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1. Introduction

In this paper, we study recurrent relations for power moments of hitting
times and accumulated rewards of hitting type for semi-Markov processes and
present effective algorithms for computing these moments. These algorithms
are based on procedures of sequential of phase space reduction for semi-
Markov processes.

Hitting times are often interpreted as transition times for different stochas-
tic systems describing by Markov-type processes, for example, occupation
times or waiting times in queuing systems, life times in reliability models,
extinction times in population dynamic models, etc. We refer to works by
Korolyuk, Brodi and Turbin (1974), Kovalenko (1975), Korolyuk and Turbin
(1976, 1978), Courtois (1977), Silvestrov (1980b), Anisimov, Zakusilo and
Donchenko (1987), Ciardo, Raymonf, Sericola and Trivedi (1990), Kovalenko,
Kuznetsov and Pegg (1997), Korolyuk, V.S. and Korolyuk, V.V. (1999),
Limnios and Oprişan (2001, 2003), Barbu, Boussemart and Limnios (2004),
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Yin and Zhang (2005, 2013), Janssen and Manca (2006, 2007), Anisimov
(2008), Gyllenberg and Silvestrov (2008), D’Amico, Petroni and Prattico
(2013), and Papadopoulou (2013).

In financial and insurance applications, the hitting times for semi-Markov
processes can be also interpreted as rewards accumulated up to some hitting
terminating time for a financial or insurance contract. We refer here to
works by D’Amico, Janssen and Manca (2005), Janssen and Manca (2006,
2007), Stenberg, Manca and Silvestrov (2006, 2007), Biffi, D’Amigo, Di Biase,
Janssen, Manca and Silvestrov (2008), Silvestrov, Silvestrova and Manca
(2008), D’Amico and Petroni (2012), Papadopoulou, Tsaklidis, McClean and
Garg (2012), D’Amico, Guillen and Manca (2013), and D’Amico, Petroni and
Prattico (2015).

Moments of hitting times also play an important role in limit and ergodic
theorems for Markov type processes. As a rule, the first and second order
moments are used in conditions of theorems, higher order moments in rates
of convergence and asymptotical expansions. We refer here to works by
Silvestrov (1974, 1980b, 1994, 1996), Korolyuk and Turbin (1976, 1978),
Korolyuk, V. S. and Korolyuk, V. V. (1999), Koroliuk and Limnios (2005),
Anisimov (2008), Gyllenberg and Silvestrov (2008), Hunter (2005), Yin and
Zhang (2005, 2013), Silvestrov and Drozdenko (2006) and Silvestrov, D. and
Silvestrov, S. (2015).

Recurrent relations, which link power moments of hitting times for Markov
chains have been first obtained for Markov chains by Chung (1954, 1960).
Further development have been achieved by Lamperty (1963), Kemeny and
Snell (1961a, 1961b), and Pitman (1974a, 1974b, 1977), Silvestrov (1980a,
1980b). Similar relations as well as description of these moments as minimal
solutions of some algebraic or integral equations were considered for Markov
chains and semi-Markov processes with discrete and arbitrary phase spaces
by Cogburg (1975), Nummelin (1984), and Silvestrov (1980b, 1983a, 1983b,
1996) and Silvestrov, Manca and Silvestrova (2014). Analogous results for
mixed power exponential moments of first hitting times for semi-Markov pro-
cesses have been obtained in Gyllenberg and Silvestrov (2008).

The paper includes five sections. In Section 2, we introduce Markov
renewal processes, semi-Markov processes and define hitting times and accu-
mulated rewards of hitting type. We also present basic stochastic relations
and recurrent systems of linear equations for power moments of these random
functionals. In Section 3, we describe a procedure of phase space reduction
for semi-Markov processes and formulas for computing transition character-
istics for reduced semi-Markov processes, We also prove invariance of hitting
times and their moments with respect to the above procedure of phase space
reduction. In Section 4, we describe a procedure of sequential phase space
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reduction for semi-Markov process and derive recurrent formulas for comput-
ing power moments of hitting times for semi-Markov processes. In Section
5, we present useful generalizations of the above results to real-valued and
vector accumulated rewards of hitting type, general hitting times with hit-
ting state indicators, place-dependent and time-dependents hitting times and
accumulated rewards of hitting type and give a numerical example for the
corresponding recurrent algorithms for computing power moments of hitting
times and accumulated rewards of hitting type for semi-Markov processes.

2. Semi-Markov processes and hitting times

In this section, we introduce Markov renewal processes and semi-Markov
processes. We define also hitting times and accumulated rewards of hitting
times, and give basic recurrent system of linear equations for their power
moments, which are the main objects of our studies.

2.1. Markov renewal processes and semi-Markov processes. Let
X = {0, . . . ,m} and (Jn, Xn), n = 0, 1, . . . be a Markov renewal process, i.e.,
a homogeneous Markov chain with the phase space X × [0,∞), an initial
distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and transition
probabilities,

Qij(t) = P{J1 = j,X1 ≤ t/J0 = i,X0 = s}, (i, s), (j, t) ∈ X× [0,∞). (1)

In this case, the random sequence ηn is also a homogeneous (embedded)
Markov chain with the phase space X and the transition probabilities,

pij = P{J1 = j/J0 = i} = Qij(∞), i, j ∈ X. (2)

As far as random variableXn is concerned, it can be interpreted as sojourn
time in state Jn, for n = 1, 2, . . ..

We assume that the following communication conditions hold:

A: X is a communicative class of states for the embedded Markov chain Jn.

We also assume that the following condition excluding instant transitions
holds:

B: Qij(0) = 0, i, j ∈ X.

Let us now introduce a semi-Markov process,

J(t) = JN(t), t ≥ 0, (3)
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where N(t) = max(n ≥ 0 : Tn ≤ t) is a number of jumps in the time interval
[0, t], for t ≥ 0, and Tn = X1 + · · ·+Xn, n = 0, 1, . . ., are sequential moments
of jumps, for the semi-Markov process J(t).

This process has the phase space X, the initial distribution p̄ = 〈pi =
P{J(0) = i}, i ∈ X〉 and transition probabilities Qij(t), t ≥ 0, i, j ∈ X.

