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Abstract

The aim of this paper is to define the market-consistent value of a
liability cash flow in discrete time subject to repeated capital require-
ments, and explore its properties. Our multi-period market-consistent
valuation approach is based on defining a criterion for selecting a static
replicating portfolio and defining the value of the residual liability,
whose cash flow is the difference between the original liability cash
flow and that of the replicating portfolio. The value of the residual
cash flow is obtained as a solution to a backward recursion that is im-
plied by the procedure for financing the repeated capital requirements,
and no-arbitrage arguments. We show that the liability value resulting
from no-arbitrage pricing of the dividends to capital providers may be
expressed as a multi-period cost-of-capital valuation. Explicit valua-
tion formulas are obtained under Gaussian model assumptions.

1 Introduction

The aim of this paper is to define the market-consistent value of a liabil-
ity cash flow in discrete time subject to repeated capital requirements, and
explore its properties. The liability should be interpreted as the aggregate
liability of a company, i.e. at the level on which capital requirements are
imposed. Our multi-period valuation approach is based on defining a crite-
rion for selecting a static replicating portfolio and defining the value of the
residual liability whose cash flow is the difference between the original lia-
bility cash flow and that of the replicating portfolio. For defining the value
of the residual cash flow we do not impose a particular valuation functional.
Instead we derive the value as a solution to a backward recursion that is
implied by the procedure for financing the repeated capital requirements,
and no-arbitrage arguments.

The approach to market-consistent liability valuation presented in [11]
has been the main source of inspiration for the current paper. Similarly to
what is advocated in [11], and as is explicitly stated in current insurance
market regulation, we consider a hypothetical transfer of the liability to a



so-called reference undertaking whose only purpose is to manage the runoff
of the liability. The repeated capital requirements are financed by capital
providers with limited liability. In [11], a valuation framework based on
dynamic replication and cost-of-capital arguments was presented. In [7]
a valuation framework, inspired by [11], based on dynamic monetary risk
measures and dynamic monetary utility functions was presented and explicit
valuation formulas were derived under Gaussian model assumptions. An
essential difference between [11] and [7] is that initial static replication,
instead of dynamic replication, of the liability cash flow is considered in [7].
The static replicating portfolio is transferred to the reference undertaking
together with the liability. Static replication is a reasonable assumption
since sophisticated dynamic hedging may be unrealistic for an entity only
designed to manage a liability in runoff.

In [7], the static replicating portfolio was assumed to be given and the
analysis only focused on the multi-period valuation of the residual liability
cash flow. Criteria for selection of a replicating portfolio were not ana-
lyzed. A large part of the current paper focuses on presenting properties
of a particular criterion for selection of the replicating portfolio that forms
the basis for defining the value of the liability. Moreover, in the current
paper the value of the residual liability is implied by no-arbitrage pricing of
a derivative security with optionality written on the cumulative cash flow to
capital provider. We demonstrate that there is a correspondence between
the choice of pricing measure used for pricing the derivative security and an
adapted process of cost-of-capital rates that defines the capital providers’
acceptability criteria for providing solvency capital throughout the runoff of
the liability.

Replicating portfolio theory for capital requirement calculation has at-
tracted much interest in recent years. There, the value of a liability cash flow
at a future time is modeled as a conditional expected value with respect to
the market’s pricing measure of the sum of discounted future liability cash
flows. Since computation of this liability value is typically not feasible, one
seeks an accurate approximation by replacing the liability cash flow (or its
value) by that of a portfolio of traded replication instruments. Then, a risk
measure is applied to the approximation of the liability value yielding an
approximation of the capital requirement. In [2], [12], [13] and [14] vari-
ous aspects of this replicating portfolio approach to capital calculations are
clarified. A fact that somewhat complicates the analysis is that risk mea-
sures defining capital requirements are defined with respect to the real-world
probability measure P, whereas the replication criteria are usually expressed
in terms of the market’s pricing measure Q. Comparisons of properties and
effects of different replication criteria are presented in [12], [13] and [14]. In
[2], it is shown how replicating portfolio theory can be formulated in order to
allow for efficient replication of liability values exhibiting path-dependence.
Common to the works [2], [12], [13] and [14] is that the liability value is de-
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fined as a conditional expected value of the sum of discounted liability cash
flows. This is very different from the approach presented here. As explained
above, we do not define the value of the liability from to outset. Rather
we consider the dividends to the capital provider that finances the capital
requirements of the residual liability cash flow that remains after imperfect
initial replication.

Dynamic risk measures and dynamic risk-adjusted values have been an-
alyzed in great detail during the last decade, see e.g. [1], [3], [4], [5] and the
references therein for important contributions. Much of the research in this
area has been aimed at establishing properties and representation results for
dynamic risk measures in general functional analytic settings, particularly
for bounded stochastic processes and under convexity requirements for the
risk measures. We want to allow for models for unbounded liability cash
flows. Moreover, limited liability for the capital providers in our setting
implies that the dynamic valuation mappings appearing here will not be
concave even when the conditional risk measures are convex. We will only
assume very basic properties of the conditional risk measures defining capi-
tal requirements, namely, so-called translation invariance, monotonicity and
normalization. In particular, we want to allow for conditional versions of a
risk measure such as Value-at-Risk that is extensively used in practice.

Another approach to market-consistent liability valuation is presented in
[15], combining no-arbitrage valuation and actuarial valuation into a general
framework. Both the current paper and [15] advocates a two-step valuation.
However, this has a quite different meaning in [15] compared to the approach
presented here. In [15], an actuarial pricing principle is used to price the
residual risk. However, the residual risk in [15] does not correspond to our
residual liability cash flow. Moreover, as described above, we do not price
the residual liability cash flow by a given pricing operator; in our setting the
value of the residual liability cash flow is implied by no-arbitrage valuation
of the cumulative dividends to capital providers. See also [9], [10] and the
references therein for other approaches the market-consistent valuation of
insurance liability cash flows.

The paper is organized as follows: The liability valuation framework
is presented in Section 2 which is divided into three subsections. Section
2.1 presents the procedure for financing the repeated capital requirements,
imposed on the reference undertaking, by capital injections from capital
providers. In particular, it is shown that no-arbitrage pricing of the deriva-
tive security written on the cumulative cash flows to the capital providers
leads to a backward recursion for the value of the residual liability cash flow.
Section 2.2 presents the mathematical framework for valuation of the resid-
ual liability cash flow when capital requirements are expressed in terms of a
dynamic monetary risk measure. Section 2.3 focuses on criteria for selecting
the static replicating portfolio, proposes a particular criterion and explores
its properties. Based on this criterion and the framework presented in Sec-
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tion 2.2 the value of the liability is defined. Explicit valuation formulas are
obtained in Section 3 under Gaussian model assumptions. The proofs are
found in Section 4.

2 The valuation framework

We consider time periods 1, . . . , T , corresponding time points 0, 1, . . . , T , and
a filtered probability space (Ω,F ,F,P), where F = (Ft)Tt=0 with {∅,Ω} =
F0 ⊆ · · · ⊆ FT = F , and P denotes the real-world measure. We write
Lp(Ft,P) for the normed linear space of Ft-measurable random variables X
with norm EP[|X|p]1/p. Equalities and inequalities between random vari-
ables should be interpreted in the P-almost sure sense. We assume a given
numéraire process (Nt)

T
t=0 and that all financial values are discounted by

this numéraire. Although the choice of numéraire is irrelevant for the anal-
ysis, we take the numéraire to be the bank account numéraire: N0 = 1 and
Nt is the amount at time t from rolling forward an initial unit investment
in one-period risk-free bonds. A value NtY at time t has discounted value
Y at time t.

