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Abstract

This paper considers macroeconomic forecasting with a large num-

ber of predictor variables. We propose an extended factor-augmented

vector autoregressive model (EFAVAR), that describes the joint dy-

namics of macro variables, latent factors and high-dimensional predic-

tors. Furthermore, We employ a factor model to obtain a small num-

ber of principal-component-based factor estimates which can repre-

sent common movement of informational data. Meanwhile, we utilize

the least absolute shrinkage and selection operator (Lasso) to select

a few of the most relevant observed predictors, which can capture id-

iosyncratic fluctuation of data. Then, the multi-step-ahead forecasts

can be constructed using a handful of estimated factors and selected

predictors. In addition, we investigate the consistency of Lasso esti-

mate and forecasting accuracy in the theoretical perspective. Also,

we examine the predictive performance by a small Monte Carlo study

and an empirical analysis, and conclude that EFAVAR shows some

improvements in comparison to other model candidates.

Keywords: Macroeconomic Time Series, Factor-augmented Forecast-

ing, Principal Component, Large Vector Autoregression, Lasso, Pre-

dictive Performance



Extended Factor-Augmented Vector Autoregression
macroeconomic forecasting with the Lasso

Ying Pang *

1 Introduction

1.1 Background

Over past decades, high-dimensional data has drawn more and more at-
tention in the field of economics and finance. Usually, high-dimensional
data comes with complex structures and features, and it is quite different
from traditional data where the sample size is greater than the dimension
of variables. For instance, a macroeconomic data set can include literally
hundreds of time series, in which variables are non-stationary over time,
cyclically-fluctuating, serially correlated and cross-sectionally dependent.
Moreover, observations are usually grouped or clustered, which implies that
the heterogeneity might be exhibited. On the methodology side, when a
large number of parameters need to be estimated simultaneously, it could
result in estimation errors accumulating. Thus, the noise accumulation is
also considered as a main feature of high-dimensional data, which can be
overcome by a sparse model and model selection (Donoho et al. (2000);
Bühlmann and Van De Geer (2011)). Furthermore, when the dimension of
data is high, there might be spurious correlation between variables. In other
words, uncorrelated variables might have high sample correlations, which
would lead to the false inference. Additionally, economic and financial data
sets are collected from various sources, and observations are recorded and
reported at different time points over a span of many years. And, that possi-
bly causes the experimental biases, statistical instability and heavy compu-
tational costs.

There are many applications for investigating the effects of monetary
policy, business cycles, portfolio management and so forth (Sims (1980);
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Bernanke and Blinder (1992); Leeper et al. (1996); Christiano et al. (2001)).
In addition, many researchers, economists and policy makers are more con-
cerned about gaining insight into macroeconomic data and developing ef-
fective methods for prediction. And, it is without doubt that most classi-
cal models and standard approaches, such as ordinary least squares (OLS),
perform poorly with the increase of dimensions. Therefore, numerous chal-
lenges to the statistical theory and methodology has been posed, when the
number of parameters involved is of a much larger magnitude than the sam-
ple size.

In terms of statistical accuracy and computational efficiency, it is of cru-
cial importance to reduce the dimension of data before going further. And,
there are two main approaches for dimension reduction. One approach as-
sumes that high-dimensional data is characterized by some common fea-
tures that can be represented by a handful of latent variables/factors. This is
often relative to the factor models, together with principal component anal-
ysis which plays a vital role in the dimension reduction techniques. For in-
stance, the factor models are widely developed and implemented in order
to analyze macroeconomic data (Connor and Korajczyk (1993); Forni et al.
(2000); Bai and Ng (2002); Stock and Watson (2001, 2002a,b, 2005); Forni
et al. (2003); Bernanke et al. (2004); Belviso and Milani (2006)). As an alter-
native approach, dimension reduction can be achieved by selecting a small
subset of variables from high-dimensional set. This requires the usage of
regularization theory and shrinkage methods, in which Lasso is extensively
employed and improved, in order to successfully select a few of important
predictor variables and enhance the prediction accuracy in computationally
effective ways (Zou (2006); Song and Bickel (2011); Kock and Callot (2015)).

1.2 Motivation

The vector autoregression (VAR) is one of the central pillars for multivari-
ate analysis, and Bernanke et al. (2004) propose the factor-augmented VAR
(FAVAR), that describes the joint dynamics of several macro variables Yt and
latent factors Ft as follows,

∑

Ft

Yt

∏

=©(L)
∑

Ft°1

yt°1

∏

+∫t ,

where the matrix ©(L) is a matrix conformable polynomial of lag operator
L, and ∫t is a vector of errors with zero mean and finite covariance. In ad-
dition, Bernanke et al. (2004) suggest that a small number of factors can be
obtained throughout the relation,

Xt =§ f Ft +§y Yt +et , (1)
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where Xt is a vector of high-dimensional time series that are relevant to fore-
casting,§ f is a matrix of factor loadings, and et is a vector of errors.

We agree with that the a large amount of the variation of data Xt can
be satisfactorily represented by a few factors, however, we believe that there
should be some information that cannot be captured by common factors,
which is important and valuable for explaining and/or forecasting macro
variables. And, it can be interpreted as idiosyncrasy or individual fluctua-
tion affected by a small number of variables in Xt . Therefore, in order to
avoid leaving out potentially useful information, we consider an extended
FAVAR (EFAVAR), which models the joint dynamics of macro variable, latent
factors, and informational variables over a common time period.

Unfortunately, it is unknown which of the variables in Xt are relevant,
thus, there is no way to determine a small subset of variables in advance.
In other words, involving a large number of observables Xt has embodied
the high-dimensionality into the EFAVAR, which makes the standard VAR
difficult to employ1. Furthermore, because we assume that there is a small
number of observables in Xt relevant for prediction, it indicates the sparse
pattern of coefficient matrix for Xt in the EFAVAR. Consequently, we adopt
Lasso to select relevant variables by shrinking the coefficients of irrelevant
variables to be exact zeros. Simultaneously, the resulting nonzero values are
the coefficient estimates of retained variables in Xt .

1.3 Goals and contributions

We have two goals in this paper. The first is to investigate the consistency of
Lasso estimate and forecasting accuracy in our context. which the forecasts
can be constructed using principal-component-based factor estimated as
augmented predictors based on the EFAVAR. The second goal is to exam-
ine the resulting predictive performance. Based on an empirical analysis,
the EFAVAR can make some contributions for improving predictive perfor-
mance in comparison to the methods proposed by Stock and Watson (2002a)
and Song and Bickel (2011). However, the extent of improvement differs
about the forecasting time horizon and the variable to be forecast of our in-
terest. Besides this, a small Monte Carlo experiment provides the evidence
for theoretical results with finite samples.

1. The VAR model rarely employs more than six to eight variables (Bernanke et al. (2004)).
Moreover, Leeper et al. (1996) apply Bayesian priors to increase the number of variables in-
cluded; however, VAR models still cannot contain more than twenty variables.
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1.4 Layout

The rest of the paper is organized as follows. In section 2, we describe the
EFAVAR with model assumptions, estimation procedures regarding factors
and coefficients, and theoretical properties of resulting estimates. Addi-
tionally, section 3 examines the predictive performance of EFAVAR using a
Monte Carlo experiment and an empirical study for macroeconomic fore-
casting, Moreover, section 4 concludes. Besides, the appendix provides proofs
and more results of both Monte Carlo and empirical studies.

2 Economic framework

2.1 Models

Let yt be a scalar macro variable assumed to have pervasive effects through-
out the economy, and Xt be an N -dimensional vector of informational vari-
ables for t = 1, . . . ,T . Then, the EFAVAR models the joint dynamics of yt , Ft

and Xt through the following
2

4

Ft

Xt

yt

3

5=¶(L)

2

4

Ft°1

Xt°1

yt°1

3

5+≥t , (2)

where

¶(L) =

2

6

4

£ 0 0
§£ °(L) 0
A

0
B x (L) B y (L)

3

7

5

and ≥t =

2

4

¥t

µt

"t

3

5 .

Ft is an r -dimensional vector of static factors, which means that there is no
lag of factor involved in the model. And, ≥t is a vector of idiosyncratic terms
with conditional mean zero, that is E(≥t |Ft°1, Xt°1, yt°1,Ft°2, Xt°2, yt°2 . . . ) =
0, meanwhile, ¥t , µt and "t are mutually independent. In addition, the pa-
rameter£ is a r £r matrix of VAR(1) coefficients of factors,§ is a N£r matrix
and A is a r £1 vector. Furthermore, °(L) is a matrix lag polynomial with fi-
nite power, that is specifically defined by

°(L) =

2

6

4

°11(L) · · · 0
...

