
Mathematical Statistics

Stockholm University

Multiple seed structure and
disconnected networks in

respondent-driven sampling

Jens Malmros

Luis E.C. Rocha

Research Report 2016:5

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics
Stockholm University
Research Report 2016:5,
http://www.math.su.se

Multiple seed structure and
disconnected networks in

respondent-driven sampling

Jens Malmros∗† Luis E.C. Rocha‡

March 2016

Abstract

Respondent-driven sampling (RDS) is a link-tracing sampling method
that is especially suitable for sampling hidden populations. RDS combines
an efficient snowball-type sampling scheme with inferential procedures that
yield unbiased population estimates under some assumptions about the sam-
pling procedure and population structure. Several seed individuals are typi-
cally used to initiate RDS recruitment. However, standard RDS estimation
theory assume that all sampled individuals originate from only one seed. We
present an estimator, based on a random walk with teleportation, which ac-
counts for the multiple seed structure of RDS. The new estimator can also
be used on populations with disconnected social networks. We numerically
evaluate our estimator by simulations on artificial and real networks. Our
estimator outperforms previous estimators, especially when the proportion
of seeds in the sample is large. We recommend our new estimator to be
used in RDS studies, in particular when the number of seeds is large or the
social network of the population is disconnected.
Key words: Respondent-driven sampling; Seeds; Disconnected network;
Random walk with teleportation.
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1. Introduction

Some human populations are difficult to survey for various reasons, for exam-

ple, if no sampling frame for the population exists and the population is small

relative to the general population, if members of the population are difficult to

identify or unwilling to disclose themselves, or if individuals in the population are

reluctant to participate in surveys. Examples of such hidden or hard-to-survey

populations (Schwartländer et al., 2001; Tourangeau et al., 2014) include sev-

eral groups that are subject to marginalisation or stigmatisation, e.g., injecting

drug users, homosexual men, sex workers, illegal immigrants, and the homeless

(Beyrer et al., 2012; Faugier and Sargeant, 1997; Sudman et al., 1988). Because

of their characteristics, hidden populations can often not be satisfactorily inves-

tigated using standard sampling procedures and thus alternative sampling and

estimation techniques must be considered (Magnani et al., 2005; Barros et al.,

2015). A reasonably efficient and cost-effective way to sample from hidden

populations is to utilise link-tracing techniques (Thompson, 1990; Thompson

and Frank, 2000; Thompson, 2012). In such procedures, the population is as-

sumed to be connected by a social network and previously sampled individuals

are engaged in the recruitment of their social contacts to the sample. While
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link-tracing procedures have been considered relatively efficient in collecting

sufficiently sized samples from hidden populations, the samples obtained have

often been viewed as convenience samples not suitable for inference because of

the substantial bias that occurs from the selection procedure (Erickson, 1979).

A relatively recent and increasingly popular link-tracing methodology is

respondent-driven sampling (RDS) (Heckathorn, 1997). The method is essen-

tially an extension of snowball sampling (Biernacki and Waldorf, 1981) for which

inferential procedures facilitating unbiased population estimates have been de-

veloped (Salganik and Heckathorn, 2004; Volz and Heckathorn, 2008). An RDS

study begins with the formation of an initial group of individuals, the seeds,

which are typically recruited among known population members. The seeds are

provided with coupons, typically between three to five, which are to be dis-

tributed to their peers in the population of interest. An individual that has

received a coupon is eligible for participation in the study upon presenting the

coupon at the study site. After taking part in the study, sampled population

members (i.e., respondents) are also given coupons which are to be distributed

to those of their peers which have not yet participated in the study. This is re-

peated with subsequently sampled individuals until the desired sample size has

been reached or until recruitment ceases by itself, in which case often additional

seeds are recruited among not yet sampled members of the target population in

order to re-initiate recruitment to the sample (Malekinejad et al., 2008). There

are typically incentives given to individuals both for their own participation as

well as for the participation of those to whom they have given coupons.

