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Abstract

We estimate the global minimum variance (GMV) portfolio in the high-dimensional

case using results from random matrix theory. This approach leads to a shrinkage-type

estimator which is distribution-free and it is optimal in the sense of minimizing the out-

of-sample variance. Its asymptotic properties are investigated assuming that the number

of assets p depends on the sample size n such that p
n → c ∈ (0,+∞) as n tends to

infinity. The results are obtained under weak assumptions imposed on the distribution of

the asset returns, namely it is only required the fourth moments existence. Furthermore,

we make no assumption on the upper bound of the spectrum of the covariance matrix.

As a result, the theoretical findings are also valid if the dependencies between the asset

returns are described by a factor model which appears to be very popular in financial

literature nowadays. This is also well-documented in a numerical study where the small-

and large-sample behavior of the derived estimator are compared with existing estimators

of the GMV portfolio. The resulting estimator shows significant improvements and it

turns out to be robust to the deviations from normality.

JEL Classification: G11, C13, C14, C58, C65

Keywords: global minimum variance portfolio, large-dimensional asymptotics, covariance ma-

trix estimation, random matrix theory.



1 Introduction

Since Markowitz (1952) presented his seminal work about portfolio selection, this topic has

become a very fast growing branch of finance. One of Markowitz’s ideas was the minimization

of the portfolio variance subject to the budget constraint. This approach leads to the well-

known and frequently used portfolio, the global minimum variance portfolio (GMV). There is a

great amount of papers dealing with the GMV portfolio (see, e.g., Jagannathan and Ma (2003),

Ledoit and Wolf (2003), Okhrin and Schmid (2006), Kempf and Memmel (2006), Bodnar and

Schmid (2008), Frahm and Memmel (2010) among others). We remind that the GMV portfolio

is the unique solution of the following optimization problem

w′Σnw→ min subject to w′1 = 1 , (1.1)

where w = (w1, . . . , wp)
′ denotes the vector of portfolio weights, 1 is a suitable vector of ones,

and Σn stands for the covariance matrix of the asset returns. Note that in our paper p is a

function of the sample size n and thus the covariance matrix depends on n as well. This is

shown by the index n. The solution of (1.1) is given by

wGMV =
Σ−1n 1

1′Σ−1n 1
. (1.2)

The GMV portfolio (1.2) has the smallest variance over all portfolios. It is also used in multi-

period portfolio choice problems (see, e.g., Brandt (2010)). Although this portfolio possesses

several nice theoretical properties, some problems arise when the uncertainty about the pa-

rameters of the asset return distribution is taken into account. Indeed, we do not know the

population covariance matrix in practice and, thus, it has to be suitably estimated. Conse-

quently, the estimation of the GMV portfolio is strongly connected with the estimation of the

covariance matrix of the asset returns.

The traditional estimator is a commonly used possibility for the estimation of the GMV

portfolio (1.2). This traditional estimator is constructed by replacing in (1.2) the covariance

matrix Σn by its sample counterpart Sn. Okhrin and Schmid (2006) derived the distribution

of the traditional estimator and studied its properties under the assumption that the asset

returns follow a multivariate normal distribution, whereas Kempf and Memmel (2006) analyzed

its conditional distributional properties. Furthermore, Bodnar and Schmid (2009) derived the

distribution of the main characteristics of the sample GMV portfolio, namely its variance and

its expected return.

The traditional estimator is not a bad choice if the number of assets p is fixed and it is

significantly smaller than the number of observations n in the sample. This case is often

used in statistics and it is called standard asymptotics (see, Le Cam and Yang (2000)). In

that case the traditional estimator is a consistent estimator for the GMV portfolio and it is

asymptotically normally distributed (Okhrin and Schmid (2006)). As a result, for a small

2



fixed dimension p ∈ {5, 10, 15} we can use the sample estimator but it is not fully clear what

to do if the number of assets in the portfolio is extremely large, say p ∈ {100, 500, 1000},
comparable to n. Here we are in the situation when both the number of assets p and the

sample size n tend to infinity. This double asymptotics has an interpretation when p and n are

of comparable size. More precisely, when p/n tends to a concentration ratio c > 0. This type

of asymptotics is known as high-dimensional asymptotics or ”Kolmogorov” asymptotics (see,

Bai and Silverstein (2010)). Under the high-dimensional asymptotics the traditional estimator

behaves very unpredictable and it is far from the optimum one. It tends to underestimate the

risk (see, El Karoui (2010), Bai and Shi (2011)). In general, the traditional estimator is worse

for larger values of the concentration ratio c. Imposing the assumption of a factor structure on

the asset returns this problem was resolved in an efficient way by Bai (2003), Fan et al. (2008),

Fan et al. (2012), Fan et al. (2013), etc. Nevertheless, if the factor structure is not present the

question of high-dimensionality remains open.

Further estimators for the weights of the GMV portfolio have been proposed in this situation.

DeMiguel et al. (2009) suggested to involve some additional portfolio constraints in order to

avoid the curse of dimensionality. On the other hand, shrinkage estimators can be used which

are biased but can significantly reduce the risk of the portfolio by minimizing its mean-square

error. The general shrinkage estimator is a convex combination of the traditional estimator

and a known target (for the GMV portfolio it can be the naive equally weighted portfolio).

They were first considered by Stein (1956). Recently, various authors showed that shrinkage

estimators for the portfolio weights indeed lead to better results (see, e.g., Golosnoy and Okhrin

(2007), Frahm and Memmel (2010)). In particular, Golosnoy and Okhrin (2007) considered a

multivariate shrinkage estimator by shrinking the portfolio weights themselves but not the

whole sample covariance matrix. The same idea was used by Frahm and Memmel (2010)

who constructed a feasible shrinkage estimator for the GMV portfolio which dominates the

traditional one. There are several problems with these estimators: first, the normal distribution

is usually imposed; second, dominating does not mean optimal; and third, the large dimensional

behavior (large p and large n) seems not to be acceptable.

The aim of the paper is to derive a feasible and simple estimator for the GMV portfolio

which is optimal, in some sense, for small and large sample sizes and which is distribution-free

as well. For that purpose we construct an optimal shrinkage estimator, study its asymptotic

properties and estimate unknown quantities consistently. The estimator is obtained using ran-

dom matrix theory, a fast growing branch of probability theory. The main result of this theory

was proved by Marc̆enko and Pastur (1967) and further extended under very general conditions

by Silverstein (1995). Nowadays it is called Marc̆enko-Pastur equation. Its importance arises in

many areas of science because it shows how the real covariance matrix and its sample estimate

are connected with each other. Knowing this information we can build suitable estimators for

high-dimensional quantities.
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The rest of the paper is organized as follows. In Section 2 we present a shrinkage estimator

for the GMV portfolio which is optimal in terms of minimizing the out-of-sample variance. The

asymptotic behavior of the resulting shrinkage intensity is investigated for c < 1 in Section 2.1

and in case of c > 1 in Section 2.2 where it is shown that the shrinkage intensity tends almost

surely to a deterministic quantity when both the sample size and the portfolio dimension in-

crease. This result allows us to determine an oracle estimator of the GMV portfolio, while the

corresponding bona fide estimator is presented in Section 2.3. In Section 3 we provide a sim-

ulation study for different values of c ∈ (0,+∞) and under various distributional assumptions

imposed on the data generating process. Here, the performance and the convergence rate of the

derived shrinkage estimator are compared with existing estimators of the GMV portfolio. The

results of our empirical study are given in Section 4 where we apply the suggested estimator

as well as the existing estimators to real data consisting of returns on assets included in the

S&P 500 (Standard & Poor’s 500) index. Section 5 summarizes all of the obtained results. The

lengthy proofs are moved to the appendix (Section 6).

2 Optimal shrinkage estimator for the GMV portfolio

Let Yn = (y1,y2, ...,yn) be the p× n data matrix which consists of n vectors of the returns on

p ≡ p(n) assets. Let E(yi) = µn and Cov(yi) = Σn for i ∈ 1, ..., n. We assume that p/n →
c ∈ (0,+∞) as n → ∞. This type of limiting behavior is also denoted as ”large dimensional

asymptotics” or ”the Kolmogorov asymptotics”. In this case the traditional estimators perform

poor or even very poor and tend to over/underestimate the unknown parameters of the asset

returns, i.e., the mean vector and the covariance matrix.

Throughout the paper it is assumed that it exists a p×n random matrix Xn which consists

of independent and identically distributed (i.i.d.) real random variables with zero mean and

unit variance such that

Yn = µn1
′ + Σ

1
2
nXn . (2.1)

It is noted that the observation matrix Yn consists of dependent rows although its columns

are independent. The assumption of the independence of the columns can further be weakened

by controlling the growth of the number of dependent entries, while no specific distributional

assumptions are imposed on the elements of Yn (see, Friesen et al.(2013)).

The two main assumptions which are used throughout the paper are

(A1) The covariance matrix of the asset returns Σn is a nonrandom p-dimensional positive

definite matrix.

(A2) The elements of the matrix Xn have uniformly bounded 4 + ε moments for some ε > 0.

These two regularity conditions are very general and they fit many practical situations. The

assumption (A1) is common for financial and statistical problems. It does not impose a strong
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restriction on the data-generating process, whereas the assumption (A2) is purely technical.

Moreover, it seems to influence only the convergence rate of the proposed estimator (see, e.g.

Rubio et al. (2012)).

The sample covariance matrix is given by

Sn =
1

n
Yn(I− 1

n
11′)Y′n =

1

n
Σ

1
2
nXn(I− 1

n
11′)X′nΣ

1
2
n , (2.2)

where the symbol I stands for the identity matrix of an appropriate dimension.