. . .
...

0 · · · °N N (L)

3

7

5

,

where °i i (L) = Pq
j=1∞i j L j°1, in which the AR coefficient ∞i j satisfying that

|∞i j | < 1 for all i and j . Furthermore, assuming that both lag polynomi-
als have a same finite order p, we can write that B x (L) = Pp

i=1 B x
i Li°1 and
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B y (L) =Pp
i=1 B y

i Li°1, where B x
i is a row vector of coefficients for Xt°i+1 and

B y
i is a coefficient of yt°i+1 for i = 1, . . . , p.

Now, we decompose model (2) into two parts. One provides the foun-
dation to estimate factors, which is considered as a VAR form of dynamic
factor model (DFM) (Stock and Watson (2005)),

∑

Ft

Xt

∏

=
∑

£ 0
§£ °(L)

∏∑

Ft°1

Xt°1

∏

+
∑

¥t

µt

∏

. (3)

Meanwhile, the other delivers a preliminary forecast model,

yt = A0Ft°1 +B x (L)Xt°1 +B y (L)yt°1 +"t . (4)

Next, in order to pose model assumptions and derive consistency of esti-
mates, we will represent equations (3) and (4) in more concise ways.

2.1.1 Factor models

Before rewriting model (3), we would like to explain how it reflects our initial
thoughts with more details. Suppose that the process of dynamic factors ft

can be described by
ft = £̃(L) ft°1 + ¥̃t , (5)

where £̃(L) is a matrix lag polynomial, and ¥̃t is a vector of idiosyncratic
terms. Moreover, dynamic factors refer to the fact that lags of factors appear
in the model.

Originally, we consider the complex structure of informational variables
Xt , which can be expressed by

Xt = §̃(L) ft +°(L)Xt°1 +≤t , (6)

where ft is an r̃ -dimensional vector of dynamic factors, and both §̃(L) and
°(L) are matrix lag polynomials. According to model (6), the commonality is
represented by the distributed lags of a handful of ft , a part of dependence
is explained by the linear interdependencies among Xt and the past values,
and the idiosyncratic disturbances is expressed by ≤t , in which there possi-
bly exists a cross-sectional correlation. Additionally, assume that ft and ≤t

are mutually uncorrelated at all leads and lags, that is E( fi t u j s) = 0 for all
i , j , t , s.

Forni et al. (2000) derive dynamic factor estimation based on frequency
domain using two-sided filtering, which cannot be directly utilized for pre-
dictions. Therefore, we adapt the static factors and obtain factor estimates
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in time domain, which are applicable to be used in forecasting. Suppose
that §̃(L) has a finite lags order l , and let Ft = ( f 0

t , f 0
t°1, . . . , f 0

t°l+1)0 or its sub-
set if not all ft comes with l lags. In addition, the dimension of Ft is then
bounded by r̃ ∑ r ∑ r̃ l . Next, we rewrite model (6) in a static form,

Xt =§Ft +°(L)Xt°1 +≤t , (7)

where the i th row of § is composed by coefficients of §̃i (L) and zeros. We
actually prefer estimating factors based on model (7), because Ft and Xt are
presented concurrently.

It is not difficult to realize that we can obtain model (7) by combing two
sub equations of VAR (3), under the conditionµt =§¥t +≤t . Moreover, when
£̃(L) also has a finite order l , equation (5) can be rewritten as

Ft =£Ft°1 +¥t , (8)

where £ incorporates coefficients of £̃(L) and zeros, and ¥t = H ¥̃t in which
H is a r £ r̃ matrix. Furthermore, note that equation (8) is the exact expres-
sion of Ft from VAR (3).

2.1.2 Forecasting models

Define !t = (X 0
t , yt )0 and Wt = (!0

t ,!0
t°1, . . . ,!0

t°p+1)0. Then, equation (4) can
be rewritten as

yt = A0Ft°1 +B 0Wt°1 +"t , (9)

where B = (B 0
1,B 0

2, . . . ,B 0
p )0 in which Bi = (B x

i ,B y
i )0 for i = 1, . . . , p. As the coef-

ficient matrix of observables, B is considered to be sparse. In other words, a
small number of nonzero values are coefficients for variables that should be
retained in the model. Alternatively, a more concise form of model (9) can
be expressed by

yt =≠0Zt°1 +"t , (10)

where≠= (A0,B 0)0 and Zt is an r +(N +1)p dimensional vector of all predic-
tor variables, Zt = (F 0

t ,W 0
t )0.

Moreover, suppose that the data is available up to time T , and write
y = (yT , yT°1, . . . )0, F = (FT°1,FT°2, . . . )0 and W = (WT°1,WT°2, . . . )0. Then,
the stacked form of model (9) and (10) are given by

y = F A+W B +" , (11)

and
y = Z≠+" , (12)
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respectively, where "= ("T ,"T°1, . . . )0 and Z = (F,W )0.

To be clear, the static factor model (7) and forecast model (10) serve
as the foundation to pose assumptions of models and parameters, as well
as derive consistent factor and forecast estimations. Moreover, both mod-
els (11) and (12) provide the basis to examine theoretical properties of Lasso
estimation and prediction errors when T and N increase.

2.2 Assumptions

Before making assumptions and deriving estimates, we introduce some no-
tations. Let k•k1 and k•k be L1 and L2 matrix norm2, respectively. Denote
Ji = J (Bi ) = { j : B j i 6= 0} as the set of indices of nonzero elements in Bi , and
si = |Ji | as the cardinality of Ji for i = 1, . . . , p. Furthermore, let s = Pp

i=1 si

and J = J (B) = Sp
i=1 Ji µ {1, . . . , (N + 1)p}, which J has the cardinality s at

most. Next, define æi ,y as the variance of Zi t and æ" as the variance of "t .
Let æT = max

©

æZ ,æ"
™

, where æZ is a supreme of the set containing æi ,y . In
addition, let ™W = W 0W /T and ™Z = Z 0Z /T be scaled Gramian matrix of
W and Z , respectively.

Some classical model assumptions have to be modified for high dimen-
sional framework. Supposing that N ,T !1 jointly, the following assump-
tions are made according to Stock and Watson (2002a).

Assumptions 1 (A.1)

(a) E(≤0t≤t+u/N ) = ∞N t (u), and limN!1 supt
P1

u=°1 |∞N t (u)| <1 ;

(b) E(≤i t≤ j t ) = øi j t , and limN!1 supt N°1 PN
i=1

PN
j=1 |øi j t | <1 ;

(c) limN!1 supt ,s N°1 PN
i=1

PN
j=1 |cov(≤i s≤i t ,≤ j s≤ j t )| <1 .

Assumptions 2 (A.2)

(a) E(Ft F 0
t ) = ßF which is a diagonal matrix of entries ßF

i i > ßF
j j > 0 for

i < j ;

(b) T °1 P

t Ft F 0
t

p!ßF ;

(c) §0§/N ! Ir where Ir is a r £ r identity matrix;

(d) |§̄| <1 where §̄= max
i , j

©

§i j
™

.

2. For a m £n matrix x, L1 and L2 matrix norms are defined as kxk1 = Pm
i=1

Pn
j=1 |xi j | and

kxk =
°

Pm
i=1

Pn
j=1 x2

i j

¢1/2. The special case is that x is a vector where n = 1. Then obtain

kxk1 =Pm
i=1 |xi | and kxk=

°

Pm
i=1 x2

i

¢1/2.
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Assumptions 3 (A.3)

(a) T °1 P

t "
2
t

p!æ" ;

(b) T °1 P

t Zt"t+h
p! 0 ;

(c) k≠k1 <1 .

A.1 pose restrictions on the moments of ≤t in factor model (7), in which
A.1(a) and A.1(b) allow for weakly serial and cross-sectional correlation among
≤t , respectively. And, A.1(c) limits the size of four moments for ≤t processes,
instead of normality assumption. Furthermore, A.2 restricts the factors Ft

and factor loadings §, which makes sure factors can be identified. In ad-
dition, A.3 is useful for showing the consistency of the Lasso estimates and
resulting forecast errors, when unobserved factors are replaced by factor es-
timates in the regression.

2.3 Estimates

Generally speaking, we consider a stepwise approach. Firstly, factor esti-
mates are obtained using principal components based on factor model, which
we shall substitute for true factors as regressors. Secondly, forecast esti-
mates can be constructed using Lasso estimates obtained by regressing the
variable to be forecast onto estimated factors and observed predictors.