2.2. Hitting times and accumulated rewards of hitting type. Let
us also introduce moments of sojourn times,

e
(r)
ij = EiX

r
1I(J1 = j) =

∫ ∞
0

trQ
(ε)
ij (dt), r = 0, 1, . . . , i, j ∈ X. (4)

Here and henceforth, notations Pi and Ei are used for conditional proba-
bilities and expectations under condition J(0) = i.

Note that,
e

(0)
ij = pij, i, j ∈ X. (5)

We assume that the following condition holds, for some integer d ≥ 1:

Cd: e
(d)
ij <∞, i, j ∈ X.

The first hitting time to state 0 for the semi-Markov process J(t) can be
defined as,

W0 = inf(t ≥ X1 : J(t) = 0) =
U0∑
n=1

Xn, (6)

where U0 = min(n ≥ 1 : Jn = 0) is the first hitting time to state 0 for the
Markov chain Jn.

The random variable W0 can also be interpreted as a reward accumulated
on trajectories of Markov chain Jn up to its first hitting to state 0.

The main object of our studies are power moments for the first hitting
times,

E
(r)
i0 = EiW

r
0 , r = 1, . . . , d, i ∈ X. (7)

Note that,
E

(0)
i0 = 1, i ∈ X. (8)

As well known, conditions A, B and Cd imply that,

E
(r)
i0 <∞, r = 1, . . . , d, i ∈ X. (9)

In what follows, symbol Y
d
= Z is used to denote that random variables

or vectors Y and Z have the same distribution.
The Markov property of the Markov renewal process (Jn, Xn) implies that

following system of stochastic equalities takes place for hitting times,{
Wi,0

d
= Xi,1I(Ji,1 = 0) +

∑
j 6=0(Xi,1 +Wj,0)I(Ji,1 = j),

i ∈ X,
(10)
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where: (a) Wi,0 is a random variable which has distribution P{Wi,0 ≤ t} =
Pi{W0 ≤ t}, t ≥ 0, for every i ∈ X; (b) (Ji,1, Xi,1) is a random vector, which
takes values in space X × [0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤
t} = Qij(t), j ∈ X, t ≥ 0, for every i ∈ X; (c) the random variables Wi,0 and
the random vector (Ji,1, Xi,1) are independent, for every i ∈ X.

By taking expectations in stochastic relations (10) we get the following

system of linear equations for expectations of hitting times E
(1)
i0 , i ∈ X,{

E
(1)
i0 = e

(1)
i0 +

∑
j∈X,j 6=0 e

(1)
ij +

∑
j∈X,j 6=0 pijE

(1)
j0 ,

i ∈ X.
(11)

In general, taking moments of the order r in stochastic relations (10) we

get the following system of linear equations for moments E
(r)
i0 , i ∈ X, for

r = 1, . . . , d, {
E

(r)
i0 = f

(r)
i0 +

∑
j∈X,j 6=0 pijE

(r)
j0 ,

i ∈ X,
(12)

where

f
(r)
i0 = e

(r)
i0 +

∑
j∈X,j 6=0

r−1∑
l=0

(
r

l

)
e

(r−l)
ij E

(l)
j0 , i ∈ X. (13)

The system of linear equation given in (12) has, for r = 1, . . . , d, the same
matrix of coefficients I − P0, where I = ‖I(i = j)‖ is the unit matrix and
matrix P0 = ‖pijI(j 6= 0)‖.

This is readily seen that matrix Pn
0 = ‖Pi{U0 > n, Jn = j}‖. Condition

A implies that Pi{U0 > n, Jn = j} → 0 as n → ∞, for i, j ∈ X and, thus,
det(I−P0) 6= 0.

Therefore, moments E
(r)
i0 , i ∈ X are the unique solution for the system of

linear equation (12), for every r = 1, . . . , d.
These systems have a recurrent character, since, for every r01, . . . , d, the

free terms f
(r)
i0 = f

(r)
i0 (E

(k)
j0 , j 6= 0, k = 1, . . . , r − 1), i ∈ X of the system (12)

for moments E
(r)
i0 , i ∈ X are functions of moments E

(k)
j0 , j 6= 0, k = 1, . . . , r−1.

Thus, the systems given in (12) should be solved recurrently, for r =
1, . . . , d.

This is useful to note that the above remarks imply that condition A can
be replaced by simpler hitting condition:

A0: Pi{U0 <∞} = 1, i ∈ X.

Let denote matrix [I−P0]−1 = ‖gi0j‖. The elements of this matrix have
the following probabilistic sense, gi0j = Ei

∑U0
n=1 I(Jn−1 = j), i, j ∈ X.
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The recurrent formulas for moments E
(r)
i0 , i ∈ X have the following form,

for r = 1, . . . , d,

E
(r)
i0 =

∑
j∈X

gi0jf
(r)
j0 (E

(k)
l0 , l 6= 0, k = 1, . . . , r − 1), i ∈ X. (14)

This method of computing moments E
(r)
i0 , i ∈ X requires to compute the

inverse matrix [I−P0]−1.
In this paper, we propose an alternative method, which can be consid-

ered as a stochastic analogue of Gauss elimination method for solving of the
recurrent systems of linear equations (12).

3. Semi-Markov processes with reduced phase spaces

In this section, we describe an one-step algorithm for reduction of phase
space for semi-Markov processes. We also give recurrent systems of linear
equations for power moments of hitting times for reduced semi-Markov pro-
cesses.

3.1. Reduced semi-Markov processes. Let us choose some state
k ∈ X and consider the reduced phase space kX = X \ {k}, with the state k
excluded from the phase space X.

Let us define the sequential moments of hitting the reduced space kX by
the embedded Markov chain Jn,

kVn = min(r > kVn−1, Jr ∈ kX), n = 1, 2, . . . , kV0 = 0. (15)

Now, let us define the random sequence,

(kJn, kXn) =

 (J0, 0) for n = 0,

(J
kVn ,

∑
kVn
r= kVn−1+1Xr) for n = 1, 2, . . . .

