioning on (η

(ε)
1 , κ

(ε)
1 ) we get, for i, j, s 6= 0,

Ei

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=κ
(ε)
1

eρnχ(ξ(ε)(n) = s)

=
∑
l 6=0,j

∞∑
k=1

Ei

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=κ
(ε)
1

eρnχ(ξ(ε)(n) = s)
∣∣∣∣ η(ε)

1 = l, κ
(ε)
1 = k

Q(ε)
il (k)

=
∑
l 6=0,j

∞∑
k=1

El

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=0

eρ(k+n)χ(ξ(ε)(n) = s)

Q(ε)
il (k).

It follows that

Ei

µ
(ε)
0 ∧µ

(ε)
j −1∑

n=κ
(ε)
1

eρnχ(ξ(ε)(n) = s) =
∑
l 6=0,j

p
(ε)
il (ρ)ω

(ε)
ljs(ρ), i, j, s 6= 0. (3.10)

From (3.7), (3.8), and (3.10) we now get the following system of linear
equations,

ω
(ε)
ijs(ρ) = δ(i, s)ϕ

(ε)
i (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)ω

(ε)
ljs(ρ), i, j, s 6= 0. (3.11)

In order to write this system in matrix form, let us define the following
column vectors,

ϕ̂(ε)
s (ρ) =

[
δ(1, s)ϕ

(ε)
1 (ρ) · · · δ(N, s)ϕ

(ε)
N (ρ)

]T
, s 6= 0, (3.12)

ω
(ε)
js (ρ) =

[
ω

(ε)
1js(ρ) · · · ω

(ε)
Njs(ρ)

]T
, j, s 6= 0. (3.13)

Using (3.5), (3.12), and (3.13), the system (3.11) can be written in the
following matrix form,

ω
(ε)
js (ρ) = ϕ̂(ε)

s (ρ) + jP
(ε)(ρ)ω

(ε)
js (ρ), j, s 6= 0. (3.14)

We close this section with a lemma which will be important in what
follows.
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Lemma 3.1. Assume that we for some ε ≥ 0 and ρ ∈ R have that g
(ε)
ik > 0,

i, k 6= 0 and p
(ε)
ik (ρ) < ∞, i 6= 0, k ∈ X. Then, for any j 6= 0, the following

statements are equivalent:

(a) Φ
(ε)
j (ρ) <∞.

(b) ω
(ε)
js (ρ) <∞, s 6= 0.

(c) The inverse matrix (I− jP
(ε)(ρ))−1 exists.

Proof. For each j 6= 0, let us define a matrix valued function jA
(ε)(ρ) =

‖ja(ε)
ik (ρ)‖ by the relation

jA
(ε)(ρ) = I + jP

(ε)(ρ) + (jP
(ε)(ρ))2 + · · · , ρ ∈ R. (3.15)

Since each term on the right hand side of (3.15) is non-negative, it follows

that the elements ja
(ε)
ik (ρ) are well defined and take values in the set [0,∞].

Furthermore, the elements can be written in the following form which gives
a probabilistic interpretation,

ja
(ε)
ik (ρ) = Ei

∞∑
n=0

eρτ
(ε)(n)χ(ν

(ε)
0 ∧ ν

(ε)
j > n, η(ε)

n = k), i, k 6= 0. (3.16)

Let us now show that

Φ
(ε)
j (ρ) = jA

(ε)(ρ)p
(ε)
j (ρ), ρ ∈ R, j 6= 0. (3.17)

In order to do this, first note that, for j 6= 0,

χ(ν
(ε)
0 > ν

(ε)
j ) =

∞∑
n=0

∑
k 6=0

χ(ν
(ε)
0 ∧ ν

(ε)
j > n, η(ε)

n = k, η
(ε)
n+1 = j). (3.18)

Using (3.18) and the regenerative property of the semi-Markov process,
the following is obtained, for i, j 6= 0,

φ
(ε)
ij (ρ) =

∞∑
n=0

∑
k 6=0

Eie
ρµ

(ε)
j χ(ν

(ε)
0 ∧ ν

(ε)
j > n, η(ε)

n = k, η
(ε)
n+1 = j)

=
∞∑
n=0

∑
k 6=0

Eie
ρτ (ε)(n)χ(ν

(ε)
0 ∧ ν

(ε)
j > n, η(ε)

n = k)p
(ε)
kj (ρ).

(3.19)

From (3.16) and (3.19) we get

φ
(ε)
ij (ρ) =

∑
k 6=0

ja
(ε)
ik (ρ)p

(ε)
kj (ρ), i, j 6= 0, (3.20)
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and this proves (3.17).
Let us now define

ω
(ε)
ij (ρ) =

∑
s6=0

ω
(ε)
ijs(ρ) =

∞∑
n=0

eρnPi{µ(ε)
0 ∧ µ

(ε)
j > n}, ρ ∈ R, i, j 6= 0. (3.21)

Then, we have

ω
(ε)
ij (ρ) =

 Ei(µ
(ε)
0 ∧ µ

(ε)
j ) ρ = 0,

(Eie
ρ(µ

(ε)
0 ∧µ

(ε)
j ) − 1)/(eρ − 1) ρ 6= 0.

(3.22)

Also notice that

Eie
ρ(µ

(ε)
0 ∧µ

(ε)
j ) = Eie

ρµ
(ε)
j χ(ν

(ε)
0 > ν

(ε)
j ) + Eie

ρµ
(ε)
0 χ(ν

(ε)
0 < ν

(ε)
j ), i, j 6= 0. (3.23)

Using similar calculations as above, it can be shown that

Eie
ρµ

(ε)
0 χ(ν

(ε)
0 < ν

(ε)
j ) =

∑
k 6=0

ja
(ε)
ik (ρ)p

(ε)
k0 (ρ), i, j 6= 0. (3.24)

It follows from (3.20), (3.23), and (3.24) that

Eie
ρ(µ

(ε)
0 ∧µ

(ε)
j ) =

∑
k 6=0

ja
(ε)
ik (ρ)

(
p

(ε)
kj (ρ) + p

(ε)
k0 (ρ)

)
, i, j 6= 0. (3.25)

Let us now show that (a) implies (b).
By iterating relation (3.6) we obtain,

Φ
(ε)
j (ρ) = (I + jP

(ε)(ρ) + · · ·+ (jP
(ε)(ρ))n)p

(ε)
j (ρ)

+ (jP
(ε)(ρ))n+1Φ

(ε)
j (ρ), n = 1, 2, . . .

(3.26)

Since Φ
(ε)
j (ρ) <∞, it follows from (3.26) that

(jP
(ε)(ρ))n+1Φ

(ε)
j (ρ)→ 0, as n→∞. (3.27)

The assumptions of the lemma guarantee that Φ
(ε)
j (ρ) > 0. From this

and relation (3.27) we can conclude that (jP
(ε)(ρ))n+1 → 0, as n → ∞. It

is known that this holds if and only if the matrix series (3.15) converges in
norms, that is, jA

(ε)(ρ) is finite. From this and relations (3.21), (3.22), and
(3.25) it follows that (b) holds.

Next we show that (b) implies (c).
By summing over all s 6= 0 in relation (3.14) it follows that

ω
(ε)
j (ρ) = ϕ(ε)(ρ) + jP

(ε)(ρ)ω
(ε)
j (ρ), ρ ∈ R, (3.28)
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where
ω

(ε)
j (ρ) =

[
ω

(ε)
1j (ρ) · · · ω

(ε)
Nj(ρ)

]T
, j 6= 0,

and
ϕ(ε)(ρ) =

[
ϕ

(ε)
1 (ρ) · · · ϕ

(ε)
N (ρ)

]T
.

By iterating relation (3.28) we get

ω
(ε)
j (ρ) = (I + jP

(ε)(ρ) + · · ·+ (jP
(ε)(ρ))n)ϕ(ε)(ρ)

+ (jP
(ε)(ρ))n+1ω

(ε)
j (ρ), n = 1, 2, . . .

(3.29)

It follows from (b) and the definition of ω
(ε)
ij (ρ) that 0 < ω

(ε)
j (ρ) < ∞.

So, letting n→∞ in (3.29) and using similar arguments as above, it follows
that the matrix series (3.15) converges in norms. It is then known that the
inverse matrix (I− jP

(ε)(ρ))−1 exists, that is, (c) holds.
Let us finally argue that (c) implies (a).
If (I− jP

(ε)(ρ))−1 exists, then the following relation holds,

(I− jP
(ε)(ρ))−1 = I + jP

(ε)(ρ)(I− jP
(ε)(ρ))−1. (3.30)

Iteration of (3.30) gives

(I− jP
(ε)(ρ))−1 = I + jP

(ε)(ρ) + (jP
(ε)(ρ))2 + · · ·+ (jP

(ε)(ρ))n

+ (jP
(ε)(ρ))n+1(I− jP

(ε)(ρ))−1, n = 1, 2, . . .
(3.31)

Letting n → ∞ in (3.31) it follows that jA
(ε)(ρ) = (I − jP

(ε)(ρ))−1 < ∞.
From (3.17) we now see that (a) holds.

