
Mathematical Statistics
Stockholm University

Towards a flexible statistical modelling by latent
factors for evaluation of simulated responses to

climate forcings: Part II

Ekaterina Fetisova, Anders Moberg and Gudrun Brattström

Research Report 2017:13

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics
Stockholm University
Research Report 2017:13,
http://www.math.su.se

Towards a flexible statistical modelling by latent factors
for evaluation of simulated responses to climate forcings:

Part II

Ekaterina Fetisova∗ Anders Moberg† Gudrun Brattström‡

October 2017

Abstract

Evaluation of climate model simulations is a crucial task in climate research. In
a work consisting of three parts, we propose a new statistical framework for eval-
uation of simulated responses to climate forcings, based on the concept of latent
(unobservable) variables. In Part I, several latent factor models were suggested for
evaluation of temperature data from climate model simulations, forced by a varying
number of forcings, against climate proxy data from the last millennium. Here, in
Part II, focusing on climatological characteristics of forcings, we deepen the dis-
cussion by suggesting two alternative latent variable models that can be used for
evaluation of temperature simulations forced by five specific forcings of natural and
anthropogenic origin. The first statistical model is formulated in line with confir-
matory factor analysis (CFA), accompanied by a more detailed discussion about
the interpretation of latent temperature responses and their mutual relationships.
Introducing further causal links between some latent variables, the CFA model is
extended to a structural equation model (SEM), which allows us to reflect more
complicated climatological relationsnhips with respect to all SEM’s variables. Each
statistical model is developed for use with data from a single region, which can
be of any size. Associated with different hypotheses, the CFA and SEM models
can, as a beginning, be fitted to observable simulated data only, which allows us
to investigate the underlying latent structure associated with the simulated climate
system. Then, the best-fitting model can be fitted to the data with real climate
proxy data included, to test the consistency between the latent simulated temper-
ature responses and their real-world counterparts embedded in observations. The
performance of both these statistical models and some models suggested in Part I
is evaluated and compared in a numerical experiment, whose results are presented
in Part III.
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1 Introduction

Climate models are powerful tools for improving our understanding of how the climate
system works, for making predictions of the future climate and for assessing potential
impacts of climatic changes ([11]). Using a mathematical representation of the real
climate system, climate models are defined as systems of complex differential equations
based on physical, biological and chemical principles. In the virtual world of climate
models, climatologists can perform experiments that are not feasible in the real world
climate system; for example, to neglect or simplify all but one process, in order to
identify the role of this particular process clearly, e.g. the influence of changes in solar
irradiance on the radiative properties of the atmosphere, or to test hypotheses related
to this process. In an analogous fashion, the overall effect of several processes, acting
jointly, can be investigated.

Climatologically, in order to evaluate and compare the magnitude of the effects of the
processes in question on the climate, it is often convenient to analyse their impact on the
radiative balance of the Earth ([12]). The net change in the Earth’s radiative balance at
the tropopause (incoming energy flux minus outgoing energy flux expressed in W/m2)
caused by a change in a climate driver is called a climate (radiative) forcing (see glossary
p.1460 in [18] for a definition and e.g. [23] for an overview discussion about the concept
radiative forcing).

External natural drivers of climate change, such as changes in solar radiation or in
the orbital position of the Earth, will result in radiative forcing of climate. Volcanic
eruptions, ejecting small particles and various chemical compounds into the atmosphere
and thereby affecting climate (during a few years), is another example of a natural ex-
ternal agent that induces climate forcing. The ongoing release of carbon dioxide to the
atmosphere, primarily by burning fossil fuels is also an example of external forcing, but
being of anthropogenic origin. As concluded in [28], ”it is unequivocal that anthropogenic
increases in the well-mixed greenhouse gases have substantially enhanced the greenhouse
effect, and the resulting forcing continues to increase”. Other examples of human influ-
ence on climate are changes in land-use and the emissions of aerosols through various
industrial and burning processes, which are also associated with radiative forcing of cli-
mate.