(16)

This sequence is also a Markov renewal process with phase space X ×
[0,∞), the initial distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈
X〉 and transition probabilities,

kQij(t) = P{ kJ1 = j, kX1 ≤ t/ kJ0 = i, kX0 = s}

= Qij(t) +
∞∑
n=0

Qik(t) ∗Q(∗n)
kk (t) ∗Qkj(t), t ≥ 0, i, j ∈ X. (17)

Here, symbol ∗ is used to denote the convolution of distribution functions
(possibly improper), and Q

(∗n)
kk (t) is the n times convolution of the distribu-

tion function Qkk(t).
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In this case, the Markov chain kJn has the transition probabilities,

kpij = kQij(∞) = P{ kJ1 = j, / kJ0 = i}

= pij +
∞∑
n=0

pikp
n
kkpkj = pij + pik

pkj
1− pkk

, i, j ∈ X. (18)

Note that condition A implies that probabilities pkk ∈ [0, 1), k ∈ X.
The transition distributions for the Markov chain kJn are concentrated

on the reduced phase space kX, i.e., for every i ∈ X,∑
j∈ kX

kpij =
∑
j∈ kX

pij + pik
∑
j∈ kX

pkj
1− pkk

=
∑
j∈ kX

pij + pik = 1. (19)

If the initial distribution p̄ is concentrated on the phase space kX, i.e.,
pk = 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be considered
as a Markov renewal process with the reduced phase kX× [0,∞), the initial
distribution kp̄ = 〈 pi = P{kJ0 = i, kX0 = 0} = P{kJ0 = i}, i ∈ kX〉 and
transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

If the initial distribution p̄ is not concentrated on the phase space kX, i.e.,
pk > 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be interpreted
as a Markov renewal process with so-called transition period.

Let us now introduce the semi-Markov process,

kJ(t) = kJkN(t), t ≥ 0, (20)

where kN(t) = max(n ≥ 0 : kTn ≤ t) is a number of jumps at time interval
[0, t], for t ≥ 0, and kTn = kX1 + · · · + kXn, n = 0, 1, . . . are sequential
moments of jumps, for the semi-Markov process kJ(t).

As follows from the above remarks, the semi-Markov process kJ(t), t ≥
0 has transition probabilities kQij(t), t ≥ 0, i, j ∈ X concentrated on the
reduced phase space kX, which can be interpreted as the actual “reduced”
phase space of this semi-Markov process kJ(t).

If the initial distribution p̄ is concentrated on the phase space kX, then
process kJ(t), t ≥ 0 can be considered as the semi-Markov process with the
reduced phase kX, the initial distribution kp̄ = 〈 kpi = P{kJ1(0) = i}, i ∈ kX〉
and transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

According to the above remarks, we can refer to the process kJ(t) as a
reduced semi-Markov process.

If the initial distribution p̄ is not concentrated on the phase space kX,
then the process kJ(t), t ≥ 0 can be interpreted as a reduced semi-Markov
process with transition period.
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3.2. Transition characteristics for reduced semi-Markov pro-
cesses. Relation (18) implies the following formulas, for probabilities kpkj
and kpij, i, j ∈ kX,{

kpkj =
pkj

1−pkk
,

kpij = pij + pik kpkj = pij + pik
pkj

1−pkk
.

(21)

It is useful to note that the second formula in relation (21) reduces to the
first one, if to assign i = k in this formula

Taking into account that kV1 is Markov time for the Markov renewal pro-
cess (Jn, Xn), we can write down the following system of stochastic equalities,
for every i, j ∈ kX,

kXi,1I( kJi,1 = j)
d
= Xi,1I(Ji,1 = j)

+ (Xi,1 + kXk,1)I(Ji,1 = k)I( kJk,1 = j),

kXk,1I( kJk,1 = j)
d
= Xk,1I(Jk,1 = j)

+ (Xk,1 + kXk,1)I(Jk,1 = k)I( kJk,1 = j),

(22)

where: (a) (Ji,1, Xi,1) is a random vector, which takes values in space X ×
[0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤ t} = Qij(t), j ∈ X, t ≥ 0,
for every i ∈ X; (b) (kJi,1, kXi,1) is a random vector which takes values in the
space kX × [0,∞) and has distribution P{kJi,1 = j, kXi,1 ≤ t} = Pi{kJ1 =
j, kX1 ≤ t} = kQij(t), j ∈ kX, t ≥ 0, for every i ∈ X; (c) (Ji,1, Xi,1) and
(kJk,1, kXk,1) are independent random vectors, for every i ∈ X.

Let us denote,

ke
(r)
ij = Ei kX

r
1I( kJ1 = j) =

∫ ∞
0

tr kQij(dt), r = 0, 1, . . . , i, j ∈ kX. (23)

Note that,

ke
(0)
ij = kpij, i ∈ X, j ∈ kX. (24)

By taking moments of the order r in stochastic relations (22) we get, for
every i, j ∈ kX, the following system of linear equations for the moments

ke
(r)
kj , ke

(r)
ij for r = 1, . . . , d,

ke
(r)
kj = e

(r)
kj +

∑r−1
l=0

(
r
l

)
e

(r−l)
kk ke

(l)
kj + pkk ke

(r)
kj ,

ke
(r)
ij = e

(r)
ij +

∑r−1
l=0

(
r
l

)
e

(r−l)
ik ke

(l)
kj + pik ke

(r)
kj ,

(25)

Relation (25) implies the following recurrent formulas for moments ke
(r)
kj

and ke
(r)
ij , which should be used, for every i, j ∈ kX, recurrently for r =
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1, . . . , d, 

ke
(r)
kj = 1

1−pkk

(
e

(r)
kj +

∑r−1
l=0

(
r
l

)
e

(r−l)
kk ke

(l)
kj

)
,

ke
(r)
ij = e

(r)
ij +

∑r−1
l=0

(
r
l

)
e

(r−l)
ik ke

(l)
kj

+ pik
1−pkk

(
e

(r)
kj +

∑r−1
l=0

(
r
l

)
e

(r−l)
kk ke

(l)
kj

)
,

(26)

It is useful to note that the second formula in relation (26) reduces to the
first one, if to assign i = k in this formula.