4 Asymptotic Solidarity Properties

In this section we prove some asymptotic solidarity properties for moment
generating functions of first hitting times.

Let us define

kφ
(ε)
ij (ρ) = Eie

ρµ
(ε)
j χ(ν

(ε)
0 ∧ ν

(ε)
k > ν

(ε)
j ), ρ ∈ R, i, j, k ∈ X.

If the states {1, . . . , N} is a communicating class and φ
(ε)
ii (ρ) ≤ 1 for some

i 6= 0, then it can be shown (see, for example, Petersson (2015)) that the
following relation holds for all j 6= 0,

(1− φ(ε)
ii (ρ))(1− iφ

(ε)
jj (ρ)) = (1− φ(ε)

jj (ρ))(1− jφ
(ε)
ii (ρ)). (4.1)

12



Relation (4.1) is useful in order to prove various solidarity properties for

semi-Markov processes. In particular, if φ
(ε)
ii (ρ) = 1, relation (4.1) reduces to

(1− φ(ε)
jj (ρ))(1− jφ

(ε)
ii (ρ)) = 0. (4.2)

From the regenerative property of the semi-Markov process it follows that

φ
(ε)
ii (ρ) = jφ

(ε)
ii (ρ) + iφ

(ε)
ij (ρ)φ

(ε)
ji (ρ), j 6= 0, i. (4.3)

Since {1, . . . , N} is a communicating class, we have iφ
(ε)
ij (ρ) > 0 and

φ
(ε)
ji (ρ) > 0. So, if φ

(ε)
ii (ρ) = 1 it follows from (4.3) that jφ

(ε)
ii (ρ) < 1. From

this and (4.2) we can conclude that φ
(ε)
jj (ρ) = 1 for all j 6= 0. Thus, we have

the following lemma:

Lemma 4.1. Assume that we for some ε ≥ 0 have that g
(ε)
kj > 0 for all

k, j 6= 0. Then, if we for some i 6= 0 and ρ ∈ R, have that φ
(ε)
ii (ρ) = 1, it

follows that φ
(ε)
jj (ρ) = 1 for all j 6= 0.

Let us now define the following characteristic equation,

φ
(ε)
ii (ρ) = 1. (4.4)

where i 6= 0. The root of equation (4.4) plays an important role for the
quasi-stationary distribution.

The following lemma shows, in particular, that the characteristic equation
has a unique non-negative solution for sufficiently small ε, which does not
depend on i.

Lemma 4.2. If conditions A–C hold, then there exists δ ∈ (0, β] such that
the following holds:

(i) φ
(ε)
kj (ρ)→ φ

(0)
kj (ρ) <∞, as ε→ 0, ρ ≤ δ, k, j 6= 0.

(ii) ω
(ε)
kjs(ρ)→ ω

(0)
kjs(ρ) <∞, as ε→ 0, ρ ≤ δ, k, j, s 6= 0.

(iii) φ
(0)
jj (δ) ∈ (1,∞), j 6= 0.

(iv) For sufficiently small ε, there exists a unique non-negative root ρ(ε) of
the characteristic equation (4.4) which does not depend on i.

(v) ρ(ε) → ρ(0) < δ as ε→ 0.
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Proof. Let i 6= 0 and βi ≤ β be the values given in condition C. It follows
from conditions B and C that φ

(0)
ii (ρ) is a continuous and strictly increasing

function for ρ ≤ βi. Since φ
(0)
ii (0) = g

(0)
ii ≤ 1 and φ

(0)
ii (βi) > 1, there exists a

unique ρ′ ∈ [0, βi) such that φ
(0)
ii (ρ′) = 1. Moreover, by Lemma 4.1,

φ
(0)
jj (ρ′) = 1, j 6= 0. (4.5)

For all j 6= 0, we have

φ
(0)
jj (ρ′) = kφ

(0)
jj (ρ′) + jφ

(0)
jk (ρ′)φ

(0)
kj (ρ′), k 6= 0, j. (4.6)

It follows from (4.5), (4.6), and condition B, that

φ
(0)
kj (ρ′) <∞, k, j 6= 0. (4.7)

From (4.7) and Lemma 3.1 we get that det(I− jP
(0)(ρ′)) 6= 0, for j 6= 0.

Under condition C, the elements of I− jP
(0)(ρ) are continuous functions for

ρ ≤ β. This implies that we for each j 6= 0 can find βj ∈ (ρ′, βi] such that

det(I − jP
(0)(βj)) 6= 0. By condition C we also have that p

(0)
kj (βj) < ∞ for

k 6= 0, j ∈ X. It now follows from Lemma 3.1 that φ
(0)
kj (βj) < ∞, k, j 6= 0.

If we define δ = min{β1, . . . , βN}, it follows that

φ
(0)
kj (ρ) <∞, ρ ≤ δ, k, j 6= 0. (4.8)

Now, let ρ ≤ δ be fixed. Relation (4.8) and Lemma 3.1 imply that

det(I− jP
(0)(ρ)) 6= 0, j 6= 0. (4.9)

Note that we have

p
(ε)
kj (ρ) = p

(ε)
kj

∞∑
n=0

eρnf
(ε)
kj (n), k, j ∈ X. (4.10)

Since f
(ε)
kj (n) are proper probability distributions, it follows from (4.10) and

conditions A and C that

p
(ε)
kj (ρ)→ p

(0)
kj (ρ) <∞, as ε→ 0, k 6= 0, j ∈ X. (4.11)

It follows from (4.9) and (4.11) that there exists ε1 > 0 such that we for

all ε ≤ ε1 have that det(I − jP
(ε)(ρ)) 6= 0 and p

(ε)
kj (ρ) < ∞, for all k, j 6= 0.

Using Lemma 3.1 once again, it now follows that φ
(ε)
kj (ρ) < ∞, k, j 6= 0, for

14



all ε ≤ ε1. Moreover, in this case, the system of linear equations (3.6) has a
unique solution for ε ≤ ε1 given by

Φ
(ε)
j (ρ) = (I− jP

(ε)(ρ))−1p
(ε)
j (ρ), j 6= 0. (4.12)

From (4.11) and (4.12) it follows that

φ
(ε)
kj (ρ)→ φ

(0)
kj (ρ) <∞, as ε→ 0, k, j 6= 0.

This completes the proof of part (i).

For the proof of part (ii) we first note that, since φ
(ε)
kj (ρ) <∞ for ε ≤ ε1,

k, j 6= 0, it follows from Lemma 3.1 that ω
(ε)
kjs(ρ) <∞ for ε ≤ ε1, k, j, s 6= 0.

From this, and arguments given above, we see that the system of linear
equations given by relation (3.14) has a unique solution for ε ≤ ε1 given by

ω
(ε)
js (ρ) = (I− jP

(ε)(ρ))−1ϕ̂(ε)
s (ρ), j, s 6= 0. (4.13)

Now, since Eie
ρκ

(ε)
1 =

∑
j∈X p

(ε)
ij (ρ), it follows from (3.9) and (4.11) that

ϕ
(ε)
i (ρ) → ϕ

(0)
i (ρ) < ∞ as ε → 0, i 6= 0. Using this and relations (4.11) and

(4.13) we can conclude that part (ii) holds.

By part (i) we have, in particular, φ
(ε)
jj (δ)→ φ

(0)
jj (δ) <∞ as ε→ 0, for all

j 6= 0. Furthermore, since ρ′ < δ and φ
(0)
jj (ρ) is strictly increasing for ρ ≤ δ,

it follows from (4.5) that φ
(0)
jj (δ) > 1, j 6= 0. This proves part (iii).

Let us now prove part (iv).

It follows from (i) and (iii) that we can find ε2 > 0 such that φ
(ε)
jj (δ) ∈

(1,∞), j 6= 0, for all ε ≤ ε2. By conditions A and B there exists ε3 > 0 such

that, for i 6= 0 and ε ≤ ε3, the functions g
(ε)
ii (n) are not concentrated at zero.

Thus, for i 6= 0 and ε ≤ min{ε2, ε3}, we have that φ
(ε)
ii (ρ) are continuous

and strictly increasing functions for ρ ∈ [0, δ]. Since φ
(ε)
ii (0) = g

(ε)
ii ≤ 1 and

φ
(ε)
ii (δ) > 1, there exists a unique ρ

(ε)
i ∈ [0, δ) such that φ

(ε)
ii (ρ

(ε)
i ) = 1. By

Lemma 4.1, the root of the characteristic equation does not depend on i so
we can write ρ(ε) instead of ρ

(ε)
i . This proves part (iv).

