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Abstract

The objective of the present paper is to analyse various features
of the Smith-Wilson method used for discounting under the EU reg-
ulation Solvency II, with special attention to hedging. In particular,
we show that all key rate duration hedges of liabilities beyond the
Last Liquid Point will be peculiar. Moreover, we show that there is
a connection between the occurrence of negative discount factors and
singularities in the convergence criterion used to calibrate the model.
The main tool used for analysing hedges is a novel stochastic repre-
sentation of the Smith-Wilson method. Further, we provide necessary
conditions needed in order to construct similar, but hedgeable, dis-
count curves.
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1 Introduction

In the present paper we analyse the mandated method for calculating the
basic risk-free interest rate under Solvency II, the so-called Smith-Wilson
method. This is an extra- and interpolation method, which is based on a
curve fitting procedure applied to bond prices. The technique is described
in a research note by Smith and Wilson from 2001, see [14]. Since [14] is not
publicly available, we have chosen to follow the notation of the European
Insurance and Occupational Pensions Authority (EIOPA) given in [5]. The
primary aim with the current paper is to present problems with the Smith-
Wilson method, especially with regards to hedging interest rate risk. We
show analytically that the oscillating behaviour observed numerically by [13]
and [12] is always present (Section 4.1).

Our main theoretical tool is a representation of Smith-Wilson discount
factors as expected values of a certain Gaussian process (Section 3). This
representation might be useful if one wants to find methods similar to the
Smith-Wilson one, without some of its deficiencies (Section 6.3).

With notation from [5], we have that the discount factor for tenor t, when
fitted to N prices for zero coupon bonds with tenors u1, . . . , uN , is

P (t) := e−ωt +
N∑
j=1

ζjW (t, uj), t ≥ 0, (1)

where ω := log(1 + UFR), UFR is the so-called Ultimate Forward Rate,

W (t, uj) := e−ω(t+uj)
(
α(t ∧ uj)− e−α(t∨uj) sinh(α(t ∧ uj))

)
, (2)

and α is a parameter determining the rate of convergence to the UFR.
Based on the above it is seen that the ζj’s are obtained by solving the

linear equation system defined by (1) and (2) given by the specific time points
{uj}Nj=1. Another name for uN given in the regulatory framework is the Last
Liquid Point (LLP), i.e. the last tenor of the supporting zero coupon bonds
that are provided by the market.

The UFR is set to 4.2% for the eurozone. In general, a higher value of α
implies faster convergence to UFR. EIOPA [5, Paragraph 164] has decided
that α should be set as small as possible, though with the lower bound 0.05,
while ensuring that the forward intensity f(t) := − d

dt
logP (t) differs at most

0.0001 from ω (defined above) at a certain tenor called the Convergence Point
(CP):

|f(CP)− ω| ≤ 0.0001. (3)

2



This optimisation of α can be troublesome to implement numerically since
the left hand side of (3), seen as a function of α, can have singularities
(Section 4.3).

We also point out below, that having the forward yield to converge to
a fixed UFR gives rise to an inconsistency with how the interest rate stress
scenarios are specified in Solvency II (Section 4.4).

The method can also be applied to coupon bearing bonds, or swaps, but
there is no loss in generality in considering only zero coupon bonds. The
generalisation is particularly simple since a coupon bearing bond can be seen
as a linear combination of zero coupon bonds and the Smith-Wilson method
is linear in bond prices.

We also note that the market data that is used as input for the Smith-
Wilson method should undergo a credit adjustment. This is nothing that
we will specify further, but refer the reader to [5] and merely state that this
adjustment is of no relevance for the results below. If anything, the variable
credit adjustment will make hedging even harder.

2 Notation

For later convenience we will here state relevant abbreviations and notation:

LLP is the Last Liquid Point for where the zero coupon bond market support
ends.

UFR is the Ultimate Forward Rate, i.e. 4.2% for most currencies.

ω is the continuously compounded ultimate forward rate, i.e. ω = log(1+
UFR).

CP is the Convergence Point where the UFR should be reached.

α is the mean reversion parameter that determines the rate of convergence
to the UFR.

u is a vector with tenors of the market zero coupon bonds.

p is a vector of observed zero coupon prices at times to maturities u, that
is p = (p1, . . . , pLLP)′.

r is a vector of observed zero coupon spot rates at times to maturities u,
that is r = (r1, . . . , rLLP)′, i.e. pi := p(r)i = e−riui .
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H(s, t) is the following function:

H(s, t) := α(s ∧ t)− e−α(s∨t) sinh(α(s ∧ t)).