We assume that there exist a strictly positive (P,F)-martingale (Dt)
T
t=0

with EP[DT ] = 1 defining the pricing measure Q of an arbitrage-free financial
market via Dt = dQ/dP | Ft, i.e. for u > t and an Fu-measurable Z,

EQ
t

[
Z
]

=
1

Dt
EP
t

[
DuZ

]
,

where subscript t means conditioning on Ft. Given the incomplete-market
setting, the pricing measure Q is not uniquely determined by no-arbitrage
arguments. The pricing measure Q is neutral to financial trading risk. More-
over, Q should be chosen so values assigned to non-hedgeable (insurance)
cash flows reflect risk averseness of market participants towards such risks.
Demands from market participants of compensation for providing capital
for financing capital requirements for non-hedgeable risks may be viewed as
risk averseness.

2.1 The liability derivative instrument

A discounted liability cash flow corresponds to an F-adapted stochastic pro-
cess Xo = (Xo

t )Tt=1 interpreted as a discounted cash flow from an aggregate
insurance liability in runoff. Our aim is to give a precise meaning to the
market-consistent value of the liability and provide results that allow this
value to be computed.

As is done in e.g. [11] and prescribed by EIOPA, see [6, Article 38], we
take the point of view that an aggregate liability cash flow should be val-
ued by considering a hypothetical transfer of the liability and its associated
replicating portfolio to a separate entity, a so-called reference undertaking,
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whose assets have the purpose of matching the value or cash flow of the
liability as well as possible.

We will give a meaning to the liability value by a particular valuation
procedure. At time 0, a replicating portfolio is purchased with the aim
replicating the liability value or its cash flow at all times. Let Xr = (Xr

t )Tt=1

denote the discounted cash flow of the replicating portfolio and note that,
from standard assumptions of no arbitrage, its initial price is

∑T
t=1 E

Q
0 [Xr

t ].
The cash flow Xr is allowed to be any discounted cash flow with finite
expectation that can be generated from a given set of replication instruments
by a trading strategy fixed at time 0 that rules out borrowing and capital
injections.

The valuation of the liability cash flow is based on a simple observation.
Externally imposed capital requirements imply that the reference under-
taking needs capital injections throughout the liability runoff. A capital
provider is the owner of the reference undertaking for as long as the neces-
sary capital injections are provided. The capital provider may at any time
choose to stop providing capital and, in this case, has no further obligations
towards the reference undertaking. From the capital provider’s perspective,
ownership of the reference undertaking is equivalent to holding a derivative
security with optionality, described in detail below, written on the residual
liability cash flow Xo −Xr.

We will define the value at time 0 of the liability cash flow Xo as

T∑
t=1

EQ
0 [Xr

t ] + V0(X
o −Xr) = EQ

0

[ T∑
t=1

Xr
t + V0(X

o −Xr)
]
,

where Xr is the discounted cash flow of a particular replicating portfolio and
V0 := V0(X

o −Xr) is the size of a position in the numéraire asset. V0 will
be determined from Xo and Xr by solving a non-linear backward recursion
that appears as the consequence of capital requirements and the procedure
for handling the residual liability cash flow X := Xo − Xr from imperfect
replication.

The F-adapted sequence (Vt)
T
t=0, whose terms are the discounted values

of the residual liability cash flows (Xs)
T
s=t+1, t = 0, . . . , T − 1, will be deter-

mined from no-arbitrage pricing of a particular derivative security written
on the discounted residual cash flow X.

• At time 0, the liability, replicating portfolio and a position V0 in the
numéraire asset are transferred to a reference undertaking. From this
point, it is sufficient to only consider the residual liability with dis-
counted cash flow X and the position in the numéraire asset. We will
define the derivative instrument which is intimately connected with a
trading strategy in the numéraire asset. The holder of the derivative
may exercise the right to stop at any time t ∈ {1, . . . , T}.
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• At time t, provided that the holder of the derivative has not exercised
the right to stop, denote the discounted available capital, all invested
in the numéraire asset, by Vt and the discounted solvency capital re-
quirement by Rt, required for the residual liability cash flow in runoff.
The holder of the derivative is required to offset the difference by pay-
ing an amount with discounted value Rt − Vt. The position Rt in the
numéraire asset is held until time t+ 1.

• At time t + 1 the discounted value of the payoff to the holder of the
derivative is (Rt − Xt+1 − Vt+1)+ := max(Rt − Xt+1 − Vt+1, 0) upon
stopping, and Rt −Xt+1 − Vt+1 upon not stopping.

• The random sequence (Vt)
T
t=0 is determined from the requirement that

the market price of the derivative is zero at all times. Let Ht,t′ , t
′ ≥

t+ 1, be the discounted gain for the holder of the derivative from time
t to time t′ upon stopping at time t′. Notice that

Ht,t+1 = −(Rt − Vt) + (Rt −Xt+1 − Vt+1)+,

Ht,t′ = −(Rt − Vt) + (Rt −Xt+1 − Vt+1) +Ht+1,t′ , t′ > t+ 1.

The holder of the derivative is the owner of the reference undertaking. An
essential feature is that the owner of the reference undertaking neither pays
nor is paid anything for the ownership, i.e. for the transfer of the liability,
the replicating portfolio and the position in the numéraire asset. Moreover,
the position Vt in the numéraire asset at any time t is such that the value
of continued ownership is zero. This requirement, and its consequences, are
given in the following result. Here ess sup refers to the essential supremum
with respect to P, see Appendix A.4 in [8]. Details on arbitrage-free pricing
of American contingent claims can be found in Section 6.3 in [8].

Theorem 1. For t ∈ {0, . . . , T − 1}, let St+1,T be the set of stopping times
in {t+ 1, . . . , T}, and set

ess sup
τ∈St+1,T

EQ
t [Ht,τ ] := 0.

Then, for t ∈ {0, . . . , T − 1},

ess sup
τ∈St+1,T

EQ
t [Ht,τ ] = EQ

t [Ht,τ∗t+1
],

where τ∗t+1 := min{s ∈ {t+ 1, . . . , T} : Rs−1 −Xs − Vs < 0}, and

Vt = Rt − EQ
t

[
(Rt −Xt+1 − Vt+1)+

]
, VT := 0. (1)
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Remark 1. Notice that

Vt = Rt − EQ
t [(Rt −Xt+1 − Vt+1)+]

= Rt −
1

1 + ηt
EP
t [(Rt −Xt+1 − Vt+1)+],

where

1

1 + ηt
:=

EP
t [Dt+1(Rt −Xt+1 − Vt+1)+]

DtEP
t [(Rt −Xt+1 − Vt+1)+]

In order for an interpretation of ηt we need more structure, such as the so-
called Basic Actuarial Model in Section 6.2 in [16]. There, F is defined in
terms of a financial filtration A = (At)Tt=0 and insurance technical filtration
T = (Tt)Tt=0 such that Ft is generated by At and Tt for all t, and A and
T are independent with respect to P. Moreover, modified to our setting,
Dt := DA

t D
T
t , where (DA

t )Tt=0 is A-adapted and a (P,A)-martingale with
DA

0 = 1, and (DT
t )Tt=0 is T-adapted and a (P,T)-martingale with DT

0 = 1.
Under these assumptions and if X is independent of A,

1

1 + ηt
=

EP
t [(DT

t+1/D
T
t )(Rt −Xt+1 − Vt+1)+]

EP
t [(Rt −Xt+1 − Vt+1)+]

.

