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Abstract

We provide a simple frailty argument that produces the Gompertz-
Makeham mortality law as the population hazard rate under the as-
sumption of proportional frailty given a common exponential hazard
rate. Further, based on the result for the Gompertz-Makeham law a
heuristic argument provides a slight change of proof which immedi-
ately produces a version of Perks mortality law. Moreover, we give
conditions for which functional forms of the baseline hazard that will
yield proper frailty distributions given that we want to retrieve a cer-
tain overall population hazard within the proportional frailty frame-
work.
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1 Main Results

The main result concerns the so-called Gompertz-Makeham mortality law
proposed by William Makeham as an extension to the Gompertz law pro-
posed by Benjamin Gompertz. This mortality law is one of a number of
standard mortality models used in demographics and actuarial science in
countries that have the tradition of modelling mortality in continuous time.

The Gompertz-Makeham mortality law, h(t), expressed as a hazard rate
is given by

har(t) = a+ be, a,b,c >0, (1)

and the standard Gompertz law is obtained by setting a = 0, see e.g. [0, Eq.
(3.9.36)]. Note that the formulation of the Gompertz-Makeham law in (1)) is
in terms of e, whereas the original formulation is in terms of ¢*. We have
chosen to use the above formulation for convenience.

In the present note we will make use of known relations between pop-
ulation hazard rates (or laws) and the concept of proportional frailty. We
will now give a brief summary of notation and results needed to prove our
main results stated below: The population hazard rate h(t) is related to the
(absolutely continuous) life time distribution 7" via the following relations:

S(T > 1) = expf— [ "h(w)du} = exp{—H(1)}, @)

where S(t) is the survival function of T, see e.g. [I, Ch. 1.1.2]. The con-
cept of proportional frailty given a common baseline hazard «(t) and frailty
distribution Z is then given by

h(t1Z) = a(t)Z. 3)
and
S(t2) = exp{—Z/otoz(s)ds} — exp{—ZA(t)), (4)
which yields the total population survival function
S(t) == E[S(t|2)] = L2(A({1)), (5)

where L7(t) is the Laplace transform of Z, see e.g. [1, Ch. 6.2.1].

Given the above together with that the Gompertz-Makeham law is a
generalisation of the Gompertz law, one can ask if it is possible to describe
the Gompertz-Makeham law by using a simple Gompertz hazard common to
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all individuals and adding individual frailty. The answer is affirmative and
the main result is as follows:

Proposition 1. The Gompertz-Makeham mortality law defined by the hazard
rate in can be expressed as the population hazard when all individuals
are following a common baseline hazard rate a(t) = exp{ct} mized with an
individual proportional frailty Z given by

Z:=X+Y,

where X ~ T'(a/e,1/c¢) in terms of rate, i.e. E[X] = a and Var(X) = ac, and
Y ~ §(b) (degenerate distribution).

Remark: The distribution of Z can be seen as a translation of a I'-distribution.

Note that Proposition 1. tells us that we can generate a Gompertz-
Makeham law at population level when each individual follows a common
baseline hazard rate e combined with individual frailty which follows a cer-
tain translated I'-distribution. One can also note that the special case with
the Gompertz law, which corresponds to that a = 0, gives us a constant (de-
generate) frailty distribution corresponding to a single heterogeneous popu-
lation. This is perhaps not surprising since the baseline hazard e is a special
case within the Gompertz family.

Other results concerning frailty that relate to the Gompertz-Makeham
law are e.g. [3], [2] and [4] and [5] and the references therein.

Another mortality law to which the Gompertz-Makeham law is a special
case is Perks law defined as

vel” 4+~
hell) = Syt

(6)

where (3,d,v,v > 0, see e.g. [0l Eq. (3.9.41)]. A slight change of proof of
Proposition 1. gives us the following corollary which is a version of Perks
law:

Corollary 1. The following version of Perks law

A

hp/(t) = 5V(m

+ (e, (7)

can be expressed as the population hazard when all individuals are following
a common baseline hazard rate o(t) = dvexp{vt} mized with an individual
proportional frailty Z given by

7:=X+Y,



where X ~ T'(\,0) in terms of rate, i.e. E[X]| = \/0 and Var(X) = \/6? and
Y ~ §(C) (degenerate distribution).