W (s, t) is defined as W (s, t) := e−ω(s+t)H(s, t).

Q is a diagonal matrix with Qii = e−ωui =: qi, i = 1, . . . ,LLP .

H is a matrix with elements Hij = (H(ui, uj))ij.

W is a matrix with elements Wij = (W (ui, uj))ij. Note that W = QHQ.

W (t,u) is defined as W (t,u) := (W (t, u1), . . . ,W (t, uLLP))′. H(t,u) is defined
analogously.

b is the solution to the equation p = q +QHQb (note that this is the
zero coupon case).

sinh [αu′] denotes sinh( · ) applied component-wise to the vector αu′.

P (t) is the discount function at t that surpress the dependence on the market
support, i.e. P (t) := P (t;p(r)) ≡ P (t;p) ≡ P (t; r).

P c is the present value of the cash flow c w.r.t. Smith-Wilson discounting
using P (t), i.e. P c :=

∑
t ctP (t). Hence, P c := P c(t;p(r)) ≡ P c(t;p) ≡

P c(t; r).

3 Representing Smith-Wilson discount factors

The problems with the Smith-Wilson method that will be highlighted in
later sections are centered around problems regarding hedging. In order to
understand this in more detail we have found that the representation of the
method from [1] and [10] will prove useful. We will now give a full account
of how the extrapolated discount factors of the Smith-Wilson method can be
treated as an expected value of a certain stochastic process:

Let {Xt : t ≥ 0} be an Ornstein-Uhlenbeck process with dXt = −αXtdt+
α3/2dBt, where α > 0 is a mean reversion parameter, and X0 ∼ N(0, α2)
independent of B, and let X̄t :=

∫ t
0 Xsds and Yt := e−ωt(1 + X̄t). Given this

we can state the following theorem:

Theorem 1. P (t) = E[Yt|Yui = pui ; i = 1, . . . , N ].
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In other words: the Smith-Wilson bond price function can be interpreted
as the conditional expected value of a certain non-stationary Gaussian pro-
cess. Note that α will govern both mean reversion and volatility.

Since {Yt : t ≥ 0} is a Gaussian process we have that P (t), being a
conditional expected value, is an affine function of p:

P (t) = E[Yt] + Cov[Yt,Y ]Cov[Y ,Y ]−1(p− E[Y ]) =: β0 + β′p, (4)

where β0 and β are functions of t, but not p, if α is considered a fixed
parameter. If α is set by the convergence criterion, β0 and β are functions
of p.

The main aim of this paper is to analytically show problems inherent in
the Smith-Wilson method which will affect hedging of liabilities. From this
perspective it is evident that the re-formulation of the bond price function
according to Equation (4) will prove useful, and in particular the behaviour
of the β’s will be of interest:

Theorem 2. If t > uN , sign(βi) = (−1)N−i for i = 1, . . . , N .

This has peculiar consequences for hedging interest rate risk. The proofs
of Theorem 1 and 2 are given in Section 5.

4 Problems with the Smith-Wilson method

There are a number of problems with the Smith-Wilson method. Some of
these were known early and can be found in [4]. Here we list some of the
problems, and we start with a serious one regarding hedging.

4.1 Hedging

If you have a liability, i.e. a debt, of 1 unit of currency with tenor t, its
market value is that of a default free zero coupon bond with the same tenor,
since if you buy the zero coupon bond you know that you will be able to pay
your debt no matter what happens with interest rates. This is the essence
of market valuation of liabilities and also of hedging. If you have liabilities
with several tenors, you could theoretically match them by buying the zero
coupon bonds with the same tenors.

However, in practise, there are not enough bonds available for longer
tenors. This is one reason for the need of an extrapolation method such as
Smith-Wilson so that liabilities with large tenors are priced with a model
rather than the non-existent market.
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The Smith-Wilson method interpolates market prices for a given set
u1, . . . , uN , i.e. the model price equals the market price for these tenors. Lia-
bilities with tenors in this set could therefore be perfectly hedged by buying
the corresponding amounts of zero coupon bonds.

Liabilities with tenors outside the set of market tenors, have present values
that are truly model based. Consider a liability of 1 unit of currency with
tenor t which has present value P (t) according to the Smith-Wilson method.

By Equation (4), P (t) is affine in the prices of the zero coupon bonds
for tenors u1, . . . , uN . Thus, Equation (4) gives the recipe for a “perfect”
hedge: own βi units of the zero coupon bond with time to maturity ui for
i = 1, . . . , N , and have the amount β0 in cash. However the values of the zero
coupon bonds fluctuate, the combined portfolio will have the value P (t).∗

The Smith-Wilson method is most easily expressed in terms of prices
rather than yields, but we note that the idea of matching β’s is essentially
the same thing as matching key rate durations where the key rates are all
market rates used to construct the Smith-Wilson curve. Key rate durations,
or rather dollar values of a basis point (which go by abbreviations such as
BPV or DV01), are the preferred measure of interest sensitivities and hedge
construction in [12] and [13].