Notice that multiplication by the factor DT
t+1/D

T
t represents a probability

distortion, or change of measure, which, for ηt > 0, should be interpreted
as a required increase in the expected return on capital above the risk-free
return to compensate for the risk aversion of the capital provider.

2.2 The value of the residual liability cash flow

In order to ensure that the value of the liability, to be defined, is a sensible
object we require three basic properties of the risk measures quantifying
solvency capital requirements.

By conditional and dynamic monetary risk measures quantifying one-
period capital requirements we mean the following:

Definition 1. For p ∈ [0,∞] and t ∈ {0, . . . , T−1}, a conditional monetary
risk measure is a mapping Rt : Lp(Ft+1,P)→ Lp(Ft,P) satisfying

if λ ∈ Lp(Ft,P) and Y ∈ Lp(Ft+1,P), then Rt(Y + λ) = Rt(Y )− λ, (2)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then Rt(Y ) ≥ Rt(Ỹ ), (3)

Rt(0) = 0. (4)

A sequence (Rt)
T−1
t=0 of conditional monetary risk measures is called a dy-

namic monetary risk measure.

7



For t ≥ 0, x ∈ R, u ∈ (0, 1) and an Ft+1-measurable Z, let

Ft,−Z(x) := P(−Z ≤ x | Ft),
F−1t,−Z(1− u) := min{m ∈ R : Ft,−Z(m) ≥ 1− u},

and define conditional versions of Value-at-Risk and Expected Shortfall as

VaRt,u(Z) := F−1t,−Z(1− u),

ESt,u(Z) :=
1

u

∫ u

0
VaRt,v(Z)dv.

VaRt,u and ESt,u are spacial cases of the following more general type of
conditional monetary risk measure.

Definition 2. Let t ∈ {0, . . . , T − 1} and let M be a probability distribution
on the Borel subsets of (0, 1) such that either M has a bounded density with
respect to the Lebesgue measure or the support of M is bounded away from
0 and 1. Define

Rt(Z) :=

∫ 1

0
F−1t,−Z(u)dM(u).

Theorem 2. For p ∈ [1,∞], Rt in Definition 2 is a conditional risk mea-
sures in the sense of Definition 1. In particular, for p ∈ [1,∞], VaRt,u and
ESt,u are conditional monetary risk measures in the sense of Definition 1.

The statement of Theorem 2 follows from combining Proposition 4 (i)
and Remark 5 in [7]; the proof is therefore omitted. Notice that VaRt,v is
obtained by choosing M such that M({1 − v}) = 1, and ESt,v is obtained
by choosing M with density u 7→ v−11(1−v,1)(u).

From (1) follows that Vt is determined recursively from Xt+1 and Vt+1

as follows:

Vt := Wt(Xt+1 + Vt+1), VT := 0, (5)

Wt(Y ) := Rt(−Y )− EQ
t

[(
Rt(−Y )− Y

)
+

]
. (6)

It remains to define the mappings Wt properly. This can be done in various
ways and we will focus on the ones that fit our purposes. From the fact that

EQ
t

[(
Rt(−Y )− Y

)
+

]
=

1

Dt
EP
t

[
Dt+1

(
Rt(−Y )− Y

)
+

]
applications of Hölder’s and Minkowski’s inequalities allow us to define Wt.

Theorem 3. (i) Fix t ∈ {0, . . . , T − 1} and p ∈ [1,∞]. Suppose Dt+1/Dt ∈
L∞(Ft+1,P) and that Rt is a conditional monetary risk measure according
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to Definition 1. Then Wt in (6) is a mapping from Lp(Ft+1,P) to Lp(Ft,P)
having the properties

if λ ∈ Lp(Ft,P) and Y ∈ Lp(Ft+1,P), then Wt(Y + λ) = Wt(Y ) + λ, (7)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then Wt(Y ) ≤Wt(Ỹ ), (8)

Wt(0) = 0. (9)

(ii) Fix t ∈ {0, . . . , T −1} and 1 ≤ p1 < p2. Suppose Dt+1/Dt ∈ Lr(Ft+1,P)
for every r ≥ 1. Suppose further that for any p ∈ [p1, p2], Rt is a conditional
monetary risk measure according to Definition 1. Then, for any ε > 0 such
that p− ε ≥ p1, Wt in (6) can be defined as a mapping from Lp(Ft+1,P) to
Lp−ε(Ft,P) having the properties (7)-(9).

The requirement Dt+1/Dt ∈ L∞(Ft+1,P) in statement (i) of Theorem 3
leads to a cleaner definition of the mapping Wt. However, the boundedness
of Dt+1/Dt may be a too restrictive requirement. Finiteness of all moments
of Dt+1/Dt, as in statement (ii), will be an appropriate requirement for the
subsequent analysis here.

Under the assumptions of Theorem 3 (i) or (ii), it follows from (5) that

Vt = Wt ◦ · · · ◦WT−1(Xt+1 + · · ·+XT ), (10)

where Wt ◦ · · · ◦WT−1 denotes the composition of mappings Wt, . . . ,WT−1,
and that Vt ∈ Lp(Ft,P) in case of Theorem 3 (i) applies or, for any ε > 0
such that p− ε > 0, Vt ∈ Lp−ε(Ft,P) in case Theorem 3 (ii) applies.

In statements involving Vt we will in what follows, in order to avoid
irrelevant lengthy technical statements, assume that suitable conditions are
satisfied ensuring that Vt = Vt(X) is well-defined from (10) as a mapping
from Lp((Ft)Tt=1,P) to Lp−ε(Ft,P) for relevant values of p and ε such that
(7)-(9) hold.

The following result is an immediate consequence of the representation
(10) combined with Theorem 3. The proof is therefore omitted.

Theorem 4. (i) Let b = (bs)
T
s=1 with bs ∈ Lp(Ft,P) for each s, and let

Xs ≤ X̃s for each s. Then, for every t < T ,

Vt(0) = 0, Vt(X + b) = Vt(X) +
T∑

s=t+1

bs, Vt(X) ≤ Vt(X̃).

(ii) For every pair of times (s, t) with s ≤ t, the two conditions (Xu)tu=1 =
(X̃u)tu=1 and Vt(X) ≤ Vt(X̃) together imply Vs(X) ≤ Vs(X̃).

2.3 The value of the liability cash flow

In order to define the value of the liability we need to specify the available
replication instruments and their cash flows. Consider m discounted cash
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flows Xf,k = (Xf,k
t )Tt=1, k = 1, . . . ,m of available financial instruments and

denote by Xf the Rm-valued process such that Xf
t denotes the (column)

vector of time-t discounted cash flows of the m instruments. A portfolio
with portfolio-weight vector v ∈ Rm, representing the number of units of
the m instruments, generates the discounted cash flow vTXf

t at time t.
Various criteria for selection of replicating portfolio have been considered

in the literature. The optimization problem

inf
v∈Rm

T∑
t=1

EQ
0

[
(Xo

t − vTX
f
t )2
]1/2

(11)

is referred to as cash flow matching in [14]. Under mild conditions, it is
shown in Theorems 1 (and 2) in [14] that an optimal (unique optimal) so-
lution exists. An alternative cash-flow-matching problem is

inf
v∈Rm

T∑
t=1

EQ
0

[
(Xo

t − vTX
f
t )2
]
. (12)

Comparisons between (11) and (12) are found in [12]. The optimization
problem

inf
v∈Rm

EQ
0

[( T∑
t=1

(Xo
t − vTX

f
t )
)2]1/2

(13)

is referred to as terminal-value matching in [12], [13] and [14]. It is a standard
quadratic optimization problem with explicit solution

v̂ = EQ
0




Xf,1
· Xf,1

· . . . Xf,1
· Xf,m

·
...