3.3. Hitting times for reduced semi-Markov processes. Let us
assume that k 6= 0 and introduce the first hitting time to state 0 for the
reduced semi-Markov process kJ(t),

kW0 = inf(t ≥ kX1 : kJ(t) = 0) =
kU0∑
n=1

kXn, (27)

where kU0 = min(n ≥ 1 : kJn = 0) is the first hitting time to state 0 by the
reduced Markov chain kJn.

Let also introduce moments,

kE
(r)
i0 = Ei kW

r
0 , r = 0, 1, . . . , d, i ∈ X. (28)

Note that,

kE
(0)
i0 = 1, i ∈ X. (29)

The following theorem plays the key role in what follows.

Theorem 1. Conditions A, B and Cd assumed to hold for the semi-
Markov process J(t) also hold for the reduced semi-Markov process kJ(t), for
any state k 6= 0. Moreover, the hitting times W0 and kW0 to the state 0,
respectively, for semi-Markov processes J(t) and kJ(t), coincide, and, thus,
for every r = 1, . . . , d and i ∈ X,

E
(r)
i0 = EiW

r
0 = kE

(r)
i0 = Ei kW

r
0 . (30)

Proof. Holding of conditions A and B for the semi-Markov process kJ(t)
is obvious. Holding of condition Cd for the semi-Markov process kJ(t) follows
from relation (26).

The first hitting times to a state 0 are connected for Markov chains Jn
and kJn by the following relation,

U0 = min(n ≥ 1 : Jn = 0) = min(kVn ≥ 1 : kJn = j) = kVkU0 , (31)

where kU0 = min(n ≥ 1 : kJn = 0).
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The above relations imply that the following relation holds for the first
hitting times to state 0, for the semi-Markov processes J(t) and kJ(t),

W0 =
U0∑
n=1

Xn =
kVkU0∑
n=1

Xn =
kU0∑
n=1

kXn = kW0. (32)

The equality for moments of the first hitting times is an obvious corollary
of relation (32). �

We can write down the recurrent systems of linear equations (12) for

moments kE
(r)
k0 and kE

(r)
i0 , i ∈ kX of the reduced semi-Markov process kJ(t),

which should be solved recurrently, for r = 1, . . . , d, kE
(r)
k0 = kf

(r)
k0 +

∑
j∈ kX,j 6=0 kpkj kE

(r)
j0 ,

kE
(r)
i0 = kf

(r)
i0 +

∑
j∈ kX,j 6=0 kpij kE

(r)
j0 , i ∈ kX,

(33)

where

kf
(r)
i0 = ke

(r)
i0 +

∑
j∈ kX, j 6=0

r−1∑
l=0

(
r

l

)
ke

(r−l)
ij kE

(l)
j0 , i ∈ X. (34)

Theorem 1 makes it possible to compute moments E
(r)
i0 = kE

(r)
i0 , i ∈

X, r = 1, . . . , d in the way alternative to solving recurrent systems of linear
equations (12).

Instead of this, we can, first, compute transition probabilities and mo-
ments of transition times for the reduced semi-Markov process kJ(t) using,
respectively, relations (21) and (26), and, then, by solving the systems of
linear equations (33) sequentially for r = 1, . . . , d.

Note that every system given in (12) hasm equations for momentsE
(r)
i0 , i ∈

X, i 6= 0 plus the explicit formula for computing moment E
(r)
00 as function of

moments E
(r)
i0 , i ∈ X, i 6= 0.

While, every system given in (33) has, in fact, m − 1 equations for mo-

ments kE
(r)
i0 , i ∈ kX, i 6= 0, plus two explicit formulas for computing moment

kE
(r)
00 and kE

(r)
k0 as functions of moments kE

(r)
i0 , i ∈ kX, i 6= 0.

4. Algorithms of sequential phase space reduction

In this section, we present a multi-step algorithm for sequential reduction
of phase space for semi-Markov processes. We also present the recurrent
algorithm for computing power moments of hitting times for semi-Markov
processes, which are based on the above algorithm of sequential reduction of
the phase space.
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4.1. Sequential reduction of phases space for semi-Markov pro-
cesses. In what follows, let i ∈ {1, . . . ,m} and let k̄i,m = 〈ki,1, . . . , ki,m〉 =
〈ki,1, . . ., ki,m−1, i〉 be a permutation of the sequence 〈1, . . . ,m〉 such that
ki,m = i, and let k̄i,n = 〈ki,1, . . . , ki,n〉, n = 1, . . . ,m be the corresponding
chain of growing sequences of states from space X.

Let us assume that p0 +pi = 1. Denote as k̄i,0J(t) = J(t), the initial semi-
Markov process. Let us exclude state ki,1 from the phase space k̄i,0X = X
of semi-Markov process k̄i,0J(t) using the time-space screening procedure de-
scribed in Section 3. Let k̄i,1J(t) be the corresponding reduced semi-Markov
process. The above procedure can be repeated. The state ki,2 can be excluded
from the phase space of the semi-Markov process k̄i,1J(t). Let k̄i,2J(t) be the
corresponding reduced semi-Markov process. By continuing the above pro-
cedure for states ki,3, . . . , ki,n, we construct the reduced semi-Markov process

k̄i,nJ(t).
The process k̄i,nJ(t) has, for every n = 1, . . . ,m, the actual “reduced”

phase space,

k̄i,nX = k̄i,n−1
X \ {ki,n} = X \ {ki,1, ki,2, . . . , ki,n}. (35)

The transition probabilities k̄i,npki,n,j′ , k̄i,npi′j′ , i
′, j′ ∈ k̄nX, and the mo-

ments k̄i,ne
(r)
ki,n,j′

, k̄i,ne
(r)
i′j′ , i

′, j′ ∈ k̄i,nX, r = 1, . . . , d are determined for the
semi-Markov process k̄i,nJ(t) by the transition probabilities and the expec-
tations of sojourn times for the semi-Markov process k̄i,n−1