The most commonly used RDS estimator, the Volz-Heckathorn (V-H) esti-

mator (Volz and Heckathorn, 2008), assumes that the RDS recruitment process

can be approximated by a simple random walk on the social network of the

population and also makes some assumptions about the structure of the social

network. For example, it is assumed that sampling occurs with replacement,

that respondents recruit randomly from their social contacts, and that the so-

cial relations in the population are mutual. It is also assumed that respondents
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(a) (b)

Figure 1. Schematic illustration of two social networks where the circles represent the

vertices and the lines represent the edges. In (a), the network is connected in one

component. In (b), the network is disconnected with three connected components.

accurately report their number of social contacts, or, in network lingo, their de-

gree. In the general with-replacement design-based sampling framework, we can

form an asymptotically unbiased Hansen-Hurwitz type ratio estimator (Hansen

and Hurwitz, 1943) of the mean of a population trait y from a sample S as

µ̂ =

∑
u∈S

yu
pu∑

u∈S
1
pu

, (1)

where yu and pu are the values of y and the draw-wise selection probability for a

sampled individual u, respectively. For the V-H estimator, µ̂V−H, pu is replaced

by du, since population members are assumed to be sampled with probability

proportional to their degree from the random walk in stationarity in this case.

V-H estimates have been shown to be sensitive to situations where the relatively

strong assumptions on the recruitment process and the network structure do

not hold (Gile and Handcock, 2010; Goel and Salganik, 2010; Lu et al., 2012;

McCreesh et al., 2012; Tomas and Gile, 2011; Wejnert, 2009). In part due to

these results, other RDS estimators have been developed (Gile, 2011; Lu et al.,

2013; Lu, 2013; Gile and Handcock, 2015).

When the social network of the population is connected, the social relation-

ships between individuals bind together all members of the population in one
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connected component (Figure 1 a). Otherwise, the network is disconnected and

has several connected components (Figure 1 b). It is in the nature of the simple

random walk that it can not reach all population members in populations with

disconnected social networks. This means that the V-H estimator is not appli-

cable to such populations; a shortcoming that is shared with all proposed RDS

estimators available in the literature. Additionally, the structural properties of

the network may be such that a link-tracing sampling procedure is contained

within parts of the network, something which is likely to affect RDS estimates

even though the network is connected (Burt et al., 2010; McCreesh et al., 2011;

Salganik, 2006). This may e.g. be the result of community structure within the

network, where groups of individuals are more closely connected among each

other than with individuals in different groups (Rocha et al., 2016) or so-called

bottlenecks, where a single individual is the link between otherwise disconnected

parts of the network (Johnston et al., 2013). Most RDS studies start with sev-

eral seeds (e.g., 10) that each initiates a recruitment tree of its own. However,

the simple random walk approximation assumes that only one recruitment chain

can be used to describe the whole sample. This discrepancy becomes larger as

the proportion of seeds in the sample increases, which may, e.g., be the result of

additional seeds being recruited to the study. This is not uncommon; for exam-

ple, in (Malekinejad et al., 2008), 43% of the reviewed empirical RDS studies

with available data reported the use of additional seeds and in several studies,

the sample consisted of more than 10% seeds. In some cases, the proportion of

seeds in the sample may be as large as 18% (Stein et al., 2014) or even 30%

(Strömdahl et al., 2015).

In this paper, we extend RDS estimation to account for the multiple seed

structure and populations with disconnected social networks. We use a random

walk with teleportation (RWWT) to model the RDS recruitment process (Brin

and Page, 1998). The RWWT may, in each time step, go to a randomly chosen

social contact of the currently visited individual, like the simple random walk

used in the V-H estimator, or jump to a randomly chosen individual in the
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population. Hence, the RWWT may visit parts of the social network that are

not connected to each other and explore them separately, which is not possible in

the simple random walk. Moreover, the set of individuals visited by the RWWT

will be made up of multiple chains of neighbouring population members, each

originating from a randomly selected individual (among all individuals). Each

of these chains may be viewed as an approximation to the recruitment tree

originating from one seed. Hence, the RWWT is able to account for the multiple

seed structure of RDS under the assumption that seeds are selected uniformly;

this assumption is discussed in Section 5. To describe the social structure of our

target population, we use the so-called configuration model (Molloy and Reed,

1995, 1998), a random graph model for which the degree distribution of the

resulting graph may be specified, to fit the network of interest.