...

Xf,m
· , Xf,1

· . . . Xf,m
· Xf,m

·



−1

EQ
0




Xo
· X

f,1
·

...

Xo
· X

f,m
·




provided that the matrix inverse exists, where the subscript · means sum-
mation over the index t.

A replicating portfolio selection criterium should have the property that
if perfect replication is possible, then the discounted optimal replicating
portfolio cash flow v̂TXf satisfies Xo = v̂TXf . This requirement ensures
market-consistent liability values: L0 =

∑T
t=1 E

Q
0 [Xo

t ] for a replicable liabil-
ity cash flow.

Remark 2. The versions of the optimization problems (11), (12) and (13)
obtained by replacing the expectation EQ

0 by EP
0 may also be reasonable. No-

tice that if the only available replication instruments are zero-coupon bonds
in the numéraire asset of all maturities t = 1, . . . , T (or, equivalently, Eu-
ropean call options on the numéraire asset with maturities t = 1, . . . , T and
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common strike price 0), then m = T and Xf is the T × T identity matrix.
In this case,

inf
v∈Rm

T∑
t=1

EP
0

[
(Xo

t − vTX
f
t )2
]

= inf
v∈Rm

T∑
t=1

EP
0

[
(Xo

t − vt)2
]
,

and the unique optimal solution is v̂ = EP
0 [Xo] which is referred to as the

actuarial best-estimate reserve.
Notice also that, given the above restricted set of replication instruments,

any v̂ satisfying
∑T
t=1 v̂t =

∑T
t=1 EP

0 [Xo
t ] is an optimal solution to the version

of the terminal value problem (13) obtained by replacing the expectation EQ
0

by EP
0 .

In our setting, the capital provider provides the capital

Ct := Rt(−Xt+1 − Vt+1)− Vt = EQ
t [(Rt(−Xt+1 − Vt+1)−Xt+1 − Vt+1)+]

at time t ensuring that the solvency capital requirement is met. Good initial
replication should make the need for external capital small. Therefore, it
is reasonable to select a replicating portfolio that minimizes the need for
external funding of the liability runoff. We may consider the optimization
problem

inf
v∈Rm

ψ(v), ψ(v) :=
T−1∑
t=0

EQ
0 [Cvt ], (14)

where Xv := Xo − vTXf , V v
t+1 := Vt+1(X

v), Rvt := Rt(−Xv
t+1 − V v

t+1), and

Cvt := EQ
t

[
(Rvt −Xv

t+1 − V v
t+1)+

]
.

Notice that, due to the translation invariance properties (2) and (7), the
objective function in the optimization problem (14) is invariant under trans-
lations of Xv by constant vectors. Consequently, (14) will not have a unique
optimal solution if risk-free cash flows in the numéraire asset are included
as replication instruments.

The optimization problems (11)-(14) can all be expressed as

inf
v∈Rm

Ψ(Xo − vTXf )

for a mapping Ψ : Lp((Ft)Tt=1,Q)→ R+ satisfying Ψ(0) = 0, i.e. optimality
of perfect replication.

Remark 3. Notice that (13) and (14) both have the property that Ψ(X) = 0
if
∑T
t=1Xt = 0. For (13) this is obvious. To see that this property holds for

11



(14), assume that
∑T
t=1Xt = 0 and notice that, for all t ∈ {1, . . . , T}, due

to (7) and (9),

t∑
s=1

Xs + Vt =
t∑

s=1

Xs +Wt ◦ · · · ◦WT−1(Xt+1 + ...+XT )

= Wt ◦ · · · ◦WT−1(X1 + ...+XT )

= 0.

Hence, for all t ∈ {1, . . . , T}, Xt+Vt = −
∑t−1
s=1Xs is Ft−1-measurable. This

in turn, using (2), implies that

Ct := EQ
t

[
(Rt(−Xt+1 − Vt+1)−Xt+1 − Vt+1)+

]
= 0

for all t ∈ {1, . . . , T}.

Existence of a minimizer X̂r := v̂TXf can be expressed as

Ψ(Xo − X̂r) = inf
v∈Rm

Ψ(Xo − vTXf ).

Conditions for existence of a minimizer v̂ in (14) are presented in Theorem
7 below.

Now we define the value of the liability as the market price of a particular
portfolio of financial instruments: the Ψ-optimal replicating portfolio and a
position V0 in the numéraire asset.

Definition 3. X̂r := v̂TXf is said to be an optimal discounted replicat-
ing portfolio cash flow with respect to the criterion Ψ if Ψ(Xo − X̂r) =
infv∈Rm Ψ(Xo − vTXf ), and then

L0 :=
T∑
t=1

EQ
0

[
X̂r
t

]
+ V0(X

o − X̂r)

is the value of the liability with replicating portfolio chosen with respect to
the criterion Ψ.

Remark 4. Notice from (1) that

Vt = Rt − EQ
t

[(
Rt −Xt+1 − Vt+1

)
+

]
≤ EQ

t

[
Xt+1

]
+ EQ

t

[
Vt+1

]
.

In particular, V0 ≤
∑T
t=1 E

Q
0 [Xt] and L0 ≤

∑T
t=1 E

Q
0 [Xo

t ] regardless of the
criterion for choosing the replicating portfolio.

Remark 5. The deterministic replicating portfolio cash flow X̂r = EP
0 [Xo]

corresponds to a classical actuarial best-estimate reserve, and solves a cash-
flow-matching problem with only risk-free cash flows in the numéraire asset
as replication instruments, see Remark 2. In this case, by Theorem 4,

L0 =
T∑
t=1

EP[Xo
t ] + V0

(
Xo − EP[Xo]

)
= V0(X

o).

12



In particular, if V0(X
o) ≥

∑T
t=1 EP[Xo

t ], then L0 ≥
∑T
t=1 EP[Xo

t ]. As noted
in Remark 2, any deterministic cash flow X̂r with

∑T
t=1 X̂

r
t =

∑T
t=1 EP

0 [Xo
t ]

is a optimal solution to the (alternative) terminal value problem

inf
v∈Rm

EP
0

[( T∑
t=1

(Xo
t − vTX

f
t )
)2]

,

with only risk-free cash flows in the numéraire asset as replication instru-
ments. In this case, by Theorem 4,

L0 =
T∑
t=1

X̂r
t + V0

(
Xo − X̂r

)
= V0(X

o).

We now address two important questions: existence of a an optimal
replicating portfolio according to the portfolio selection criterion (14), and
continuity of the value of the liability cash flow as a function of the portfolio
weights of the replicating portfolio.

For t ∈ {1, . . . , T}, define Zt := (Xo
t ,−(Xf

t )T)T and, for w ∈ Rm+1,
X̃w
t := wTZt. Notice that a residual liability cash corresponds to X̃w with

w1 = 1. The reason for introducing this notation is primarily that it allows
us to formulate sufficient conditions for coerciveness that will lead to suf-
ficient conditions for the existence of an optimal replicating portfolio, see
Theorem 6 below.

Theorem 5. Let (Dt)
T
t=0 satisfy either of the conditions (i) or (ii) in The-

orem 3. Suppose that, for each t ∈ {0, . . . , T − 1}, Rt : Lp(Ft+1,P) →
Lp(Ft,P) in (6) is a conditional monetary risk measure in the sense of Def-
inition 1 for every p ∈ [1,∞] that is L1-Lipschitz continuous in the sense

|Rt(−Y )−Rt(−Ỹ )| ≤ KEP
t [|Y − Ỹ |], Y, Ỹ ∈ L1(Ft+1,P).

for some K ∈ (0,∞). If (Zt)
T
t=1 ∈ Lp((Ft)Tt=1,P) for some p > 1, then

Rm+1 3 w 7→W0 ◦ · · · ◦WT−1
( T∑
t=1

X̃w
t

)
and Rm 3 v 7→ V0(X

v) are Lipschitz continuous.