2.1 Oracle estimator. Case c < 1

The traditional estimator for the GMV portfolio is obtained by replacing the unknown popu-

lation covariance matrix Σn in (1.2) by the estimator (6) . This leads to

ŵGMV =
S−1n 1

1′S−1n 1
. (2.3)

Next, we derive the optimal shrinkage estimator for the GMV portfolio weights by opti-

mizing with respect to the shrinkage parameter αn and fixing some target portfolio bn. Its

distributional properties are studied after that. The general shrinkage estimator (GSE) for

c ∈ (0, 1) is defined by

ŵGSE = αn
S−1n 1

1′S−1n 1
+ (1− αn)bn with b′n1 = 1 (2.4)

where bn ∈ Rp is a given nonrandom (or random but independent of the actual observation

vector yn, i.e., the last column of Yn) vector. No assumption is imposed on the shrinkage in-

tensity αn which is the object of our interest. The aim is to find the optimal shrinkage intensity

αn. for a given target portfolio bn which minimizes the out-of-sample risk

L = ||Σ
1
2
n (ŵGSE(αn)−wGMV )|| = (ŵGSE(αn)−wGMV )′Σn(ŵGSE(αn)−wGMV ) , (2.5)

(see, e.g., Frahm and Memmel (2010), Rubio et al. (2012)). The loss function (2.5) can be

rewritten as

L = ŵ′GSE(αn)ΣnŵGSE(αn)− σ2
GMV , (2.6)

where σ2
GMV =

1

1′Σ−1n 1
is the population variance of the GMV portfolio and ŵ′GSE(αn)ΣnŵGSE(αn)

is known as the out-of-sample variance of the portfolio with the weights ŵGSE(αn).

Using (2.4) we want to solve the following optimization problem

min
αn

L = min
αn

α2
nσ

2
S + 2αn(1− αn)

1

1′S−1n 1
1′S−1n Σnbn + (1− αn)2b′nΣnbn − σ2

GMV , (2.7)

where

σ2
S =

1′S−1n ΣnS
−1
n 1

(1′S−1n 1)2
(2.8)
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is the out-of-sample variance of the traditional estimator for the GMV portfolio weights. Taking

the derivative of L with respect to αn and setting it equal to zero we get

∂L

∂αn
= αnσ

2
S + (1− 2αn)

1′S−1n Σnbn
1′S−1n 1

− (1− αn)b′nΣnbn = 0 . (2.9)

From the last equation it is easy to find the optimal shrinkage intensity α∗n given by

α∗n =

b′nΣnbn −
1′S−1n Σnbn

1′S−1n 1

σ2
S − 2

1′S−1n Σnbn
1′S−1n 1

+ b′nΣnbn

=

(
bn −

S−1n 1

1′S−1n 1

)′
Σnbn(

bn −
S−1n 1

1′S−1n 1

)′
Σn

(
bn −

S−1n 1

1′S−1n 1

) . (2.10)

In order to ensure that α∗n is the minimizer of (2.7) we calculate the second derivative of L

which has to be positive. It holds that

∂2L

∂α2
n

= σ2
S−21′S−1n Σnbn

1

1′S−1n 1
+b′nΣnbn =

(
bn −

S−1n 1

1′S−1n 1

)′
Σn

(
bn −

S−1n 1

1′S−1n 1

)
> 0 (2.11)

almost surely. The last inequality is always true because of the positive definiteness of the

matrix Σn and the fact that bn =
S−1n 1

1′S−1n 1
with probability zero.

In Theorem 2.1 we show that the optimal shrinkage intensity α∗n is almost surely asymptot-

ically equivalent to a nonrandom quantity α∗ ∈ [0, 1] under the large-dimensional asymptotics
p

n
→ c ∈ (0, 1). Let σbn = b′nΣnbn be the variance of the target portfolio and let

Rbn =
σ2
bn
− σ2

GMV

σ2
GMV

be the relative loss of the target portfolio bn.

Theorem 2.1. Assume (A1)-(A2). Let 0 < Ml ≤ σ2
GMV ≤ σ2

bn
≤ Mu <∞ for all n. Then it

holds that

α∗n
a.s.−→ α∗ =

(1− c)Rb

c+ (1− c)Rb

for
p

n
→ c ∈ (0, 1) as n→∞ , (2.12)

where Rb is the limit of Rbn. Additionally, the out-of-sample variance σ2
S of the traditional

estimator for the GMV portfolio possesses the following asymptotic behavior

σ2
S

a.s.−→ 1

1− c
σ2
GMV for

p

n
→ c ∈ (0, 1) as n→∞ . (2.13)

The proof of Theorem 2.1 is given in the Appendix. Theorem 2.1 provides us important

information about the optimal shrinkage estimator of the GMV portfolio. Especially, the

application of Theorem 2.1 immediately leads to consistent estimators for α∗n, σ2
GMV , and σ2

S

which are presented in Section 2.3 below. It is remarkable to note that the assumption 0 <

Ml ≤ σ2
GMV ≤ σ2

bn
≤ Mu <∞ is natural for financial markets. It ensures that the population
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variance of the GMV portfolio has a lower bound which is in-line with the Capital Asset Pricing

Model since the portfolio variance cannot be smaller than the market risk (see, e.g., Elton et

al. (2007, Chapter 7)). Moreover, the assumption of the boundedness of the variance of the

target portfolio σ2
bn

is also well acceptable because it makes no sense to shrink to a portfolio

with infinite variance. Most importantly, this condition also holds even if the largest eigenvalue

of the covariance matrix is unbounded. Such a situation is present if the asset returns follow a

factor model which is a very popular approach in financial literature nowadays (see, e.g., Fan

et al. (2008), Fan et al. (2012)). It is worth pointing out that the same result is true if we

assume instead of 0 < Ml ≤ σ2
GMV ≤ σ2

bn
≤ Mu <∞ the boundedness of the spectral norm of

the population covariance matrix, i.e., the uniformly bounded maximum eigenvalue of Σn.

The answer on the question about the performance of the traditional and the optimal shrink-

age estimator for the GMV portfolio is given in Corollary 2.1.

Corollary 2.1. (a) Under the assumptions of Theorem 2.1, we get for the relative loss of the

traditional estimator for the GMV portfolio

RS =
σ2
S − σ2

GMV

σ2
GMV

a.s.−→ c

1− c
for

p

n
→ c ∈ (0, 1) as n→∞ . (2.14)

(b) Under the assumptions of Theorem 2.1, we get for the relative loss of the optimal shrinkage

estimator for the GMV portfolio

RGSE =
ŵT
GSEΣnŵGSE − σ2

GMV

σ2
GMV

a.s.−→ (α∗)2
c

1− c
+(1−α∗)2Rb for

p

n
→ c ∈ (0, 1) as n→∞ .

(2.15)

Corollary 2.1 is a straightforward consequence of Theorem 2.1. Moreover, its first part

generalizes the result of Frahm and Memmel (2010, Theorem 7) to an arbitrary distribution

of the asset returns. Using Corollary 2.1(a) we can plot the behavior of the relative loss of

the traditional estimator for the GMV portfolio as a function of the concentration ratio c only,

while the relative loss of the optimal shrinkage portfolio additionally depends on the relative

loss of the target portfolio. Furthermore, from both parts of Corollary 2.1 we get

RGSE
a.s.−→ (α∗)2RS + (1− α∗)2Rb for

p

n
→ c ∈ (0, 1) as n→∞ ,

i.e., the relative loss of the optimal shrinkage estimator for the GMV portfolio can asymptoti-

cally be presented as a linear combination of the relative loss of the traditional estimator and

the relative loss of the target portfolio. Because α∗ → 0 as c→ 1−
1 and

(α∗)2
c

1− c
=

(1− c)cR2
b

(c+ (1− c)Rb)2
→ 0 as c→ 1− ,

1Further in paper, c→ 1− and c→ 1+ denote the left and right limits to the point 1, respectively.
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we get that RGSE → Rb ≤ Mu−Ml

Ml
as c → 1−, whereas the relative loss of the traditional

estimator tends to infinity.

Figure 1 presents the behavior of the traditional and the proposed oracle estimators of the

GMV portfolio weights for different values of c ∈ (0, 1). The covariance matrix Σn is taken as

a 200 × 200-dimensional matrix where we have taken 20% of the eigenvalues equal to 3, 40%

equal to 1, and 40% equal to 0.5. The matrix of eigenvectors V = (v1, . . . ,vp)
′ is generated

from the Haar distribution2 The target portfolio is chosen as the equally weighted portfolio,

i.e. bn = 1/p1. In the figure we observe that the asymptotic relative loss of the traditional

estimator for the GMV portfolio has a singularity point at one. The loss of the traditional

estimator is relatively small up to c = 0.2 but thereafter, as p/n→ 1, it rises hyperbolically to

infinity. In contrast to the traditional estimator of the GMV portfolio weights, the suggested

optimal shrinkage estimator has a constant asymptotic relative loss which is always smaller

than 0.5. This result is in-line with the theoretical findings discussed around Corollary 2.1.

Figures 1 and 2 above here

In Figure 2 we show the asymptotic behavior of the optimal shrinkage intensity α∗ as a

function of the concentration ratio c ∈ (0, 1). The target portfolio bn and the covariance

matrix Σn are the same as in Figure 1. In the interval c ∈ (0, 1) the optimal shrinkage intensity

α∗ is a nonlinearly decreasing (in a convex manner) function of the concentration ratio c. We

observe that the optimal α∗ tends to zero as c approaches one and, thus, in the limiting case

the only optimal choice would be the target portfolio bn.