The rest of the paper is organised as follows. In Subsections 2.1 and 2.2

we formally define the configuration model and the RWWT, respectively. In

Section 3, we present our calculations for the stationary distribution of the

process (Subsection 3.1) and how to estimate it (Subsection 3.2). We evaluate

our estimator by simulations for varying proportion of seeds in the sample and

for populations with disconnected networks in Section 4. Our findings are then

discussed in Section 5.

2. Preliminaries

We first introduce some network terminology which is used in the following.

Formally, a social network is composed of a set of vertices V that represents the

actors (e.g., individuals) and a set of edges E which represents the relations that

connect the actors together (see Figure 1). The network can be represented by

its adjacency matrix A = {auv}, where u and v belong to the set of vertices. We

consider undirected networks only, i.e., networks where all relations are mutual.

Then, auv = avu = 1 if there is an edge between two vertices u and v and

auv = avu = 0 otherwise. We say that two vertices u and v are neighbours if

there is an edge between u and v. As previously mentioned, the degree du of a
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vertex u is the number of contacts of u, where du =
∑

v auv =
∑

v avu.

2.1. Configuration model

Assume that we have a set of n vertices. For the results in the rest of the paper,

we consider the infinite population limit n→∞. Let D be a random variable,

defined on the non-negative integers, that represents the degree distribution, i.e.,

the distribution of vertex degrees. To construct the network, we assign to each

vertex a number of stubs or half-edges, independently drawn from D. Then, we

randomly form pairs of all the stubs. If the number of stubs is uneven, we discard

one stub, which does not affect our results in the limit of infinite population size.

This construction procedure may generate self-loops and multiedges, i.e., edges

that connects a vertex to itself and several edges between the same two vertices;

the proportion of these is however small when E(D2) < ∞. In particular, the

probability that the generated graph is simple, i.e., that it contains no self-loops

or multiedges, is bounded away from 0 if E(D2) <∞ (e.g., Britton et al., 2007,

Lemma 5.3). Hence, we condition on the generated graphs being simple under

the assumption that the second moment of D is finite in the following. We

denote networks generated from this model by G(V,E), where V is the set of

vertices and E is the set of edges.

2.2. Random walk with teleportation

A RWWT in discrete time {Zt; t = 0, 1, 2, . . .}, taking place on a network

G(V,E), is a Markov process with state space given by the vertex set of the

network. In each step, the walker traverses to a randomly chosen neighbour of

the last visited vertex with probability c ∈ [0, 1] or moves to a uniformly chosen

vertex v ∈ V with probability 1− c. Let the transition probability between two

vertices u and v be puv. The transition matrix P = {puv}, u, v ∈ V , of {Zt} is

then given by

P = cAD−1 + (1− c) 1

n
1̄T 1̄,
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where A is the adjacency matrix of G, D is a diagonal matrix with the degree

sequence of vertices in G at its diagonal, and 1̄ is the column vector of ones.

3. Theory

3.1. Stationary distribution

Assume that we have a configuration model network G(V,E) of size n, where n

is assumed to be large. Let the degree distribution of G be given by the random

variable D. Further assume that we have a RWWT {Xt; t = 0, 1, 2, . . .} taking

place on this network. We assume that the structure of G is unknown in {Xt}
but that the degrees of visited vertices are known. Let v ∈ V be an arbitrarily

chosen fixed vertex with known degree dv. We are interested in the limiting

probability that Xt is at v.