For t = 0, . . . , T − 1, set

Ṽ w
t := Wt ◦ · · · ◦WT−1

( T∑
s=t+1

X̃w
t

)
,

R̃wt := Rt
(
− X̃w

t+1 − Ṽ w
t+1

)
,

C̃wt := EQ
t

[
(R̃wt − X̃w

t+1 − Ṽ w
t+1)+

]
,

ψ̃(w) :=
T−1∑
t=0

EQ
0 [C̃wt ].

13



Under mild conditions it can be shown that ψ̃ and ψ, given by (14), are
coercive, i.e.

lim
|w|→∞

ψ̃(w) =∞, lim
|v|→∞

ψ(v) =∞.

Theorem 6. Suppose, for t = 0, . . . , T − 1, that Rt is positively homoge-
neous in the sense Rt(λY ) = λRt(Y ) for λ ∈ R+. Suppose further that
inf |w|=1 ψ̃(w) > 0. Then lim|w|→∞ ψ̃(w) = ∞ and lim|v|→∞ ψ(v) = ∞,
where ψ is given by (14).

Remark 6. Notice that the condition inf |w|=1 ψ̃(w) > 0 means that per-
fect replication is not possible. It also disqualifies risk-free cash flows as
replication instruments. The argument is as follows. If one of the replica-
tion instruments has a risk-free cash flow x so that Xf,k = x P-a.s., then
Xf,k = x Q-a.s. and wTZ = x for some w ∈ Rm+1 with |w| = 1. Then
ψ̃(w) = 0.

For t ∈ {0, . . . , T − 1}, set

R◦t,T−1 :=

{
Rt, t = T − 1,
Rt ◦ (−Rt+1) ◦ · · · ◦ (−RT−1), t < T − 1.

Theorem 7. Suppose, for t = 0, . . . , T−1, that Rt is positively homogeneous
in the sense Rt(λY ) = λRt(Y ) for λ ∈ R+. Suppose further that ψ in (14)
is continuous, and for all w ∈ Rm+1 \ {0} there exists t ∈ {0, . . . , T − 1}
such that

P
((
R◦t,T−1 −R◦t+1,T−1

)(
− wT(Zt+1 + · · ·+ ZT )

)
> 0

)
> 0. (15)

Then there exists an optimal solution v̂ ∈ Rm to (14).

Remark 7. The conditions of Theorem 7 are sufficient but not necessary for
the existence of an optimal solution to (14). For instance, including risk-
free cash flows as replication instrument would violate the condition that
(15) holds for some t and all w without affecting either the optimal portfolio
wights in the original replication instruments or the value of the liability
cash flow.

3 Gaussian cash flows

Let (εt)
T
t=1 be a sequence of d-dimensional independent random vectors that

are standard normally distributed under P. For, t = 1, . . . , T and nonrandom
At ∈ Rn, Bt,1, . . . , Bt,t ∈ Rn×d, let

Gt := At +
t∑

s=1

Bt,sεs.

14



Let (Gt)Tt=0, with G0 = {∅,Ω}, be the filtration generated by the Gaussian
process (Gt)

T
t=1. Subscript ‘t’ will in what follows mean conditioning on

Gt. In order to keep the presentation simple, we assume that the sequence
(Gt)

T
t=1 is strictly increasing. See Remark 8 for comments on this assump-

tion.
A natural interpretation of the Gaussian model in line with the so-called

Basic Actuarial Model is as follows: Xo = G(1) is the discounted liabil-
ity cash flow, G(2), . . . , G(m+1) represent discounted cash flows of asset of
replication instruments, and G(m+2), . . . , G(n) represent insurance technical
information flows.

For a nonrandom sequence (λt)
T
t=1, λt ∈ Rn, let

Dt := exp
{ t∑
s=1

(
λTs εs −

1

2
λTs λs

)}
, t = 1, . . . , T.

We let the measure Q be defined in terms of the (P,G)-martingale (Dt)
T
t=1:

For a Gt-measurable sufficiently integrable Z and s < t, in accordance with
Section 2, EQ

s [Z] = D−1s EP
s [DtZ]. This choice has several pleasant conse-

quences: for arbitrary vectors gt ∈ Rn,

EQ
t

[ T∑
s=1

gTs Gs
]
− EP

t

[ T∑
s=1

gTs Gs
]
∈ G0,

VarQt

( T∑
s=1

gTs Gs
)

= VarPt

( T∑
s=1

gTs Gs
)
∈ G0,

i.e. the conditional expectations with respect to Q and P only differ by a
constant and the conditional variances with respect to Q and P are equal
and nonrandom.

Definition 4. The triple ((Gt)
T
t=1, (Dt)

T
t=1, (Gt)Tt=0) is called a Gaussian

model.

The Gaussian model allows for explicit valuation formulas when com-
bined with conditional monetary risk measures in Definition 2. The follow-
ing properties considerably simplifies computations. For u > t,

EP
t

[ u∑
s=1

gTs Gs
]
∈ span{1, G1, . . . , Gt},

u∑
s=1

gTs Gs − EP
t

[ u∑
s=1

gTs Gs
]

is independent of Gt, and, whenever VarPt
(∑u

s=1 g
T
s Gs

)
6= 0,

VarPt

( u∑
s=1

gTs Gs
)−1/2( u∑

s=1

gTs Gs − EP
t

[ u∑
s=1

gTs Gs
])
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is standard normally distributed with respect to P. Therefore, we may
without loss of generality assume the existence of a G-adapted sequence
(et)

T
t=1 of independent standard normally distributed random variables, with

respect to P, such that

Rt
( t+1∑
s=1

gTs Gs
)

= Rt
(
EP
t

[ t+1∑
s=1

gTs Gs
]

+ VarPt

( t+1∑
s=1

gTs Gs
)1/2

et+1

)
(16)

= −EP
t

[ t+1∑
s=1

gTs Gs
]

+ VarPt

( t+1∑
s=1

gTs Gs
)1/2

r0, (17)

where

r0 :=

∫ 1

0
Φ−1(u)dM(u). (18)

The equality between (16) and (17) holds because a risk measure Rt in the
sense of Definition 2 has the additional properties:

if λ ∈ R+ and Y ∈ Lp(Ft+1,P), then Rt(λY ) = λRt(Y ),

Rt(et+1) = r0.

We will first derive an explicit expression for the value of a general Gaus-
sian liability cash flow, where the generality lies in that Xt is allowed to be
an arbitrary linear combination gTt Gt, where gt ∈ Rn may be time depen-
dent. Then we will return to the relevant special case when gt = g for all t
and g(1) = 1, (g(k))m+1

k=2 = v ∈ Rm and g(k) = 0 for k > m+ 1.