Alas, by Theorem 2, the recipe for the perfect hedge is quite strange when
you actually try to procure the ingredients: If t > uN you will need a positive
amount of the zero coupon bond at uN , a negative amount of the zero coupon
bond at uN−1, then again a positive amount of the one at uN−2, etc.

This oscillating behaviour was observed empirically for some tested yield
curves by [12] and [13], but as Theorem 2 show that the pattern is present
for all Smith-Wilson curves without exception.

It is also worth noting that a hedge constructed according to the above
procedure will due to the sign-changes have a sum of the absolute values of
the exposures that is larger than the present value of the liabilities that one
wants to hedge.

Another issue with the hedge is that as soon as time passes, say with
a month ∆t, P (t) is calculated with new zero coupon bonds at u1, . . . , uN ,
whereas our portfolio has bonds with maturities u1−∆t, . . . , uN −∆t. If the
signs of holding amounts had all been positive, this might not had been such
a big practical issue. In that case one could conceivably have changed the
portfolio weights little by little and still have had an acceptable hedge.

Theorem 2 implies that whatever holding one has with a particular ma-
turity date must be sold and changed into the opposite exposure in the time

∗This only holds assuming α is constant. If the changing market prices force a change
of α the hedge is no longer perfect. For moderate changes of the yield curve, the hedge
should still perform well.
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span of one year in the case of when all time to maturities u1, . . . , uN are one
year apart. For many currencies uN − uN−1 = 5 years. Even in this case the
turnover would be impractically large.

Example 1. Consider an initial EUR curve with observed market rates for
tenors 1, 2, . . . , 10, 12, 15, and 20 all equal to 4.2%. This means that the
Smith-Wilson curve is flat at 4.2% for all tenors. A liability of 100 EUR
with maturity 30 years, i.e. in the extrapolated part of the curve will have
the present value 100 · 1.042−30

.
= 29. The discount factor P (30) = β0 + β′p

where β0 = 0, βi
.
= 0.00 for i = 1, . . . , 6, and

i 7 8 9 10 12 15 20
βi 0.01 -0.05 0.19 -0.38 0.76 -1.64 1.96

βipi 1 -3 13 -26 47 -88 86

Note that the positions in the zero coupon bonds at the last three ma-
turities: 46, -88 and 86, are considerably larger in absolute value than the
present value 29 of the liability.

In general the liabilities of an insurance company do not all come due the
same date, and if we have undiscounted liabilities ct with time to maturity
t = 1, 2 . . . , the present value of all liabilities is P c =

∑
t ctP (t). One can still

find the hedge by Equation (4) since
∑
t ctP (t) =

∑
t ctβ0(t) +

∑
t ctβ(t)′p =:

βc0 + βc′p.

Example 2. Consider the same curve as is Example 1, but let the liability
cash flow equal 10/1.10k for k = 1, 2, . . . . The undiscounted value of the
liabilities is 100 EUR and the present value is 68. The weighted average
time to maturity is 11 years and the Macaulay duration is about 7 years.
The present value of liabilities discounted by extrapolated yields, i.e. longer
than 20 years, is 4.47 which is less than 7% of the total present value. These
liabilities will contribute to the oscillating behaviour of the hedge. A priori
one might think that the amount is such a small part of the total that the
hedge of the overall liabilities would consist of only positive exposures, but
then one would be mistaken, since the penultimate position is negative:

i 1 2 3 4 5 6 7 8 9 10 12 15 20
βc
i 9 8 8 7 6 6 5 4 5 2 15 -8 29

βc
i pi 9 8 7 6 5 4 4 3 4 1 9 -4 13

We note that this pattern is also seen in [13, Fig. 2].

4.2 Negative discount factors

Discount factors extrapolated by the Smith-Wilson method may become neg-
ative when the market curve has a steep slope for high tenors, i.e. the last
market forward rates are high. This has been noted by supervisory authori-
ties, e.g. [4, 6].
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Example 3. A simple, not completely unrealistic example, is market rates
rt = t% for tenors t = 1, 2, . . . , 10, 12, 15 and 20. With α = 0.22 we have
convergence in the sense of Equation (3) at CP = 60, and negative discount
factors for all tenors larger than 24 years.