Assume that the random walk visits vertex u 6= v at time s. In what follows,

we write u↔ v if u and v are neighbours and u= v otherwise. The probability

that v is visited at time s+ 1 is then given by

puv = P(Xs+1 = v|Xs = u)

= P(Xs+1 = v|u↔ v,Xs = u)P(u↔ v)

+ P(Xs+1 = v|u= v,Xs = u)P(u= v).

First, we consider the case where u and v are neighbours. Let J denote the

event that the random walk makes a random jump at s. We have

P(Xs+1 = v|u↔ v,Xs = u) = P(Xs+1 = v|u↔ v,Xs = u, J)P(J)

+ P(Xs+1 = v|u↔ v,Xs = u, J{)P(J{).

By the definition of {Xt}, P(Xs+1 = v|u↔ v,Xs = u, J) = 1/n and P(J) = 1−c.
If the random walk does not jump at s, it will only visit v at s+ 1 if it traverses

along the edge between u and v, which happens with probability 1/du. Hence,

P(Xs+1 = v|u↔ v,Xs = u) =
1

n
(1− c) +

1

du
c.
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If u and v are not neighbours, v may only be visited at s+ 1 through a random

jump. Hence,

P(Xs+1 = v|u= v,Xs = u) = P(Xs+1 = v|u= v,Xs = u, J)P(J)

=
1

n
(1− c).

By construction, P(u ↔ v) = dudv/(2|E| − 1), where we may approximate

2|E| − 1 by 2|E| = nE(D) for large n. From these results, we have for u 6= v

that

puv ≈
(

1

n
(1− c) +

1

du
c

)
dudv
nE(D)

+
1

n
(1− c)

(
1− dudv

nE(D)

)

= c
dv

nE(D)
+ (1− c) 1

n

=
1

n

(
c
dv

E(D)
+ 1− c

)
.

If we the random walk visits v at time s, then it may only visit v again at s+ 1

by a random jump; hence,

pvv =
1

n
(1− c).

Define

πu =
1

n

(
c
du

E(D)
+ 1− c

)

for all u ∈ V . We have

∑

u∈V
πupuv =

∑

u∈V ;u6=v
πupuv + πvpvv

=
1

n

(
c
dv

E(D)
+ 1− c

)
(1− πv) +

1

n
(1− c)πv

=
1

n

(
c
dv

E(D)
+ 1− c

)
− cdv
nE(D)

πv

≈ πv,

where the approximation comes from that cdv/(nE(D))πv is O(1/n2). Because

v was arbitrarily chosen,

πv =
1

n

(
c
dv

E(D)
+ 1− c

)
∝ c dv

E(D)
+ 1− c, v ∈ V (2)
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gives the stationary distribution of the RWWT on the configuration model net-

work.

Note that, because the transition probabilities and the stationary distribution

are very similar, it is close to redundant to make the assumption that the process

is in stationarity when we later consider sampling from this process; this was

also noted in Gile (2011) for the simple random walk on the configuration model

network. We will however do so for a stringent exposition. Also note that it has

been shown that the RWWT has the same stationary distribution on Chung-Lu

random graphs and Erdős-Rényi random graphs (Kadavankandy et al., 2015). In

general however, there exists no closed expression for the stationary distribution

of the RWWT on an undirected network (Grolmusz, 2015). A generalisation of

the RWWT is to let the probability to be visited when a jump has occurred to be

different between different vertices, which in general will introduce a dependence

on n in Eq. (2). If however the probability that a vertex is visited when a

jump has occurred is proportional to its degree, all individuals are sampled

with probability proportional to degree and the V-H estimator is recovered.

3.2. Estimation of c and E(D)

Under the assumption that we obtain our sample by sampling with replacement

from the RWWT in stationarity, we can use the stationary distribution from

Eq. (2) as the draw-wise selection probabilities in the estimator in Eq. (1).