Theorem 8. Let ((Gt)
T
t=1, (Dt)

T
t=1, (Gt)Tt=0) be a Gaussian model and let

Xt := gTt Gt for t = 1, . . . , T . For t = 0, . . . , T − 1, let Rt be conditional
monetary risk measures in the sense of Definition 2 for a common probability
distribution M . Let r0 be given by (18). Then

Vt(X) =
T∑

s=t+1

EQ
t [Xs] +KQ

t =
T∑

s=t+1

EP
t [Xs] +KP

t ,

where, with e1 standard normally distributed with respect to P,

KQ
t =

T∑
s=t+1

(
σsr0 −

T∑
u=s

gTuBu,sλs

− EP
0

[(
σs
(
r0 − e1

)
−

T∑
u=s

gTuBu,sλs
)
+

])
,

KP
t =

T∑
s=t+1

(
σs
(
r0 − e1

)
− EP

0

[(
σs
(
r0 − e1

)
−

T∑
u=s

gTuBu,sλs
)
+

])
,

σ2s = VarPs−1

( T∑
u=s

Xu

)
−VarPs

( T∑
u=s

Xu

)
=

T∑
j=s

T∑
k=s

gTj Bj,sB
T
k,sgk.
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Moreover,

Ct = EP
0

[(
σt+1

(
r0 − e1

)
−

T∑
u=t+1

gTuBu,t+1λt+1

)
+

]
.

Remark 8. Theorem 8 holds without the assumption that the sequence
(Gt)

T
t=1 is strictly increasing. If there exists t such that Gt = Gt−1, then

σt = 0 and minor changes in the proof of Theorem 8 are needed.

Remark 9. Notice that

Ct = EQ
t

[(
Rt(−Xt+1 − Vt+1)−Xt+1 − Vt+1

)
+

]
=

1

1 + ηt
EP
t

[(
Rt(−Xt+1 − Vt+1)−Xt+1 − Vt+1

)
+

]
,

where, given the setting in Theorem 8,

1

1 + ηt
=

EP
0

[(
σt+1

(
r0 − e1

)
−
∑T
u=t+1 g

T
uBu,t+1λt+1

)
+

]
EP
0

[(
σt+1

(
r0 − e1

))
+

] .

In particular, ηt ≥ 0 for every t if
∑T
u=t+1 g

T
uBu,t+1λt+1 ≥ 0 for every t.

Since

T∑
u=t+1

EQ
t [Xu]−

T∑
u=t+1

EP
t [Xu] =

T∑
u=t+1

u∑
s=t+1

gTuBu,sλs

=
T∑

s=t+1

T∑
u=s

gTuBu,sλs

we see that ηt ≥ 0 for every t holds if
∑T
u=t+1 E

Q
t [Xu] ≥

∑T
u=t+1 EP

t [Xu] for
every t. This is completely in line with Remark 1.

Theorem 9. Let ((Gt)
T
t=1, (Dt)

T
t=1, (Gt)Tt=0) be a Gaussian model. Let Xo =

G(1) be the discounted liability cash flow, let Xf,1 := G(2), . . . , Xf,m :=
G(m+1) represent discounted cash flows of replication instruments, and let
G(m+2), . . . , G(n) represent insurance technical information flows. For t =
0, . . . , T − 1, let Rt be conditional monetary risk measures in the sense of
Definition 2 for a common probability distribution M . Let r0 be given by
(18). For t = 1, . . . , T , let Zt := (Xo

t ,−(Xf
t )T)T and assume that

there is no w ∈ Rm+1 \ {0} such that
T∑
t=1

wTZt ∈ G0.
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Then there exists an optimal solution to (14) and the value of the liability
is given by

L0 =
T∑
t=1

EP
0 [Xo

t ] + K̂P
0 =

T∑
t=1

A
(1)
t + K̂P

0 ,

where, with St :=
∑T
u=tBu,t and e1 standard normally distributed with re-

spect to P,

K̂P
0 =

T∑
t=1

(
σ̂tr0 − EP

0

[(
σ̂t
(
r0 − e1

)
− ĝTStλt

)
+

])
,

σ̂2t = ĝTStS
T
t ĝ,

where ĝ is the minimizer in
{
g ∈ Rn : g1 = 1, gk = 0 for k > m+ 1

}
of

g 7→
T−1∑
t=0

EP
0

[((
gTSt+1S

T
t+1g

)1/2(
r0 − e1

)
− gTSt+1λt+1

)
+

]
.

4 Proofs

Proof of Theorem 1.

0 = ess sup
τ∈St+1,T

EQ
t [Ht,τ ]

= ess sup
τ∈St+1,T

EQ
t [I{τ = t+ 1}Ht,t+1 + I{τ > t+ 1}Ht,τ ]

= ess sup
τ∈St+1,T

(
EQ
t

[
I{τ = t+ 1}Ht,t+1 + I{τ > t+ 1}EQ

t+1 [Ht,τ ]
])

= ess sup
A∈Ft+1

(
EQ
t

[
I{A}Ht,t+1 + I{AC} ess sup

τ∈St+2,T

EQ
t+1

[
Ht,τ

]])
= −Rt + Vt + ess sup

A∈Ft+1

(
EQ
t

[
I{A}(Rt −Xt+1 − Vt+1)+

+ I{AC}
(
Rt −Xt+1 − Vt+1 + ess sup

τ∈St+2,T

EQ
t+1

[
Ht+1,τ

])])
= −Rt + Vt + ess sup

A∈Ft+1

(
EQ
t

[
I{A}(Rt −Xt+1 − Vt+1)+

+ I{AC}(Rt −Xt+1 − Vt+1)
])

= −Rt + Vt + EQ
t

[
(Rt −Xt+1 − Vt+1)+

]
.

18



Proof of Theorem 3. We prove the more involved statement (ii). Statement
(i) is proved with the same arguments.

EP
[
EQ
t

[
(Rt(−Y )− Y )+

]p]
= EP

[
EP
t

[Dt+1

Dt
(Rt(−Y )− Y )+

]p]
≤ EP

[
EP
t

[(Dt+1

Dt

)p
(Rt(−Y )− Y )p+

]]
= EP

[(Dt+1

Dt

)p
(Rt(−Y )− Y )p+

]
,

where the inequality is due to Jensen’s inequality for conditional expecta-
tions. Moreover, for every r > 1, by Hölder’s inequality,

EP
[(Dt+1

Dt

)p
(Rt(−Y )− Y )p+

]
≤ EP

[(Dt+1

Dt

)pr] 1
rEP

[
(Rt(−Y )− Y )

p r
r−1

+

] r−1
r
.

For r > 1 sufficiently large, it follows from the assumptions that the two
expectations exist finitely. Finally, it follows from Minkowski’s inequality
that

EP
[(
Rt(−Y )− EQ

t

[
(Rt(−Y )− Y )+

])p] 1
p

≤ EP
[
Rt(−Y )p

] 1
p

+ EP
[
EQ
t

[
(Rt(−Y )− Y )+

]p] 1
p
.

The finiteness of the first terms follows from the assumptions and the finite-
ness of the second term has been proven above. This proves that the map-
ping is well-defined.

The remaining part of statement (ii) follows, upon minor modifications,
from Proposition 1 in [7].

Proof of Theorem 5. For w ∈ Rm+1 and t ∈ {0, . . . , T − 1}, define

V w
t := Wt ◦ · · · ◦WT−1

( T∑
s=t+1

wTZs
)
.

We prove the statement inductively. Assume that for some nonnegative
Bt+2 ∈ L1(Ft+2,P),

|V w
t+1 − V v

t+1| ≤ ||v − w||1EP
t+1[Bt+2],

where || · ||p denotes the Euclidean p-norm in Rm+1. We start by showing
the induction step, noting that verifying the induction base is trivial since
V w
T = 0.