2.3.1 Factor estimates and consistency

Suppose that both A.1 and A.2 hold. We consider a least squares approach
where the estimates of F and§ can solve the following

min
F1,...,FT ,§,°(L)

(N T )°1
T
X

t=1
[(I °°(L)L)Xt °§Ft )]0[(I °°(L)L)Xt °§Ft ] . (13)

The minimization of (13) can be conveniently achieved using the follow-
ing iteration. As long as the mean squares errors (MSE) in the target func-
tion monotonically decreases, a (local) minimum of (13) can be approached
(Stock and Watson (2005)). Let r̂ be the number of estimated factors bFt , and
q̂ be the lags order (at most) to b°(L). The iteration is to estimate factors,
which shall be obtained by a T £ r̂ matrix bF = ( bF1, . . . , bFT )0, based on data
{Xi t }N ,T

i=1,t=1. Moreover, the algorithm can be described as follows

1. Let MSE[0] = 0 and b°[0](L) = 0 with diagonal lag polynomial b°i i (L) = 0
for i = 1, . . . , N .
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2. Iterate for j = 1,2, . . .

(a) Produce eX [ j ] in which the entry eX [ j ]
i t = Xi t ° b°

[ j°1]
i i (L)Xi t°1 for

i = 1, . . . , N and t = 1, . . . ,T , and standardize it to let each column
(variable) have zero mean and unit standard deviation.

(b) Obtain bF [ j ] =
p

T V [ j ], where V [ j ] consists of eigenvectors corre-
sponding to the r̂ largest eigenvalues of matrix eX [ j ]

eX [ j ]0/N T .

(c) For each i , produce the i th row of estimated factor loadings b§
[ j ]
i

and coefficient b°
[ j ]
i i (L) by linearly regressing eX [ j ]

i t onto bF [ j ]
t and

lags of eX [ j ]
i t for all available t .

(d) Compute resulting residuals ê[ j ]
i t = X [ j ]

i t ° b§
[ j ]
i

bF [ j ]
t ° b°

[ j ]
i i (L) eX [ j ]

i t°1

for all i and t , and calculate MSE[ j ] = PN
i=1

PT
t=1 ê[ j ]2

i t /N T and
Dev[ j ] = |MSE[ j ] °MSE[ j°1]|.

(e) Given a criteria level C L, if Dev[ j ] ∑C L, break the loop and jump
to step 3; otherwise, let j = j +1 and continue to iterate.

3. Obtain factor estimates bF = bF [ j ].

Now, we state the properties of factor estimates bF that solve the mini-
mization (13) using the iterative algorithm, which is adapted from Stock and
Watson (2002a).

Theorem 1. Suppose that A.1 and A.2 hold. Let r and r̂ be the number of
true factors Ft and estimated factors bFt . As N ,T !1, S j can be determined
so that the followings hold for t = 1, . . . ,T , where S j is a sign variable with a
value of either +1 or °1,

(a) For j = 1,2, . . . ,r, S j bF j t
p! F j t ;

(b) For j = 1,2, . . . ,r, T °1 PT
t=1(S j bF j t °F j t )2 p! 0 ;

(c) For j = r +1, . . . , r̂ , T °1 PT
t=1

bF 2
j t

p! 0 .

2.3.2 Forecast estimates and accuracy

Given that observations are available up to time T , the one-step-ahead out-
of-sample forecast is defined by yT+1|T . In theory, an optimal forecast based
on equation (10) is the expected value,

yT+1|T = E(yT+1|ZT , ZT°1 . . . )

= E(≠0ZT +"T+1|ZT , ZT°1 . . . )

= ≠0ZT +E("T+1|ZT , ZT°1 . . . )

= ≠0ZT , (14)
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where the last equality holds under the assumption that ≥t has conditional
mean zero, that is E(≥t |Ft°1, Xt°1, yt°1,Ft°2, Xt°2, yt°2 . . . ) = 0. However, (14)
cannot be produced, simply because of involving unobserved factors. In-
stead, a feasible one-step-ahead forecast can be constructed by

ŷT+1|T = b≠0
bZT , (15)

where b≠ can be obtained by fitting model (10) in which Zt is replaced by
bZt = ( bF 0

t ,W 0
t )0 for t = 1, . . . ,T .

When N is small and fixed, b≠ is the OLS estimate, and we know that

ŷols
T+1|T ° yT+1|T

p! 0 , (16)

where ŷols
T+1|T = b≠0

ols
bZT according to Stock and Watson (2002a)3. In other

words, the forecast estimate ŷols
T+1|T converges to the optimal infeasible fore-

cast yT+1|T of (14) in probability as T!1.

Consider that N is large, where N > T or even N ¿ T . Under the spar-
sity assumption, the matrix √W is singular. In other words, the minimal
eigenvalue of™W is zero, which, for any vector ¢, we have that

min
n¢0™W¢

k¢k2 :¢ 2R(N+1)p \{0}
o

= 0 . (17)

However, the OLS requires a positive definite Gram matrix, in which all eigen-
values are positive,

min
n¢0™W¢

k¢k2 :¢ 2R(N+1)p \{0}
o

> 0 . (18)

Therefore, the OLS method does not work in this case.

As well known, the Lasso is considered as one of the computationally
effective methods to deal with sparse models, which asks for a very weak
assumption on the Gram matrix (Bickel et al. (2009)). In order to guarantee
the nice statistical properties of Lasso, we use the following condition.

Restricted Eigenvalues of the Gram matrix

∑2
W

(d) = min
n¢0™W¢

k¢Dk2 :¢ 2R(N+1)p \{0}, |D|∑ d ,k¢Dck1 ∑ 3k¢Dk1

o

> 0 ,

(19)
where D is a set of indices, D µ {1, . . . , (N +1)p}, |D| is its cardinality, Dc de-
notes the complement of the set D , ¢D and ¢Dc define vectors formed by

3. The convergence holds with the assumption that T°1 P

t Zt Z 0
t

p! ßZ where ßZ =
E(Zt Z 0

t ), which is a positive definite matrix in the case of small and fixed N .

10



the coordinates of ¢ with respect to the index set D and Dc . The minimum
in (18) can be replaced by the minimum over a restricted set of¢, and the L2

norm k¢k in the denominator can be substituted by k¢Dk. Consequently,
this is seen as ”restricted” positive definiteness for the Gram matrix, which
is valid only for those vectors ¢ satisfying that k¢Dck1 ∑ 3k¢Dk1 . In other
words, the condition makes a restriction on the eigenvalues of the Gram ma-
trix ™W as a function of the sparsity d . Furthermore, the minimum in (19)
is equivalently as follows,

∑W (d) = min
n kW¢k
p

T k¢Dk
:¢ 2R(N+1)p \{0}, |D|∑ d ,k¢Dck1 ∑ 3k¢Dk1

o

> 0 .

(20)

We expect a small subset of observed predictors retained in the model
by shrinking coefficients of irrelevant variables to be zero with Lasso. There-
fore, only coefficient B is regularized subject to a constraint in L1 norm. Fur-
thermore, substitute factor estimate bFt for Ft in forecast model (11). And,
the Lasso estimates satisfies that

( bA, bB) = argmin
A,B

T °1ky ° ( bF A+W B)k2 +2∏T kBk1 , (21)

where ∏T is a data dependent tuning parameter that controls the amount of
shrinkage.

Let b≠= ( bA0, bB 0)0 and bZ = ( bF ,W ). We now state the asymptotic properties
of prediction errors and the accuracy of Lasso estimate under the condition
for Restricted Eigenvalues of the Gram matrix, which builds on the work of
Callot (2012).

Theorem 2. Let∏T =
q

8ln(1+T )5 ln(1+N )4 ln(1+p)2 ln(N 2p)æ4
T /T , N , p 2

O(eT a
) and s 2 O(T b), and assume that 7a + 2b < 1 for a,b ∏ 0. Suppose

Theorem 1 and A.3 hold. Then, if supæT <1, the following holds as T !1,

(a) T °1k bZ b≠°Z≠k2 p! 0 ,

(b) kb≠°≠k1
p! 0 .

These two statements testify that mean squared forecasting errors (MSFE)
converge to zero in probability, and the Lasso estimate b≠ is L1 consistent.
The proof is given in the appendix.
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3 Results

3.1 Forecast models comparison

For the comparison of predictive performance, we consider a few model
candidates, and use a superscript i for the model index. Given the data
available up to time T , we construct h-step-ahead forecast estimate ŷ [i ]

T+h|T
based on forecast model i . Furthermore, all the forecasts are constructed
directly, which indicates the model should be re-estimated for different h.
In addition, the argument for direct forecasts is that they are sensitive to the
choices of h and reasonably robust at long forecast horizons (Callot (2012)).