J(t), respectively,
via relations (21) and (26), which take the following recurrent forms, for
i′, j′ ∈ k̄i,nX, r = 1, . . . , d and n = 1, . . . ,m,


k̄i,npki,n,j′ =

k̄i,n−1
pki,n,j′

1− k̄i,n−1
pki,n,ki,n

,

k̄i,npi′j′ = k̄i,n−1
pi′j′

+ k̄i,n−1
pi′ki,n

k̄i,n−1
pki,n,j′

1− k̄i,n−1
pki,n,ki,n,

,

(36)

and 

k̄i,ne
(r)
ki,nj′

= 1
1− k̄i,n−1

pki,nki,n

(
e

(r)
ki,nj′

+
∑r−l

l=0

(
r
l

)
k̄i,n−1

e
(r−l)
ki,nki,n k̄i,n−1

e
(l)
ki,nj′

)
,

k̄i,ne
(r)
i′j′ = k̄i,n−1

e
(r)
i′j′ +

∑r−1
l=0

(
r
l

)
k̄i,n−1

e
(r−l)
i′ki,n k̄i,n−1

e
(l)
ki,nj′

+
k̄i,n−1

pi′ki,n
1− k̄i,n−1

pki,nki,n

(
k̄i,n−1

e
(r)
ki,nj′

+
∑r−l

l=0

(
r
l

)
k̄i,n−1

e
(r−l)
ki,nki,n k̄i,n−1

e
(l)
ki,nj′

)
.

(37)
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4.2. Recurrent algorithms for computing of moments of hitting
times. Let us k̄i,nW0 be the first hitting time to state 0 for the reduced

semi-Markov process k̄i,nJ(t) and k̄i,nE
(r)
i′0 = Ei′ k̄i,nW

r
0 , i
′ ∈ k̄i,nX, r = 1, . . . , d

be the moments for these random variables.
By Theorem 1, the above moments of hitting time coincide for the semi-

Markov processes k̄i,0J(t), k̄i,1J(t), . . . , k̄i,nJ(t), i.e., for n′ = 0, . . . , n,

k̄j,n′
E

(r)
ki,n′0

= E
(r)
ki,n′0

, k̄j,n′
E

(r)
i′0 = E

(r)
i′0 , i

′ ∈ k̄i,nX, r = 1, . . . , d. (38)

Moreover, the moments of hitting times k̄j,nE
(r)
ki,n0, k̄i,nE

(r)
i′0 , i

′ ∈ k̄i,nX, r =
1, . . . , d resulted by the recurrent algorithm of sequential phase space reduc-
tion described above, are invariant with respect to any permutation k̄′i,n =
〈k′i,1, . . ., k′i,n〉 of sequence k̄i,n = 〈ki,1, . . . , ki,n〉.

Indeed, for every permutation k̄′i,n of sequence k̄i,n, the corresponding
reduced semi-Markov process k̄′i,n

J(t) is constructed as the sequence of states

for the initial semi-Markov process J(t) at sequential moment of its hitting
into the same reduced phase space k̄′i,n

X = X \ {k′i,1, . . . , k′i,n} = k̄i,nX =

X \ {ki,1, . . . , ki,n}. The times between sequential jumps of the reduced semi-
Markov process k̄′i,n

J(t) are the times between sequential hitting of the above

reduced phase space by the initial semi-Markov process J(t).
This implies that the transition probabilities k̄i,npki,nj′ , k̄i,npi′j′ , i

′, j′ ∈

k̄i,nX and the moments k̄i,ne
(r)
ki,nj′

, k̄i,ne
(r)
i′j′ , i

′, j′ ∈ k̄i,nX, r = 1, . . . , d and, in

sequel, moments k̄i,nE
(r)
ki,n0, k̄i,nE

(r)
i′0 , i

′ ∈ k̄i,nX, r = 1, . . . , d are, for every

n = 1, . . . ,m, invariant with respect to any permutation k̄′i,n of the sequence
k̄i,n.

Let us now choose n = m. In this case, the reduced semi-Markov process

k̄i,mJ(t) has the one-state phase space k̄i,mX = {0} and state ki,m = i.
In this case, the reduced semi-Markov process k̄i,mJ(t) return to state 0

after every jump and hitting time to state 0 coincides with the sojourn time
in state k̄i,mJ(0).

Thus, the transition probabilities,

k̄i,mpi0 = k̄i,mp00 = 1. (39)

Also, by Theorem 1, moments,

E
(r)
i0 = k̄i,mE

(r)
i0 = k̄i,me

(r)
i0 , r = 1, . . . , d, (40)

and
E

(r)
00 = k̄i,mE

(r)
00 = k̄i,me

(r)
00 , r = 1, . . . , d. (41)
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The above remarks can be summarized in the following theorem, which
presents the recurrent algorithm for computing of power moments for hitting
times.

Theorem 2. Moments E
(r)
i0 , E

(r)
00 , r = 1, . . . , d are given, for every i =

1, . . . ,m, by formulas (40) – (41), where transition probabilities k̄i,npki,n,j′,

k̄i,npi′j′, i
′, j′ ∈ k̄nX, and moments k̄i,ne

(r)
ki,n,j′

, k̄i,ne
(r)
i′j′ , i

′, j′ ∈ k̄i,nX, r = 1, . . . , d
are determined, for n = 1, . . . ,m, by recurrent formulas (36) – (37) and for-

mula (39). The moments E
(r)
i0 , E

(r)
00 , r = 1, . . . , d are invariant with respect

to any permutation k̄i,m of sequence 〈1, . . . ,m〉 used in the above recurrent
algorithm.

5. Generalizations and examples

In this section, we describe several variants for generalization of the re-
sults concerned recurrent algorithms for computing power moments of hitting
times and accumulated rewards of hitting type.

5.1. Real-valued accumulated rewards of hitting type. First, we
would like to mention that Theorems 1 and 2 can be generalized on the
model, where of the Markov renewal process (Jn, Xn), n = 0, 1, . . . has the
phase space X × R1, an initial distribution p̄ = 〈pi = P{J0 = i,X0 = 0} =
P{J0 = i}, i ∈ X〉 and transition probabilities,

Qij(t) = P{J1 = j,X1 ≤ t/J0 = i,X0 = s}, (i, s), (j, t) ∈ X× R1. (42)

In this case, we the random variable,

W0 =
U0∑
n=1

Xn (43)

can be be interpreted as a reward accumulated on trajectories of Markov
chain Jn up to its first hitting time U0 = min(n ≥ 1, Jn = 0) of this Markov
chain to the state 0.