Defining Y w
t+1 := wTZt+1 + V w

t+1 and applying Hölder’s inequality,

|Y w
t+1 − Y v

t+1| ≤ |V w
t+1 − V v

t+1|+ |wTZt+1 − vTZt+1|
≤ ||v − w||1EP

t+1[Bt+2] + |wTZt+1 − vTZt+1|
≤ ||v − w||1EP

t+1[||Zt+1||∞ +Bt+2]
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Now, due to the L1-Lipschitz continuity of Rt,

|Rt(−Y w
t+1)−Rt(−Y v

t+1)| ≤ KEP
t [|Y w

t+1 − Y v
t+1|]

≤ K||v − w||1EP
t [||Zt+1||∞ +Bt+2]

With Cwt := EQ
t [(Rt(−Y w

t+1) − Y w
t+1)+], due to subadditivity of x 7→ x+ :=

max(x, 0),

Cwt − Cvt = EQ
t [(Rt(−Y w

t+1)− Y w
t+1)+ − (Rt(−Y v

t+1)− Y v
t+1)+]

≤ EQ
t [(Rt(−Y w

t+1)− Y w
t+1 −Rt(−Y v

t+1) + Y v
t+1)+]

≤ EQ
t [|Rt(−Y w

t+1)− Y w
t+1 −Rt(−Y v

t+1) + Y v
t+1|],

Cwt − Cvt ≥ EQ
t [−(Rt(−Y v

t+1)− Y v
t+1 −Rt(−Y w

t+1) + Y w
t+1)+]

≥ −EQ
t [|Rt(−Y w

t+1)− Y w
t+1 −Rt(−Y v

t+1) + Y v
t+1|]

from which it follows that

|Cwt − Cvt | ≤ EQ
t [|Rt(−Y w

t+1)− Y w
t+1 −Rt(−Y v

t+1) + Y v
t+1|]

≤ |Rt(−Y w
t+1)−Rt(−Y v

t+1)|+ EQ
t [|Y w

t+1 − Y v
t+1|].

The Q-expectation remains to be analyzed.

EQ
t [|Y w

t+1 − Y v
t+1|] ≤ EQ

t

[
||v − w||1EP

t+1

[
||Zt+1||∞ +Bt+2

]]
= ||v − w||1EP

t

[Dt+1

Dt
EP
t+1

[
||Zt+1||∞ +Bt+2

]]
.

Hence,

|V w
t − V v

t | ≤ |Rt(−Y w
t+1)−Rt(−Y v

t+1)|+ |Cwt − Cvt |
≤ 2K||v − w||1EP

t [||Zt+1||∞ +Bt+2]

+ ||v − w||1EP
t

[Dt+1

Dt
EP
t+1

[
||Zt+1||∞ +Bt+2

]]
= ||v − w||1EP

t

[
EP
t+1

[
||Zt+1||∞ +Bt+2

](
2K +

Dt+1

Dt

)]
= ||v − w||1EP

t

[
Bt+1

]
,

where BT+1 = 0 and otherwise

Bt+1 := EP
t+1

[
||Zt+1||∞ +Bt+2

](
2K +

Dt+1

Dt

)
.

In particular,

|V w
0 − V v

0 | ≤ ||v − w||1EP
0 [B1],
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Now what remains is to show that EP
0 [B1] < ∞. For the Euclidean norms,

the inequality ||x||p ≤ ||x||1 holds for p ∈ [1,∞]. In particular, for each
t = 1, . . . , T , 0 ≤ Bt ≤ B̃t, where

B̃t+1 := EP
t+1

[
||Zt+1||1 + B̃t+2

](
2K +

Dt+1

Dt

)
, B̃T+1 = 0.

Recall that for t = 1, . . . , T , Zkt ∈ Lpt(Ft,P) for all k and some pt > 1.
Also notice that if B̃t+2 ∈ Lqt+2(Ft+2,P) for qt+2 > 1, then EP

t+1[B̃t+2] ∈
Lqt+2(Ft+1,P) and, for rt+1 = min(pt+1, qt+2),

EP
t+1

[
||Zt+1||1 + B̃t+2

]
∈ Lrt+1(Ft+1).

Hence, for any ε > 0,

B̃t+1 = EP
t+1

[
||Zt+1||1 + B̃t+2

](
2K +

Dt+1

Dt

)
∈ Lrt+1−ε(Ft+1).

Since B̃T+1 = 0 we may choose ε > 0 small enough so that B̃t ∈ L1(Ft,P)
for t = 1, . . . , T . Hence, also Bt ∈ L1(Ft,P) for t = 1, . . . , T .

Finally, notice that

Xv
t := Xo

t − vTX
f
t = wTZt

if w ∈ Rm+1 is chosen so that w1 = 1 and (wk)
m+1
k=2 = v. Therefore, we have

also shown that v 7→ V0(X
v) is Lipschitz continuous.

Proof of Theorem 6. From positive homogeneity of the Rts follows positive
homogeneity of the Wts which implies Ṽ w

t (λX̃w) = λṼ w
t (X̃w) and further

that ψ̃(λw) = λψ̃(w). In particular,

ψ̃(w) = |w|ψ̃(w/|w|) ≥ |w| inf
|w|=1

ψ̃(w)

from which lim|w|→∞ ψ̃(w) =∞ follows from the assumption inf |w|=1 ψ̃(w) >
0. For the second statement, notice that

Xv
t := Xo

t − vTX
f
t = wTZt

if w ∈ Rm+1 is chosen so that w1 = 1 and (wk)
m+1
k=2 = v. Therefore,

lim|w|→∞ ψ̃(w) =∞ implies lim|v|→∞ ψ(v) =∞.

Proof of Theorem 7. Take w ∈ Rm+1 \ {0}. Suppose that C̃wt = 0 Q-a.s. for
all t. Then Ṽ w

t = R̃wt for all t and C̃wt = 0 is equivalent to R̃wt −X̃w
t+1−R̃wt+1 ≤
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0 Q-a.s. which is equivalent to R̃wt − X̃w
t+1 − R̃wt+1 ≤ 0 P-a.s. since P and Q

are equivalent. Notice that

R̃wt = Rt(−X̃w
t+1 − R̃wt+1)

= Rt(−X̃w
t+1 −Rt+1(−X̃w

t+2 − R̃wt+2))

= Rt ◦ (−Rt+1) ◦ · · · ◦ (−RT−1)
(
−

T∑
s=t+1

X̃w
s

)

The inequality R̃wt − X̃w
t+1 − R̃wt+1 ≤ 0 P-a.s. can thus be expressed as(

R◦t,T−1 −R◦t+1,T−1
)(
− wT(Zt+1 + · · ·+ ZT )

)
≤ 0 P-a.s.

However, this is contradicting the assumption in the statement of the the-
orem. Therefore we conclude that C̃wt > 0 Q-a.s. for some t which implies
that ψ̃(w) > 0. Therefore, by Theorem 6, ψ is coercive so if a minimum
exists it exists in some compact set in Rm. However, a continuous function
on a compact set attains its infimum.

Lemma 1. For u < v, EQ
u [Gv] = EP

u[Gv] +
∑v
s=u+1Bv,sλs.

Proof.

EQ
u [Gv] = Av +

u∑
s=1

Bv,sεs +
v∑

s=u+1

Bv,sEP
u

[Dv

Du
εs
]

= Av +
u∑
s=1

Bv,sεs +
v∑

s=u+1

Bv,sEP
0

[
exp

{
λTs ε1 −

1

2
λTs λs

}
ε1
]

= Av +
u∑
s=1

Bv,sεs +
v∑

s=u+1

Bv,sλs

= EP
u[Gv] +

v∑
s=u+1

Bv,sλs.

Lemma 2. If Xs := gTs Gs, then

EP
t

[
EQ
t+1

[ T∑
s=t+1

Xs

]]
= EQ

t

[ T∑
s=t+1

Xs

]
−

T∑
s=t+1

gTs Bs,t+1λt+1.