3.1.1 MODEL 0

The benchmark model is random walk with drift, and it offers the forecast
estimate at time T +h as

ŷ [0]
T+h|T = yT + 1

T °h

T
X

t=h+1
(yt ° yt°h) . (22)

3.1.2 MODEL 1 (EFAVAR)

Note that our theoretical results are particularly for one-step-ahead forecast,
and the estimate can be constructed by (15). Furthermore, we can extend
model (10) for multi-step-ahead forecast variables as follows,

yt+h =≠0
h Zt +"t+h , (23)

where the subscript h of coefficient highlights the fact that separate models
should be estimated regarding various forecast time horizons. Then, the h-
step-ahead forecast estimate can be constructed by

ŷ [1]
T+h|T = b≠0

h
bZT , (24)

where the Lasso estimate b≠h can be obtained by fitting model (23) in which
Zt is replaced by bZt for t = 1, . . . ,T °h. In addition, 10-fold cross validation
is used for choosing tuning parameter and model validation.

3.1.3 MODEL 2

Song and Bickel (2011) propose a large VAR, in which lags of the variable to
be forecast are much more important than lags of predictors, and the distant
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lags have less influence on forecasting at current time than the recent lags.
Therefore, observed variables can be weighted such that, for i = 1, . . . , p,

e!t°i+1, j =
(

i°Æ ·!t°i+1, j if j th variable is y ,

'i°Æ ·!t°i+1, j otherwise ,
(25)

where Æ > 1 and 0 < ' < 1. Then, let fWt = (e!0
t , e!0

t°1, . . . , e!0
t°p+1)0. And, the

forecasts can be estimated as follows,

ŷ [2]
T+h|T = bB 0

h
fWT , (26)

where bBh is a Lasso estimate, which the estimation procedure involves 10-
fold cross validation as well.

3.1.4 MODEL 3

Forecasting with principal-component-based factors is proposed by Stock
and Watson (2002a),

ŷ [3]
T+h|T = bA0

h
bFT + bBh(L)yT , (27)

where bAh and bBh(L) can be obtained using OLS and Akaike information cri-
terion (AIC) because of the low-dimensional predictors. In addition, bBh(L) =
Pp̂

i=1 Ø̂i Li°1 where Ø̂i is a AR coefficient estimate for yt°i+1 for i = 1, . . . , p̂.

3.2 Simulation studies

Two small Monte Carlo experiments are conducted in order to explore how
much forecasting improvement can be achieved in finite samples, if there
is any, regarding the h-step-ahead forecasts, for h = 1,3,6 and 12. And, for
each Monte Carlo replication, the data generating processes are described
as follows.

Assume that q = 1, which corresponds to °(L) = ° with the diagonal
element °i i (L) = °i i = ∞i 1 for i = 1, . . . , N . Then, the data {Xt }T

t=1 can be
generated based on static factor model (7) for each i ,

Xi t =§i Ft +∞i 1Xi t°1 +≤i t . (28)

Ft and ≤t are simulated from multivariate normal distribution family, that
are Ft ª N(0, Ir) and ≤t ª 0.1 ·N(0, IN ). In addition, elements of §i are uni-
formly distributed on [0.1,0.9], and AR(1) coefficient ∞i 1 is also uniformly
distributed on [0.5,0.9] for i = 1, . . . , N .

13



Suppose that p = 1, which results in B = B1 = (B x
1 ,B y

1 )0. The sparsity of
B is determined as 2% of the dimension, and the index of nonzero param-
eters is chosen randomly. Then, the variable {yt }T+h

t=1 can be simulated by
following model (23), which can be rewritten as follows,

yt+h = A0Ft +B x
1 Xt +B y

1 yt +"t+h , (29)

where "t ª 0.1 ·N(0,1), and elements of A and nonzero parameters of B are
uniformly distributed on [0.1,0.9].

For each replication j , we compare the real observation yT+h( j ) and
its forecast estimate ŷ [i ]

T+h|T ( j ) constructed by MODEL i . Additionally, the
predictive performance of MODEL i is assessed over all the replications,

root MSFE[i ] =

v

u

u

t

1
MC

MC
X

j=1

h

ŷ [i ]
T+h|T ( j )° yT+h( j )

i2
, (30)

where MC is the number of Monte Carlo replications.

3.2.1 Experiment A

This experiment is to examine how EFAVAR performs as changes of dimen-
sions N and sample size T in comparison to other models. Given r = 1, the
samples are simulated with different combinations of cross section N = 100,
250,500, T = 20,50,100. In addition, we specify the number of estimated
factors and lags order of variables: r̂ = p̂ = 1 for MODEL 1 and MODEL 3;
p̂ = 1 for MODEL 24.

Table 1 contains the results of root MSFE over 1000 Monte Carlo repli-
cations regarding various model candidates, in which there are four panels
for different forecasting time horizons h. At first, we focus on the results
of root MSFE[1]. Within each sub-block, along with the increase of the di-
mension N and sample size T , the values of the root MSFE[1] have been in
decline as expected. Besides that, the values of root MSFE[1] are greater in
the case of larger h, which indicates the predictive performance becomes
progressively worse as the value of h increases, however, the deterioration
of performance can be weakened when N and T grow.

Next, we compare predictive performance between models. For each
scenario specified T , N and h, the values of root MSFE[1] are smaller than

4. Song and Bickel (2011) concludes that the predictive performance can be very robust for
the choice of lags order, which primarily benefits from the re-weighting over lags as afore-
mentioned. Thus, it is enough to use lagged variables having the order one.
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Table 1: Results of Experiment A:
root MSFE of h-step-ahead forecasts over 1000 replications

root MSFE[1] root MSFE[2] root MSFE[3]

T 20 50 100 20 50 100 20 50 100

h = 1
N=100 0.155 0.122 0.112 0.161 0.127 0.115 0.333 0.266 0.229
N=250 0.100 0.078 0.066 0.107 0.078 0.071 0.293 0.223 0.173
N=500 0.072 0.059 0.055 0.100 0.067 0.052 0.256 0.181 0.139
h = 3
N=100 0.366 0.254 0.217 0.385 0.275 0.226 0.443 0.347 0.319
N=250 0.217 0.146 0.115 0.244 0.158 0.124 0.358 0.260 0.211
N=500 0.137 0.093 0.085 0.252 0.113 0.087 0.354 0.214 0.165
h = 6
N=100 0.418 0.271 0.231 0.444 0.293 0.248 0.524 0.402 0.356
N=250 0.277 0.174 0.132 0.347 0.178 0.143 0.491 0.299 0.234
N=500 0.188 0.116 0.096 0.378 0.157 0.099 0.501 0.258 0.186
h = 12
N=100 0.660 0.290 0.239 0.703 0.318 0.246 0.727 0.425 0.373
N=250 0.484 0.211 0.144 0.613 0.216 0.159 0.736 0.345 0.263
N=500 0.371 0.138 0.115 0.661 0.187 0.129 0.696 0.321 0.222

root MSFE[2] and root MSFE[3], which suggests that EFAVAR performs better
than other two models. However, the extent of improvement depends on
choices of h and the development of T and N , or the ratio T /N . In addition,
more effective amelioration from EFAVAR shows up when the value of T /N
is small and h is large. For instance, when h = 12, T = 20 and N = 500, the
values of root MSFE are 0.371, 0.661 and 0.696, respectively. And, it suggests
that EFAVAR improves the predictive performance by reducing almost 50%
of values for root MSFE[2] and root MSFE[3]. Furthermore, when h = 12,
T = 100 and N = 500, the values are 0.115, 0.129 and 0.222, thus EFAVAR
performs slightly better than other two models.

3.2.2 Experiment B

This experiment is to investigate whether more predictive improvement can
be obtained by using more factors as augmented predictors for EFAVAR. The
dimension and sample size are pre-fixed to be large, N = 500 and T = 100.
And we consider two scenarios regarding the number of factors generated,
which are r = 3 and r = 6. Furthermore, we specify the number of estimated
factors r̂ = 1, . . . ,r and lags order p̂ = 1. Table 2 contains the results of root
MSFE[1] for h-step-ahead forecasts over 1000 replications. It is not surpris-
ing that, by looking at each column, the general deterioration can be found
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for the long forecasting time horizon. Additionally, by looking at each row,
the values are very robust for the choice of r̂ under both scenarios. There-
fore, we suggest that it seems enough to use one, or possibly two, estimated
factor(s) to construct forecasts, although there are actually more true fac-
tors. Moreover, it provides some useful evidence that the precision of fore-
casts may not benefit from including more factors as augmented predictors.