2.2 Oracle estimator. Case c > 1

In case c > 1, the sample covariance matrix Sn is singular and its inverse does not exist anymore.

Thus, we first have to find a reasonable replacement for S−1n . For the oracle estimator of the

GMV portfolio weights we use the following generalized inverse of the sample covariance matrix

Sn

S∗n = Σ−1/2n (XnX
′
n)+Σ−1/2n , (2.16)

where ′+′ denotes the Moore-Penrose inverse. It can be shown that S∗n is the generalized inverse

satisfying S∗nSnS
∗
n = S∗n and SnS

∗
nSn = Sn.3 Obviously, in case c < 1 the generalized inverse

S∗n coincides with the usual inverse S−1n . Moreover, if Σn is proportional to the identity matrix

then S∗n coincides with the Moore-Penrose inverse S+
n calculated for Sn. It has also to be noted

that S∗n cannot be determined in practice since it depends on the unknown matrix Σn. In this

2If V has a Haar measure over the orthogonal matrices, then for any unit vector x ∈ Rp, Vx has a uniform

distribution over the unit sphere Sp = {x ∈ Rp; ||x|| = 1}.
3Note that S∗n is not equal to the Moore-Penrose inverse because it does not satisfy the conditions (S∗nSn)′ =

S∗nSn and (SnS
∗
n)′ = SnS

∗
n. Nevertheless, in Section 2.3, where the bona fide estimator is constructed, we use

the Moore-Penrose inverse of Sn instead of S∗n in order to obtain a valuable approximation.
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section, it is only used to determine an oracle estimator for the weights of the GMV portfolio,

whereas the bona fide estimator is constructed in Section 2.3.

Based on S∗n in (2.16), the oracle traditional estimator for the GMV portfolio in case c > 1

is first constructed and it is given by

ŵ∗GMV =
S∗n1

1′S∗n1
. (2.17)

Next, we determine the oracle optimal shrinkage estimator for the GMV portfolio weights

expressed as

ŵ∗GSE = α+
n

S∗n1

1′S∗n1
+ (1− α+

n )bn with b′n1 = 1 . (2.18)

Similarly to Section 2.1, we deduce the optimal shrinkage intensity α+
n given by

α+
n =

b′nΣnbn −
1′S∗nΣnbn

1′S∗n1

σ2
S∗ − 2

1′S∗nΣnbn
1′S∗n1

+ b′nΣnbn

=

(
b− S∗n1

1′S∗n1

)′
Σnb(

b− S∗n1

1′S∗n1

)′
Σn

(
b− S∗n1

1′S∗n1

) , (2.19)

where σ2
S∗ = 1′S∗nΣnS

∗
n1/(1

′S∗n1)2 is the oracle out-of-sample variance of the traditional es-

timator for the GMV portfolio. In Theorem 2.2 we present the asymptotic properties of the

optimal α+
n for c > 1.

Theorem 2.2. Assume (A1)-(A2). Let 0 < Ml ≤ σ2
GMV ≤ σ2

bn
≤ Mu <∞ for all n. Then it

holds that

α+
n

a.s.−→ α+ =
(c− 1)Rb

(c− 1)2 + c+ (c− 1)Rb

for
p

n
→ c ∈ (1,+∞) as n→∞ , (2.20)

where Rb is the limit of Rbn. Additionally, we get for the oracle out-of-sample variance σ2
S∗ of

the traditional estimator (2.17) for the GMV portfolio

σ2
S∗

a.s.−→ c2

c− 1
σ2
GMV for

p

n
→ c ∈ (1,+∞) as n→∞ . (2.21)

The proof of Theorem 2.2 is given in the appendix. The asymptotic behavior of the relative

loss calculated for the traditional oracle estimator of the GMV portfolio as well as for the oracle

optimal shrinkage estimator is described in Corollary 2.2.

Corollary 2.2. (a) Under the assumptions of Theorem 2.2, we get for the relative loss of the

oracle traditional estimator for the GMV portfolio

R∗S =
σ2
S∗ − σ2

GMV

σ2
GMV

a.s.−→ c2 − c+ 1

c− 1
for

p

n
→ c ∈ (1,+∞) as n→∞ . (2.22)

(b) Under the assumptions of Theorem 2.2, we get for the relative loss of the oracle optimal

shrinkage estimator for the GMV portfolio

R∗GSE =
(ŵ∗GSE)TΣnŵ

∗
GSE − σ2

GMV

σ2
GMV

a.s.−→ (α+)2R∗S+(1−α+)2Rb for
p

n
→ c ∈ (0, 1) as n→∞ .

(2.23)
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Similarly to the case c < 1, the relative loss of the optimal shrinkage estimator for the GMV

portfolio is a linear combination of the relative loss of the traditional estimator and the relative

loss of the target portfolio. Furthermore, if c→ 1+, the relative loss of the traditional estimator

tends to infinite4, whereas for the relative loss of the shrinkage estimator we get

R∗GSE →
(c− 1)(c2 − c+ 1)R2

b

((c− 1)2 + c+ (c− 1)Rb)2
+ (1− α+)2Rb = Rb as c→ 1+ ,

which is bounded from above by Mu−Ml

Ml
, i.e., it is finite.

Figure 3 presents the asymptotic performance of the oracle traditional estimator and of

the proposed oracle optimal shrinkage estimator for the GMV portfolio in case c > 1. A

considerable improvement is present when the oracle optimal shrinkage estimator is applied

where the average loss is always smaller than 1. In contrast, the average loss of the oracle

traditional estimator possesses always larger values with a minimum of about 4 reached around

c = 2.

Figures 3 and 4 above here

Figure 4 presents the asymptotic behavior of the optimal shrinkage intensity α+ in case

c > 1 which is no longer a monotonic function of the concentration ratio c as it is observed in

Figure 2. The optimal shrinkage intensity attains its maximum close to c = 2. Moreover, α+

remains positive even for large values of c, i.e. the oracle optimal shrinkage estimator converges

to bn for c → +∞ much slower as it was for c → 1−. On the other hand, it converges to bn

pretty fast for c → 1+. As a result, we don’t have to expect the instability of the proposed

shrinkage estimator neither in the neighborhood of c = 1 nor for c >> 1.

2.3 Estimation of unknown parameters. Bona fide estimator

In this subsection we show how the derived oracle estimators in case c < 1 and c > 1, respec-

tively, can be consistently estimated. This is achieved by estimating consistently the relative

loss of the target portfolio Rbn . This result is presented in Theorem 2.3.

Theorem 2.3. Under the assumptions (A1)-(A2) a consistent estimator of Rbn is given by

(a) R̂bn = (1− p/n)b′nSnbn · 1′S−1n 1− 1 for
p

n
→ c ∈ (0, 1) as n→∞ (2.24)

(b) R̂∗bn
= p/n(p/n− 1)b′nSnbn · 1′S∗n1− 1 for

p

n
→ c ∈ (1,+∞) as n→∞ .(2.25)

The proof of Theorem 2.3 is given in the appendix. Applying Theorems 2.1 and 2.3(a) allows

us to determine the bona fide estimator for the GMV portfolio weights in case c ∈ (0, 1). It is

4The sample covariance matrix Sn is ill-behaved and not invertible at the point c = 1 because in that case

its smallest eigenvalue is very near to zero.
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given by

ŵBFGSE = α̂∗
S−1n 1

1′S−1n 1
+ (1− α̂∗)bn with α̂∗ =

(1− p/n)R̂bn

p/n+ (1− p/n)R̂bn

, (2.26)

where R̂bn is given above in (2.24). The expression (2.26) presents the optimal shrinkage

estimator for a given target portfolio bn because the shrinkage intensity α̂∗ tends almost surely

to its optimal value α∗ for p/n→ c ∈ (0, 1) as n→∞.
The situation is more complicated in case c > 1. Here, the quantity R̂bn is not a bona fide

estimator of the relative loss of the target portfolio, since the matrix S∗n depends on unknown

quantities. For that reason we propose a reasonable approximation via the the application of

the Moore-Penrose inverse S+
n . It is easy to verify that in case of Σn = σ2I equality holds.

Furthermore, both the extensive simulation study of Section 3 and the empirical investigations

of Section 4 document that this approximation does a very good job even for dense5 population

covariance matrix Σn. The reason of this behavior could be the point that S+
n possesses a

similar asymptotic behavior as S∗n. However, it is a very challenging mathematical problem to

prove this result analytically and we leave this for the future research. In Figure 6 we provide

a short simulation with the same design as presented in Figure 2 in order to show that α̂∗(S+
n )

and α̂∗(S∗n) are close asymptotically and justify the accuracy of our approximation.

Figures 6 above here

Taking into account the above discussion and the result of Theorem 2.3 (b), the bona fide

estimator of the quantity Rb in case c > 1 is approximated by

R̂+
bn

= p/n(p/n− 1)b′nSnbn · 1′S+
n1− 1 for c ∈ (1,+∞) . (2.27)

The application of (2.27) leads to the bona fide optimal shrinkage estimator of the GMV

portfolio in case c > 1 expressed as

ŵ+
BFGSE = α̂+ S+

n1

1′S+
n1

+ (1− α̂+)bn with α̂+ =
(p/n− 1)R̂+

bn

(p/n− 1)2 + p/n+ (p/n− 1)R̂+
bn

, (2.28)

where S+
n is the Moore-Penrose pseudo-inverse of the sample covariance matrix Sn.