Proof. For s ≥ t+1, with an empty sum defined as 0, it follows from Lemma
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1 that

EQ
t+1[Xs] = EP

t+1[Xs] + gTs

s∑
u=t+2

Bs,uλu,

EP
t

[
EQ
t+1

[ T∑
s=t+1

Xs

]]
=

T∑
s=t+1

(
EP
t [EP

t+1[Xs]] + gTs

s∑
u=t+2

Bs,uλu
)

= EP
t

[ T∑
s=t+1

Xs

]
+

T∑
s=t+1

gTs

s∑
u=t+2

Bs,uλu,

EP
t

[ T∑
s=t+1

Xs

]
= EQ

t

[ T∑
s=t+1

Xs

]
−

T∑
s=t+1

gTs

s∑
u=t+1

Bs,uλu.

Proof of Theorem 8. We will prove inductively that

Vt = EQ
t

[ T∑
s=t+1

Xs

]
+KQ

t , (19)

and derive the recursive form of the constant term KQ
t via induction. The

induction base is trivial: VT = 0. Now assume that (19) holds for t + 1.
Notice that

Vt = Wt

(
Xt+1 + EQ

t+1

[ T∑
s=t+2

Xs

]
+KQ

t+1

)

= Wt

(
EQ
t+1

[ T∑
s=t+1

Xs

]
+KQ

t+1

)

= KQ
t+1 +Rt

(
− EQ

t+1

[ T∑
s=t+1

Xs

])

− EQ
t

[(
Rt
(
− EQ

t+1

[ T∑
s=t+1

Xs

])
− EQ

t+1

[ T∑
s=t+1

Xs

])
+

]
We first evaluate the risk measure part.

Rt
(
− EQ

t+1

[ T∑
s=t+1

Xs

])

= EP
t

[
EQ
t+1

[ T∑
s=t+1

Xs

]]
+ VarPt

(
EQ
t+1

[ T∑
s=t+1

Xs

])1/2
r0

= EQ
t

[ T∑
s=t+1

Xs

]
−

T∑
s=t+1

gTs Bs,t+1λt+1 + VarPt

(
EQ
t+1

[ T∑
s=t+1

Xs

])1/2
r0,
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where in the final step we used Lemma 2. Moreover,

VarPt

(
EQ
t+1

[ T∑
s=t+1

Xs

])
= VarQt

(
EQ
t+1

[ T∑
s=t+1

Xs

])

= VarQt

( T∑
s=1

Xs

)
−VarQt+1

( T∑
s=1

Xs

)
=: σ2t+1.

The remaining term: if σt+1 6= 0, then there exists a random variable e∗t+1

that is independent of Gt and standard normally distributed with respect to
Q such that

EQ
t

[(
Rt
(
− EQ

t+1

[ T∑
s=t+1

Xs

]
−KQ

t+1

)
− EQ

t+1

[ T∑
s=t+1

Xs

]
−KQ

t+1

)
+

]

= EQ
t

[(
σt+1r0 −

T∑
s=t+1

gTs Bs,t+1λt+1 − σt+1e
∗
t+1

)
+

]
.

Notice that if σt+1 = 0, then the existence of e∗t+1 is not required but the
same expression holds. Putting the pieces together now yields

Vt = EQ
t

[ T∑
s=t+1

Xs

]
+KQ

t+1 + σt+1r0 −
T∑

s=t+1

gTs Bs,t+1λt+1

− EQ
t

[(
σt+1r0 −

T∑
s=t+1

gTs Bs,t+1λt+1 − σt+1e
∗
t+1

)
+

]
which proves the induction step and from which it follows that

KQ
t =

T∑
s=t+1

(
σsr0 −

T∑
u=s

gTuBu,sλs − EP
0

[(
σs(r0 − e1)−

T∑
u=s

gTuBu,sλs
)
+

])
.

Finally,

Vt = EQ
t

[ T∑
s=t+1

Xs

]
+KQ

t

= EP
t

[ T∑
s=t+1

Xs

]
+

T∑
s=t+1

s∑
u=t+1

gTs Bs,uλu +KQ
t

= EP
t

[ T∑
s=t+1

Xs

]
+KP

t ,

where

KP
t =

T∑
s=t+1

(
σsr0 − EP

0

[(
σs(r0 − e1)−

T∑
u=s

gTuBu,sλs
)
+

])
.
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We now derive an expression for σt+1. Recall that Xs := gTs Gs.

VarPt

( T∑
s=t+1

gTs Gs
)

= VarPt

( T∑
s=t+1

s∑
u=t+1

gTs Bs,uεu
)

= VarPt

( T∑
u=t+1

T∑
s=u

gTs Bs,uεu
)

=
T∑

u=t+1

VarPt

( T∑
s=u

gTs Bs,uεu
)

=
T∑

u=t+1

( T∑
s=u

gTs Bs,u
)( T∑

s=u

gTs Bs,u
)T

=
T∑

u=t+1

T∑
j=u

T∑
k=u

gTj Bj,uB
T
k,ugk

and

σ2t+1 := VarPt

( T∑
s=t+1

gTs Gs
)
−VarPt+1

( T∑
s=t+1

gTs Gs
)

=
T∑

j=t+1

T∑
k=t+1

gTj Bj,t+1B
T
k,t+1gk

We now derive the expression for Ct. Using the same arguments as earlier
in the proof,

Ct = Rt(−Xt+1 − Vt+1)− Vt

= Rt
(
− EQ

t+1

[ T∑
s=t+1

Xs

]
−KQ

t+1

)
− EQ

t

[ T∑
s=t+1

Xs

]
−KQ

t

= σt+1r0 −
T∑

s=t+1

gTs Bs,t+1λt+1 −KQ
t +KQ

t+1

= EP
0

[(
σt+1(r0 − e1)−

T∑
s=t+1

gTs Bs,t+1λt+1

)
+

]
.

Proof of Theorem 9. From Theorem 8 we immediately see that ψ(w) is con-
tinuous. Notice that(

R◦t,T−1 −R◦t+1,T−1
)(
− wT(Zt+1 + · · ·+ ZT )

)
=
(
R◦t,T−1 −R◦t+1,T−1

)(
− wT(Z1 + · · ·+ ZT )

)
= EP

t [wT(Z1 + · · ·+ ZT )]− EP
t+1[w

T(Z1 + · · ·+ ZT )] + c
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for some constant c, where the last equality follows from calculations com-
pletely analogous to the proof of Theorem 8. Now assume that for some
w ∈ Rm+1, (15) does not hold. In the current Gaussian setting, the support
of a Gaussian distribution is either infinite or a singleton, this implies that(

R◦t,T−1 −R◦t+1,T−1
)(
− wT(Z1 + · · ·+ ZT )

)
= 0 P-a.s. for all t

or, equivalently, that

EP
t [wT(Z1 + · · ·+ ZT )]− EP

t+1[w
T(Z1 + · · ·+ ZT )] ∈ G0 for all t. (20)

For t = 0, (20) implies that EP
1 [wT(Z1 + · · ·+ZT )] ∈ G0 which together with

(20) for t = 1 implies that EP
2 [wT(Z1 + · · · + ZT )] ∈ G0. By repeating this

argument we have shown that

wT(Z1 + · · ·+ ZT ) = EP
T [wT(Z1 + · · ·+ ZT )] ∈ G0

which contradicts the assumption wT(Z1 + · · · + ZT ) /∈ G0. Hence, we
conclude that there exists an optimal solution to (14). The remaining part
follows immediately from Theorem 8.
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