

A network epidemic model with preventive rewiring: comparative analysis of the initial phase

Tom Britton, David Juher and Joan Saldaña

December 22, 2015

Abstract

This paper is concerned with stochastic SIR and SEIR epidemic models on random networks in which individuals may rewire away from infected individuals at some rate ω , so-called preventive rewiring. The models are denoted SIR- ω and SEIR- ω , and we focus attention on the early stages of an outbreak, where we derive expression for the basic reproduction number R_0 and the expected degree of the infectious nodes $E(D_I)$ using two different approximation approaches. The first approach approximates the early spread of an epidemic by a branching process, whereas the second one uses pair approximation. The expressions are compared with the corresponding empirical means obtained from stochastic simulations of $SIR-\omega$ and $SEIR-\omega$ epidemics on Poisson and scale-free networks. For $SIR-\omega$, and the SEIR- ω case without rewiring of exposed nodes, both approaches predict the same epidemic threshold and the same $E(D_I)$, the latter being very close to the observed mean degree $\overline{D_I}$ in simulated epidemics over Poisson networks. Above the epidemic threshold, pairwise models overestimate the value of R_0 obtained from the simulations, which turns out to be very close to the one predicted by the branching process approximation. For SEIR- ω where exposed individuals also rewire (perhaps unaware of being infected), the two approaches give different epidemic thresholds, with the branching process approximation being more in agreement with simulations.

Keywords: Network epidemic models, preventive rewiring, branching process, pair approximation.

1 Introduction

Interactions among individuals in a population can be described by networks of whocontacts-whom. Studies of contact networks in sexually transmitted diseases have long revealed a high variability in the number of contacts per individual and highlighted the importance of those individuals described as "super-spreaders" for the onset of an epidemic (1; 20). Similar conclusions about the importance of super-spread events were drawn