However, in order to do so, we need to estimate the unknown parameter c and

E(D). From here on we assume that S is a sample of size nS from an RDS study

with m seeds in which, for each sampled individual u, the property of interest

yu and the degree du is recorded. Under the assumptions of Subsection 3.1, we

may view this sample as the outcome of a RWWT on a configuration model

network which has jumped at m occasions during the collection of the sample.

The jump probability 1− c can then be estimated by the proportion of seeds in

the sample m/nS and we get an estimator ĉ of c as

ĉ = 1− m

nS
. (3)
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In order to estimate E(D), we consider a partition of the sample S in two

parts: SJ which consists of those individuals that were sampled as the result

of a jump by the random walk and SRW which consists of those individuals

that were sampled as the result of an edge traversal. Because the inclusion

of an individual in either partition of S are independent of the composition of

the other partition under our assumptions, SJ and SRW are independent. The

sample partitions are easily identified from the RDS sample; SJ comprises the

seeds and SRW = S \Sj . The sizes of SJ and SRW are given by m and nS −m,

respectively. We will proceed by deriving two estimators Ê(D)J and Ê(D)RW

of the expected degree from sampled individuals in SJ and SRW , respectively.

The individuals in SJ are sampled randomly with replacement and hence an

estimator of E(D) is (Särndal et al., 1992, ch. 2.9)

Ê(D)J =

∑
u∈SJ

du

m
. (4)

The variance of Ê(D)J is estimated by

V̂ ar
(
Ê(D)J

)
=
s2J
m
, (5)

where s2J is the sample variance of the degrees of individuals in SJ . Because

the individuals in SRW are sampled by edge traversal in the random walk, their

draw-wise selection probabilities are proportional to their degree. We have that

an asymptotically unbiased estimator of the expected degree can be derived from

the ratio of two Hansen-Hurwitz estimators (Salganik and Heckathorn, 2004) as

Ê(D)RW =
nS −m∑
u∈SRW

1/du
. (6)

We obtain an approximative estimator of V ar
(
Ê(D)RW

)
by applying the Delta

method and substituting population quantities with their sample counterparts:

V̂ ar
(
Ê(D)RW

)
≈


 1
(
d−1
)4




s2d−1

nS −m
, (7)

where d−1 and s2d−1 are the sample mean and variance of the inverse degrees

of individuals in SRW , respectively. Then, we combine these estimators in a
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composite estimator Ê(D) (Schaible, 1978) of the expected degree:

Ê(D) = wÊ(D)J + (1− w)Ê(D)RW , (8)

where 0 ≤ w ≤ 1. We want to choose w such that the variance of Ê(D) is

minimized. Because SJ and SRW are independent samples, the variance of Ê(D)

is a weighted sum of the variances of Ê(D)J and Ê(D)RW . Taking the variance

and differentiating in Eq. (8) yields that the minimal variance is obtained when

w = w∗, where

w∗ =
V ar

(
Ê(D)RW

)

V ar
(
Ê(D)J

)
+ V ar

(
Ê(D)RW

) . (9)

We obtain an estimate ŵ∗ by substituting the estimates from Eqs. (5) and (7)

into Eq. (9). To find estimates {π̂u;u ∈ V } of the stationary distribution of

the RWWT on the configuration model network we may then substitute the

estimates given by Eqs. (3), (8), and (9) into Eq. (2); we have

π̂u ∝ ĉ
du

Ê(D)
+ 1− ĉ, u ∈ S. (10)

The estimated stationary distribution can then be substituted into Eq. (1) to

obtain an estimator µ̂T of population properties as

µ̂T =

∑
u∈S

yu
π̂u∑

u∈S
1
π̂u

. (11)

From Eqs. (2), (10), and (11), we recover, as limiting cases for µ̂T, the sample

mean when c→ 0, i.e., when the draw-wise selection probabilities all are similar,

and the V-H estimator when c→ 1.