Condition Cd should be replaced by condition:

Ċd: Ei|X1|d <∞, i ∈ X.

As well known, in this case moments Ė
(d)
i = Ei|W0|d, i ∈ X are finite.

All recurrent relations for moments E
(r)
i = EiW

r
0 , r = 1, . . . , d, i ∈ X,

given in Sections 3 – 4, as well as Theorems 1 and 2 take the same forms as
in the case of nonnegative rewards.
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5.2. Vector accumulated rewards of hitting type. Second, we
would like to show, how the above results can be generalized on the case of
vector accumulated rewards.

For simplicity, let us consider the bivariate case, where the Markov re-
newal process (Jn, X̄n) = (Jn, (X1,n, X2,n)) = 0, 1, . . . has the phase space

X × R2, an initial distribution p̄ = 〈pi = P{J0 = i, ~X0 = (0, 0)} = P{J0 =
i}, i ∈ X〉 and transition probabilities,

Qij(t̄) = P{J1 = j, X̄1 ≤ t̄/J0 = i, X̄0 = s}, (i, s̄), (j, t̄) ∈ X× R2. (44)

Here and henceforth symbol ū ≤ v̄ for vectors ū = (u1, u2), v̄ = (v1, v2) ∈
R2 means that u1 ≤ v1, u2 ≤ v2.

The vector accumulated reward W̄0 = (W1,0,W2,0) is defined as a bivariate
random vector with components,

Wl,0 =
U0∑
n=1

Xl,n, l = 1, 2. (45)

Condition Ċd should be replaced by condition:

Ċ′d: Ei|Xl,1|d <∞, l = 1, 2, i ∈ X.

In this case, moments Ė
(d)
l,i = Ei|Wl,0|d <∞, l = 1, 2, i ∈ X.

Let us introduce mixed moments,

E
(q,r)
i = EiW

q
1,0W

r−q
2,0 , 0 ≤ q ≤ r ≤ d, i ∈ X. (46)

Let us define random variables W0(a) = aW1,0+(1−a)W2,0, 0 ≤ a ≤ 1. By
definition, W0(a) =

∑U0
n=1(aX1,n +(1−a)X2,n) is also an accumulated reward

for the corresponding local rewards Xn(a) = aX1,n+(1−a)X2,n, n = 1, 2, . . ..

Let us denote E
(r)
i (a) = EiW

r(a), 0 ≤ a ≤ 1, r = 1, . . . , d, i ∈ X.
Let us assume that the moments of non-negative accumulated rewards

E
(r)
i (a) are found for r+1 values ap, p = 0, . . . , r, for example, for ap = p

r
, p =

0, . . . , r, for every r = 1, . . . , d, i ∈ X using recurrent algorithms described in
Sections 2 – 4.

Then, the following system of linear equations can be written down for
the correlation moments E

(q,r)
i , q = 0, . . . , r, for every r = 1, . . . , d, i ∈ X,{

E
(r)
i (ap) =

r∑
q=0

(
r

q

)
aqp(1− ap)r−qE

(q,r)
i , q = 0, . . . , r. (47)

It can be shown that the above linear system has the non-zero determi-
nant. Thus, the moments E

(r)
i (ap), ap = p

r
, p = 0, . . . , r uniquely determine

the mixed moments E
(q,r)
i , 0 ≤ q ≤ r, for every r = 1, . . . , d, i ∈ X.
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5.3. General hitting times with hitting state indicators. Third,
the above results can be generalized on the case of more general hitting times,

WD =
UD∑
n=1

Xn, (48)

where UD = min(n ≥ 1, Jn ∈ D), for some nonempty set D ⊂ X.
In this case main object of studies are power moments for the first hitting

times with hitting state indicators,

E
(r)
D,ij = EiW

r
DI(JUD = j), r = 0, 1, . . . , d, j ∈ D, i ∈ X. (49)

Note that,
E

(0)
D,ij = Pi{JUD = j}, i ∈ X, j ∈ D. (50)

As well known, conditions A, B and Cd imply that, for any nonempty
set D ⊂ X,

E
(r)
D,ij <∞, r = 1, . . . , d, i ∈ X, j ∈ D. (51)

Note that the simpler condition A can, in fact, be replaced by a simpler
condition:

AD: Pi{UD <∞} = 1, i ∈ X.

In this case, theorems, analogous of Theorems 1 and 2, take place, and
recurrent systems of linear equations and recurrent formulas analogous to
those given in Sections 2 – 4 can be written down.

For example, let kE
(r)
D,ij, r = 1, . . . , d, i ∈ X, j ∈ D be the moments

E
(r)
D,ij < ∞, r = 1, . . . , d, i ∈ X, j ∈ D computed for the reduced semi-

Markov process kJ(t), for some k /∈ D.
The key recurrent systems of linear equations analogous to (33) take,

for every j ∈ D, nonempty set D ⊂ X and k /∈ D, the following form, for
r = 0, . . . , d, kE

(r)
D,kj = kf

(r)
D,kj +

∑
j′∈ kX\D kpkj′ kE

(r)
D,j′j,

kE
(r)
D,ij = kf

(r)
D,ij +

∑
j′∈ kX\D kpij′ kE

(r)
D,j′j, i ∈ kX,

(52)

where

kf
(r)
D,ij = ke

(r)
ij +

∑
j′∈ kX\D

r−1∑
l=0

(
r

l

)
ke

(r−l)
ij′ kE

(r)
D,j′j, i ∈ X. (53)

The difference with the recurrent systems of linear equations (33) is that,
in this case, the corresponding system of linear equations for hitting proba-
bilities E

(0)
D,ij, i ∈ X should also be solved.
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Also, the corresponding changes caused by replacement of the hitting
state 0 by state j ∈ D and set kX\{0} by set kX\D sould be taken into account
when writing down systems of linear equations (52) instead of systems of
linear equations (33).

5.4. Place-dependent hitting times. Fourth, the above results can
be generalized on so-called place-dependent hitting times,

YG =
UG∑
n=1

Xn, (54)

where UG = min(n ≥ 1 : (Jn−1, Jn) ∈ G), for some nonempty set G ⊂ X×X.
Note that set G can be represented in the form G = ∪i∈X {i}×Gi, where

Gi = {j ∈ X : (i, j) ∈ G}. Respectively, the first hitting time UG can be
represented as UG = min(n ≥ 1 : Jn ∈ GJn−1). This representation explains
using of the term “place-dependent hitting time”.