Finally we show that ρ(ε) → ρ(0) as ε→ 0.
Let γ > 0 such that ρ(0) +γ ≤ δ be arbitrary. Then φ

(0)
ii (ρ(0)−γ) < 1 and

φ
(0)
ii (ρ(0) +γ) > 1. From this and part (i) we get that there exists ε4 > 0 such

that φ
(ε)
ii (ρ(0) − γ) < 1 and φ

(ε)
ii (ρ(0) + γ) > 1, for all ε ≤ ε4. It follows that

|ρ(ε) − ρ(0)| < γ for ε ≤ min{ε2, ε3, ε4}. This completes the proof of Lemma
4.2.
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5 Quasi-Stationary Distributions

In this section we use renewal theory in order to get a formula for the quasi-
stationary distribution.

The probabilities P
(ε)
ij (n) = Pi{ξ(ε)(n) = j, µ

(ε)
0 > n}, i, j 6= 0, satisfy the

following discrete time renewal equation,

P
(ε)
ij (n) = h

(ε)
ij (n) +

n∑
k=0

P
(ε)
ij (n− k)g

(ε)
ii (k), n = 0, 1, . . . , (5.1)

where
h

(ε)
ij (n) = Pi{ξ(ε)(n) = j, µ

(ε)
0 ∧ µ

(ε)
i > n}.

Since
∑∞
n=0 g

(ε)
ii (n) = g

(ε)
ii ≤ 1, relation (5.1) defines a possibly improper

renewal equation.
Let us now, for each n = 0, 1, . . . , multiply both sides of (5.1) by eρ

(ε)n,

where ρ(ε) is the root of the characteristic equation φ
(ε)
ii (ρ) = 1. Then, we get

P̃
(ε)
ij (n) = h̃

(ε)
ij (n) +

n∑
k=0

P̃
(ε)
ij (n− k)g̃

(ε)
ii (k), n = 0, 1, . . . , (5.2)

where

P̃
(ε)
ij (n) = eρ

(ε)nP
(ε)
ij (n), h̃

(ε)
ij (n) = eρ

(ε)nh
(ε)
ij (n), g̃

(ε)
ii (n) = eρ

(ε)ng
(ε)
ii (n).

By the definition of the root of the characteristic equation, relation (5.2)
defines a proper renewal equation. We can now use the classical renewal
theorem in order to get a formula for the quasi-stationary distribution.

Lemma 5.1. Assume that conditions A–D hold. Then:

(i) For sufficiently small ε, the quasi stationary distribution π
(ε)
j , given by

relation (2.2), have the following representation,

π
(ε)
j =

ω
(ε)
iij (ρ(ε))

ω
(ε)
ii1 (ρ(ε)) + · · ·+ ω

(ε)
iiN(ρ(ε))

, i, j 6= 0. (5.3)

(ii) For j = 1, . . . , N , we have

π
(ε)
j → π

(0)
j , as ε→ 0.
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Proof. Under condition D, the functions g
(0)
ii (n) are non-periodic for all i 6= 0.

By Lemma 4.2 we have that φ
(ε)
ii (ρ) → φ

(0)
ii (ρ) as ε → 0, for ρ ≤ δ, i 6= 0.

From this it follows that g
(ε)
ii (n)→ g

(0)
ii (n) as ε→ 0, for n ≥ 0, i 6= 0. Thus,

we can conclude that there exists ε1 > 0 such that the functions g̃
(ε)
ii (n),

i 6= 0, are non-periodic for all ε ≤ ε1.
Now choose γ such that ρ(0) < γ < δ. Using Lemma 4.2, we get the

following for all i 6= 0,

lim sup
0≤ε→0

∞∑
n=0

ng̃
(ε)
ii (n) ≤ lim sup

0≤ε→0

∞∑
n=0

neγng
(ε)
ii (n)

≤
(

sup
n≥0

ne−(δ−γ)n

)
φ

(0)
ii (δ) <∞.

Thus, there exists ε2 > 0 such that the distributions g̃
(ε)
ii (n), i 6= 0, have

finite mean for all ε ≤ ε2.
Furthermore, it follows from Lemma 4.2 that, for all i, j 6= 0,

lim sup
0≤ε→0

∞∑
n=0

h̃
(ε)
ij (n) ≤ lim sup

0≤ε→0

∞∑
n=0

eδnh
(ε)
ij (n) = ω

(0)
iij (δ) <∞,

so there exists ε3 > 0 such that
∑∞
n=0 h̃

(ε)
ij (n) <∞, i, j 6= 0, for all ε ≤ ε3.

Now, let ε0 = min{ε1, ε2, ε3}. For all ε ≤ ε0, the assumptions of the
discrete time renewal theorem are satisfied for the renewal equation defined
by (5.2). This yields

P̃
(ε)
ij (n)→

∑∞
k=0 h̃ij(k)∑∞
k=0 kg̃

(ε)
ii (k)

, as n→∞, i, j 6= 0, ε ≤ ε0. (5.4)

Note that we have

Pi{ξ(ε)(n) = j |µ(ε)
0 > n} =

P̃
(ε)
ij (n)∑N

k=1 P̃
(ε)
ik (n)

, n = 0, 1, . . . , i, j 6= 0. (5.5)

It follows from (5.4) and (5.5) that, for ε ≤ ε0,

Pi{ξ(ε)(n) = j |µ(ε)
0 > n} →

ω
(ε)
iij (ρ(ε))∑N

k=1 ω
(ε)
iik(ρ(ε))

, as n→∞, i, j 6= 0.

This proves part (i).
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For the proof of part (ii), first note that,

0 ≤ lim sup
0≤ε→0

∞∑
n=N

eρ
(ε)nh

(ε)
ij (n)

≤ lim sup
0≤ε→0

∞∑
n=N

eγnh
(ε)
ij (n)

≤ e−(δ−γ)Nω
(0)
iij (δ) <∞, N = 1, 2, . . . , i, j 6= 0.

(5.6)

Relation (5.6) implies that

lim
N→∞

lim sup
0≤ε→0

∞∑
n=N

eρ
(ε)nh

(ε)
ij (n) = 0, i, j 6= 0. (5.7)

It follows from Lemma 4.2 that

ρ(ε) → ρ(0), as ε→ 0. (5.8)

Since h
(ε)
ij (n), for each n = 0, 1, . . . , can be written as a finite sum where

each term in the sum is a continuous function of quantities given in condition
A, we have

h
(ε)
ij (n)→ h

(0)
ij (n), as ε→ 0, i, j 6= 0. (5.9)

It now follows from (5.7), (5.8), and (5.9) that

ω
(ε)
iij (ρ(ε))→ ω

(0)
iij (ρ(0)), as ε→ 0, i, j 6= 0. (5.10)

Relations (5.3) and (5.10) show that part (ii) of Lemma 5.1 holds.

6 Expansions of Moment Functionals

In this section asymptotic expansions for mixed power-exponential moment
functionals are constructed.

Let us define the following mixed power-exponential moment functionals
for distributions of first hitting times,

φ
(ε)
ij (ρ, r) =

∞∑
n=0

nreρng
(ε)
ij (n), ρ ∈ R, r = 0, 1, . . . , i, j ∈ X.

By definition, φ
(ε)
ij (ρ, 0) = φ

(ε)
ij (ρ).

Furthermore, let us recall from Section 2 that we define

p
(ε)
ij (ρ, r) =

∞∑
n=0

nreρnQ
(ε)
ij (n), ρ ∈ R, r = 0, 1, . . . , i, j ∈ X.
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By definition, p
(ε)
ij (ρ, 0) = p

(ε)
ij (ρ).

It follows from conditions A–C and Lemma 4.2 that, for ρ < δ and
sufficiently small ε, the functions φ

(ε)
ij (ρ) and p

(ε)
ij (ρ) are arbitrarily many

times differentiable with respect to ρ, and the derivatives of order r are given
by φ

(ε)
ij (ρ, r) and p

(ε)
ij (ρ, r), respectively.