It is noted that the estimator (2.26) is the optimal estimator of the GMV portfolio for c < 1

in terms of minimizing the out-of-sample variance, while the estimator (2.28) is a suboptimal

one in case c > 1. In order to summarize this section, we merge (2.26) and (2.28) into one bona

fide optimal shrinkage estimator for the GMV portfolio weights in case c > 0 given by6

ŵBFGSE = α̂∗
S+
n1

1′S+
n1

+ (1− α̂∗)bn with (2.29)

5opposite of sparse.
6The case c = 1 is not theoretically handled but using the Moore-Penrose inverse and setting equal to zero

the smallest eigenvalue we are still able to construct a feasible estimator in this situation.
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α̂∗ =


(1− p/n)R̂bn

p/n+ (1− p/n)R̂bn

for c < 1,

(p/n− 1)R̂bn

(p/n− 1)2 + p/n+ (p/n− 1)R̂bn

for c ≥ 1 ,

(2.30)

and

R̂bn =

 (1− p/n)b′nSnbn · 1′S−1n 1− 1 for c < 1,

p/n(p/n− 1)b′nSnbn · 1′S+
n1− 1 for c ≥ 1 .

, (2.31)

where we use that S+
n = S−1n if Sn is nonsingular.

In Figure 5 we investigate the difference between the oracle and the bona fide optimal

shrinkage estimators for the GMV portfolio weights as well as between the oracle and the bona

fide traditional estimators. The population covariance matrix is taken as a dense 207 × 207-

dimensional covariance matrix Σn with 1/9 of eigenvalues equal to 2, 4/9 to 5, and last 4/9

to 10. The eigenvectors are chosen in the same way as in the section about oracle estimator.

The target portfolio is still the naive one, i.e., bn = 1/p1. The observation matrix is generated

from the normal distribution.

A perfect fit of the bona fide optimal shrinkage estimator (dotted red line) to its oracle

(solid red line) is observed for all of the considered values c > 0. The blue lines corresponds to

the oracle traditional estimator (solid blue line) and the bona fide traditional estimator (dash

blue line). In contrast to the optimal shrinkage estimator, a difference between the bona fide

traditional estimator and its oracle is present for c > 1 which increases as c becomes larger.

For c < 1 both the estimators coincide since in this case both the generalized inverse (2.16)

and the Moore-Penrose inverse are equal to the inverse of the sample covariance matrix. It is

remarkable that the proposed bona fide optimal shrinkage estimator works well also at point

c = 1 although the corresponding oracle estimator is even not defined there. The reason is

that we just set equal to zero the smallest eigenvalue of Sn and use the Moore-Penrose inverse

technique. The results of Figure 5 motivate the application of the Moore-Penrose inverse

instead of the generalized inverse given at the beginning of Section 2.2 in practice, whereas the

traditional estimator should be used with care. We provide a further investigation of this point

in the simulation study of Section 3.

Figure 5 above here

The last point, which has to be noted, is that the bona fide estimator (2.29) is easy to use

in practice since it can be fast computed.

2.4 Choice of the target portfolio

The target portfolio bn plays a crucial role in the determination of the optimal shrinkage

estimator. The most obvious choice of bn would be the naive portfolio 1
p
1 or a sparse portfolio.

In the multi-period setting the weights of the previous period can be chosen as a target portfolio.

12



Theoretically, we can even take a random target portfolio but it should be independent of the

actual observations. In particular, it can be a uniformly distributed random vector on the unit

sphere (suitably normalized) or a uniformly distributed random vector on the simplex. Choosing

the optimal portfolio weights of the previous periods leads to more interesting example for a

target portfolio which allows us to construct some sort of Bayesian updating principle in the

dynamic setting.

In general, the answer on this question depends on the underlying data because the choice of

the target weights is equivalent to the choice of the hyperparameter for the prior distribution of
Σ−1

n 1

1′Σ−1

n 1
. This problem is well-known in Bayesian statistics. The application of different priors

leads to different results. So it is very important to choose the one which works well in most

cases. The naive one is the equally weighted portfolio 1/p1. Obviously, the oracle shrinkage

estimator with the prior weights as the true global minimum variance portfolio is a consistent

estimator as shown in Proposition 2.1. Moreover, including some new information about the

true GMV portfolio into the prior can lead to a significant increase of performance (see, Bodnar

et al. (2014)). For simplicity we take the naive portfolio in our simulation study in Section 3

as well as in the empirical investigation of Section 4.

Consider the shinkage estimator as a vector function ŵBFGSE(bn) : Vp → Ṽp, where Vp and

Ṽp are the p-dimensional vector spaces. In the following proposition we present some properties

of the shrinkage estimator as a function of the target weights bn.

Proposition 2.1. For the proposed shrinkage estimator ŵBFGSE(bn) it holds that

1. ŵBFGSE(1/p1) is a consistent estimator for the GMV portfolio if the population covari-

ance matrix Σn = σI for arbitrary σ > 0 and c ∈ (0,+∞).

2. ŵBFGSE(wGMV ) is a consistent estimator for the GMV portfolio Σ−1

n 1

1′Σ−1

n 1
for all c ∈

(0,+∞).

The proof is a straightforward application of Theorem 2.1, Theorem 2.2 and Theorem 2.3.

3 Simulation study

In this section we demonstrate how the obtained results can be applied in practice. The first

part of our simulations is dedicated to normally distributed data, while in the second part

the asset returns are generated from the t-distribution with 5 degrees of freedom. The target

portfolio bn is taken as the naive portfolio
1

p
. The results are presented in both cases c < 1 and

c > 1 as well as for the covariance matrix with bounded (Section 3.1) and unbounded (Section

3.2) spectrum.

The benchmark estimator is the dominating estimator of the GMV portfolio suggested by
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Frahm and Memmel (2010). It is given by

ŵFM = (1− k)
S−1n 1′

1′S−1n 1
+ k

1

p
with k =

p− 3

n− p+ 2

1

R̂1/p

, (3.1)

where R̂1/p =
1/p21′Sn1− σ2

Sn

σ2
Sn

is the estimated relative loss of the naive portfolio. The dom-

inating estimator (3.1) is derived under the assumption that the asset returns are normally

distributed and it dominates over the traditional estimator in terms of the out-of-sample vari-

ance (cf. Frahm and Memmel (2010)). Nevertheless, it is not clear how far it is away from the

optimal one for different values of the concentration ratio c > 0. Its behavior for non-normally

distributed data has not been studied yet as well.

Next, we compare the performance of the dominating estimator (3.1) with the bona fide

optimal shrinkage estimator (2.29). In order to find out the rates of convergence established

in Theorem 2.1 and 2.3, we also consider the oracle optimal shrinkage estimator which can be

easily constructed for c < 1 and c > 1 with the optimal shrinkage intensities given by (2.10)

and (2.19), respectively. As a performance measure we take the relative loss from Section 2.

For an arbitrary estimator ŵ of the GMV portfolio it is defined by

Rŵ =
σ2
ŵ − σ2

GMV

σ2
GMV

(3.2)

where σ2
ŵ = ŵ′Σnŵ and σ2

GMV =
1

1′Σ−1n 1
.

In our simulation study we take p as a function of n. In particular, when n = 18 · 2j and

p = 9 · 2j for j ∈ [0, 5] the concentration ration c is always equal to 0.5 and p increases together

with n exponentially. That is why the small dimensions are presented with more points and

the large ones with less. Similar choices of p and n are also performed for other values of

c ∈ {0.1, 0.9, 1.8}. Finally, it is noted that the simulation results show a good convergent rate

in terms of the relative loss for the bona fide optimal shrinkage estimator to its oracle one

already for p ≤ 100.

3.1 Population covariance matrix with bounded spectrum

In this subsection, we assume that the covariance matrix possesses a bounded spectrum, i.e.

with bounded maximum eigenvalue. Here, we use the structure of the covariance matrix as

in Figure 5, i.e., we take 1/9 of its eigenvalues equal to 2, 4/9 equal to 5 and 4/9 equal to

10. The high-dimensional covariance matrices constructed in this way possess uniformly the

same spectral norm and their eigenvalues are not very dispersed. Additionally, this choice of

the covariance matrices ensures that when the dimension p increases then the spectrum of the

covariance matrices does not change its behavior.

Figures 7 and 8 above here
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In Figures 7 and 8 we present the simulation results for normally distributed data and

different values of the concentration ratio c ∈ {0.1, 0.5, 0.9, 1.8}. Figure 7 presents the global

behavior of the considered estimators for different dimensions p, while Figure 8 shows the local

distributional properties for a value of fixed p = 306. More precisely, under the global behavior

we understand the evolution of the average relative loss with respect to the dimension p and

the local behavior presents the empirical cumulative distribution functions (e.c.d.f.) of the

relative loss for one fixed value of p, namely p = 306. The comparison in case of global setting

is clear: the smaller the average loss the better is the estimator. The local study provides

a more precise comparison in terms of the empirical distributions. In this case, the criterion

of the best estimator is based on the observation that the e.c.d.f. with stochastically smaller

values is dominating. This means that for two e.c.d. functions, the dominating one is placed

on the left side from the other. This criterion is consistent with the stochastic dominance of

order one. The only difference with respect to the stochastic dominance of order one is that

the comparison is based on the empirical distribution functions instead of the population one.