In fact, the above model can be embedded in the previous one, if to
consider the new Markov renewal process (J̄n, Xn) = ((Jn−1, Jn), Xn), n =
0, 1, . . . constructed from the initial Markov renewal process (Jn, Xn), n =
0, 1, . . . by aggregating sequential states for the initial embedded Markov
chain Jn.

The Markov renewal process (J̄n, Xn) has the phase space (X×X)×[0,∞).
For simplicity, we can take the initial state J̄0 = (J−1, J0), where J−1 is a
random variable taking values in space X and independent on the Markov
renewal process (Jn, Xn).

Note that the simpler condition A can, in fact, be replaced by a simpler
condition:

A′G: Pi{UG <∞} = 1, i ∈ X.

The above assumption, that domain G is hittable, is implied by condition
A, for any domain G containing a pair of states (i, j) such that pij > 0.

The results concerned moments of usual accumulated rewards WD can
be expanded to the place-depended accumulated rewards YG for hittable
domains, using the above embedding procedure.

5.5. Time-dependent hitting times. Let (Jn, Xn), n = 0, 1, . . . be an
inhomogeneous in time Markov renewal process, i.e., an inhomogeneous in
time Markov chain with phase space with the phase space X×[0,∞), an initial
distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and transition
probabilities, defined for (i, s), (j, t) ∈ X× [0,∞) and n = 0, 1, 2, . . .,

Q
(n+1)
ij (t) = P{Jn+1 = j,Xn+1 ≤ t/Jn = i,Xn = s}. (55)
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As in homogeneous in time case, we exclude instant jumps and assume
that the following condition holds;

B′: Q
(n)
ij (0) = 0, i, j ∈ X, n ≥ 1.

Process (Jn, Xn) can be transformed in a homogeneous in time Markov
renewal process by adding to this process an additional counting time com-
ponent J ′n = n, n = 0, 1, . . .. Indeed, process (J̄n, Xn) = ((J ′n, Jn), Xn), n =
0, 1, . . . is a homogeneous in time Markov renewal process. This process has
the phase space (N × X) × [0,∞), where N = {0, 1, . . .}. It has the initial
distribution p̄ = 〈pi = P{J ′0 = 0, J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and
transition probabilities,

Q(n,i),(k,j)(t) =

{
Q

(n+1)
ij (t) for t ≥ 0, k = n + 1, n = 0, 1, . . . , i, j ∈ X,

0 for t ≥ 0, k 6= n + 1, n = 0, 1, . . . , i, j ∈ X.
(56)

The phase space of the process (J̄n, Xn) is countable.
Let now define a time-truncated version of process (J̄n, Xn) as the process

(J̄ (h)
n , X(h)

n ) = ((J ′n∧h, Jn∧h), Xn∧h), n = 0, 1, . . ., for some integer h ≥ 1.
The process (J̄ (h)

n , X(h)
n ), n = 0, 1, . . . is also a homogeneous in time Markov

renewal process. It has the finite phase space (H × X) × [0,∞), where
H = {0, 1, . . . , h}.

Let 〈D1, . . . ,Dh〉 be some sequence of subsets of space X such that Dh = X
and let UD̃h

= min(n ≥ 1 : J̄ (h)
n ∈ {n} × Dn) = min(n ≥ 1 : Jn ∈ Dn) is the

first hitting time to the domain D̃h = ∪hn=1{n} × Dn for the Markov chain
J̄ (h)
n .

Obviously, Pi{UD̃h
≤ h} = 1, i ∈ X, i.e., domain D̃ is hittable for the

Markov chain J̄ (h)
n .

Thus, all results presented in Sections 2 – 4 can be applied to the time-
dependent accumulated rewards of hitting type,

ZD̃h
=

UD̃h∑
n=1

Xn. (57)

Note only hat condition Cd should be, in this case, replaced by condition:

Ch,d: E{Xd
n/Jn−1 = i} <∞, n = 1, . . . , h, i, j ∈ X.

In conclusion, we would like also to note that it is possible to combine
all five listed above generalization aspects in the frame of one semi-Markov
model.

5.6. An example. Let us consider a numerical example illustrating
the recurrent algorithm for computing power moment of hitting times and
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accumulated rewards of hitting times for semi-Markov processes, based on
sequential reduction of their phase spaces.

Let J(t) be a semi-Markov process with the phase space X = {0, 1, 2, 3},
and the 4 × 4 matrix of transition probabilities, ‖Qij(t)‖, which has the
following form, for t ≥ 0,∥∥∥∥∥∥∥∥∥∥∥

0 0 0 I(t ≥ 1)
1
4
(1− e−t/4) 1

4
(1− e−t/4) 1

4
(1− e−t/4) 1

4
(1− e−t/4)

0 1
3
(1− e−t/3) 1

3
(1− e−t/3) 1

3
(1− e−t/3)

0 0 1
2
I(t ≥ 2) 1

2
I(t ≥ 2)

∥∥∥∥∥∥∥∥∥∥∥
. (58)

The 4 × 4 matrices of transition probabilities ‖pij‖, for the embedded

Markov chain Jn, expectations ‖e(1)
ij ‖ and second moments ‖e(2)

ij ‖ of sojourn
times, for the semi-Markov process J(t), have the following forms,∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1
1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

0 0 1
2

1
2

∥∥∥∥∥∥∥∥∥∥∥
,

∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1

1 1 1 1

0 1 1 1

0 0 1 1

∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥

0 0 0 1

8 8 8 8

0 6 6 6

0 0 2 2

∥∥∥∥∥∥∥∥∥∥∥
. (59)