This is nonsense and clearly very undesirable. A single set of market
inputs and Smith-Wilson curve output may be checked manually, but when
market rates are simulated or drawn from an Economic Scenario Generator,
and the Smith-Wilson method is applied to them, checks must be automated.
EIOPA does not specify how to amend the method when discount factors
become negative.

One solution is to increase α even further. In Example 3 above, it suffices
to increase α to 0.32 to avoid negative discount factors. This is nothing
strange, since an increase in α corresponds to an increase in the speed of
mean reversion, and hence an increase in the the stiffness of the curve. In
order to see that this is always possible, one can argue as follows: for large
values of α and t ≥ s the function W (s, t) ∼ α(s ∧ t), which corresponds to
the covariance function of Brownian motion, implying that the conditional
expected value, i.e. the discount function at t, will be close to e−ωt. Since
this holds for any t ≥ s, it will in particular hold for t = CP ≥ ui. Thus,
increasing α will eventually make the discount factors become positive.

Note that there is no contradiction between negative discount factors
and convergence of continuously compounded forward rates, i.e. the forward
intensities. This because the latter are gradients of the corresponding bond
prices, or alternatively put, discount factors. The problem with negative
discount factors is rather that they can not be represented as any real, as a
converse to imaginary, spot rates.

4.3 Tricky to find α: negative discount factors revis-
ited

Another problem with the calibration of α is that there may be singularities
in the domain where α is optimised:

Example 4. Consider a parametrisation according to the Swedish market,
i.e. LLP = 10,CP = 20 and ω = log(1 + 4.2%) together with the following
zero coupon spot rates: 2%, 2.2%, 2.4%, 3%, 3.2%, 4%, 5%, 6%, 6.25%,
7.5%, defined for maturities 1 to 10. In Figure 1 it is clear that there is
a singularity in terms of the calibration criterion defined by EIOPA in [5,
Paragraphs 160–166].

To understand this better, see to the convergence criterion defined by

8



EIOPA, i.e. [5, Paragraphs 160–166], that can be expressed as

g(α) := |h(α)| = |f(CP)− ω| = α

|1− κeαCP |
, (5)

where

κ :=
1 + αu′Qb

sinh[αu′]Qb
. (6)

In order for a singularity to arise it is hence necessary that

1− κeαCP ≡ 0,

which is equivalent to

1 + (αu′ − e−αCP sinh[αu′])Qb = 0.

Now note that

P (CP) = e−ωCP
(
1 + (αu′ − e−αCP sinh[αu′])Qb

)
,

that is g(α) from (5) is only singular iff P (CP) ≡ 0. Moreover, it holds that
h(α) from (5) satisfy h(α) ≤ 0 iff P (CP) ≤ 0 and h(α) > 0 iff P (CP) > 0.
Consequently a singularity in the domain where α is optimised can only occur
if the input market spot curve will result in a singularity for some of the
eligible α values, i.e. for some α ≥ 0.05 according to EIOPA’s specification.

To conclude, from the previous Section 4.2 we know that there may be
situations when we have convergence according to g(α) from (5), but where
the resulting discount factors are negative. We have now learned that if
we want to solve this situation by increasing α, which we know will work,
we need to pass a singularity. Furthermore, we now know that even if the
optimisation algorithm will not end up in this pathological situation, as soon
as the input market spot rate may give rise to negative discount factors for
some α ≥ 0.05, there will be a singularity that must be avoided by the
optimisation algorithm that one uses.

4.4 What do the EIOPA stresses really mean?

In the Solvency II regulation the interest rate stress is defined as follows: let
rt denote the basic risk-free spot rate for a zero coupon bond with t time
units to maturity, and let rst denote its stressed counterpart. According to
the regulation the stressed spot rate is given by

rst := rt(1 + st),
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Figure 1: Plot of tolerance function h(α) from (5) used for calibrating α for
parameters according to Example 4.

where st is a pre-specified constant that is positive or negative depending on
whether one considers increasing or decreasing interest rates. The shift is at
least ±0.20 (for tenors longer than 90 years). For long tenors, such as the
CP , the shift is essentially parallel, i.e. it does not vary much with t. This
means that the forward rate essentially shifts with the same factor as the
rate, and in particular the forward rate at the CP shifts with a substantial
amount: approximately more than ±0.2 · 4.2%. This goes against the whole
idea of the ultimate forward rate being a constant.

Note that there is no easy way to fix this: One alternative could be to
only stress the spot rates up until the LLP and thereafter re-calibrate α
with an unchanged UFR. Another alternative could be to instead stress all
forward rates up until the UFR, and thereafter re-calculate the implied spot
rates, hence without the need of re-calibrating α.