Table 2: Results of Experiment B (N=500,T=100) :
root MSFE[1] of h-step-ahead forecasts over 1000 replications

Scenario 1: r = 3 Scenario 2: r = 6
r̂ = 1 r̂ = 2 r̂ = 3 r̂ = 1 r̂ = 2 r̂ = 3 r̂ = 4 r̂ = 5 r̂ = 6

h = 1 0.044 0.044 0.045 0.042 0.042 0.042 0.041 0.041 0.041
h = 3 0.062 0.062 0.064 0.059 0.059 0.058 0.058 0.058 0.058
h = 6 0.076 0.077 0.077 0.076 0.076 0.075 0.075 0.076 0.077
h = 12 0.087 0.088 0.089 0.084 0.084 0.085 0.084 0.085 0.087

3.3 Empirical analysis

It is of our interest to examine the empirical performance of EFAVAR in terms
of macroeconomic forecasting. We use a data set from Stock and Watson
(2005) which contains 132 U.S. monthly time series for economics and fi-
nance from January 1959 to December 2003, t = 1959 : 1, . . . ,2003 : 12. In
addition, the economic categories of variables include: real output and in-
come; consumption; real retail, manufacturing and trade sales; employ-
ment and hours; housing starts and sales; real inventories and orders; money
and credit quantity aggregates; stock prices; interest rates and spreads; ex-
change rates; price indexes; average hourly earnings; and miscellaneous.

All time series variables are transformed to be stationary, which can be
achieved by taking logarithms and/or differencing once or twice. Gener-
ally speaking, first differences of logarithms are applied onto real quantity
and activity measures, second differences of logarithms are employed for
price series, first differences are used for nominal interest rates, and others
remain at original levels. Additionally, more details about data description
and pre-treatment can be found in Stock and Watson (2005). Furthermore,
the transformed variables are examined for outliers and adjusted5. On

5. Let x = {xi }n
i=1 and consider xi as a outlier if |xi ° MED(x)| > 6 · IQR(x), where

MED(x) and IQR(x) are median and interquartile range of x. Moreover, the outliers-adjusted
observation can be obtained by the median value of previous five observations, that is
MED

°

xi°1, . . . , xi°5
¢

.
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one hand, the outliers-adjusted series are further standardized which will be
employed for factor estimation. On the other hand, the outliers-unadjusted
variables should be standardized as well which will be utilized to produce
the Lasso estimates and construct forecasts.

The variables to be forecast of our interests are: industrial production
index - total index (I P ); consumer price index - all items (C PI ); employ-
ees on nonfarm payrolls - total private (E MPL); and interest rate - Federal
funds (F F R). For instance with y = I P , the transformed variable is yt =
ln(I Pt /I Pt°1) and h-month-ahead forecast variable is yt+h = ln(I Pt+h/I Pt ).
For each variable to be forecast, the h-month-ahead forecasts can be con-
structed monthly starting from 1970 : 1 and ending at 2003 : 12 for h = 1,3,6
and 12. To be specific, set an example of a 12-month-ahead forecast at
1970 : 1. The factor estimate bFt can be formed based on the data {Xt }1969:1

t=1959:1.
Next, the Lasso estimate b≠12 can be obtained by fitting model (23) in which
Zt is replaced by bZt for t = 1959 : 1, . . . ,1969 : 1. Then, the forecast can be
constructed by ŷ1970:1|1969:1 = b≠12 bZ1969:1. Furthermore, this procedure is re-
peated for the rest T = 1970 : 2, . . . ,2003 : 12.

The predictive performance can be assessed by (empirical) MSFE, which
averages forecasting errors over a predictive time period as follows,

MSFE[i ]
h = 1

T1 °T0 +1

T1°h
X

T=T0°h

°

ŷ [i ]
T+h|T ° yT+h

¢2 , (31)

where T0 = 1959 : 1 and T1 = 2003 : 12. Moreover, we shall report the empiri-
cal results using relative MSFE (RMSFE),

RMSFE[i ]
h = MSFE[i ]

h / MSFE[0]
h , (32)

where MSFE[0]
h is an benchmark produced by MODEL 0. In addition, Table

A.1 lists the values of MSFE[0]
h regarding four macro variables to be forecast.

Table 3 shows the results of RMSFE, in which the bold type is the min-
imum of values in a row. Clearly, all the values are below one, which in-
dicates that all estimated models perform better than benchmark model.
The first block shows the values of RMSFE[1]

h , which are calculated based on
EFAVAR with various choices of the number of estimates factors r̂ and lags
order p̂. And, we find that the smallest values of RMSFE[1]

h is obtained when
r̂ = 1 and p̂ = 1. Moreover, by comparing the first column with the fifth, we
can conclude that including more factors cannot better prediction, which
the simulation experiment B provides supportive evidence. Furthermore,
as changes of p̂, the results seem to be robust, but the deterioration can be
detected, which indicates that using more distant lagged variables cannot
improve the forecasting accuracy.
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In order to compare EFAVAR with MODEL 2, we use the data weighted
by (25), According to the results, we find that the predictive performance
of EFAVAR and MODEL 2 are similar. In addition, the results of RMSFE[3]

h
are produced based on MODEL 3 with r̂ = 1 and AIC-selected lags order
p̂ AIC . For the macro variable C PI in particular, all the minimum values
locate the column RMSFE[3]

h , which implies that MODEL 3 performs best.

Except for C PI , the minimums show in the first column of RMSFE[1]
h , which

indicates that the optimal forecasts are constructed by EFAVAR. Therefore,
the EFAVAR can successfully improve the predictive performance, although
the improvement is not substantial in comparison with models proposed by
Song and Bickel (2011) and Stock and Watson (2002a). Moreover, the extent
of amelioration differs with the forecasting time horizon and macro vari-
ables to be forecast. In addition, Figure 1 illustrates the development of
observations and optimal forecasts constructed by EFAVAR regarding four
(stationary) macro variables.

4 Conclusions

This paper is concerned about forecasting for high-dimensional macroeco-
nomic time series. We propose EFAVAR which models joint dynamics of
macro variables to be forecast, a handful of latent factors, and a large num-
ber of observed predictors. Furthermore, we investigate the consistency of
Lasso estimates and the accuracy of multi-step-ahead forecasts constructed
by EFAVAR. In addition, we examine the predictive performance by conduct-
ing two small Monte Carlo experiments and an empirical study. Moreover,
we conclude that EFAVAR can produce more precise forecasts in compar-
ison to other forecast model candidates considered in this paper, and the
precise forecasts can be constructed using one, or two, factor(s) as aug-
mented predictors together with lagged variables of order one at most. Be-
sides, the extent of improvement in predictive performance differs with fore-
casting time horizon and macro variable to be forecast.
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Appendices

A Tables

Table A.1: Results of empirical benchmarks MSFE[0]
h

I P C PI E MP F F R

h = 1 1.103 2.923 0.794 1.475
h = 3 1.399 2.125 0.890 2.762
h = 6 1.736 2.178 1.305 2.621
h = 12 1.933 2.262 1.834 2.853

B Proofs

Recall that we use X̃t as predictors to estimate factors, where X̃t = (I °°(L)L)Xt ,
and then rewrite factor model (7) as

X̃t =§Ft +≤t .

The simplest case is that °(L) = 0, which gives the static form of the DFM proposed
by Stock and Watson (2002a). Note that X̃t and Xt share the same assumptions and
restrictions, because the linear transformation between them does not influence
theoretical properties.

Before proving the main theorems, we introduce several preparatory lemmas,
which are adapted from Stock and Watson (2002a)) and then rearranged. At first, let
¿be an N -dimensional vector. Define®= {¿|¿0¿/N = 1}, R(¿) = N°2T °1¿0

P

t X̃t X̃ 0
t¿,

and R§(¿) = N°2T °1¿0
P

t §Ft F 0
t§

0¿.

Lemma 1 |sup¿2®R(¿)° sup¿2®R§(¿)| p! 0 .

Proof: We can derive the following,

|sup
¿2®

R(¿)° sup
¿2®

R§(¿)| ∑ sup
¿2®

|R(¿)°R§(¿)|

= sup
¿2®

|N°2T °1¿0≤0≤¿+2N°2T °1¿0§F 0≤¿|

∑ sup
¿2®

N°2T °1|¿0≤0≤¿|+2sup
¿2®

N°2T °1|¿0§F 0≤¿| .