Let us compute first two moments of hitting times E
(1)
00 , E

(1)
10 and E

(2)
00 , E

(2)
10

using the recurrent algorithm described in Sections 3 – 5.
Let us first exclude state 3 from the phase space X = {0, 1, 2, 3} of the

semi-Markov process J(t). The corresponding reduced semi-Markov process

〈3〉J(t) has the phase space 〈3〉X = {0, 1, 2}.
The recurrent formulas (36) and (37) for transition probabilities of the

embedded Markov chain 〈3〉Jn, expectations and second moments of sojourn
times for the semi-Markov process 〈3〉J(t) have the following forms, respec-

tively, 〈3〉pij = pij + pi3
p3j

1−p33
, 〈3〉e

(1)
ij = e

(1)
ij + e

(1)
i3 〈3〉p3j + pi3

1−p33
(e

(1)
3j + e

(1)
33 〈3〉p3j)

and 〈3〉e
(2)
ij = e

(2)
ij +e

(2)
i3 〈3〉p3j +2e

(1)
i3 〈3〉e

(1)
3j + pi3

1−p33
(e

(2)
3j +e

(2)
33 〈3〉p3j +2e

(1)
33 〈3〉e

(1)
3j ),

for i = 0, 1, 2, 3, j = 0, 1, 2.
The 4×3 matrices of transition probabilities ‖〈3〉pij‖, expectations ‖〈3〉e(1)

ij ‖,
and second moments ‖〈3〉e(2)

ij ‖, computed according the above recurrent for-
mulas, take the following forms,∥∥∥∥∥∥∥∥∥∥

0 0 1
1
4

1
4

1
2

0 1
3

2
3

0 0 1

∥∥∥∥∥∥∥∥∥∥
,

∥∥∥∥∥∥∥∥∥∥
0 0 5

1 1 3

0 1 10
3

0 0 4

∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥
0 0 33

8 8 30

0 6 28
0 0 24

∥∥∥∥∥∥∥∥∥∥
. (60)
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Let us now exclude state 2 from the phase space 〈3〉X = {0, 1, 2} of the
semi-Markov process 〈3〉J(t). The corresponding reduced semi-Markov pro-
cess 〈3,2〉J(t) has the phase space 〈3,2〉X = {0, 1}.

The recurrent formulas (36) and (37) for transition probabilities of the
embedded Markov chain 〈3,2〉Jn, expectations of sojourn times and second
moments of sojourn times for the semi-Markov process 〈3,2〉J(t) have the

following forms, respectively, 〈3,2〉pij = 〈3〉pij + 〈3〉pi2
〈3〉p2j

1− 〈3〉p22
, 〈3,2〉e

(1)
ij =

〈3〉e
(1)
ij + 〈3〉e

(1)
i2 〈3,2〉p2j + 〈3〉pi2

1− 〈3〉p22
(〈3〉e

(1)
2j + 〈3〉e

(1)
22 〈3,2〉p2j) and 〈3,2〉e

(2)
ij = 〈3〉e

(2)
ij +

〈3〉e
(2)
i2 〈3,2〉p2j + 2 〈3〉e

(1)
i2 〈3,2〉e

(1)
2j + 〈3〉pi2

1− 〈3〉p22
(〈3〉e

(2)
2j + 〈3〉e

(2)
22 〈3,2〉p2j+2 〈3〉e

(1)
22 〈3,2〉e

(1)
2j ),

for i = 0, 1, 2, j = 0, 1.
The 3 × 2 matrices of transition probabilities ‖〈3,2〉pij‖, expectations

‖〈3,2〉e(1)
ij ‖, and second moments ‖〈3,2〉e(2)

ij ‖, computed according the above
recurrent formulas, take the following forms,∥∥∥∥∥∥∥∥

0 1
1
4

3
4

0 1

∥∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥∥

0 18

1 21
2

0 13

∥∥∥∥∥∥∥∥ and

∥∥∥∥∥∥∥∥
0 525

8 297

0 362

∥∥∥∥∥∥∥∥ . (61)

Finally, let us exclude state 1 from the phase space 〈3,2〉X = {0, 1} of
the semi-Markov process 〈3,2〉J(t). The corresponding reduced semi-Markov
process 〈3,2,1〉J(t) has the phase space 〈3,2,1〉X = {0}.

The recurrent formulas (36) and (37) for transition probabilities of the
embedded Markov chain 〈3,2,1〉Jn, expectations of sojourn times and second
moments of sojourn times for the semi-Markov process 〈3,2,1〉J(t) have the

following forms, respectively, 〈3,2,1〉pi0 = 〈3,2〉pi0 + 〈3,2〉pi1
〈3,2〉p10

1− 〈3,2〉p11
, E

(1)
i0 =

〈3,2,1〉e
(1)
i0 = 〈3,2〉e

(1)
i0 + 〈3,2〉e

(1)
i1 〈3,2,1〉p10 + 〈3,2〉pi1

1− 〈3,2〉p11
(〈3,2〉e

(1)
10 + 〈3,2〉e

(1)
11 〈3,2,1〉p10)

and E
(2)
i0 = 〈3,2,1〉e

(2)
i0 = 〈3,2〉e

(2)
i0 + 〈3,2〉e

(2)
i1 〈3,2,1〉p10 + 2 〈3,2〉e

(1)
i1 〈3,2,1〉e

(1)
10 +

〈3,2〉pi1
1− 〈3,2〉p11

(〈3,2〉e
(2)
10 + 〈3,2〉e

(2)
11 〈3,2,1〉p10 + 2 〈3,2〉e

(1)
11 〈3,2,1〉e

(1)
10 ), for i = 0, 1.

Here, equalities, 〈3,2,1〉e
(0)
i0 = 〈3,2,1〉pi0 = 1, i = 0, 1, should be taken into

account that simplifies the corresponding calculations.
The 2 × 1 matrices of expectations ‖E(1)

i0 ‖, and second moments ‖E(2)
i0 ‖

computed according the above recurrent formulas, take the following forms,

‖E(1)
i0 ‖ =

∥∥∥∥∥ 64

46

∥∥∥∥∥ and ‖E(2)
i0 ‖ =

∥∥∥∥∥ 7265

5084

∥∥∥∥∥ . (62)

In conclusion, we would like to note that recurrent algorithms presented
in the paper are subjects of effective program realization. These programs
let one compute power moments for hitting times and accumulated rewards

19



of hitting times for semi-Markov processes with very large numbers of states.
We are going to present such programs and results of large scale experimental
studies in future publications.
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21
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