It is straightforward to identify the Gompertz-Makeham law from and
again see that the Gompertz law is a degenerate case of @ The version of
Perks law given in (7)) is similar to the one obtained in [3], but the result of
[3] is mainly focused on the mortality for high ages and does not retrieve the
Gompertz-Makeham law. The same is the case with the approach in e.g. [2]
and [4, [5].

Another comment with respect to @ is that by noting that the denomi-
nator is close to being a primitive function to the numerator, one can see that
it is possible to retrieve yet another version of Perks law. More precisely: let
a(t) = v/ denote the common constant baseline hazard and let the frailty
distribution be given by the following two-point distribution

1 with prob. §/(1 4+ 0),
4 —{ 1+ B5/v 1/(1+6). (8)

Then, by using definition we get the population survival function which
can be differentiated in order to obtain the following version of Perks law:

ve’™ + B +v/6

hee() = =5t

(9)

where 3,v,0 > 0. Consequently, by comparing with we see that we for
some parametrisations now have two representations of the same population
hazard. One can also note that @D can be seen as a mixture of two sub-
populations: one baseline population and one that is extra frail.

More generally, the above results are all versions of the following inverse
problem: given a common baseline hazard and a known overall population
hazard, is it possible to retrieve a proper (probability) frailty distribution?
A partial answer to this question is given by the following result:

Proposition 2. Given a population hazard rate h(t), with corresponding
H(t) = [ h(s)ds, and a common baseline hazard rate a(t), with corresponding
A(t) = [«a(s)ds, the mean and variance of the induced frailty distribution is
given by

W(A~Y(0)
h(ATH(0))a/(AT1(0)) — I (A7(0))a(AH(0))

(a(A=H0)))? ’

Var(Z) = (11)



where

o/ (A7H0)) = o' (t)|=a-1(0)
and

W(ATH0) = 1 (t)]i=a-10),
given that A~ (t) eists.

From and it is possible to deduce which forms of baseline hazard
rates a(t) that will yield a non-degenerate frailty distribution. As an example
it follows that «(t) = « can not generate a proper Gompertz-Makeham law.

2 Proofs

2.1 Proof of Proposition 1
By combining (1)) and (2)) we get
b
S(t) = exp{at + —(e“ —1)}. (12)
c
Now, let the baseline hazard be «a(t) = €”* which gives us that A(t) =

(e’* — 1) /v, which by equating and yields

£a(t) = S(A0) = g o) (1)

and the claimed result follows by setting ¥ = ¢ and noting that

L2 = e exp{-1) (1)
=Lx(t)Ly (1), (15)

where Lx (t) is the Laplace transform of X ~ I'(a/c,1/c) in terms of rate, i.e.
E[X] = a and Var(X) = ac, and Ly (t) is the Laplace transform of Y ~ 4(b)
(degenerate distribution).

2.2 Proof of Corollary 1

The proof of Corollary 1 follows by noting that the overall population hazard
h(t) can be expressed as
_=5®)

) = 5y

(S



due to (2)), combined with the definition of survival function under propor-
tional frailty from when using

a(t) = dvexp{vt},
and that
Z=X+Y,
where X ~ T'(\,0) in terms of rate, i.e. E[X] = \/0 and Var(X) = )\/6?

Y ~ §(C) (degenerate distribution) and re-using the Laplace transforms from
the proof of Proposition 1.

2.3 Proof of Proposition 2
From and we get that

S(t) = Lz(A(t)) = exp{—=H(1)},

which gives us

Lz(t) = S(A™H(t)),

where we assume that A~!(¢) exists. Since Lz(t) := Elexp{—tZ}], it follows
that

E[Z] = —;ilogﬁz( t)|i=o, (16)
and
Var(Z) = 5 log £7(0)]=o. (17)

Hence, we want to differentiate log £L7(t), which gives us

d S’(A‘l(t))%fl‘l(t)
d? (S’(A‘l(t)) LA(1))?
N S"(A” 1(t)(dA (1))
S(A7Y(t))
S'(A L) LAYt
TTUSAw)



Further, from we get that

S'(#) = —h(B)S(H), (20)
S"(t) = —=h(t)S(t) + (h(t))*S(t), (21)
and that
d .1
8%14 (t) = (A1) (22)
? o —d(ATN(t) /(A1) d

w0 Gy T eagpat %

By combining and with (20)-(23) and substituting the resulting
expressions into and yields the desired result.
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