4. Numerical simulations

Our estimator extends the V-H estimator in two respects: i) it accounts for the

multiple seed structure of RDS and ii) it is valid for disconnected networks. We

focus on these properties of the estimator in our evaluation and compare with

the limiting cases given by the V-H estimator and the sample mean. We do not

consider estimators that require population parameters that are traditionally
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not collected or estimable within the RDS sample (Gile, 2011; Lu et al., 2013;

Lu, 2013; Gile and Handcock, 2015).

To test the performance of our estimator, we simulate the RDS process in

a population represented by a random network. We generate the network with

N = 10000 individuals (i.e. the size of the target population) using the config-

uration model in which the degree distribution D is given by P(D = d) = pd.

We consider two degree distributions: a power-law with exponential cutoff, for

which

pd =
λ1−α

Γ(1− α, λdmin)
d−α exp(−λd),

and a log-normal, for which

pd =
1

dσ
√

2π
exp

(
−(ln d− θ)2

2σ2

)
.

These distributions are chosen because they reproduce the degree heterogeneity

observed in social networks (e.g., Amaral et al., 2000). We choose the param-

eters dmin = 3, α = 2.5, and λ = 0.00001 for the power-law, and θ = 2.0 and

σ = 0.5 for the log-normal, such that the average degrees become 7.47 ± 0.30

and 7.87 ± 0.05 (± represents the standard deviation over 100 samples of the

network with a given degree distribution), respectively. Let y be a hypothetical

trait taking values 0 or 1 (e.g. being healthy or infected with a disease). We se-

lect 15% of the population, starting with the individual with the largest degree

and proceeding in decreasing order of degree, to assign the value y = 1. The re-

maining individuals in the population are assigned y = 0. To reduce degree-trait

correlations, we go through all vertices and with probability 0.2, we uniformly

select a second vertex and swap states (e.g. infected → non-infected). This

procedure conserves the total number of infected individuals in the population.

We start the RDS process with m seeds uniformly chosen within the target

population. All seeds start recruitment at the same time. At each time step, an

individual invites 3 peers. We assume that all invited peers participate in the

experiment. An individual that has already participated in the study may not

be invited again at a later time. Recruitment thus stops if the desired sample
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(a) (b)

Figure 2. Comparative performance of the estimators in a network with a single con-

nected component. Mean of the estimated prevalence and respective standard error

(vertical bars, generally smaller than the width of the curves) for varying number of

initial seeds (a) Power-law with exponential cutoff and (b) Log-normal degree distri-

butions. We repeat the simulations 100 times for each of the 100 random network

samples, therefore, the average and standard error are calculated over 10000 realiza-

tions for each number of seeds. Note that the vertical axis is broken in both (a) and

(b).

size nS = 300 is achieved or no more recruitments occur. Figure 2 shows the

performance of our estimator µ̂T in comparison to V-H (µ̂V-H =
∑

u∈S yud
−1
u∑

u∈S d
−1
u

) and

the sample mean (µ̂SM = 1
nS

∑
u∈S yu) for two configurations of networks with

power-law with exponential cutoff (Fig. 2 a) and log-normal (Fig. 2 b) degree

distributions. For all estimators, we include the seeds in the sample. Compar-

atively, our estimator has the best performance irrespective of the number of

seeds or degree distribution, slightly underestimating the true prevalence. The

V-H estimator increasingly underestimates the true prevalence for increasing

number of seeds but performs similarly to our estimator for low number of seeds

(m . 5). The sample mean, on the other hand, substantially over-estimates

the prevalence as expected but improves performance for increasing number of

seeds.

We now make an experiment on a social network with two connected com-

ponents. We first divide the population into two groups of 5000 vertices each.
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(a) (b)

Figure 3. Comparative performance of the estimators in a network with two connected

components. Mean of the estimated prevalence and respective standard error (verti-

cal bars, generally smaller than the width of the curves) for varying number of initial

seeds (a) Power-law with exponential cutoff and (b) Log-normal degree distributions.

We repeat the simulations 100 times for each of the 100 random network samples,

therefore, the average and standard error are calculated over 10000 realizations for

each number of seeds. Note that the vertical axis is broken in both (a) and (b).