Causes of the internal climate variability are various processes internal to the climate
system itself. Ocean and atmosphere circulation and their variations and mutual inter-
actions are examples of processes that are clearly internal to the climate system. In some
situations, in particular in modelling experiments, climate scientists can regard internal
causes for climate change as forcings. For example, natural variations in atmospheric
greenhouse gas concentrations or aerosols can be seen as drivers of climate change, al-
though they are rather occurring due to various biogeochemical processes within the
climate system.
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The range of types of climate models is very wide. Here, our focus is on the most so-
phisticated state-of-the art climate models referred to as Global Climate Models (GCMs)
or Earth System Models (ESMs). As computing capabilities have evolved during the past
years, the complexity of GCMs and ESMs has substantially increased: for instance, the
number of components of the Earth system that can be included and coupled in GCMs
and ESMs have increased, or the previous equilibrium simulations can now be replaced by
transient changes, e.g. in the atmospheric greenhouse gases and aerosol loading (see e.g.
[4]; [24]; [6]). However, despite great advances achieved during the past decades, some
simplifications are unavoidable, e.g. due to the time scales involved and/or incomplete
knowledge about some processes. As a consequence, the complexity of even the most
sophisticated climate models is still far from the complexity of the real climate system.
Further, it should be kept in mind that even a careful design cannot guarantee that each
component of climate modelling, e.g. parameterisation of subgrid-scale processes, has
been employed in its optimal form. All these together may affect the accuracy of model
simulations.

Another issue that may affect the accuracy of model simulations is uncertainties in
forcing reconstructions. As emphasised by e.g. [15], uncertainties can be large for such
anthropogenic forcings as aerosol forcing and land use forcing, especially associated with
the conversion of forest to agricultural land. Further, our knowledge about various feed-
back processes that may either amplify or damp the direct effect of a given forcing is not
complete.

All the above-mentioned issues together point naturally to the importance of under-
taking evaluation of climate model simulations. Clearly, the choice of evaluation ap-
proaches depends on the scientific objectives of the study for which a particular climate
model has been designed. In the context of the present work, our attention is confined
to two particular approaches. The first one stems from the statistical framework devel-
oped by [37] (henceforth referred to as SUN12), while the second, known as the optimal
fingerprinting framework, is employed in the so-called Detection and Attribution (D&A)
studies ([39], [25], [13], [14]).

A key feature common to both frameworks is that each of them deals with latent
(i.e. unobservable) variables. More precisely, focusing on the near-surface temperature
as a climatic variable of interest, both assume that temperature responses to forcings are
not directly observable either in a simulated climate system or in the real one. Further,
both frameworks incorporate simulated and observational data, where the latter consists
of instrumental data when it is available and, otherwise, of temperature reconstructions
derived from climate proxy data. Importantly, both frameworks are suitable for applica-
tions to the data covering the relatively recent past of about one millennium, albeit each
of them can be generalised to any period in the geological past as soon as simulations
and proxy data on any continuous climatic variable are available.
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The differences between the frameworks lie in the statistical methods used there.
SUN12 developed two test statistics - a correlation and distance-based test statistics
- allowing us to determine (1) the significance of correlation between a forced climate
model simulation and observational data and (2) whether a given forced climate model
simulation demonstrates a significantly better agreement with observational data than
an unforced (control) simulation. Ultimately, applying these two test statistics can help
us to address the question as to whether the magnitude of a latent simulated temper-
ature response to a given forcing is correctly represented by the climate model under
consideration compared to its real-world counterpart embedded in observations. The
same question (among others) has been addressed in a number of D&A studies but by
means of linear regression models, where not only response variables but also explanatory
variables are allowed to be contaminated with noise. Such regression models are referred
to by statisticians as measurement error (ME) models.