Recall from Section 3 that the following system of linear equations holds,

φ
(ε)
ij (ρ) = p

(ε)
ij (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ), i, j 6= 0. (6.1)

Differentiating relation (6.1) gives

φ
(ε)
ij (ρ, r) = λ

(ε)
ij (ρ, r) +

∑
l 6=0,j

p
(ε)
il (ρ)φ

(ε)
lj (ρ, r), r = 1, 2, . . . , i, j 6= 0, (6.2)

where

λ
(ε)
ij (ρ, r) = p

(ε)
ij (ρ, r) +

r∑
m=1

(
r

m

) ∑
l 6=0,j

p
(ε)
il (ρ,m)φ

(ε)
lj (ρ, r −m). (6.3)

In order to write relations (6.1), (6.2), and (6.3) in matrix form, let us
define the following column vectors,

Φ
(ε)
j (ρ, r) =

[
φ

(ε)
1j (ρ, r) · · · φ

(ε)
Nj(ρ, r)

]T
, j 6= 0, (6.4)

p
(ε)
j (ρ, r) =

[
p

(ε)
1j (ρ, r) · · · p

(ε)
Nj(ρ, r)

]T
, j 6= 0, (6.5)

λ
(ε)
j (ρ, r) =

[
λ

(ε)
1j (ρ, r) · · · λ

(ε)
Nj(ρ, r)

]T
, j 6= 0. (6.6)

Let us also, for j 6= 0, define N × N -matrices jP
(ε)(ρ, r) = ‖jp(ε)

ik (ρ, r)‖
where the elements are given by

jp
(ε)
ik (ρ, r) =

{
p

(ε)
ik (ρ, r) i = 1, . . . , N, k 6= j,

0 i = 1, . . . , N, k = j.
(6.7)

Using (6.1)–(6.7) we can for any j 6= 0 write the following recursive
systems of linear equations,

Φ
(ε)
j (ρ) = p

(ε)
j (ρ) + jP

(ε)(ρ)Φ
(ε)
j (ρ), (6.8)

and, for r = 1, 2, . . . ,

Φ
(ε)
j (ρ, r) = λ

(ε)
j (ρ, r) + jP

(ε)(ρ)Φ
(ε)
j (ρ, r), (6.9)
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where

λ
(ε)
j (ρ, r) = p

(ε)
j (ρ, r) +

r∑
m=1

(
r

m

)
jP

(ε)(ρ,m)Φ
(ε)
j (ρ, r −m). (6.10)

Let us now introduce the following perturbation condition, which is as-
sumed to hold for some ρ < δ, where δ is the parameter in Lemma 4.2:

P∗k: p
(ε)
ij (ρ, r) = p

(0)
ij (ρ, r) + pij[ρ, r, 1]ε + · · · + pij[ρ, r, k − r]εk−r + o(εk−r),

for r = 0, . . . , k, i 6= 0, j ∈ X, where |pij[ρ, r, n]| <∞, for r = 0, . . . , k,
n = 1, . . . , k − r, i 6= 0, j ∈ X.

For convenience we denote p
(0)
ij (ρ, r) = pij[ρ, r, 0], for r = 0, . . . , k.

Note that if condition P∗k holds, then, for r = 0, . . . , k, we have the
following asymptotic matrix expansions:

jP
(ε)(ρ, r) = jP[ρ, r, 0]+jP[ρ, r, 1]ε+· · ·+jP[ρ, r, k−r]εk−r+o(εk−r), (6.11)

and

p
(ε)
j (ρ, r) = pj[ρ, r, 0] +pj[ρ, r, 1]ε+ · · ·+pj[ρ, r, k− r]εk−r +o(εk−r). (6.12)

Here, and in what follows, o(εp) denotes a matrix-valued function of ε where
all elements are of order o(εp). The coefficients in (6.11) are N ×N -matrices

jP[ρ, r, n] = ‖jpik[ρ, r, n]‖ with elements given by

jpik[ρ, r, n] =

{
pik[ρ, r, n] i = 1, . . . , N, k 6= j,
0 i = 1, . . . , N, k = j,

and the coefficients in (6.12) are column vectors defined by

pj[ρ, r, n] =
[
p1j[ρ, r, n] · · · pNj[ρ, r, n]

]T
.

Let us now define the following matrix, which will play an important role
in what follows,

jU
(ε)(ρ) = (I− jP

(ε)(ρ))−1.

Under conditions A–C, it follows from Lemmas 3.1 and 4.2 that jU
(ε)(ρ) is

well defined for ρ ≤ δ and sufficiently small ε.
The following lemma gives an asymptotic expansion for jU

(ε)(ρ).

Lemma 6.1. Assume that conditions A–C and P∗k hold. Then we have the
following asymptotic expansion,

jU
(ε)(ρ) = jU[ρ, 0] + jU[ρ, 1]ε+ · · ·+ jU[ρ, k]εk + o(εk), (6.13)

where

jU[ρ, n] =

{
(I− jP

(0)(ρ))−1 n = 0,

jU[ρ, 0]
∑n
q=1 jP[ρ, 0, q]jU[ρ, n− q] n = 1, . . . , k.

(6.14)
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Proof. As already mentioned above, conditions A–C ensure us that the in-
verse jU

(ε)(ρ) exists for sufficiently small ε. In this case, it is known that the
expansion (6.13) exists under condition P∗k. To see that the coefficients are
given by (6.14), first note that

I = (I− jP
(ε)(ρ))jU

(ε)(ρ)

= (I− jP
(0)(ρ)− jP[ρ, 0, 1]ε− · · · − jP[ρ, 0, k]εk + o(εk))

× (jU[ρ, 0] + jU[ρ, 1]ε+ · · ·+ jU[ρ, k]εk + o(εk)).

(6.15)

By first expanding both sides of equation (6.15) and then, for n = 0, 1, . . . , k,
equating coefficients of εn in the left and right hand sides, we get formula
(6.14).

We are now ready to construct asymptotic expansions for Φ
(ε)
j (ρ, r).

Lemma 6.2. Assume that conditions A–C and P∗k hold. Then:

(i) We have the following asymptotic expansion,

Φ
(ε)
j (ρ) = Φj[ρ, 0, 0] + Φj[ρ, 0, 1]ε+ · · ·+ Φj[ρ, 0, k]εk + o(εk),

where

Φj[ρ, 0, n] =

{
Φ

(0)
j (ρ) n = 0,∑n
q=0 jU[ρ, q]pj[ρ, 0, n− q] n = 1, . . . , k.

(ii) For r = 1, . . . , k, we have the following asymptotic expansions,

Φ
(ε)
j (ρ, r) = Φj[ρ, r, 0] + Φj[ρ, r, 1]ε+ · · ·+ Φj[ρ, r, k − r]εk−r + o(εk−r),

where

Φj[ρ, r, n] =

{
Φ

(0)
j (ρ, r) n = 0,∑n
q=0 jU[ρ, q]λj[ρ, r, n− q] n = 1, . . . , k − r,

and, for t = 0, . . . , k − r,

λj[ρ, r, t] = pj[ρ, r, t] +
r∑

m=1

(
r

m

)
t∑

q=0

jP[ρ,m, q]Φj[ρ, r −m, t− q].

Proof. Under conditions A–C, we have, for sufficiently small ε, that the
recursive systems of linear equations given by relations (6.8), (6.9), and
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(6.10), all have finite components. Moreover, the inverse matrix jU
(ε)(ρ) =

(I− jP
(ε)(ρ))−1 exists, so these systems have unique solutions.

It follows from (6.8), Lemma 6.1, and condition P∗k that

Φ
(ε)
j (ρ) = jU

(ε)(ρ)p
(ε)
j (ρ)

= (jU[ρ, 0] + jU[ρ, 1]ε+ · · ·+ jU[ρ, k]εk + o(εk))

× (pj[ρ, 0, 0] + pj[ρ, 0, 1]ε+ · · ·+ pj[ρ, 0, k]εk + o(εk)).

(6.16)

By expanding the right hand side of equation (6.16), we see that part (i)
of Lemma 6.2 holds.

With r = 1, relation (6.10) takes the form

λ
(ε)
j (ρ, 1) = p

(ε)
j (ρ, 1) + jP

(ε)(ρ, 1)Φ
(ε)
j (ρ). (6.17)

From (6.17), condition P∗k, and part (i), we get

λ
(ε)
j (ρ, 1) = pj[ρ, 1, 0] + · · ·+ pj[ρ, 1, k − 1]εk−1 + o(εk−1)

+ (jP[ρ, 1, 0] + · · ·+ jP[ρ, 1, k − 1]εk−1 + o(εk−1))

× (Φj[ρ, 0, 0] + · · ·+ Φj[ρ, 0, k − 1]εk−1 + o(εk−1)).

(6.18)

Expanding the right hand side of (6.18) gives

λ
(ε)
j (ρ, 1) = λj[ρ, 1, 0]+λj[ρ, 1, 1]ε+ · · ·+λj[ρ, 1, k−1]εk−1 +o(εk−1), (6.19)

where

λj[ρ, 1, t] = pj[ρ, 1, t] +
t∑

q=0

jP[ρ, 1, q]Φj[ρ, 0, t− q], t = 0, . . . , k − 1.

It now follows from (6.9), (6.19), and Lemma 6.1 that

Φ
(ε)
j (ρ, 1) = jU

(ε)(ρ)λ
(ε)
j (ρ, 1)

= (jU[ρ, 0] + · · ·+ jU[ρ, k − 1]εk−1 + o(εk−1))

× (λj[ρ, 1, 0] + · · ·+ λj[ρ, 1, k − 1]εk−1 + o(εk−1)).