We then generate stubs for each vertex in the same way as before but only uni-

formly connect vertices belonging to the same group. The trait y is distributed

according to the degree of the vertices, as done for the single component case.

The power-law with exponential cutoff now has mean degree 7.43 ± 0.29 and

the log-normal 7.87 ± 0.05. Although the V-H estimator are not designed for

such disconnected networks, in practice one does not know if the social network

is connected and thus simply apply the estimator on the collected data. Our

estimator however can be safely applied in such settings without restrictions.

We nevertheless compare the performance of all three estimators by repeating

the previous experiment on this disconnected network. Figure 3 shows that our

estimator generally outperforms V-H and the sample mean. Nevertheless, our

estimator slightly underestimates the true prevalence if few seeds are used. The

mismatch is larger for the power-law with exponential cutoff network (Fig. 3 a)

in comparison to the log-normal case (Fig. 3 b).

We now compare the estimators in a realistic setting, in which the network
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(a)

(c)

(b)

(d)

Figure 4. Comparative performance of the estimators in a social network with given

prevalence of four different traits. Mean of the estimated prevalence and respective

standard error (vertical bars) for varying number of initial seeds (a) Age, (b) Civil Sta-

tus, (c) County, and (d) Profession. We repeat the simulations 10000 times for differ-

ent starting conditions, therefore, the average and standard error are calculated over

100000 realizations for each number of seeds.
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structure and the prevalence of various individual traits are known. We use an

online social network targeting homosexual, bisexual, transgender, and queer

persons called Qruiser (www.qx.se); this network was previously analysed in

Rybski et al. (2009) and used to evaluate RDS in Lu et al. (2012). The

network is connected and contains 16,082 individuals which identify themselves

as homosexual males and has 108,334 social ties. The average degree is 13.47.

For each individual, 4 dichotomous properties have been extracted from his user

profile: age (born before 1980/others), civil status (single/others), county (live

in Stockholm/others), and profession (employed/others). Here we also target a

sample size of 300 and an individual may invite 3 peers. Figure 4 b,c show that

our estimator outperforms the other two estimators for detecting the civil status

and the county of living, respectively. In these two cases, the correction given by

our estimator becomes visible as the number of seeds increases. For the age and

profession (Figures 4 a,d), on the other hand, our estimator performs similarly

to the sample mean but better than the V-H estimator. We see that even in

those situations in which V-H performs well, some improvement is obtained by

using our estimator.

5. Discussion

In this work, we present a novel RDS estimator that utilises a RWWT approxi-

mation of the RDS recruitment process. The new estimator is able to account for

the multiple seed structure of RDS not considered by the usual simple random

walk approximation of RDS. It is also valid for populations with disconnected

social networks and does not require information that is traditionally not col-

lected in an RDS sample. To test the performance of our estimator against the

V-H estimator and the sample mean, we simulate RDS experiments on theo-

retical networks with a given prevalence of an hypothetical binary variable y.

The results show that our estimator generally outperforms the V-H estimator

and the sample mean irrespective of the number of seeds. We also performed

simulations on a real online social network. In this more complex situation,
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our estimator overall performs better than the V-H estimator and the sample

mean, although the improvement with respect to the number of seeds is not as

large as for the generated networks. In our experiments on configuration model

networks, the variable y is preferentially distributed in high-degree individuals.

In this scenario, both our and the V-H estimators underestimate whereas the

sample mean substantially over-estimates the true prevalence. The difference

between our estimator and the V-H estimator gets larger for increasing number

of seeds, but our estimator performs substantially better. This is expected since

the component of the estimator accounting for the assumed simple random sam-

pling of the seeds gets more relevant and thus the performance of V-H decreases

significantly with increasing number of seeds. Since it is not uncommon that the

seeds correspond to 5−10% of the sample size in empirical studies (Malekinejad

et al., 2008), or even larger proportions in certain studies, our results show that

one may expect substantial biases in the estimates given by the V-H estimator.