5 Proofs

Proof of Theorem 1. First note that the Yt has mean function E[Yt] = e−ωt(1+
E[X̄t]) = e−ωt. We intend to show that Yt has the Wilson function W (s, t)
as its covariance function. Let 0 ≤ s ≤ t. The non-stationary Ornstein-
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Uhlenbeck process Xt = X0e
−αt + α3/2

∫ t
0 e
−α(t−s)dBs has

Cov[Xs, Xt] =: K(s, t)

= e−α(s+t)Cov
[
X0 + α3/2

∫ s

0
eαudBu, X0 + α3/2

∫ t

0
eαudBu

]
= e−α(s+t)

(
Var[X0] + α3

∫ s

0
e2αudu

)
= e−α(s+t)

(
α2 +

α2

2
(e2αs − 1)

)
= α2e−αt cosh(αs).

The integrated process X̄t thus has,

Cov[X̄s, X̄t] =: H(s, t) =
∫∫

0≤u≤s
0≤v≤t

K(u, v) dudv

=

( ∫∫
0≤u≤v≤s

+
∫∫

0≤v≤u≤s

+
∫∫

0≤u≤s≤v≤t

)
K(u, v) dudv

=

(
2
∫∫

0≤u≤v≤s

+
∫∫

0≤u≤s≤v≤t

)
K(u, v) dudv

= 2
∫ s

0
αe−αv

(∫ v

0
α cosh(αu) du

)
dv +

∫ t

s
αe−αvdv

∫ s

0
α cosh(αu) du

= 2
∫ s

0
αe−αv sinh(αv) dv + (e−αs − e−αt) sinh(αs)

= αs− e−αt sinh(αs),

and we arrive at the covariance function

Cov[Ys, Yt] = e−ω(s+t)Cov[X̄s, X̄t] = e−ω(s+t)(αs− e−αt sinh(αs)) = W (s, t).

Write Y := (Yu1 , . . . , YuN )′ and note that since Yt is a Gaussian process

E[Yt|Y = p] = E[Yt] + Cov[Yt,Y ]Cov[Y ,Y ]−1(p− E[Y ])

= e−ωt + Cov[Yt,Y ]ζ

= e−ωt +
N∑
i=1

Cov[Yt, Yui ]ζi

= e−ωt +
N∑
i=1

W (t, ui)ζi,

as desired, where we have identified ζ := (ζ1, . . . , ζN)′ := Cov(Y ,Y )−1(p −
E[Y ]).
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For the proof of Theorem 2 we will use the matrix property total positivity,
see, e.g., [8]. For an n-dimensional matrix A = (aij)i,j∈{1,...,n}, let A[I,J ] :=
(aij)i∈I,j∈J be the submatrix formed by rows I and columns J from A, and
let A[−i,−j] = (akl)k 6=i,l 6=j be the submatrix formed by deleting row i and
column j.

Recall that a minor of order k of a matrix A is the determinant det A[I,J ],
where the number of elements in both I and J is k.

Definition (Total positivity). A n × n matrix is said to be totally positive
(TP) if all its minors of order k = 1, . . . , n are non-negative.

For functions of two arguments, say f(s, t), which we call kernels, there
are parallel definitions of total positivity, viz. f(s, t) is said to be totally
positive if the matrices (f(si, tj))i,j∈{1,...,n} are totally positive for all n and
s1 < · · · < sn and t1 < · · · < tn.

We use the following notation for determinants of matrices constructed
by kernels:

f

(
s1 . . . sn
t1 . . . tn

)
:= det (f(si, tj))i,j∈{1,...,n}

Lemma 1. The covariance function K(s, t) = α2e−max(s,t) cosh(αmin(s, t))
of the Ornstein-Uhlenbeck process {Xt : t ≥ 0} is totally positive.

Proof of Lemma 1. Let f(t) := α cosh(αt) and g(t) := αe−αt. We note that
h(t) := f(t)/g(t) = (1 + e2αt)/2 is increasing and can thus apply [2, Example
I.(f), p. 213] and conclude that K is totally positive.

We will need the following observation about continuous non-negative
functions.

Lemma 2. Let f : Rm → R be a non-negative continuous function and let A
be an m-dimensional box, which might include some or none of its boundary
∂A. If f is positive somewhere on ∂A, then

∫
A f(x)dx is positive.