On global analysis we see that the bona fide optimal shrinkage estimator converges to

the corresponding oracle one already for small values of p in all of the considered cases c ∈
{0.1, 0.5, 0.9, 1.8}. On the third place, the dominating estimator of Frahm and Memmel (2010)

is ranked. It is always better than the traditional estimator which is the worst one, but it is

always worse than the other two competitors. In terms of the values of the average relative loss,

we observe that the difference between the estimators become more significant if c increases

and lies below 1.0. For instance, in case of c = 0.1, the average relative loss of the tradi-

tional estimator tends to 1/9, whereas it tends to 1 for c = 0.5. These two results are in line

with Corollary 2.1, where it is proved that the average loss of the traditional estimator tends

to c/(1 − c) under high-dimensional asymptotics. In case of c = 0.9, the difference between

the average relative loss of the optimal shrinkage estimator and the dominating (traditional)

estimators becomes very large. Indeed, in this case the traditional estimator has an average

relative loss which is asymptotically equal to 9. This means that the out-of-sample risk of the

traditional estimator is 10 times larger than the real risk. The dominating estimator clearly

overperforms the traditional one but the relative loss is close to 4 for small dimensions (p ≤ 50)

which means that its out-of-sample risk is 5 times as large as the real risk. This is not ac-

ceptable anymore. In contrast, the bona fide optimal shrinkage estimator converges fast to its

oracle one. The relative loss of the optimal shrinkage estimator is smaller than 0.3.

Figure 8 shows the same dominance in terms of the empirical distribution functions for a

local analysis in the case p = 306. The best approaches are the oracle and the bona fide optimal

shrinkage estimators. Next, the dominating estimator is ranked followed by the traditional one.

The plots also illustrate the fast convergence of the bona fide optimal shrinkage estimator to its

oracle. The local analysis for p = 306 confirms the almost sure convergence (consistence) of the

bona fide optimal shrinkage estimator which is proved in Theorem 2.1. In Figure 8 the relative
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risk of both the bona fide and the oracle optimal shrinkage estimators possesses a very small

variance which vanishes when the dimension p increases. At the same time, the dominating

estimator possesses a significantly larger variance and it is unstable when c is close to one. The

traditional estimator shows a very crucial behavior and it is the worst one among the considered

estimators.

The most interesting situation is observed for c = 1.8 in Figures 7 and 8 which corresponds

to the singular sample covariance matrix Sn. Here, we apply the results from Section 2.2 and 2.3

and take the Moore-Penrose inverse S+
n instead of S−1n . Note that we cannot use the dominating

estimator because it is not applicable for c > 1. The results are still impressing for both

the global and the local regimes. Again, the proposed bona fide optimal shrinkage estimator

converges to its oracle. As a traditional estimator, we take the GMV portfolio constructed by

using the Moore-Penrose inverse S+
n . The traditional estimator possesses a rapidly increasing

average loss and the largest variance. It is not an acceptable estimator also for c > 1. In

contrast, the bona fide optimal shrinkage estimator has a small variance and obeys a stable

behavior even if c > 1.

Further we analyze the behavior of the considered estimators when the asset returns are no

longer normally distributed. In particular it is interesting to study how strong is the impact

of heavy tails on the estimators derived in the paper. For this reason, the t-distribution with

5 degrees of freedom is used next in our simulation study. Recently, authors have mentioned

that 5 degrees of freedom seems to be a suitable choice in practice (see, Venables and Ripley

(2002)).

Figures 9 and 10 above here

In Figures 9 and 10 we present the results for the t-distributed asset returns with 5 degrees of

freedom. The structure of the comparison study is the same as in case of normally distributed

data. In general, the behavior observed in Figures 9 and 10 does not differ significantly from

those obtained for the normal distribution. The best estimator is, as usual, the proposed

shrinkage estimator. The optimal shrinkage estimator dominates clearly other competitors

over all c ∈ {0.1, 0.5, 0.9, 1.8}. It is noted that the convergence rate of the bona fide optimal

shrinkage estimator to its oracle is not effected by the presence of heavy tails. A similar

asymptotic relative loss behavior for the optimal shrinkage estimator is established, i.e., the

average relative loss is asymptotically constant and it is smaller than 0.5. The traditional

estimator possesses the worst behavior over all c and p.

3.2 Population covariance matrix with unbounded spectrum

In this subsection we assume that the largest eigenvalue of the population covariance matrix Σn

increases as O(p) when p→∞. Thus, the following structure of Σn is considered here, namely

1/9 of eigenvalues equal to 2, 4/9 equal to 5, (4/9p− 1) equal to 10 and the last eigenvalue is
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equal to p.

Note that this structure corresponds to the case when a factor structure on the asset returns

is imposed. The factor model can reduce significantly the number of dimensions so that the

estimators do not suffer from the ”curse of dimensionality” anymore (see, e.g., Fan et al. (2013)).

Figures 11 to 14 above here

In Figures 11 to 14 we present the behavior of the estimators considered in the paper in case

of a covariance matrix with unbounded spectrum. It is remarkable to note that the results are

not very different from those obtained in case of a covariance matrix Σn with bounded spectrum.

The only difference is a somewhat greater variance of the estimators. On the other hand, the

dominance behavior as well as the convergence rate of the bona fide optimal shrinkage estimator

to its oracle is not effected by the largest eigenvalue of the population covariance matrix. This

means that the proposed estimator is still applicable if the asset returns follow a factor model.

Even more, it does not lose its efficiency also in case c > 1.

At the end, we note that, for the sake of interest, we have also simulated the t-distribution

with 3 degrees of freedom for both the bounded and the unbounded spectra. This change effects

only the convergence rate but not the dominance behavior. In our theoretical framework we

require the existence of the 4th moment but the simulation study shows that this assumption

can be relaxed or conjectured to be relaxed. As a result, the proposed optimal shrinkage

procedure assures the efficiency in many important practical cases and, thus, can be applied

in many real life situations. Nevertheless, the empirical back-testing is still needed in order to

check the behavior of the derived estimator for the GMV portfolio weights on a real data set.

This is done is the next section.

4 Empirical Study

In this section, we apply the proposed optimal shrinkage estimator for the GMV portfolio (2.29)

to real data which consist of daily returns on the 417 assets listed in the S&P 500 (Standard &

Poor’s 500) index and traded during the period from 22.04.2013 to 19.03.2014. It corresponds to

the horizon of T = 230 trading days. The S&P 500 index is based on the market capitalizations

of 500 large companies having common stock listed on the NASDAQ.

In this empirical study we compare the performance of the derived optimal shrinkage esti-

mator for the GMV portfolio weights given by (2.29) with the traditional estimator and the

dominating estimator suggested by Frahm and Memmel (2010). The comparison is based a

procedure which is similar to the rolling-window approach proposed by DeMiguel et al. (2009).

In particular, we randomly pick up a portfolio of dimension p = 54 from all 417 portfolios and

estimate the portfolio weights for the given estimation window of the length n < T . We repeat

this rolling-window procedure for the next step by including data of the next day and dropping
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out the data of the last day until the end of the data set is reached. The estimation window n

is chosen such that the concentration ratio c = p/n lies in the set {0.5, 0.9, 1.5, 2}.
In order to compare the performance of the estimators we consider the out-of-sample variance

and the out-of-sample Sharpe ratio. Let ŵt be an estimator for the GMV portfolio which is

based on the window with last observation at time t and let rt+1 be the vector of the asset

returns for the next period t+1. Then the out-of-sample variance and the out-of-sample Sharpe

ratio are calculated by

σ̂2
out =

1

T − n− 1

T−1∑
t=n

(ŵ′trt+1 − µ̂t)2 and ŜR =
µ̂t
σ̂out

with µ̂t =
1

T − n

T−1∑
t=n

ŵ′trt+1 . (4.1)

In order to measure the statistical significance we sample randomly 1000 different portfolios

and calculate the e.c.d. functions of their out-of-sample variances and the corresponding out-

of-sample Sharpe ratios. The best strategy is chosen similarly to the stochastic dominance

principle, i.e. we look for the strategy whose e.c.d.f. stochastically dominates the other ones.

However, the dominance is defined differently in case of the out-of-sample variance and the out-

of-sample Sharpe ratio. For the out-of-sample variance, the e.c.d.f. of the best strategy should

lie above the e.c.d. functions of the other competitors, i.e. larger values of the out-of-sample

variance can take place with smaller probability. In contrast, criteria based on the out-of-

sample Sharpe ratio prefers the strategy whose e.c.d.f. lies below the other e.c.d. functions. In

this case, the GMV portfolio constructed using the corresponding estimator would possess the

highest out-of-sample Sharpe ratio.

Figures 15 and 16 above here

In Figures 15 and 16 the e.c.d. functions of the out-of-sample variance and of the out-of-

sample Sharpe ratio are presented for three estimators of the GMV portfolio, namely for the

optimal shrinkage estimator, the traditional estimator and the dominating estimator suggested

by Frahm and Memmel (2010). Because, the dominating estimator can be constructed only in

case c < 1, we drop it for c = 1.5 and c = 2. In all of the considered cases, we observe a very

good performance of the optimal shrinkage estimator. It overperforms the other estimation

strategies for both considered criteria. The corresponding e.c.d.f. lies above the other e.c.d.

functions in case of the out-of-control variance, whereas it is below the e.c.d. functions of

other competitors in case of the out-of-sample Sharpe ratio. On the second place, we rank the

dominating estimator of Frahm and Memmel (2010) which is always better than the traditional

estimator.

5 Summary

The global minimum variance portfolio plays an important role in investment theory and prac-

tice. This portfolio is widely used as an investment opportunity in both static and dynamic
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optimal portfolio choice problems. Although an explicit analytical expression for the structure

of the GMV portfolio weights is available in literature, the estimation of the GMV portfolio

appears to be a very challenging problem, especially for high-dimensional data.