(6.20)

By expanding the right hand side of equation (6.20) we get the expansion
in part (ii) for r = 1. If k = 1, this concludes the proof. If k ≥ 2, we
can repeat the steps above, successively, for r = 2, . . . , k. This gives the
expansions and formulas given in part (ii).
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Let us now define the following mixed power exponential moment func-
tionals, for i, j, s ∈ X,

ω
(ε)
ijs(ρ, r) =

∞∑
n=0

nreρnPi{ξ(ε)(n) = s, µ
(ε)
0 ∧ µ

(ε)
j > n}, ρ ∈ R, r = 0, 1, . . .

Notice that ω
(ε)
ijs(ρ, 0) = ω

(ε)
ijs(ρ).

It follows from conditions A–C and Lemma 4.2 that for ρ < δ and suf-
ficiently small ε, the functions ω

(ε)
ijs(ρ) and p

(ε)
ij (ρ) are arbitrarily many times

differentiable with respect to ρ, and the derivatives of order r are given by
ω

(ε)
ijs(ρ, r) and p

(ε)
ij (ρ, r), respectively. Under these conditions we also have

that the functions ϕ
(ε)
i (ρ), defined by equation (3.9), are differentiable. Let

us denote the corresponding derivatives by ϕ
(ε)
i (ρ, r).

Recall from Section 3 that the functions ω
(ε)
ijs(ρ) satisfy the following sys-

tem of linear equations:

ω
(ε)
ijs(ρ) = δ(i, s)ϕ

(ε)
i (ρ) +

∑
l 6=0,j

p
(ε)
il (ρ)ω

(ε)
ljs(ρ), i, j, s 6= 0. (6.21)

Differentiating relation (6.21) gives

ω
(ε)
ijs(ρ, r) = θ

(ε)
ijs(ρ, r) +

∑
l 6=0,j

p
(ε)
il (ρ)ω

(ε)
ljs(ρ, r), r = 1, 2, . . . , i, j, s 6= 0, (6.22)

where

θ
(ε)
ijs(ρ, r) = δ(i, s)ϕ

(ε)
i (ρ, r) +

r∑
m=1

(
r

m

) ∑
l 6=0,j

p
(ε)
il (ρ,m)ω

(ε)
ljs(ρ, r −m). (6.23)

In order to rewrite these systems in matrix form, we define the following
column vectors,

ω
(ε)
js (ρ, r) =

[
ω

(ε)
1js(ρ, r) · · · ω

(ε)
Njs(ρ, r)

]T
, j, s 6= 0, (6.24)

θ
(ε)
js (ρ, r) =

[
θ

(ε)
1js(ρ, r) · · · θ

(ε)
Njs(ρ, r)

]T
, j, s 6= 0, (6.25)

ϕ̂(ε)
s (ρ, r) =

[
δ(1, s)ϕ

(ε)
1 (ρ, r) · · · δ(N, s)ϕ

(ε)
N (ρ, r)

]T
, s 6= 0. (6.26)

Using (6.7) and (6.21)–(6.26), we can for each j, s 6= 0 write the following
recursive systems of linear equations,

ω
(ε)
js (ρ) = ϕ̂(ε)

s (ρ) + jP
(ε)(ρ)ω

(ε)
js (ρ), (6.27)
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and, for r = 1, 2, . . . ,

ω
(ε)
js (ρ, r) = θ

(ε)
js (ρ, r) + jP

(ε)(ρ)ω
(ε)
js (ρ, r), (6.28)

where

θ
(ε)
js (ρ, r) = ϕ̂(ε)

s (ρ, r) +
r∑

m=1

(
r

m

)
jP

(ε)(ρ,m)ω
(ε)
js (ρ, r −m). (6.29)

In order to construct asymptotic expansions for the vectors ω
(ε)
js (ρ, r), we

can use the same technique as in Lemma 6.2. However, a preliminary step
needed in this case is to construct asymptotic expansions for the functions
ϕ

(ε)
i (ρ, r). In order to do this, we first derive an expression for these functions.

Let us define

ψ
(ε)
i (ρ, r) =

∞∑
n=0

nreρnPi{κ(ε)
1 = n}, ρ ∈ R, r = 0, 1, . . . , i ∈ X. (6.30)

Note that

ψ
(ε)
i (ρ, r) =

∑
j∈X

p
(ε)
ij (ρ, r), ρ ∈ R, r = 0, 1, . . . , i ∈ X. (6.31)

Thus, the functions ψ
(ε)
i (ρ, 0) are arbitrarily many times differentiable with

respect to ρ and the corresponding derivatives are given by ψ
(ε)
i (ρ, r).

The function ϕ
(ε)
i (ρ), defined by equation (3.9), can be written as

ϕ
(ε)
i (ρ) =

{
ψ

(ε)
i (0, 1) ρ = 0,

(ψ
(ε)
i (ρ, 0)− 1)/(eρ − 1) ρ 6= 0.

(6.32)

From (6.30) and (6.32) it follows that

ψ
(ε)
i (ρ, 0) = (eρ − 1)ϕ

(ε)
i (ρ) + 1, ρ ∈ R. (6.33)

Differentiating both sides of (6.33) gives

ψ
(ε)
i (ρ, r) = (eρ − 1)ϕ

(ε)
i (ρ, r) + eρ

r−1∑
m=0

(
r

m

)
ϕ

(ε)
i (ρ,m), r = 1, 2, . . . (6.34)

If ρ = 0, equation (6.34) implies

ψ
(ε)
i (0, r) = rϕ

(ε)
i (0, r − 1) +

r−2∑
m=0

(
r

m

)
ϕ

(ε)
i (0,m), r = 2, 3, . . .
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From this it follows that, for r = 1, 2, . . . ,

ϕ
(ε)
i (0, r) =

1

r + 1

(
ψ

(ε)
i (0, r + 1)−

r−1∑
m=0

(
r + 1

m

)
ϕ

(ε)
i (0,m)

)
. (6.35)

If ρ 6= 0, equation (6.34) gives, for r = 1, 2, . . . ,

ϕ
(ε)
i (ρ, r) =

1

eρ − 1

(
ψ

(ε)
i (ρ, r)− eρ

r−1∑
m=0

(
r

m

)
ϕ

(ε)
i (ρ,m)

)
. (6.36)

Using relations (6.31), (6.35), and (6.36), we can recursively calculate

the derivatives of ϕ
(ε)
i (ρ). Furthermore, it follows directly from these formu-

las that we can construct asymptotic expansions for these derivatives. The
formulas are given in the following lemma.

Lemma 6.3. Assume that conditions A–C hold.

(i) If, in addition, condition P∗k holds, then for each i 6= 0 and r = 0, . . . , k
we have the following asymptotic expansion,

ψ
(ε)
i (ρ, r) = ψi[ρ, r, 0] + ψi[ρ, r, 1]ε+ · · ·+ ψi[ρ, r, k − r]εk−r + o(εk−r),

where
ψi[ρ, r, n] =

∑
j∈X

pij[ρ, r, n], n = 0, . . . , k − r.

(ii) If, in addition, ρ = 0 and condition P∗k+1 holds, then for each i 6= 0
and r = 0, . . . , k we have the following asymptotic expansion,

ϕ
(ε)
i (0, r) = ϕi[0, r, 0] + ϕi[0, r, 1]ε+ · · ·+ ϕi[0, r, k − r]εk−r + o(εk−r),

where, for n = 0, . . . , k − r,

ϕi[0, r, n] =
1

r + 1

(
ψi[0, r + 1, n]−

r−1∑
m=0

(
r + 1

m

)
ϕi[0,m, n]

)
.

(iii) If, in addition, ρ 6= 0 and condition P∗k holds, then for each i 6= 0 and
r = 0, . . . , k we have the following asymptotic expansion,

ϕ
(ε)
i (ρ, r) = ϕi[ρ, r, 0] + ϕi[ρ, r, 1]ε+ · · ·+ ϕi[ρ, r, k − r]εk−r + o(εk−r),

where, for n = 0, . . . , k − r,

ϕi[ρ, r, n] =
1

eρ − 1

(
ψi[ρ, r, n]− eρ

r−1∑
m=0

(
r

m

)
ϕi[ρ,m, n]

)
.
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Using (6.26) and Lemma 6.3 we can now construct the following asymp-
totic expansions, for r = 0, . . . , k, and s 6= 0,

ϕ̂(ε)
s (ρ, r) = ϕ̂s[ρ, r, 0]+ϕ̂s[ρ, r, 1]ε+ · · ·+ϕ̂s[ρ, r, k−r]εk−r+o(εk−r). (6.37)

The next lemma gives asymptotic expansions for ω
(ε)
js (ρ, r).