Proof of Lemma 2. By assumption, there exists an ε > 0 and an x0 ∈ ∂A
such that f(x0) > 2ε > 0. Since f is continuous, there exists a δ > 0 such
that f(x) > ε for all x ∈ Bδ(x0) := {x ∈ Rm : |x − x0| < δ}. Since
the intersection between the ball Bδ(x0) and A has positive m-dimensional
volume and f is non-negative in general, we get∫
A
f(x)dx =

∫
A∩Bδ(x0)

f(x)dx+
∫
A\Bδ(x0)

f(x)dx > ε
∫
A∩Bδ(x0)

1dx+ 0 > 0
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We are now ready to prove Theorem 2.

Proof of Theorem 2. Let us fix t ≡ uN+1 > uN . We note that the sign of
the regression coefficient βi equals that of the partial correlation coefficient
of YuN+1

and Yui given all other Yuj , j ∈ {1, . . . , N} \ {i}. This partial
correlation coefficient equals that of X̄uN+1

and X̄ui given all other X̄uj , since
the two processes have the same correlation matrix. Let us call this partial
correlation coefficient pi,N+1, and let X̄ := (X̄u1 , . . . , X̄uN+1

)′.
The partial correlation coefficient has the opposite sign to the element

on row i and column N + 1 in the inverse of the covariance matrix H :=
Cov[X̄, X̄]: With B = (bij)i,j=1,...,N+1 := H−1, sign(pi,N+1) = −sign(bi,N+1).

By Cramer’s rule

bi,N+1 = (−1)i+N+1det H[−(N + 1),−i]
det H

= (−1)N+1−idet H[−i,−(N + 1)]

det H
,

since H is a covariance matrix and thus symmetric. The determinant of H
is positive and therefore

sign(pi,N+1) = −sign(bi,N+1) = (−1)N−isign(det H[−i,−(N + 1)])

We thus need to prove that det H[−i,−(N + 1)] > 0 for i = 1, . . . , N . With
H(s, t) being the covariance function of X̄t, we have

det H[−i,−(N + 1)] = H

(
u1 . . . ui−1 ui+1 . . . uN+1

u1 . . . ui−1 ui . . . uN

)
.

We can write the kernel H as a double integral of the kernel K:

H(s, t) =
∫∫

0≤v≤s
0≤w≤t

K(v, w)dvdw =
∫∫
0≤v
0≤w

1{s ≥ v}︸ ︷︷ ︸
=:L(s,v)

K(v, w)1{w ≤ t}︸ ︷︷ ︸
=:R(w,t)

dvdw.

The kernel L produces matrices that have ones below a diagonal, and zeros
above. The kernel R is similar with ones above a diagonal. Their determi-
nants therefore equal either zero or one, and they equal one only if the ones
are on the main diagonal of the matrix.

L

(
s1 . . . sn
t1 . . . tn

)
= 1{t1 ≤ s1 < t2 ≤ s2 < · · · < tn ≤ sn}

R

(
s1 . . . sn
t1 . . . tn

)
= 1{s1 ≤ t1 < s2 ≤ t2 < · · · < sn ≤ tn}
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We use this in the continuous version of the Cauchy-Binet formula [8, Eq.
(3.1.2)] and obtain

H

(
u1 . . . ui−1 ui+1 . . . uN+1

u1 . . . ui−1 ui . . . uN

)
=

=
∫
· · ·

∫
0≤v1<···<vN
0≤w1<···<wN

L

(
u1 . . . ui−1 ui+1 . . . uN+1

v1 . . . vi−1 vi . . . vN

)
H

(
v1 . . . vN
w1 . . . wN

)
R

(
w1 . . . wN
u1 . . . uN

)
dvdw

=
∫
· · ·

∫
A

H

(
v1 . . . vN
w1 . . . wN

)
dvdw, (7)

where

A := {0 ≤ v1 ≤ u1 < · · · < vi−1 ≤ ui−1 < vi ≤ ui+1 < · · · < vN ≤ uN+1,

0 ≤ w1 ≤ u1 < · · · < wN ≤ uN}

Since K(s, t) is a continuous function, and the determinant det(aij)i,j=1,...,n

is a continuous function of all elements aij, i, j = 1, . . . , n, the determinant
K( s1 ... snt1 ... tn ) is continuous as a function of s1 . . . , sn, t1, . . . , tn. By Lemma 1
we also know that K( s1 ... snt1 ... tn ) is a non-negative function. Furthermore we
have K( u1 ... uNu1 ... uN ) > 0 since this is the determinant of the covariance matrix
Cov[X,X] where X := (Xu1 , . . . , XuN )′. We finally note that the point

(u1, . . . , uN , v1, . . . , vN) := (u1, . . . , uN , u1, . . . , uN) ∈ ∂A,

and by Lemma 2 we conclude that the integral (7) is positive.