We deal with this problem in the present paper by deriving a feasible and robust estimator for

the weights of the GMV portfolio when the distribution of the asset returns is not prespecified

and no market structure is imposed. We construct an optimal shrinkage estimator for the GMV

portfolio which is optimal in the sense of minimizing the out-of-sample variance. An analytical

expression for the shrinkage intensity is obtained which appears to be a complicated function

of the data and the parameters of the asset return distribution. We deal with the later problem

by determining an asymptotically equivalent quantity of the shrinkage intensity under high-

dimensional asymptotics. We estimate this asymptotically equivalent function consistently

by applying recent results from random matrix theory. This is achieved under very weak

assumptions imposed on the distribution of the asset returns. Namely, we only require the

existence of the fourth moment, whereas no explicit distributional assumption is imposed.

Moreover, our findings are still valid in both cases c < 1 and c > 1 as well as if the spectrum

of the population covariance matrix is bounded or unbounded. As a result, the suggested

method can be applied to heavy-tailed distributed asset returns as well as to asset returns

whose dynamics can be modeled by a factor model which is a very popular approach in financial

and econometric literature. Finally, using simulated and real data, we compare the optimal

shrinkage estimator for the GMV portfolio with existing ones. The theoretical findings as well

as the results of the Monte Carlo simulations and an empirical study show that the suggested

estimator for the GMV portfolio weights dominates the existing estimators in case c > 0.

6 Appendix

Here the proofs of the theorems are given. First, we point out that for our purposes Sn can be

well approximated by

Sn =
1

n
Σ

1
2
nXn

(
I− 1

n
11′

)
X′nΣ

1
2
n ≈

1

n
Σ

1
2
nXnX

′
nΣ

1
2
n ,

since the matrix
1

n2
Σ

1
2
nXn11′X′nΣ

1
2
n has rank one and, consequently, it does not influence the

asymptotic behavior of the spectrum of the sample covariance matrix (see, Bai and Silverstein

(2010), Theorem A.44).

Next, we present an important lemma which is a special case of Theorem 1 in Rubio and

Mestre (2011).

Lemma 6.1. Assume (A1) and (A2). Let a nonrandom p× p-dimensional matrix Θp possess

a uniformly bounded trace norm (sum of singular values) and let Σn = I. Then it holds that∣∣∣tr (Θp(Sn − zIp)−1
)
− (x(z)− z)−1tr (Θp)

∣∣∣ a.s.−→ 0 for p/n −→ c ∈ (0,+∞) as n→∞ , (6.1)
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where

x(z) =
1

2

(
1− c+ z +

√
(1− c+ z)2 − 4z

)
. (6.2)

Proof of Lemma 6.1: The application of Theorem 1 in Rubio and Mestre (2011) leads to

(6.1) where x(z) is a unique solution in C+ of the following equation

1− x(z)

x(z)
=

c

x(z)− z
. (6.3)

The two solutions of (6.3) are given by

x1,2(z) =
1

2

(
1− c+ z ±

√
(1− c+ z)2 − 4z

)
. (6.4)

In order to decide which of the two solutions is feasible, we note that x1,2(z) is the Stieltjes

transform with a positive imaginary part. Thus, without loss of generality, we can take z =

1 + c+ i2
√
c and get

Im{x1,2(z)} = Im

{
1

2

(
2 + i2

√
c± i2

√
2c
)}

= Im
{

1 + i
√
c(1±

√
2)
}

=
√
c
(

1±
√

2
)
, (6.5)

which is positive only if the sign ” + ” is chosen. Hence, the solution is given by

x(z) =
1

2

(
1− c+ z +

√
(1− c+ z)2 − 4z

)
. (6.6)

Lemma 6.1 is proved.

Rubio and Mestre (2011) studied the asymptotics of the functionals tr(Θ(Sn − zI)−1) for a

deterministic matrix Θ with bounded trace norm at infinity. Note that the results of Theorem

1 of Rubio and Mestre (2011) also hold under the weaker assumption of the existence of the

4th moments. This statement is obtained by using Lemma B.26 of Bai and Silverstein (2010)

on quadratic forms which we cite for presentation purposes as Lemma 6.2 below.

Lemma 6.2. [Lemma B.26, Bai and Silverstein (2010)] Let A be a p× p nonrandom

matrix and let X = (x1, . . . , xp)
′ be a random vector with independent entries. Assume that

E(xi) = 0, E|xi|2 = 1, and E|xi|l ≤ νl. Then, for any k ≥ 1,

E|X′AX− tr(A)|k ≤ Ck
(
(ν4tr(AA′))

k
2 + ν2ktr(AA′)

k
2

)
, (6.7)

where Ck is some constant which depends only on k.

In order to obtain the statement of Theorem 1 of Rubio and Mestre (2011) under the

weaker assumption imposed on the moments, we replace Lemma 2 of Rubio and Mestre (2011)

by Lemma 6.2 in the case of k ≥ 1. Note that Lemma 2 of Rubio and Mestre (2011) holds for

k > 1 while Lemma 6.2 is a more stronger result because it holds also in the case k = 1. This

is the main trick which implies that Lemma 3 of Rubio and Mestre (2011) holds also for k ≥ 1

(instead of k > 1). Lemma 4 of Rubio and Mestre (2011) has already been proved under the
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assumption that there exist 4 + ε moments. The last step is the application of Lemma 1, 2 and

3 of Rubio and Mestre (2011) with k ≥ 1. Finally, it can be easily checked that the further

steps of the proof of Theorem 1 of Rubio and Mestre (2011) hold under the existence of 4 + ε

moments. In order to save space we leave the detailed technical proof of this assertion to the

reader.

Proof of Theorem 2.1: Let us recall the optimal shrinkage intensity expressed as

α∗n =

b′nΣnbn −
1′S−1n Σnbn

1′S−1n 1

1′S−1n ΣnS
−1
n 1

(1′S−1n 1)2
− 2

1′S−1n Σnbn
1′S−1n 1

+ b′nΣnbn

. (6.8)

It holds that

1′S−1n 1 = lim
z→0+

tr
[
(Sn − zΣn)−111′

]
= lim

z→0+
tr

[(
1

n
XnX

′
n − zI

)−1
Σ
− 1

2
n 11′Σ

− 1
2

n

]
(6.9)

1′S−1n Σnbn = lim
z→0+

tr
[
(Sn − zΣn)−1Σnbn1

′
]

= lim
z→0+

tr

[(
1

n
XnX

′
n − zI

)−1
Σ

1
2
nbn1

′Σ
− 1

2
n

]
(6.10)

1′S−1n ΣnS
−1
n 1 =

∂

∂z
tr

[(
1

n
Sn − zΣn

)−1
11′

]∣∣∣∣∣
z=0

=
∂

∂z
tr

[(
1

n
XnX

′
n − zI

)−1
Σ
− 1

2
n 11′Σ

− 1
2

n

]∣∣∣∣∣
z=0

. (6.11)

Let

ξn(z) = tr

[(
1

n
XnX

′
n − zI

)−1
Θξ

]
with Θξ = Σ

− 1
2

n 11′Σ
− 1

2
n

and

ζn(z) = tr

[(
1

n
XnX

′
n − zI

)−1
Θζ

]
with Θζ = Σ

1
2
nbn1

′Σ
− 1

2
n .

Both the matrices Θξ and Θζ possess a bounded trace norm since

‖Θξ‖tr = 1′Σ−1n 1 ≤M−1
l

and

‖Θζ‖tr =
√

1′Σ−1n 1
√

b′nΣnbn ≤
√
Mu

Ml

.

Then, for all z ∈ C+, we get from Lemma 6.1

|ξn(z)− (x(z)− z)−1tr [Θξ] | = |ξn(z)− (x(z)− z)−11′Σ−1n 1| a.s.−→ 0 for p/n→ c > 0 as n→∞
(6.12)
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and

|ζn(z)−(x(z)−z)−1tr [Θζ ] | =
∣∣∣ζn(z)− (x(z)− z)−1

∣∣∣ a.s.−→ 0 for p/n→ c > 0 as n→∞ , (6.13)

where x(z) is given in (6.2). Using that lim
z→0+

(x(z)− z)−1 = (1− c)−1 and combining (6.12) and

(6.13) with (6.9) and (6.10) leads to

|1′S−1n 1− (1− c)−11′Σ−1n 1| a.s.−→ 0 for p/n→ c > 0 as n→∞ (6.14)

and ∣∣∣1′S−1n Σnbn − (1− c)−1
∣∣∣ a.s.−→ 0 for p/n→ c > 0 as n→∞ . (6.15)

Finally, using the equality

∂

∂z

1

x(z)− z

∣∣∣∣∣
z=0

= − x′(z)− 1

(x(z)− z)2

∣∣∣∣∣
z=0

= −

1

2

(
1− 1+c−z√

(1−c+z)2−4z

)
− 1

(x(z)− z)2

∣∣∣∣∣∣∣∣∣
z=0

=
1

(1− c)3
, (6.16)

we get ∣∣∣∣∣ξ′n(0)− ∂

∂z
(x(z)− z)−1

∣∣∣∣∣
z=0

tr [Θξ]

∣∣∣∣∣ = |ξn(z)− (1− c)−31′Σ−1n 1| a.s.−→ 0 (6.17)

for p/n→ c > 0 as n→∞. Consequently,

|1′S−1n ΣnS
−1
n 1− (1− c)−31′Σ−1n 1| a.s.−→ 0 for p/n→ c > 0 as n→∞ . (6.18)

The application of (6.14) and (6.18) leads to

σ2
S

a.s.−→ (1− c)−31′Σ−1n 1

(1− c)−2(1′Σ−1n 1)2
= (1− c)−1σ2

GMV for p/n→ c > 0 as n→∞ ,

whereas additionally using (6.15) we get α∗n
a.s.−→ α∗ with

α∗ =

b′nΣnbn −
(1− c)−1

(1− c)−11′Σ−1n 1

(1− c)−1σ2
GMV − 2

(1− c)−1

(1− c)−11′Σ−1n 1
+ b′nΣnbn

=
(1− c)Rb

c+ (1− c)Rb

for p/n→ c > 0 as n→∞. The quantity Rb is the limit of Rbn which exists due to assumption

σ2
bn
≤Mu and σ2

GMV ≥Ml. These two equalities complete the proof of Theorem 2.1.