Lemma 6.4. Assume that conditions A–C hold. If ρ = 0, we also assume
that condition P∗k+1 holds. If ρ 6= 0, we also assume that condition P∗k holds.
Then:

(i) We have the following asymptotic expansion,

ω
(ε)
js (ρ) = ωjs[ρ, 0, 0] + ωjs[ρ, 0, 1]ε+ · · ·+ ωjs[ρ, 0, k]εk + o(εk),

where

ωjs[ρ, 0, n] =

{
ω

(0)
js (ρ) n = 0,∑n
q=0 jU[ρ, q]ϕ̂s[ρ, 0, n− q] n = 1, . . . , k.

(ii) For r = 1, . . . , k, we have the following asymptotic expansions,

ω
(ε)
js (ρ, r) = ωjs[ρ, r, 0]+ωjs[ρ, r, 1]ε+ · · ·+ωjs[ρ, r, k−r]εk−r+o(εk−r),

where

ωjs[ρ, r, n] =

{
ω

(0)
js (ρ, r) n = 0,∑n
q=0 jU[ρ, q]θjs[ρ, r, n− q] n = 1, . . . , k − r,

and, for t = 0, . . . , k − r,

θjs[ρ, r, t] = ϕ̂s[ρ, r, t] +
r∑

m=1

(
r

m

)
t∑

q=0

jP[ρ,m, q]ωjs[ρ, r −m, t− q].

Proof. Under conditions A–C, we have, for sufficiently small ε, that the
recursive systems of linear equations given by relations (6.27), (6.28), and
(6.29), all have finite components. Moreover, the inverse matrix jU

(ε)(ρ) =
(I− jP

(ε)(ρ))−1 exists, so these systems have unique solutions. Since we, by
Lemma 6.3, have the expansions given in equation (6.37), the proof is from
this point analogous to the proof of Lemma 6.2.
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7 Proof of the Main Result

In this section we prove Theorem 2.1.
Throughout this section, it is assumed that conditions A–D and Pk+1

hold.
Let us first note that it follows from Lemmas 6.1–6.4 that we for r =

0, . . . , k and i, j 6= 0 have the following asymptotic expansions,

ω
(ε)
iij (ρ(0), r) = aij[r, 0] + aij[r, 1]ε+ · · ·+ aij[r, k − r]εk−r + o(εk−r) (7.1)

and

φ
(ε)
ii (ρ(0), r) = bi[r, 0] + bi[r, 1]ε+ · · ·+ bi[r, k − r]εk−r + o(εk−r), (7.2)

where the coefficients in these expansions can be calculated from the formulas
given in these lemmas. Furthermore, from Lemma 6.4 we see that in the case
where ρ(0) > 0, condition Pk+1 can be replaced by condition Pk.

Let us also recall from Section 5 that the quasi-stationary distribution,
for sufficiently small ε, has the following representation,

π
(ε)
j =

ω
(ε)
iij (ρ(ε))

ω
(ε)
ii1 (ρ(ε)) + · · ·+ ω

(ε)
iiN(ρ(ε))

, j = 1, . . . , N. (7.3)

The construction of the asymptotic expansion for the quasi-stationary
distribution will be realized in three steps. First we use the coefficients in the
expansions given by (7.2) to build an asymptotic expansion for ρ(ε), the root
of the characteristic equation. Then, the coefficients in this expansion and the
coefficients in the expansions given by (7.1) are used to construct asymptotic

expansions for ω
(ε)
iij (ρ(ε)). Finally, relation (7.3) is used to complete the proof.

We formulate these steps in the following three lemmas. Let us here
remark that the proof of Lemma 7.1 is given in Silvestrov and Petersson
(2013) in the context of general discrete time renewal equations and the
proofs of Lemmas 7.2 and 7.3 are given in Petersson (2014b) in the context
of quasi-stationary distributions for discrete time regenerative processes. In
order to make the paper more self-contained, we also give the proofs here, in
slightly reduced forms.

Lemma 7.1. The root of the characteristic equation has the following asymp-
totic expansion,

ρ(ε) = ρ(0) + c1ε+ · · ·+ ckε
k + o(εk),
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where c1 = −bi[0, 1]/bi[1, 0] and, for n = 2, . . . , k,

cn = − 1

bi[1, 0]

bi[0, n] +
n−1∑
q=1

bi[1, n− q]cq

+
n∑

m=2

n∑
q=m

bi[m,n− q] ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

cnp
p

np!

,
where Dm,q is the set of all non-negative integer solutions of the system

n1 + · · ·+ nq−1 = m, n1 + 2n2 + · · ·+ (q − 1)nq−1 = q.

Proof. Let ∆(ε) = ρ(ε) − ρ(0). It follows from the Taylor expansion of the
exponential function that, for n = 0, 1, . . . ,

eρ
(ε)n = eρ

(0)n

(
k∑
r=0

(∆(ε))rnr

r!
+

(∆(ε))k+1nk+1

(k + 1)!
e|∆

(ε)|nζ
(ε)
k+1(n)

)
, (7.4)

where 0 ≤ ζ
(ε)
k+1(n) ≤ 1.

If we multiply both sides of (7.4) by g
(ε)
ii (n), sum over all n, and use that

ρ(ε) is the root of the characteristic equation, we get

1 =
k∑
r=0

(∆(ε))r

r!
φ

(ε)
ii (ρ(0), r) + (∆(ε))k+1M

(ε)
k+1, (7.5)

where

M
(ε)
k+1 =

1

(k + 1)!

∞∑
n=0

nk+1e(ρ(0)+|∆(ε)|)nζ
(ε)
k+1(n)g

(ε)
ii (n). (7.6)

It follows from Lemma 4.2 that |∆(ε)| → 0 as ε→ 0, so there exist β > 0
and ε1(β) > 0 such that

ρ(0) + |∆(ε)| ≤ β < δ, ε ≤ ε1(β). (7.7)

From Lemma 4.2 it also follows that there exists ε2(β) > 0 such that

φ
(ε)
ii (β, r) <∞, r = 0, 1, . . . , ε ≤ ε2(β). (7.8)

Let ε0 = ε0(β) = min{ε1(β), ε2(β)}. Then, relations (7.6), (7.7), and
(7.8) imply that

M
(ε)
k+1 ≤

1

(k + 1)!
φ

(ε)
ii (β, k + 1) <∞, ε ≤ ε0. (7.9)
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It follows from (7.9) that we can rewrite (7.5) as

1 =
k∑
r=0

(∆(ε))r

r!
φ

(ε)
ii (ρ(0), r) + (∆(ε))k+1Mk+1ζ

(ε)
k+1, (7.10)

where Mk+1 = supε≤ε0 M
(ε)
k+1 <∞ and 0 ≤ ζ

(ε)
k+1 ≤ 1.

From relation (7.10) we can successively construct the asymptotic expan-
sion for the root of the characteristic equation.

Let us first assume that k = 1. In this case (7.10) implies that

1 = φ
(ε)
ii (ρ(0), 0) + ∆(ε)φ

(ε)
ii (ρ(0), 1) + (∆(ε))2O(1). (7.11)

Using (7.2), (7.11), and that ∆(ε) → 0 as ε→ 0, it follows that

−bi[0, 1]ε = ∆(ε)(bi[1, 0] + o(1)) + o(ε). (7.12)

Dividing both sides of equation (7.12) by ε and letting ε tend to zero we
can conclude that ∆(ε)/ε → −bi[0, 1]/bi[1, 0] as ε → 0. From this it follows
that we have the representation

∆(ε) = c1ε+ ∆
(ε)
1 , (7.13)

where c1 = −bi[0, 1]/bi[1, 0] and ∆
(ε)
1 /ε→ 0 as ε→ 0.

This proves Lemma 7.1 for the case k = 1.
Let us now assume that k = 2. In this case relation (7.10) implies that

1 = φ
(ε)
ii (ρ(0), 0) + ∆(ε)φ

(ε)
ii (ρ(0), 1) +

(∆(ε))2

2
φ

(ε)
ii (ρ(0), 2) + (∆(ε))3O(1). (7.14)

Using (7.2) and (7.13) in relation (7.14) and rearranging gives

−
(
bi[0, 2] + bi[1, 1]c1 +

bi[2, 0]c2
1

2

)
ε2 = ∆

(ε)
1 (bi[1, 0] + o(1)) + o(ε2). (7.15)

Dividing both sides of equation (7.15) by ε2 and letting ε tend to zero we

can conclude that ∆
(ε)
1 /ε2 → c2 as ε→ 0, where

c2 = − 1

bi[1, 0]

(
bi[0, 2] + bi[1, 1]c1 +

bi[2, 0]c2
1

2

)
.