6 Discussion and concluding remarks

6.1 What are we hedging?

The hedging described in Section 4.1 corresponds to a ‘perfect’ hedge of a
deterministic cash flow w.r.t. to arbitrary shifts of the observed market rates.
In many situations it is common to make simpler hedges w.r.t. parallel shifts
of the interest rate curve. This corresponds to using modified duration as
measure of interest rate risk. This is however something that should be done
with caution when it comes to the Smith-Wilson method, since we know from
Section 4.4 that a parallel shift of a Smith-Wilson curve is inconsistent with
the method itself. Moreover, from the definition of the Smith-Wilson method
it is evident that the entire yield curve will depend on all market observations
p, or equivalently r. If one still want to use a single number to describe
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the interest rate risk, such as modified duration, we argue that it is better
to assess the modified duration w.r.t. to the actual market rates. That is,
consider the modified duration of a Smith-Wilson discounted cash flow with
respect to the underlying observed spot rates. It is straightforward to obtain
expression for this quantity under Smith-Wilson discounting (calculations
not included): let c = (c1, . . . , ck)

′ denote the cash flow at maturities t =
(t1, . . . , tk)

′, where some of the ti’s may coincide with the observed points
ui, then the modified duration with respect to the underlying observed spot
rates, Dsw(c; r), is given by

Dsw(c; r) : = − 1

P c(r)
lim
δ→0

P c(r + δ)− P c(r)

δ

=

∑k
i=1 ciW (t,u)W−1u∑k

i=1 ci (e
−ωti +W (t,u)W−1(p− q))

. (8)

Note that the calculations leading up to (8) does not include a re-calibration
of α. By using (8) one get an understanding of the interest rate sensitivity
of c with respect to infinitesimal parallel shifts of the underlying observed
market rates, which can be used for hedging purposes. Regarding the inap-
propriateness of parallel shifts of a Smith-Wilson curve, we again refer the
reader to Section 4.4.

6.2 On the parametrisation of the Smith-Wilson method,
choice of kernel functions and related topics

From Section 3 we know that the Smith-Wilson method can be interpreted
as the expected value of a certain Gaussian process conditional on a number
of perfect observations. An interesting observation is that Theorem 1, and es-
pecially Equation (4), imply that one can replace the Wilson-kernel function
by any proper covariance function and still keep the process interpretation
of Theorem 1. One can note that this is in fact close to what is done in the
original paper [14] by Smith and Wilson where they start with the following
general bond price model

P (t) := e−ωt +
N∑
j=1

ζjKj(t), (9)

where Kj(t), i = 1, . . . , N , denotes an arbitrary kernel function evaluated in
(t, uj). Given the above process interpretation the Kj(t) functions should
correspond to a proper covariance function evaluated in the points (t, uj),
which brings us into the realm of kriging:
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Within the area of geostatistics, there is a theory known as kriging, see
e.g. [3], which in many aspects resembles the interpretation of the Smith-
Wilson method as an expected value of a stochastic process. The method of
kriging was introduced in spatial statistics and can be described as follows:
you start by observing a number of outcomes from an unknown stochastic
process (for our needs one-dimensional outcomes ordered in time), that is you
assume that you make perfect observations at known locations (time points).
Given these observations you want to inter/extrapolate between these known
points by making assumptions on the underlying process that you have ob-
servations from. In light of this the Smith-Wilson method can be seen as
one-dimensional kriging, that is Theorem 1 gives us the Best Linear Unbi-
ased Predictor (BLUP), given that we treat the theoretical unconditional
expected values as known a priori.

If we return to the choice of kernel function proposed in [14], the Wilson-
function, this choice is motivated with that the Wilson-function is optimal
with respect to certain regularity conditions it imposes on models of the
form given by (9). From a kriging perspective, one would instead discrimi-
nate between covariance functions by comparing the Mean Squared Error of
Prediction (MSEP), where the MSEP is the conditional covariance that com-
panions the conditional expectation given by Theorem 1. Hence, by giving
the Smith-Wilson method a statistical interpretation it is possible to analyse
and compare covariance functions statistically, not only w.r.t. MSEP.

Given the kriging representation one might be tempted to use MSEP as
an alternative for calibrating α in the Wilson-function by e.g. minimising
α at the CP . This is not feasible, since the MSEP for the Wilson-function
w.r.t. α lack a minimum for α > 0: by definition the MSEP is non-negative,
that is

Var[Yt]− Cov[Yt,Y ]Cov[Y ,Y ]−1Cov[Yt,Y ]′ > 0.