Using the ideas and definitions of these two frameworks, we, [9] (henceforth referred
to as Part I) formulated several latent factor models of varying complexity that can
be used for evaluation of climate model simulations forced by different numbers of (re-
constructed) forcings. We also focused on the link between our factor models and ME
models used in D&A studies. Our theoretical discussion in Sec. 5 in Part I demonstrated
that our factor models are capable of addressing questions posed in D&A studies, which
justifies their use in D&A studies as an alternative approach to ME models. Further-
more, we elucidated additional advantages of reasoning in the spirit of factor analysis.
However, despite those advantages, we also pointed out that factor analysis may be too
restrictive for describing complicated underlying climatological relationships. Therefore,
in the present work, our intention is to investigate theoretically possible extensions of our
factor models in order to allow the statistical modelling of climatological relationships
which cannot be described within factor analysis.

The main motive behind extensions is that in factor analysis the relationships among
latent factors themselves are modelled exclusively in terms of correlations. However,
assuming that two latent factors are correlated (or associated) says nothing about the
underlying reasons for this association. Indeed, an association between two variables,
say A and B, may arise because
(1) A influences (or causes) B, which graphically can be expressed as A→ B,
(2) B influences A, A← B,

(3) A and B influence each other reciprocally, A ←−−→ B

(4) A and B depend on some third variable(-s) (spurious correlation).

Statistical models allowing causal links between latent common factors (and between
latent and observed variables as well) are known as structural equation models (SEM)
and are widely used in various research fields, for example in sociology ([31],[33]), psychol-
ogy ([1],[7]), and economics ([16]). In the present work, we argue that their application
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within climatological science is also relevant.
As a matter of fact, the notion of causality is not new to climate research. As ex-

amples, we can refer to [21] and [36], where the causal structure between atmospheric
CO2, i.e. the forcing itself, and global temperature has been studied by applying the
methods based on Granger causality and the concept of information flow, respectively.
The latter concept was also used by [22] to investigate the cause-effect relation between
the two climate modes, El Niño and the Indian Ocean Dipole. But our questions to
be addressed and the methods we use for achieving our goals are different compared to
the above-mentioned works. Our main aim in Part I and here, in Part II, is to sug-
gest statistical methods that can be used for evaluating temperature data from climate
model simulations against observed/reconstructed temperatures for the last millennium
in terms of latent (unobservable) temperature responses to climate forcings. These sta-
tistical methods should be capable of taking into account uncertainties in observable
data, both simulated and observational, and of reflecting our substantive knowledge of
the properties of the real-world system and of the climate model under consideration.

In our opinion, structural equation modelling with latent variables is an appropriate
approach for achieving our goals. Admittedly, the SEM approach, combining the prop-
erties of factor analysis and path analysis, is a more sophisticated statistical technique
than factor analysis, but on the other hand it will give us more flexibility in analysing
and evaluating climate model simulations in case associated factor models fail to lead to
clear and/or reliable conclusions.

In what follows, focusing on the properties of five specific real-world forcings, we will
first present the basic conceptual ideas of possible causal links between true temperature
responses to these real-world forcings (see Sec. 2). Based on this discussion, two schemes
of modelling the relationships between latent temperature responses to forcings are sug-
gested. The first one ignores any causal links, while the second allows their presence.
In Sec. 3, each scheme is used for formulating an associated statistical model incorpo-
rating both simulated temperatures and observational data. The first model is a (mixed
1) factor model. Although factor models have been discussed in Part I, presenting a
factor model here will illustrate the consequences of assuming the negligibility of causal
relationships for the interpretation of latent factors, which was not discussed in Part I.
The second model is a structural equation model. We also discuss a possible mixture of
these two statistical models. In Sec. 4, an overview of the main features of the statistical
models presented is given.

1Recall from Part I, a mixed factor model combines features of an oblique factor model where all
latent factors are modelled as mutually correlated, and of an orthogonal factor model, where all latent
factors are mutually uncorrelated.
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2 A structure for describing relations between true temper-
ature variations and contributions from different climate
forcings

As a first step, let us define the true unobservable temperature τ as follows:

τ = β · ξTALL + ηinternal, (2.1)

where ξTALL represents the true temperature response to all possible forcings (the super-
script stands for True, not a transpose), ηinternal represents the internal random variability
of the real-world climate system, including any random variability due to the presence
of the forcings, and the coefficient β represents the expected change in τ for a one-unit
change in ξ

T

ALL. Eq. (2.1) reflects the assumption that only forcings are capable of
influencing the temperature systematically, while the internal factors contribute to the
temperature variability randomly, without generating trends. Notice that all components
in (2.1) are given in the form of mean-centered time-series.