From this and (7.13) it follows that we have the representation

∆(ε) = c1ε+ c2ε
2 + ∆

(ε)
2 ,
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where ∆
(ε)
2 /ε2 → 0 as ε→ 0.

This proves Lemma 7.1 for the case k = 2.
Continuing in this way we can prove the lemma for any positive integer

k. However, once it is known that the expansion exists, the coefficients can
be obtained in a simpler way. From (7.2) and (7.10) we get the following
formal equation,

− (bi[0, 1]ε+ bi[0, 2]ε2 + · · · )
= (c1ε+ c2ε

2 + · · · )(bi[1, 0] + bi[1, 1]ε+ · · · )
+ (1/2!)(c1ε+ c2ε

2 + · · · )2(bi[2, 0] + bi[2, 1]ε+ · · · ) + · · ·
(7.16)

By expanding the right hand side of (7.16) and then equating coefficients of
equal powers of ε in the left and right hand sides, we obtain the formulas
given in Lemma 7.1.

Lemma 7.2. For any i, j 6= 0, we have the following asymptotic expansion,

ω
(ε)
iij (ρ(ε)) = ω

(0)
iij (ρ(0)) + dij[1]ε+ · · ·+ dij[k]εk + o(εk),

where dij[1] = aij[0, 1] + aij[1, 0]c1, and, for n = 2, . . . , k,

dij[n] = aij[0, n] +
n∑
q=1

aij[1, n− q]cq

+
n∑

m=2

n∑
q=m

aij[m,n− q] ·
∑

n1,...,nq−1∈Dm,q

q−1∏
p=1

cnp
p

np!
,

where Dm,q is the set of all non-negative integer solutions of the system

n1 + · · ·+ nq−1 = m, n1 + 2n2 + · · ·+ (q − 1)nq−1 = q.

Proof. Let us again use relation (7.4) given in the proof of Lemma 7.1. Mul-

tiplying both sides of (7.4) by h
(ε)
ij (n) and summing over all n we get

ω
(ε)
iij (ρ(ε)) =

k∑
r=0

(∆(ε))r

r!
ω

(ε)
iij (ρ(0), r) + (∆(ε))k+1M̃

(ε)
k+1, (7.17)

where

M̃
(ε)
k+1 =

1

(k + 1)!

∞∑
n=0

nk+1e(ρ(0)+|∆(ε)|)nζ
(ε)
k+1(n)h

(ε)
ij (n).

Using similar arguments as in the proof of Lemma 7.1 we can rewrite
(7.17) as

ω
(ε)
iij (ρ(ε)) =

k∑
r=0

(∆(ε))r

r!
ω

(ε)
iij (ρ(0), r) + (∆(ε))k+1M̃k+1ζ

(ε)
k+1, (7.18)
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where M̃k+1 = supε≤ε0 M̃
(ε)
k+1 <∞, for some ε0 > 0, and 0 ≤ ζ

(ε)
k+1 ≤ 1.

From Lemma 7.1 we have the following asymptotic expansion,

∆(ε) = c1ε+ · · ·+ ckε
k + o(εk). (7.19)

Substituting the expansions (7.1) and (7.19) into relation (7.18) yields

ω
(ε)
iij (ρ(ε)) = ω

(0)
iij (ρ(0)) + aij[0, 1]ε+ · · ·+ aij[0, k]εk + o(εk)

+ (c1ε+ · · ·+ ckε
k + o(εk))

× (aij[1, 0] + aij[1, 1]ε+ · · ·+ aij[1, k − 1]εk−1 + o(εk−1))

+ · · ·+
+ (1/k!)(c1ε+ · · ·+ ckε

k + o(εk))k(aij[k, 0] + o(1)).

(7.20)

By expanding the right hand side of (7.20) and grouping coefficients of equal
powers of ε we get the expansions and formulas given in Lemma 7.2.

Lemma 7.3. For any j 6= 0, we have the following asymptotic expansion,

π
(ε)
j = π

(0)
j + πj[1]ε+ · · ·+ πj[k]εk + o(εk). (7.21)

The coefficients πj[n], n = 1, . . . , k, j 6= 0, are for any i 6= 0 given by the
following recursive formulas,

πj[n] =
1

ei[0]

dij[n]−
n−1∑
q=0

ei[n− q]πj[q]

 , n = 1, . . . , k,

where πj[0] = π
(0)
j , dij[0] = ω

(0)
iij (ρ(0)), and ei[n] =

∑
j 6=0 dij[n], n = 0, . . . , k.

Proof. It follows from formula (7.3) and Lemma 7.2 that we for all i, j 6= 0
have

π
(ε)
j =

dij[0] + dij[1]ε+ · · ·+ dij[k]εk + o(εk)

ei[0] + ei[1]ε+ · · ·+ ei[k]εk + o(εk)
. (7.22)

Since ei[0] > 0, it follows from (7.22) that the expansion (7.21) exists.
From this and (7.22) we get the following equation,

(ei[0] + ei[1]ε+ · · ·+ ei[k]εk + o(εk))

× (πj[0] + πj[1]ε+ · · ·+ πj[k]εk + o(εk))

= dij[0] + dij[1]ε+ · · ·+ dij[k]εk + o(εk).

(7.23)

By expanding the left hand side of (7.23) and then equating coefficients of
equal powers of ε in the left and right hand sides, we obtain the coefficients
given in Lemma 7.3.
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8 Perturbed Markov Chains

In this section it is shown how the results of the present paper can be ap-
plied in the special case of perturbed discrete time Markov chains. As an
illustration, we present a simple numerical example.

For every ε ≥ 0, let η(ε)
n , n = 0, 1, . . . , be a homogeneous discrete time

Markov chain with state space X = {0, 1, . . . , N}, an initial distribution

p
(ε)
i = P{η(ε)

0 = i}, i ∈ X, and transition probabilities

p
(ε)
ij = P{η(ε)

n+1 = j | η(ε)
n = i}, i, j ∈ X.

This model is a particular case of the semi-Markov process described in
Section 2 with transition probabilities given by

Q
(ε)
ij (n) = p

(ε)
ij χ(n = 1), n = 1, 2, . . . , i, j ∈ X.

In this case, mixed power-exponential moment functionals for transition
probabilities take the following form,

p
(ε)
ij (ρ, r) =

∞∑
n=0

nreρnQ
(ε)
ij (n) = eρp

(ε)
ij , ρ ∈ R, r = 0, 1, . . . , i, j ∈ X. (8.1)

Conditions A–D and Pk imposed in Section 2 now hold if the following
conditions are satisfied:

A′: g
(0)
ij > 0, i, j 6= 0.

B′: g
(0)
ii (n) is non-periodic for some i 6= 0.

P′k: p
(ε)
ij = p

(0)
ij + pij[1]ε+ · · ·+ pij[k]εk + o(εk), i, j 6= 0, where |pij[n]| <∞,

n = 1, . . . , k, i, j 6= 0.

Let us here remark that in order to construct an asymptotic expansion of
order k for the quasi-stationary distribution of a Markov chain, it is sufficient
to assume that the perturbation condition holds for the parameter k, and not
for k + 1 as needed for semi-Markov processes. The stronger perturbation
condition with parameter k + 1 is needed in order to construct asymptotic
expansions for the functions ϕ

(ε)
i (ρ, r) defined in Section 6. However, for

Markov chains these functions take the form ϕ
(ε)
i (ρ, r) = χ(r = 0) which

make the asymptotic expansions trivial.
It follows from (8.1) and P′k that the coefficients in the perturbation

condition P∗k to be used in Lemmas 6.1, 6.2, and 6.4 are given by

pij[ρ, r, n] = eρpij[n], r = 0, . . . , k, n = 0, . . . , k − r, i, j 6= 0.
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Let us illustrate the remarks made above by means of a simple numerical
example where we compute the second order asymptotic expansion for the
quasi-stationary distribution of a Markov chain with four states. We consider
the more simple case where transitions to state 0 is not possible for the
limiting Markov chain. In this case, exact computations can be made and
we can focus on the algorithm itself and need not need to consider possible
numerical issues.

We consider a perturbed Markov chain η(ε)
n , n = 0, 1, . . . , on the state

space X = {0, 1, 2, 3} with matrix of transition probabilities given by

‖p(ε)
ij ‖ =


1 0 0 0

1− e−ε 0 e−ε 0
1− e−ε 0 0 e−ε

1− e−2ε 1
2
e−2ε 1

2
e−2ε 0

 , ε ≥ 0. (8.2)

First, the root of the characteristic equation for the limiting Markov chain
needs to be found. Since φ

(0)
ii (0) = Pi{ν(0)

0 > ν
(0)
i } = 1, we have ρ(0) = 0. In

the case where transitions to state 0 is possible also for the limiting Markov
chain, the root ρ(0) needs to be computed numerically. Then, the system of
linear equations (3.6) can be used to calculate φ

(0)
ii (ρ).