Now, we want the two parts on the right hand side (RHS) of the inequality converge
to 0 in probability so that Lemma 1 can be proved.
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(1). Check sup¿2®N°2T °1|¿0≤0≤¿|. Consider that

N°2T °1¿0≤0≤¿ = N°2T °1 X

t

X

i

X

j
¿i¿ j ≤i t≤ j t

= N°2 X

i

X

j
¿i¿ j (T °1 X

t
≤i t≤ j t )

∑ N°2[
X

i

X

j
(¿i¿ j )2 £

X

i

X

j
(T °1 X

t
≤i t≤ j t )2]1/2

= (N°2 X

i

X

j
¿2

i ¿
2
j )1/2 £ [N°2 X

i

X

j
(T °1 X

t
≤i t≤ j t )2]1/2 .

For all ¿ 2®, we have that ¿0¿/N = 1 and N°2 P

i
P

j ¿
2
i ¿

2
j = (¿0¿/N )2 = 1. Thus, we

obtain that

sup
¿2®

N°2T °2|¿0≤0≤¿| ∑ [N°2 X

i

X

j
(T °1 X

t
≤i t≤ j t )2]1/2

= (N°2T °2 X

i

X

j

X

t

X

s
≤i t≤i s≤ j t≤ j s )

| {z }

(i)

1/2
.

Also, denote ∞i t s = E(≤i t≤i s ) and ∞ j t s = E(≤ j t≤ j s ). Then, we can derive the expecta-
tion as

E(i) = E(N°2T °2 X

i

X

j

X

t

X

s
≤i t≤i s≤ j t≤ j s )

= N°2T °2 X

i

X

j

X

t

X

s
∞i t s∞ j t s

| {z }

(ii)

+N°2T °2 X

i

X

j

X

t

X

s
E [(≤i t≤i s °∞i t s )(≤ j t≤ j s °∞ j t s )]

| {z }

(iii)

.

On one hand, let s = t +u. Then the term (ii) is rewritten by

(ii) = T °2 X

t

X

u
(N°1 X

i
∞i t (t+u))(N°1 X

j
∞ j t (t+u))

= T °2 X

t

X

u
∞N t (u)2 ,

in which ∞N t (u) is defined by A.1(a) and further expressed as follows,

∞N t (u) = E(≤0t≤t+u/N ) = N°1 X

i
E [≤i t≤i (t+u)] = N°1 X

i
∞i t (t+u) .

Moreover, A.1(a) provides the property of absolute summability, which leads to the
square summability, limN!1 supt

P1
u=°1∞N ,t (u)2 < 1. And, it implies that the

term (ii) converges to zero. On the other hand, the term (iii) is represented by

(iii) = N°2T °2 X

i

X

j

X

t

X

s
cov (≤i t≤i s ,≤ j t≤ j s )

∑ N°2 sup
t ,s

X

i

X

j
|cov ≤i t≤i s ,≤ j t≤ j s |! 0 ,
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where the convergence holds under assumption A.1(c). Therefore, both (ii) and (iii)
towards zero gives E(i) = (ii)+ (iii) ! 0, and we conclude that

sup
¿2®

N°2T °1|¿0≤0≤¿|∑ (i)
1
2

p! 0 .

(2). Check sup¿2®N°2T °1|¿0§F 0≤¿|. We consider the following,

|N°2T °1¿0§F 0≤¿| = |
X

j
(¿0∏ j /N )£T °1 X

t
F j t (N°1 X

i
¿i ≤i t )|

∑
X

j
|¿0∏ j /N |£ |T °1 X

t
F j t (N°1 X

i
¿i ≤i t )| ,

where ∏ j denotes the j th column of§. And we find that

sup
¿2®

N°2T °1|¿0§F 0≤¿|

∑ max
j

sup
¿2®

|¿0∏ j /N |£
r

X

j=1
sup
¿2®

|T °1 X

t
F j t (N°1 X

i
¿i ≤i t )|

∑ sup
¿2®

(¿0¿/N )
1
2 £max

j
(∏0

j∏ j /N )
1
2 £

r
X

j=1
sup
¿2®

|T °1 X

t
F j t (N°1 X

i
¿i ≤i t )|

=
r

X

j=1
sup
¿2®

|T °1 X

t
F j t (N°1 X

i
¿i ≤i t )| ,

where the last line follows from ¿0¿/N = 1 and §0§/N ! Ir , which are defined by
A.2(c). Moreover, we consider that, for j = 1, . . . ,r ,

sup
¿2®

|T °1 X

t
F j t (N°1 X

i
¿i ≤i t )|∑ (T °1 X

t
F 2

j t )
1
2 · [sup

¿2®
T °1 X

t
(N°1 X

i
¿i ≤i t )2]

1
2 ,

in which T °1 P

t F 2
j t

p! æ j j by A.2(b), where æ j j = ßF
j j for brevity. Additionally, we

have that

sup
¿2®

T °1 X

t
(N°1 X

i
¿i ≤i t )2 = sup

¿2®
N°2T °1 X

t

X

i

X

j
¿i¿ j ≤i t≤ j t

= sup
¿2®

N°2T °1¿0≤0≤¿

∑ sup
¿2®

N°2T °1|¿0≤0≤¿|! 0 ,

in which the convergence has been proved earlier in (1). Therefore, we can obtain
that

sup
¿2®

N°2T °1|¿0§F 0≤¿|! 0 .

Lemma 2 Let ∏̂1 = argsup¿2®R(¿), then R§(∏̂1)
p!æ11 .

Proof: Denote
¿=§(§0§/N )°

1
2 ±+V ,
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where V 0§= 0. Also, we use that

¿0¿/N = ±0±+V 0V /N ,

in which ¿ satisfies that ¿0¿/N = 1 as defined earlier. It results in that ±0±∑ 1 while
V 0V /N ∑ 1 for all ¿ 2®. Then, we consider the following,

sup
¿2®

R§(¿) = sup
±2{±|±0±∑1}

±0CN T± ,

where CN T = (§0§/N )
1
2 0(F 0F /T )(§0§/N )

1
2 .

Recall that (§0§/N )
1
2 ! Ir and F 0F /T

p! ßF where ßF is diagonal by assump-
tions A.2(b) &(c), and we obtain that

CN T
p!ßF .

Additionally, eigenvalues of CN T converge into diagonal entries ofßF in probability

according to eigendecomposition. In other words, æ̂i i
p! æi i for i = 1, . . . ,r , where

æ̂i i are eigenvalues of CN T in decreasing order. Therefore, we have that

sup
¿2®

R§(¿)
p!æ11 ,

and further
sup
¿2®

R(¿)
p!æ11 ,

which follows from the statement of Lemma 1. Similarly, the definition of ∏̂1 gives
that

R(∏̂1)
p!æ11 .

And, according to the proven result that sup¿2®|R(¿)°R§(¿)| p! 0, we find that

R§(∏̂1)
p!æ11 .

Lemma 3 Suppose that the N £ r matrix b§ is composed by the r ordered eigenvec-
tors of X̃ 0 X̃ normalized as b§0

b§/N = Ir , in which the first column of b§ is the eigen-
vector corresponding to the largest eigenvalue, etc. Denote S = di ag (si g n(b§0§)).

Then, S b§0§/N
p! I .

Proof: We start with the first column of S b§0§/N . Denote ∏̂1 as the first column

column of b§ and S1 = si g n(∏̂
0
1∏1), where

si g n(x) =
Ω

1 if x ∏ 0 ,
°1 if x < 0 .

We can write ∏̂1 as a case of ¿, such that ∏̂1 =§(§0§/N )°
1
2 ±̂1 + bV1 , for some values

of ±̂1 and bV1, where bV 0
1§= 0, ±̂1±̂1 ∑ 1 and bV 0

1
bV1 ∑ 1. Then, we consider that

R§(∏̂1)°æ11 = ±̂01CN T ±̂1 °æ11

= ±̂01(CN T °ßF )±̂1 + ±̂01ßF ±̂1 °æ11

= ±̂01(CN T °ßF )±̂1 + (±̂2
11 °1)æ11 +

r
X

i=2
±̂2

i iæi i .
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The left hand side (LHS) converges towards zero in probability by Lemma 2. Hence,
the RHS should go for zero as well. Note that CN T is proved to converge to ßF

in probability, and ±̂1 is bounded by ±̂1±̂1 ∑ 1. Therefore, the following must be
satisfied,

(±̂2
11 °1)æ11 +

r
X

i=2
±̂2

i iæi i
p! 0 ,

where æi i > 0 for i = 1, · · · ,r by A.2(a). It results in that ±̂2
11

p! 1 while ±̂2
i i

p! 0 for

i > 2, and is equivalent to ±̂01±̂1
p! 1.