Moreover, the second term is non-negative since Cov[Y ,Y ]−1 is positive
definite, and thus

0 < Var[Yt]− Cov[Yt,Y ]Cov[Y ,Y ]−1Cov[Yt,Y ]′ < Var[Yt]→ 0,

as α→ 0, regardless of the value of t.

6.3 A hedgeable Smith-Wilson method

From Theorem 2 we know that the choice of Wilson-function as kernel will
result in an oscillating hedge. If we would consider changing to another kernel
(or covariance)-function we want to avoid re-inventing a new un-hedgeable
procedure. From the proof of Theorem 2 it follows that in order for all the
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β’s to be positive we need conditions on the determinant of the covariance
matrix associated with the covariance function. In [9] it is ascertained that
all β’s will be non-negative if the inverse of the covariance matrix, i.e. the
precision matrix, is a so-called M-matrix, see result (b) on p. 420 in [9], where
the definition of a M-matrix is as follows:

Definition (M-matrix, see e.g. [9]). A real n×n matrix A s.t. Aij ≤ 0 for all
i 6= j with Aii > 0 is an M-matrix iff one of the following holds

(i) There exists a vector x ∈ Rn with all positive components such that
Ax > 0.

(ii) A is non-singular and all elements of A−1 are non-negative.

(iii) All principal minors of A are positive.

From the definition of an M-matrix it follows that if the precision matrix
is an M-matrix, then all components in the underlying stochastic structure
will be positively associated, see result (e) on p. 421 in [9]. Since positive
association is something observed for interest rates in practice, there might
be hope to find a reasonable structure that could be used as an alternative
to the Wilson-function, if wanted. Moreover, the conditions that needs to be
checked are given by Theorem 8 in [7], which gives necessary and sufficient
conditions under which an inverse M-matrix can be expanded and still remain
an inverse M-matrices.

A simple example of a process that has an M-matrix as a precision matrix
is an Ornstein-Uhlenbeck process, i.e. if the kernel underlying the Smith-
Wilson method had been that of an Ornstein-Uhlenbeck process rather than
an integrated Ornstein-Uhlenbeck, then the hedge would not be oscillating.
If that choice is appropriate in other respects is beyond the scope of this
paper.

6.4 Concluding remarks

In the present paper we have provided an alternative stochastic represen-
tation of the Smith-Wilson method (Theorem 1). This representation has
nothing to do with the original derivation of the Smith-Wilson method, but
it provides one stochastic representation of the method. Further, above it has
been shown that the stochastic representation may be useful for interpreting
and analysing the Smith-Wilson method. In particular we have shown that
the method always will result in oscillating hedges w.r.t. to the underlying
supporting market spot rates (Theorem 2). This a highly undesirable feature
of the method.
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Further, we have given an example where the resulting Smith-Wilson
discount curve will take on negative values while fulfilling the convergence
criterion, a situation which is total nonsense, but previously known to be
able to occur, see e.g. [4, 6]. In the present paper we extend this example
to show that there may also occur singularities in the convergence criterion
itself and analytically show that this is a direct consequence of the occurrence
of negative discount factors. That is, given that there are negative discount
factors for some α ≥ 0.05 there will exist a singularity in the domain where α
is being optimised. This is due to the fact that the f(CP)−ω will be smaller
than 0 for these values of α, but for large enough values of α the discount
function at CP will be positive; a situation occurring irrespective of whether
or not the converged resulting Smith-Wilson curve will give rise to negative
discount factors or not.

Moreover, we also provide necessary and sufficient conditions under which
a change of kernel or covariance function will result in a bond price model
that does not inherit the oscillating hedge behaviour, i.e. its inverse is an
M-matrix. This is a nice feature, since given that you want an affine bond
price model, you do not need to redo the entire functional analytical optimi-
sation that initially lead up to the original Smith-Wilson method, but can
merely change the kernel function and check the necessary conditions. One
obvious drawback with this approach is that you from a functional analytic
perspective do not know which utility function that you are optimising. The
perhaps simplest process that fulfils the M-matrix criterion is the standard
Ornstein-Uhlenbeck process. One can also note that the standard Ornstein-
Uhlenbeck process has more than one free parameter, which intuitively may
be beneficial from a modelling perspective.

We have also commented on the straightforward connection between the
Smith-Wilson method and so-called kriging. This was another way to, prob-
abilistically, be able justify different choices of alternative kernels. If one is
interested in this topic, one can note that kriging in itself is a special case of
so-called Bayesian non-parametrics and that kriging under certain conditions
is closely connected to spline smoothing [13].
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