Next step is to determine the coefficients in the expansions given in equa-
tions (7.1) and (7.2) for the case where k = 2 and i is some fixed state which
we can choose arbitrarily. Let us choose i = 1. In order to compute these
coefficients we apply the results of Section 6 with ρ = 0 and j = 1.

It follows from (8.1) and (8.2) that the vectors and matrices defined by
equations (6.5) and (6.7) take the following forms, respectively,

p
(ε)
1 (0, r) =

 0
0

1
2
e−2ε

 , 1P
(ε)(0, r) =

0 e−ε 0
0 0 e−ε

0 1
2
e−2ε 0

 , r = 0, 1, 2.

Thus, we have the following asymptotic expansions,

p
(ε)
1 (0, r) = p1[0, r, 0] + p1[0, r, 1]ε+ p1[0, r, 2]ε2 + o(ε2), r = 0, 1, 2,

where

p1[0, r, 0] =

 0
0

1/2

 , p1[0, r, 1] =

 0
0
−1

 , p1[0, r, 2] =

0
0
1

 , (8.3)

and

1P
(ε)(0, r) = 1P[0, r, 0] + 1P[0, r, 1]ε+ 1P[0, r, 2]ε2 + o(ε2), r = 0, 1, 2,
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where

1P[0, r, 0] =

0 1 0
0 0 1
0 1/2 0

 , 1P[0, r, 1] =

0 −1 0
0 0 −1
0 −1 0

 ,

1P[0, r, 2] =

0 1/2 0
0 0 1/2
0 1 0

 .
(8.4)

It follows from Lemma 6.1 that the matrix 1U
(ε)(0) = (I − 1P

(ε)(0))−1

has the asymptotic expansion

1U
(ε)(0) = 1U[0, 0] + 1U[0, 1]ε+ 1U[0, 2]ε2 + o(ε2),

where

1U[0, 0] = (I− 1P
(0)(0))−1,

1U[0, 1] = 1U[0, 0]1P[0, 0, 1]1U[0, 0],

1U[0, 2] = 1U[0, 0](1P[0, 0, 1]1U[0, 1] + 1P[0, 0, 2]1U[0, 0]).

(8.5)

Using (8.4) and (8.5), the following numerical values are obtained,

1U[0, 0] =

1 2 2
0 2 2
0 1 2

 , 1U[0, 1] =

0 −8 −10
0 −6 −8
0 −5 −6

 ,

1U[0, 2] =

0 34 43
0 27 34
0 43/2 27

 .
(8.6)

From Lemma 6.2 we now get the following asymptotic expansions,

Φ
(ε)
1 (0, 0) = Φ1[0, 0, 0] + Φ1[0, 0, 1]ε+ Φ1[0, 0, 2]ε2 + o(ε2),

Φ
(ε)
1 (0, 1) = Φ1[0, 1, 0] + Φ1[0, 1, 1]ε+ o(ε),

Φ
(ε)
1 (0, 2) = Φ1[0, 2, 0] + o(1),

(8.7)

where the coefficients in these expansions can be calculated from (8.3), (8.4),
(8.6), and the formulas given in Lemma 6.2. This yields

Φ1[0, 0, 0] =

1
1
1

 , Φ1[0, 0, 1] =

−7
−6
−5

 , Φ1[0, 0, 2] =

67/2
27

43/2

 ,

Φ1[0, 1, 0] =

5
4
3

 , Φ1[0, 1, 1] =

−47
−36
−27

 , Φ1[0, 2, 0] =

33
24
17

 .
(8.8)
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From (8.7) and (8.8) it follows that

φ
(ε)
11 (0, 0) = b1[0, 0] + b1[0, 1]ε+ b1[0, 2]ε2 + o(ε2),

φ
(ε)
11 (0, 1) = b1[1, 0] + b1[1, 1]ε+ o(ε),

φ
(ε)
11 (0, 2) = b1[2, 0] + o(1),

where
b1[0, 0] = 1, b1[0, 1] = −7, b1[0, 2] = 67/2,
b1[1, 0] = 5, b1[1, 1] = −47, b1[2, 0] = 33.

(8.9)

Lemma 6.4 gives the following asymptotic expansions, for s = 1, 2, 3,

ω
(ε)
1s (0, 0) = ω1s[0, 0, 0] + ω1s[0, 0, 1]ε+ ω1s[0, 0, 2]ε2 + o(ε2),

ω
(ε)
1s (0, 1) = ω1s[0, 1, 0] + ω1s[0, 1, 1]ε+ o(ε),

ω
(ε)
1s (0, 2) = ω1s[0, 2, 0] + o(1).

(8.10)

where the coefficients can be calculated from (8.3), (8.4), (8.6), and the
formulas given in Lemma 6.4. Note here that the coefficients in the expansion
(6.37) needed in these formulas are given by

ϕ̂s[0, 0, 0] =

δ(1, s)δ(2, s)
δ(3, s)

 , ϕ̂s[0, r, n] =

0
0
0

 , (r, n) 6= (0, 0).

From (8.10) we can extract the following expansions for j = 1, 2, 3,

ω
(ε)
11j(0, 0) = a1j[0, 0] + a1j[0, 1]ε+ a1j[0, 2]ε2 + o(ε2),

ω
(ε)
11j(0, 1) = a1j[1, 0] + a1j[1, 1]ε+ o(ε),

ω
(ε)
11j(0, 2) = a1j[2, 0] + o(1).

Numerical values for the coefficients in our example are given by

a11[0, 0] = 1, a12[0, 0] = 2, a13[0, 0] = 2,
a11[0, 1] = 0, a12[0, 1] = −8, a13[0, 1] = −10,
a11[0, 2] = 0, a12[0, 2] = 34, a13[0, 2] = 43,
a11[1, 0] = 0, a12[1, 0] = 6, a13[1, 0] = 8,
a11[1, 1] = 0, a12[1, 1] = −48, a13[1, 1] = −64,
a11[2, 0] = 0, a12[2, 0] = 34, a13[2, 0] = 48.

(8.11)

The asymptotic expansion for the quasi-stationary distribution can now
be computed from the coefficients in equations (8.9) and (8.11) by applying
the lemmas in Section 7.
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From Lemma 7.1 we get that the asymptotic expansion for the root of
the characteristic equation is given by

ρ(ε) = c1ε+ c2ε
2 + o(ε2),

where

c1 = −b1[0, 1]

b1[1, 0]
=

7

5
, c2 = −b1[0, 2] + b1[1, 1]c1 + b1[2, 0]c2

1/2

b1[1, 0]
= − 1

125
. (8.12)

Then, Lemma 7.2 gives us the following asymptotic expansions,

ω
(ε)
11j(ρ

(ε)) = d1j[0] + d1j[1]ε+ d1j[2]ε2 + o(ε2), j = 1, 2, 3,

where

d1j[0] = a1j[0, 0],

d1j[1] = a1j[0, 1] + a1j[1, 0]c1,

d1j[2] = a1j[0, 2] + a1j[1, 1]c1 + a1j[1, 0]c2 + a1j[2, 0]c2
1/2.

(8.13)

From (8.11), (8.12), and (8.13), we calculate

d11[0] = 1, d12[0] = 2, d13[0] = 2,
d11[1] = 0, d12[1] = 2/5, d13[1] = 6/5,
d11[2] = 0, d12[2] = 9/125, d13[2] = 47/125.

(8.14)

Finally, let us use Lemma 7.3. First, using (8.14), we get

e1[0] = d11[0] + d12[0] + d13[0] = 5,

e1[1] = d11[1] + d12[1] + d13[1] = 8/5,

e1[2] = d11[2] + d12[2] + d13[2] = 56/125.

(8.15)

Then, we can construct the asymptotic expansion for the quasi-stationary
distribution,

π
(ε)
j = πj[0] + πj[1]ε+ πj[2]ε2 + o(ε2), j = 1, 2, 3,

where

πj[0] = d1j[0]/e1[0],

πj[1] = (d1j[1]− e1[1]πj[0])/e1[0],

πj[2] = (d1j[2]− e1[2]πj[0]− e1[1]πj[1])/e1[0].

(8.16)
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Using (8.14), (8.15), and (8.16), the following numerical values are ob-
tained,

π1[0] = 1/5, π2[0] = 2/5, π3[0] = 2/5,
π1[1] = −8/125, π2[1] = −6/125, π3[1] = 14/125,
π1[2] = 8/3125, π2[2] = −19/3125, π3[2] = 11/3125.

Note here that (π1[0], π2[0], π3[0]) is the stationary distribution for the limit-
ing Markov chain. It is also worth noticing that π1[n] + π2[n] + π3[n] = 0 for
n = 1, 2, as expected.
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