Recalling that ∏̂1 as a form as ¿, we have that

∏̂
0
1∏̂1/N = ±̂01±̂1 + bV 0

1
bV1 = 1 ,

which indicates that bV 0
1
bV1

p! 0. Given§0§/N ! Ir , we know that

S1∏̂
0
1§/N

p! (1 0 · · ·0) ,

which is of r dimensions with one as the first element and zeros as the rest. For
other columns, the proof can be derived in similar ways. Within the orthonormal
subspace of®, the j th column of b§ can be written as

∏̂ j =§(§0§/N )°
1
2 ±̂ j + bVj ,

where bV 0
j§= 0, bV 0

j
bVj

p! 0, ±̂2
j j

p! 1 and ±̂2
i j

p! 0 for i 6= j .

Theorem 1(a)

Proof: For j = 1,2, . . . ,r , we derive the following,

S j bF j t °F j t = S j (∏̂
0
j X̃ t /N )°F j t

= S j ∏̂
0
j (§Ft +≤t )/N °F j t

= S j ∏̂
0
j

X

i
(∏i Fi t )/N +S j ∏̂

0
j ≤t /N °F j t

= (S j ∏̂
0
j∏ j /N °1)F j t

| {z }

(i)

+
X

i 6= j
S j ∏̂

0
j∏i Fi t /N

| {z }

(ii)

+S j ∏̂
0
j ≤t /N

| {z }

(iii)

.

Lemma 3 says that S b§0§/N
p! Ir , which means S j ∏̂

0
j∏ j /N

p! 1 and ∏̂
0
j∏i

p! 0 for
i 6= j . Additionally, the assumption A.2(b) indicates that |Ft | ª O(1), thus we can
obtain that

(i) = (S j ∏̂
0
j∏ j /N °1)F j t

p! 0 ;

(ii) =
X

i 6= j
S j ∏̂

0
j∏i Fi t /N

p! 0 .
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Then, we rewrite the term (iii) with elements,

(iii) = N°1S j
X

i
∏̂i j ≤i t

= N°1S j
X

i
(∏̂i j °∏i j )≤i t

| {z }

(iv)

+N°1S j
X

i
∏i j ≤i t

| {z }

(v)

.

Next, we will show both (iv) and (v) converge to zero in probability so that we can

obtain that (iii)
p! 0 and then complete the proof.

(1). Show that (iv)
p! 0. Using Slutsky’s theorem to show the convergence, we can

write the following absolute value,

|(iv)|∑ (N°1S j
X

i
(∏̂i j °∏i j )2

| {z }

(vi)

)
1
2 £ (N°1 X

i
≤2

i t

| {z }

(vii)

)
1
2 .

Firstly, we expand the squares (vi) as

(vi) = N°1 X

i
∏̂2

i j +N°1 X

i
∏2

i j °2N°1 X

i
S j ∏̂i j∏i j

= ∏̂
0
j ∏̂ j /N +∏0

j∏ j /N °2S j ∏̂
0
j∏ j

p! 0 ,

in which the convergence holds according to§0§/N
p! Ir in A.2(c), b§0

b§/N = Ir and

S b§0§/N
p! Ir in Lemma 3. Secondly, A.1(b) gives that øi j ,t = E(≤i t≤ j t ), and thus we

derive the term (vii) as

(vii) = N°1 X

i
(≤2

i t °øi i ,t )

| {z }

(viii)

+N°1 X

i
øi i ,t

| {z }

(ix)

.

Note that the fact (viii)
p! 0 follows from

E(viii)2 = N°2 X

i

X

j
E(≤2

i t °øi i ,t )(≤2
j t °ø j j ,t )

= N°2 X

i

X

j
cov (≤2

i t ,≤2
j t )

∑ N°2 X

i

X

j
|cov (≤2

i t ,≤2
j t )|

∑ sup
t ,s

N°2 X

i

X

j
|cov (≤i t≤i s ,≤ j t≤ j s )|! 0 ,

in terms of A.1(c) that limN!1 supt ,s N°1 P

i
P

j |cov (≤i t≤i s ,≤ j t≤ j s )| <1. Moreover,
we obtain that (ix) ∑ N°1 P

i |øi i ,t | <1 by A.1(b). Therefore, with (vii) ª Op (1) and

(vi)
p! 0, we can conclude that |(iv)| p! 0 by Slutsky’s theorem, which leads to (iv)

p! 0
as well.
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(2). Show that (v)
p! 0. We consider the mean squares of (v) as follows,

E(v)2 = N°2S j
X

i

X

m
∏i j∏m jøi m,t

∑ N°2S j
X

i

X

m
∏i j∏m j |øi m,t |

∑ ∏̄2N°2S j
X

i

X

m
|øi m,t |! 0 ,

in which the first inequality is based on the definition of ø in A.1(b), the second
inequality holds by introducing ∏̄ defined as the maximal element of §, and the

convergence holds by A.1(b) as well. Thus, we conclude that (v)
p! 0.

Lemma 4 Let gt define a sequence of random variables, such that T °1 P

t g 2
t

p! æg

and T °1 P

t Ft gt
p!ßF g . Then T °1 P

t S bFt gt
p!ßF g .

Proof: We consider the following,

T °1 X

t
S bFt gt = T °1 X

t
S(b§0 X̃t /N )gt

= (T N )°1 X

t
S b§0(§Ft +≤t )gt

= T °1 X

t
(S b§0§/N )Ft gt + (T N )°1 X

t
S b§0≤t gt ,

in which T °1 P

t (S b§0§/N )Ft gt
p! ßF g under the result S b§0§/N

p! Ir and the con-

dition T °1 P

t Ft gt
p! ßF g . In addition, recalling that ∏̂

0
j 2®, we can obtain the fol-

lowing, for j = 1, . . . ,r ,

|(T N )°1 X

t
S j ∏̂

0
j ≤t gt | ∑ (T N )°1 sup

¿2®

X

t
¿0≤t gt

= sup
¿2®

T °1 X

t
(N°1¿0≤t )gt

∑ (T °1 X

t
g 2

t )
1
2 ·

£

sup
¿2®

T °1 X

t
(N°1¿0≤t )2§ 1

2
p! 0 ,

where the convergence holds in terms of Slutsky’s theorem under the condition

T °1 P

t g 2
t

p!æg . Furthermore, we have that

sup
¿2®

T °1 X

t
(N°1¿0≤t )2 = sup

¿2®
T °1N°2¿0≤0≤¿

∑ sup
¿2®

T °1N°2|¿0≤0≤¿| p! 0 ,

as shown in the proof of Lemma 1.

Theorem 1(b)

Proof: We expand the sum squares as follows,

T °1 X

t
(Si bF j t °F j t )2 = T °1 X

t

bF 2
j t °2T °1 X

t
Si bF j t F j t +T °1 X

t
F 2

j t ,
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where the last term T °1 P

t F 2
j t

p! æ j j by A.2(b). In order to complete the proof, we

need to show that both T °1 P

t bF 2
j t and T °1 P

t bF j t F j t converge toæ j j in probability.
On one hand, let F j t be the series of gt from Lemma 4, for j = 1,2, . . . ,r . Addition-

ally, A.2(a) states that T °1 P

t F 2
j t

p!æ j j and T °1 P

t Ft F j t
p! (ßF ) j . Then, according

to Lemma 4, we obtain that, for j = 1,2, . . . ,r,

T °1 X

t
S bFt F j t

p! (ßF ) j ,

or equivalently,

T °1 X

t
S bFt F 0

t
p!ßF .

In other words, for any j = 1,2, . . . ,r, we know that

T °1 X

t
S j bF j t F j t

p!æ j j .

On the other hand, set gt = S j bF j t , and the following holds on the basis of Lemma 4,

T °1 X

t

bFt bF 0
t

p!ßF ,

which means, for j = 1,2, . . . ,r,

T °1 X

t

bF 2
j t

p!æ j j .

Theorem 1(c)

Proof: Recalling the representation of ¿ from Lemma 2, we let ¿̂ be the i th ordered
eigenvectors of X̃ 0 X̃ for i > r , such that

¿̂=§(§0§/N )°
1
2 ±̂+ bV ,

where bV 0§ = 0, bV 0
bV /N ∑ 1 and ±̂0±̂ ∑ 1. Also, we normalize it by ¿̂0¿̂ = 1. By the

definition, we obtain that T °1 P

t bF 2
i t = R(¿̂). Then, we need to show that R(¿̂)

p! 0

or R§(¿̂)
p! 0.