Proof of Theorem 2.2: In case of c > 1, the optimal shrinkage intensity is given by

α+
n =

b′nΣnbn −
1′S∗nΣnbn

1′S∗n1
1′S∗nΣnS

∗
n1

(1′S∗n1)2
− 2

1′S∗nΣnbn
1′S∗n1

+ b′nΣnbn

. (6.19)
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Let Θξ = Σ
− 1

2
n 11′Σ

− 1
2

n and Θζ = Σ
1
2
nbn1

′Σ
− 1

2
n . Using the definition of S∗n given in (2.16) and

the equality (XnX
′
n)+ = Xn (X′nXn)−2 X′n, we get

1′S∗n1 = tr
[
(XnX

′
n)

+
Θξ

]
= tr

[
Xn (X′nXn)

−2
X′nΘξ

]
=

∂

∂z
tr
[
Xn (X′nXn − zIn)

−1
X′nΘξ

]∣∣∣∣∣
z=0

1′S∗nΣnbn = tr
[
(XnX

′
n)

+
Θζ

]
= tr

[
Xn (X′nXn)

−2
X′nΘζ

]
=

∂

∂z
tr
[
Xn (X′nXn − zIn)

−1
X′nΘζ

]∣∣∣∣∣
z=0

1′S∗nΣnS
∗
n1 = tr

[(
(XnX

′
n)

+
)−2

Θζ

]
= tr

[
Xn (X′nXn)

−3
X′nΘξ

]
=

1

2

∂2

∂z2
tr
[
Xn (X′nXn − zIn)

−1
X′nΘξ

]∣∣∣∣∣
z=0

.

The application of the Woodbury formula (matrix inversion lemma, see, e.g., Horn and

Johnson (1985))

Xn (X′nXn − zIn)
−1

X′n = Ip + z (XnX
′
n − zIp)

−1
(6.20)

leads to

1′S∗n1 =
∂

∂z
ztr

[
(XnX

′
n − zIp)

−1
Θξ

]∣∣∣∣∣
z=0

1′S∗nΣnbn =
∂

∂z
ztr

[
(XnX

′
n − zIp)

−1
Θζ

]∣∣∣∣∣
z=0

1′S∗nΣnS
∗
n1 =

1

2

∂2

∂z2
ztr

[
(XnX

′
n − zIp)

−1
Θξ

]∣∣∣∣∣
z=0

.

From the proof of Theorem 2.1 we know that both the matrices Θξ and Θζ possess the

bounded trace norm. Then the application of Lemma 6.1 leads to

1′S∗n1
a.s.−→ ∂

∂z

z

x(z)− z

∣∣∣∣∣
z=0

tr [Θξ] =
∂

∂z

z

x(z)− z

∣∣∣∣∣
z=0

1′Σ−1n 1 (6.21)

1′S∗nΣnbn
a.s.−→ ∂

∂z

z

x(z)− z

∣∣∣∣∣
z=0

tr [Θζ ] =
∂

∂z

z

x(z)− z

∣∣∣∣∣
z=0

(6.22)

1′S∗nΣnS
∗
n1

a.s.−→ 1

2

∂2

∂z2
z

x(z)− z

∣∣∣∣∣
z=0

tr [Θξ] =
1

2

∂2

∂z2
z

x(z)− z

∣∣∣∣∣
z=0

1′Σ−1n 1 (6.23)

for p/n→ c > 1 as n→∞, where x(z) is given in (6.2).

Let us make the following notations

θ(z) =
z

x(z)− z
and φ(z) =

x(z)− zx′(z)

z2
. (6.24)

Then the first and the second derivatives of θ(z) are given by

θ′(z) = θ2(z)φ(z) and θ
′′
(z) = 2θ(z)θ′(z)φ(z) + θ2(z)φ′(z) . (6.25)
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Using L’Hopital’s rule, we get

θ(0) = lim
z→0+

θ(z) = lim
z→0+

z

x(z)− z
= lim

z→0+

1

(x′(z)− 1)
=

1

1

2

(
1− 1 + c

|1− c|

)
− 1

= −c− 1

c
,

(6.26)

φ(0) = lim
z→0+

φ(z) = lim
z→0+

x(z)− zx′(z)

z2
= −1

2
lim
z→0+

x
′′
(z) = −1

2
lim
z→0+

−2c

((1− c+ z)2 − 4z)3/2
=

c

(c− 1)3
,

(6.27)

lim
z→0+

φ′(z) = − lim
z→0+

2(x(z)− zx′(z)) + z2x
′′
(z)

z2

= − lim
z→0+

2φ(z) + x
′′
(z)

z
= − lim

z→0+
(2φ′(z) + x

′′′
(z)) ,

which implies

φ′(0) = lim
z→0+

φ′(z) = −1

3
lim
z→0+

x
′′′

(z)) == −1

3
lim
z→0+

6c(z − c− 1)

((1− c+ z)2 − 4z)5/2
=

2c(c+ 1)

(c− 1)5
. (6.28)

Combining (6.25), (6.26), (6.27), and (6.28), we get

θ
′
(0) = lim

z→0+
θ
′
(0) = θ2(0)φ(0) =

1

c(c− 1)
, (6.29)

θ
′′
(0) = lim

z→0+
θ
′′
(z) = θ3(0)φ2(0) + θ2(0)φ′(0) =

2

(c− 1)3
. (6.30)

Finally, the application of the last two equalities together with (6.21), (6.22), and (6.23),

leads to

α+
n

a.s.−→ α+ for
p

n
→ c ∈ (1,+∞) as n→∞ ,

where

α+ =

b′nΣnbn −
θ
′
(0)

θ′(0)1′Σ−1n 1

θ
′′
(0)1′Σ−1n 1

(θ′(0)1′Σ−1n 1)2
− 2

θ
′
(0)

θ′(0)1′Σ−1n 1
+ b′nΣnbn

=
(c− 1)Rb

(c− 1)2 + c+ (c− 1)Rb

with Rbn → Rb

and

σ2
S∗

a.s.−→ θ
′′
(0)1′Σ−1n 1

(θ′(0)1′Σ−1n 1)2
=

c2

c− 1
σ2
GMV for

p

n
→ c ∈ (1,+∞) as n→∞ . (6.31)

This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. First of all, we note that the asymptotic distribution of the quantity

1′S−1n 1 has already been derived in Theorem 2.1. From (6.14) we get that a consistent estimator

of 1′Σ−1n 1 is given by

̂1′Σ−1n 1 = (1− p/n)1′S−1n 1 for c < 1, (6.32)̂1′Σ−1n 1 = p/n(p/n− 1)1′S∗n1 for c > 1 . (6.33)
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In order to complete the proof of Theorem 2.3 we need the following lemma of Rubio and

Mestre (2011)

Lemma 6.3. Let {ξ1, . . . , ξn} be a sequence of i.i.d. real random vectors with zero mean and

unit variance and with uniformly bounded 4 + ε moments for some ε > 0 and let Cn be some

nonrandom matrix with bounded trace norm at infinity. Then it holds that∣∣∣∣∣ 1n
n∑
i=1

ξ′iCnξi − tr(Cn)

∣∣∣∣∣ a.s.−→ 0 for p/n −→ c ∈ (0,+∞) as n→∞ . (6.34)

Next, we rewrite b′nSnbn in the following way

b′nSnbn =
1

n

n∑
i=1

x′iΣ
1
2
nbnb

′
nΣ

1
2
nxi =

1

n

n∑
i=1

x′iRnxi (6.35)

where xi is the ith column of the matrix Xn. For the application of Lemma 6.3 we have to

show that the matrix Rn has a bounded trace norm at infinity. It holds that

||Rn||tr = b′nΣnbn ≤Mu (6.36)

and, hence, the boundedness of the trace norm of the matrix Rn follows directly from the

assumption b′nΣnbn ≤Mu. The application of Lemma 6.3 leads to

|b′nSnbn − b′nΣnbn|
a.s.−→ 0 for p/n −→ c ∈ (0, 1) as n→∞ , (6.37)

which together with (6.32) implies the statement of Theorem 2.3.
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Asymptotic behavior of the sample and optimal shrinkage estimators
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Figure 1: Asymptotic relative loss of the traditional and the oracle shrinkage estimators as a

function of the concentration ratio p/n = c < 1.
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Figure 2: Asymptotic behavior of the optimal shrinkage intensity α∗ as a function of the

concentration ratio p/n = c < 1.
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Asymptotic behavior of the sample and optimal shrinkage estimators
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Figure 3: Asymptotic relative loss of the oracle traditional estimator with generalized inverse

(2.18) and of the oracle optimal shrinkage estimator as a function of the concentration ratio

p/n = c > 1.
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Figure 4: Asymptotic behavior of the optimal shrinkage intensity α+ as a function of the

concentration ratio p/n = c > 1.
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Oracle and Bona Fide Estimators
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Figure 5: Oracle and bona fide traditional and optimal shrinkage estimators of the GMV

portfolio for different values of p/n = c > 0.