This bias, generated by the seeds, becomes small or negligible when our estima-

tor is used; additionally, we conclude that the situation with additional seeds is

not a major problem for RDS if the corrected estimator is adopted.

In actual RDS practice, seeds are not likely to be selected randomly. Rather,

because the seeds are typically chosen among population members known to

researchers, the seeds will form a convenience sample, the dependence on which

the usual RDS assumption of convergence to equilibrium is meant to handle.

However, little or no information exists on the composition of the seeds with

respect to sampled properties and network structure in most RDS studies. Nev-

ertheless, uniform sampling is generally a reasonable first approximation. It is

often recommended that the seeds are selected such as to reflect the composi-

tion of the population (WHO, 2013). The ambition to select a diversified seed

sample may result in seeds being selected from the parts of the network that are

separate from each other, or that have weak connections. Hence, this ambition

may aid in the actual network of coupon distribution not being connected, in

which case our estimator is to be preferred.
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If the seeds are removed from the sample, the individuals that remain were

sampled with probability proportional to degree. Hence, if we estimate popu-

lation properties without the seeds, we recover the V-H estimator despite that

the sample is assumed to come from a RWWT. This implies that the assump-

tion of a connected network is superfluous for the V-H estimator if the seeds

are not used for estimation purposes or if the seeds are assumed to be selected

with probability proportional to degree. In theory, if the sample is assumed to

come from a RWWT, we would need to assume that the social network of the

population is a configuration model network in order to use the V-H estimator.

However, in the practical estimation process, this becomes a technicality, and

we argue that it should not be necessary to make this assumption. The results

for other random graph models mentioned in Subsection 3.1 further supports

this argument.

Following our results, we recommend the use of our estimator: i) if the

proportion of seeds in the sample is more than 5%, either from the initial seeds or

from additional seeds that joined along the experiment; ii) if the social network is

expected to be disconnected or with weak ties between groups of individuals (e.g.

segregated or highly clustered groups inside the target population). Finally,

our estimator requires a few more steps for calculation than the well-known

V-H estimator. We thus provide a step-by-step guide on how to implement

the estimation procedure in the Appendix. Note that no new information is

necessary to use our estimator but the number of seeds and degree of the sampled

individuals as available in typical RDS studies.
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Appendix: Estimation procedure implementation

Let S be a respondent-driven sampling (RDS) sample of size nS from an RDS

study with m seeds in which each sampled individual u in S is surveyed for a

variable yu and has degree du. We proceed as follows to obtain estimates µ̂T of

the mean of y.

(a) Calculate an estimate ĉ from Eq. (3).

(b) Split S into two samples: SJ which consists of the m seeds and SRW which

consists of the rest of the sample.

(c) Calculate the following estimates:

(i) Ê(D)J as the sample mean of the degrees of individuals in SJ from

Eq. (4).

(ii) Ê(D)RW as the harmonic mean of the degrees of individuals in SRW

from Eq. (6)

(iii) V̂ ar
(
Ê(D)J

)
from Eq. (5). s2J = (1/(m−1))

∑
u∈SJ

(du− d̄J)2, where

d̄ is the mean degree of individuals in SJ .

(iv) V̂ ar
(
Ê(D)RW

)
from Eq. (7). s2d−1 = 1/(nS −m− 1)

∑
u∈SRW

(1/du−
d−1)2, where d−1 is the mean of 1/du, for sampled u in SRW .

(v) ŵ∗ from Eq. (9) with substituted estimates V̂ ar
(
Ê(D)J

)
and V̂ ar

(
Ê(D)RW

)
.

(vi) Ê(D) from Eq. (8) where we put w = ŵ∗.

(d) Estimate the draw-wise selection probability π̂u for every sampled individ-

ual u ∈ S from Eq. (10).

(e) Estimate the mean of y with the estimator µ̂T from Eq. (11).
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