Recall that in the proof of Lemma 3, ∏̂ j defines the j th ordered eigenvectors of

X̃ 0 X̃ for j = 1, . . . ,r ,

∏̂ j =§(§0§/N )°
1
2 ±̂ j + bVj ,

where bV 0
j§ = 0, bV 0

j
bVj

p! 0, ±̂2
j j

p! 1 and ±̂2
i j

p! 0 for i 6= j . Next, we consider the
following,

¿̂∏̂ j /N = ±̂0±̂ j + bV 0
bVj /N ,

where ¿̂∏̂ j = 0 in terms of the orthonormal eigen-basis by construction for j =
1, . . . ,r . The two conditions bV 0

bV /N ∑ 1 and bV 0
j
bVj

p! 0 together lead to that bV 0
bVj

p! 0.
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Thus, it results in that ±̂0±̂ j
p! 0 for j = 1, . . . ,r , or, equivalently, ±̂0(±̂1 ±̂2 · · · ±̂r )

p! 0.

Moreover, we know that (±̂1 ±̂2 · · · ±̂r )
p! Ir , which makes ±̂

p!~0. Finally, we obtain
that

R(¿̂)§ = ±̂0CN T ±̂
p! 0 ,

where CN T = (§0§/N )
1
2
0
(F 0F /T )(§0§/N )

1
2 . Moreover, this implies that R(¿̂)

p! 0 by
Lemma 1.

Lemma 5 Let GT = {max1∑i∑p max1∑ j∑N p |T °1 PT
t=1 Wt°i , j"t |∑∏T /2} , then,

P (GT ) ∏ 1°2(N 2p)1°ln(1+T ) °2(1+T )°g ,

for ∏T =
q

8ln(1+T )5ln(1+N )4ln(1+p)2ln(N 2p)æ4
T /T and g as a positive con-

stant.

Proof: This lemma is to bound the maximum of all cross products of variables and
error terms, which is originally shown and proven by Kock and Callot (2015).

Theorem 2

Proof: By the minimizing property of ( bA, bB) for the object function (21), we have
that

T °1ky ° ( bF bA+W bB)k2 +2∏T k bBk1 ∑ T °1ky ° ( bF A+W B)k2 +2∏T kBk1 . (B.1)

Using model (11), we write LHS and RHS of the inequality (B.1) as

LHS = T °1k( bF bA+W bB)° (F A+W B)k2 °2T °1"0[( bF bA+W bB)° (F A+W B)]

+2∏T k bBk1 +T °1k"k2 ,

and
RHS = T °1k( bF °F )Ak2 °2T °1"0( bF A°F A)+2∏T kBk1 +T °1k"k2 .

Note that T °1k( bF bA+W bB)°(F A+W B)k2 = T °1k bZ b≠°Z≠k2 which is of our term of
interest. Thus, we rearrange inequality (B.1) to obtain that

T °1k bZ b≠°Z≠k2 ∑ T °1k( bF °F )Ak2
| {z }

(i)

+2T °1"0 bF ( bA° A)
| {z }

(ii)

+2T °1"0W ( bB °B)
| {z }

(iii)

+2∏T (kBk1 °k bBk1) .

First, we expand (i) as follows,

(i) = T °1
n r

X

j=1
A2

j

T
X

t=1
(S j bF j t °F j t )2 +

r̂
X

j=r+1
A2

j

T
X

t=1

bF 2
j t

o

∑ Ā2
n

T °1
r

X

j=1

T
X

t=1
(S j bF j t °F j t )2

| {z }

!0 by Theorem 1(b)

+T °1
r̂

X

j=r+1

T
X

t=1

bF 2
j t

| {z }

!0 by Theorem 1(c)

o

! 0 ,
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where Ā = max
j

A j and the convergence holds according to A.3(c). We then write
T °1"0 bF = T °1"0( bF °F )+T °1"0F , in which the first term converges to zero by A.3(a)

and Theorem 1(a) and the second term converges to zero as well in terms of A.3(b).
Moreover, k bA°Ak1 is finite under the condition A.3(c), thus we obtain the following
by Slutsky’s theorem,

(ii) ∑ 2T °1"0 bFk bA° Ak1
p! 0 .

Now, on set GT , we have that

(iii) ∑ 2max
j

|T °1 X

t
"t Wt°1, j | ·k bB °Bk1 ∑∏T k bB °Bk1 .

Therefore, we know that

T °1k bZ b≠°Z≠k2 ∑∏T k bB °Bk1 +2∏T (kBk1 °k bBk1)+op (1) .

Then, adding the term ∏T k bB °Bk1 on both sides yields that

T °1k bZ b≠°Z≠k2 +∏T k bB °Bk1 ∑ 2∏T (k bB °Bk1 +kBk1 °k bBk1
| {z }

(iv)

)+op (1) .

Next, we derive that

(iv) = k bBJ °BJk1 +kBJk1 °k bBJk1 ∑ 2k bBJ °BJk1 ,

where the inequality holds because kBJk1°k bBJk1 ∑ k bBJ °BJk1. So far, we have that

T °1k bZ b≠°Z≠k2 +∏T k bB °Bk1 ∑ 4∏T k bBJ °BJk1 +op (1) ,

in which op (1) is asymptotic negligible. Thus, straightforwardly, we obtain the fol-
lowing two inequalities:

T °1k bZ b≠°Z≠k2 ∑ 4∏T k bBJ °BJk1 ; (B.2)

k bB °Bk1 ∑ 4 k bBJ °BJk1 . (B.3)

Furthermore, inequality (B.3) is equivalent to

k bBJC °BJC k1 ∑ 3k bBJ °BJk1 ,

which satisfies the condition of Restricted Eigenvalues. Additionally, it also pro-
vides that

∑W (s) ∑ kT °1W ( bB °B)k
k bBJ °BJk

∑ kT °1( bZ b≠°Z≠)k
k bBJ °BJk

,

or equivalently,

k bBJ °BJk ∑
kT °1( bZ b≠°Z≠)k

∑W (s)
.

Together with the fact that

k bBJ °BJk1 ∑
p

sk bBJ °BJk ,
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we can rewrite inequality (B.2) as

T °1k bZ b≠°Z≠k2 ∑ 4
p

s∏T k bBJ °BJk

∑ 4
p

s∏T
kT °1( bZ b≠°Z≠)k

∑W (s)
.

Supposing that 0 < c < min
©

∑W (s),∑Z (s+r )
™

, we obtain the following inequality on
GT ,

T °1k bZ b≠°Z≠k2 ∑ 16 s∏2
T /c2 . (B.4)

Moreover, inequality (B.3) implies that

kb≠°≠k1 ∑ 4 kb≠J °≠Jk1

and
kb≠JC °≠JC k1 ∑ 3 kb≠J °≠Jk1 ,

which satisfies the condition of Restricted Eigenvalues for the Gram matrix ™Z .
Therefore, it gives that

∑Z (s + r ) ∑ kT °1Z (b≠°≠)k
kb≠J °≠J )k

,

or equivalently,

kb≠J °≠J ) |∑ kT °1Z (b≠°≠)k
∑Z (s + r )

.

Furthermore, we know that

kb≠°≠k1 ∑ 4
p

s + rkb≠J °≠Jk

∑ 4
p

s + r
kT °1Z (b≠°≠)k

∑Z (s + r )
,

where

kT °1Z (b≠°≠)k ∑ kT °1( bZ b≠°Z≠)k+kT °1( bF °F )Ak
= kT °1( bZ b≠°Z≠)k+op (1) ,

in terms of the proven result that (i)
p! 0. Then, using the result (B.4), we obtain that

kb≠°≠k1 ∑
16

p
1+ r /s
c2 s∏T +op (1) . (B.5)

The assumption that N , p 2O(eT a
) for some a ∏ 0 suggests the following,

s2∏2
T 2O(ln(1+T )5T 7a+2b°1) ª o(1) ,

which implies that s∏T ! 0. Therefore, we can conclude that kb≠°≠k1
p! 0 ac-

cording to the inequality (B.5), which proves Theorem 2(b). Moreover, the fact that
s∏T ! 0 can lead to ∏T < 1 from a time point T in the future. It indicates that

s∏2
T ! 0, and T °1k bZ b≠°Z≠k2 p! 0 in terms of the inequality (B.4), which shows the

statement Theorem 2(a).
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