30



●
●

●

●
●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0.00.10.20.30.40.50.6

G
lo

ba
l b

eh
av

io
r, 

c 
=

 1
.8

 

M
at

rix
 d

im
en

si
on

 p

Optimal shrinkage intensity

●

●
●

●
●

●

●
●

●
●

M
oo

re
−

P
en

ro
se

 in
ve

rs
e

S
ur

ro
ga

te
 in

ve
rs

e

●
●

●
●

●
●

●
●

●

●

0
50

10
0

15
0

20
0

25
0

0.00.10.20.30.40.50.6

G
lo

ba
l b

eh
av

io
r, 

c 
=

 2
.2

5 

M
at

rix
 d

im
en

si
on

 p

Optimal shrinkage intensity

●

●
●

●
●

●

●
●

●
●

M
oo

re
−

P
en

ro
se

 in
ve

rs
e

S
ur

ro
ga

te
 in

ve
rs

e

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.10.20.30.40.50.6

G
lo

ba
l b

eh
av

io
r, 

c 
=

 3
 

M
at

rix
 d

im
en

si
on

 p

Optimal shrinkage intensity

●

●
●

●
●

●

●
●

●
●

M
oo

re
−

P
en

ro
se

 in
ve

rs
e

S
ur

ro
ga

te
 in

ve
rs

e

●

●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.10.20.30.40.50.6

G
lo

ba
l b

eh
av

io
r, 

c 
=

 5
 

M
at

rix
 d

im
en

si
on

 p

Optimal shrinkage intensity

●

●

●
●

●

●

●
●

●
●

M
oo

re
−

P
en

ro
se

 in
ve

rs
e

S
ur

ro
ga

te
 in

ve
rs

e

F
ig

u
re

6:
S
im

u
la

ti
on

re
su

lt
s

on
th

e
ac

cu
ra

cy
of

ap
p
ro

x
im

at
io

n
fo

r
n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a
in

ca
se

of
th

e
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=

{1
.8
,2
.5

5,
3,

5}
,

10
00

re
p

et
it

io
n
s)

.

31



●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.81.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.1

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.5

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.9

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 1
.8

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge

F
ig

u
re

7:
S
im

u
la

ti
on

re
su

lt
s

fo
r

n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a
in

ca
se

of
th

e
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

32



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
1 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0.
0

0.
5

1.
0

1.
5

2.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
5 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

12
14

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
9 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

1.
8 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function
Tr

ad
iti

on
al

B
on

a 
F

id
e 

S
hr

in
ka

ge
O

ra
cl

e 
S

hr
in

ka
ge

F
ig

u
re

8:
S
im

u
la

ti
on

re
su

lt
s

fo
r

n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a
in

ca
se

of
th

e
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

33



●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.81.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.1

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.5

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●

●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.9

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 1
.8

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge

F
ig

u
re

9:
S
im

u
la

ti
on

re
su

lt
s

fo
r
t-

d
is

tr
ib

u
te

d
d
at

a
w

it
h

5
d
eg

re
es

of
fr

ee
d
om

in
ca

se
of

th
e

b
ou

n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

34



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
1 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0.
0

0.
5

1.
0

1.
5

2.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
5 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

12
14

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
9 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

1.
8 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function
Tr

ad
iti

on
al

B
on

a 
F

id
e 

S
hr

in
ka

ge
O

ra
cl

e 
S

hr
in

ka
ge

F
ig

u
re

10
:

S
im

u
la

ti
on

re
su

lt
s

fo
r
t-

d
is

tr
ib

u
te

d
d
at

a
w

it
h

5
d
eg

re
es

of
fr

ee
d
om

in
ca

se
of

th
e

b
ou

n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

35



●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.81.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.1

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.5

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●

●
●

●
●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.9

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 1
.8

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge

F
ig

u
re

11
:

S
im

u
la

ti
on

re
su

lt
s

fo
r

n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a
in

ca
se

of
th

e
u
n
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

36



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
1 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0.
0

0.
5

1.
0

1.
5

2.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
5 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

12
14

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
9 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

1.
8 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function
Tr

ad
iti

on
al

B
on

a 
F

id
e 

S
hr

in
ka

ge
O

ra
cl

e 
S

hr
in

ka
ge

F
ig

u
re

12
:

S
im

u
la

ti
on

re
su

lt
s

fo
r

n
or

m
al

ly
d
is

tr
ib

u
te

d
d
at

a
in

ca
se

of
th

e
u
n
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

37



●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.81.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.1

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0.00.51.01.52.0

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.5

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●

●

●
●

●
●

●
●

●
●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 0
.9

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

D
om

in
at

in
g

O
ra

cl
e 

S
hr

in
ka

ge

●
●

●
●

●

●
●

●
●

●

0
50

10
0

15
0

20
0

25
0

0246810

G
lo

ba
l b

eh
av

io
r, 

c 
=

 1
.8

 

M
at

rix
 d

im
en

si
on

 p

Average Relative Loss

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge

F
ig

u
re

13
:

S
im

u
la

ti
on

re
su

lt
s

fo
r
t-

d
is

tr
ib

u
te

d
d
at

a
w

it
h

5
d
eg

re
es

of
fr

ee
d
om

in
ca

se
of

th
e

u
n
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

38



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
1 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0.
0

0.
5

1.
0

1.
5

2.
0

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
5 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

12
14

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

0.
9 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function

Tr
ad

iti
on

al
B

on
a 

F
id

e 
S

hr
in

ka
ge

O
ra

cl
e 

S
hr

in
ka

ge
D

om
in

at
in

g

0
2

4
6

8
10

0.00.20.40.60.81.0

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n 

F
un

ct
io

ns
 fo

r 
p=

30
6,

 c
=

1.
8 

R
el

at
iv

e 
Lo

ss

Empirical Cumulative Distribution Function
Tr

ad
iti

on
al

B
on

a 
F

id
e 

S
hr

in
ka

ge
O

ra
cl

e 
S

hr
in

ka
ge

F
ig

u
re

14
:

S
im

u
la

ti
on

re
su

lt
s

fo
r
t-

d
is

tr
ib

u
te

d
d
at

a
w

it
h

5
d
eg

re
es

of
fr

ee
d
om

in
ca

se
of

th
e

u
n
b

ou
n
d
ed

sp
ec

tr
u
m

(c
=
{0
.1
,0
.5
,0
.9
,1
.8
},

10
00

re
p

et
it

io
n
s)

.

39



0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

va
ria

nc
e,

 c
 =

 0
.5

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
D

om
in

at
in

g
Tr

ad
iti

on
al

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

va
ria

nc
e,

 c
 =

 0
.9

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
D

om
in

at
in

g
Tr

ad
iti

on
al

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

va
ria

nc
e,

 c
 =

 1
.5

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
Tr

ad
iti

on
al

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

va
ria

nc
e,

 c
 =

 2
 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
Tr

ad
iti

on
al

F
ig

u
re

15
:

E
m

p
ir

ic
al

d
is

tr
ib

u
ti

on
fu

n
ct

io
n

of
th

e
ou

t-
of

-s
am

p
le

va
ri

an
ce

fo
r

th
e

b
on

a
fi
d
e

op
ti

m
al

sh
ri

n
ka

ge
es

ti
m

at
or

fo
r

th
e

G
M

V
p

or
tf

ol
io

to
ge

th
er

w
it

h
th

e
d
om

in
at

in
g

an
d

th
e

tr
ad

it
io

n
al

es
ti

m
at

or
s.

40



−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

S
ha

rp
e 

ra
tio

, c
 =

 0
.5

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
D

om
in

at
in

g
Tr

ad
iti

on
al

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

S
ha

rp
e 

ra
tio

, c
 =

 0
.9

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
D

om
in

at
in

g
Tr

ad
iti

on
al

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

S
ha

rp
e 

ra
tio

, c
 =

 1
.5

 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
Tr

ad
iti

on
al

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.00.20.40.60.81.0

E
C

D
F

 o
f o

ut
−

of
−

sa
m

pl
e 

S
ha

rp
e 

ra
tio

, c
 =

 2
 

x

Fn(x)

B
on

a 
F

id
e 

S
hr

in
ka

ge
Tr

ad
iti

on
al

F
ig

u
re

16
:

E
m

p
ir

ic
al

d
is

tr
ib

u
ti

on
fu

n
ct

io
n

of
th

e
ou

t-
of

-s
am

p
le

S
h
ar

p
e

ra
ti

o
fo

r
th

e
b

on
a

fi
d
e

op
ti

m
al

sh
ri

n
ka

ge
es

ti
m

at
or

fo
r

th
e

G
M

V

p
or

tf
ol

io
to

ge
th

er
w

it
h

th
e

d
om

in
at

in
g

an
d

th
e

tr
ad

it
io

n
al

es
ti

m
at

or
s.

41


	Introduction
	Optimal shrinkage estimator for the GMV portfolio
	Oracle estimator. Case c<1
	Oracle estimator. Case c>1
	Estimation of unknown parameters. Bona fide estimator
	Choice of the target portfolio

	Simulation study
	Population covariance matrix with bounded spectrum
	Population covariance matrix with unbounded spectrum

	Empirical Study
	Summary
	Appendix