Following the assumptions made by e.g. [34], we assume that the forced and unforced
components, i.e. ξ

T

ALL and ηinternal, respectively, are mutually independent. For the
purpose of our discussion, let us represent Eq. (2.1) graphically by means of a path
diagram, which is an important component of structural equation modelling (see Figure
1).

ξ
T

ALLτ
β

η internal

Figure 1. Path diagram associated with Eq. (2.1).

To understand a path diagram, we need to explain its symbols:

• A straight, one-headed arrow represents a causal relationship between two variables,
meaning that a change in the variable at the tail of the arrow will result in a change
in the variable at the head of the arrow (with all other variables in the diagram
held constant). The former type of variables are referred to as exogenous (Greek:
”of external origin”) or independent variables because their causes lie outside the
path diagram. Variables that receive causal inputs in the diagram are referred to
as endogenous (”of internal origin”) or dependent variables because their values are
influenced by variables that lie within the path diagram.

• A curved two-headed arrow between two variables indicates that these variables
may be correlated without any assumed direct relationship.

• Two straight single-headed arrows connecting two variables signifies reciprocal cau-
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sation.

• Latent variables are designated by placing them in circles, observed variables by
placing them in squares, while disturbance/error terms are represented as latent
variables, albeit without placing them in circles.

Applying the above description of the symbols to the path diagram in Figure 1 enables us
to interpret Eq. (2.1) from the perspective of structural equation modelling, that is, ξTALL
and ηinternal can be viewed not only as components of τ but also as its causes. That is, we
may say that τ is an endogenous (or dependent) variable, whose variability is accounted
for by two exogenous (or independent) variables, ξTALL and ηinternal. The assumption of
independence between the latter two is reflected in the path diagram by the absence of
a curved two-headed arrow between them. Finally, the path diagram, in contrast to Eq.
(2.1), highlights that (1) all variables involved are latent, as none of them is placed in
a square, and (2) ηinternal is modelled as a disturbance term, i.e. a term influencing τ
randomly.

Next, let us take a closer look at the structure of ξTALL, that is, at its components that
may contribute to the variability of ξTALL either systematically or randomly. Hence, just
as τ , ξTALL is to be viewed as a latent endogenous variable, receiving causal inputs from
its components. For Eq. (2.1), it entails that β is set to 1.

By definition, ξTALL comprises the true temperature responses to all possible external
forcings and to all kinds of interactions between them. To list all forcings, acting in the
real-world climate system, is an unrealistic 2 and, fortunately, unnecessary task within
our analysis. Since we are aiming at evaluating climate model simulations forced by
selected forcings either individually or jointly, it is justified to confine our attention to
these selected forcings. Letting ξTcomb represent the overall true temperature response to
the forcing combination of interest, we may first decompose ξTALL as follows:

ξ
T

ALL = ξ
T

comb + ζ̃
T

ALL, (2.2)

where ζ̃TALL represents the residual forced variability due to other climate forcings not
included in the combination. Statistically, excluding forcings from the simulated climate
system entails the assumption that the systematical influence of the corresponding real-
world forcings on τ is negligible (which might be true, depending on what forcings are
excluded). In other words, just as internal factors, excluded forcings are assumed to
contribute to the temperature variability randomly and independently from the forcings
included in the combination. This corresponds to viewing ζ̃TALL in Eq. (2.2) as a distur-
bance term, independent from ξ

T

comb.
2Some of the forcings might be unknown to us due to our incomplete knowledge of the real-world

climate system, for example regarding many processes related to forcings from aerosols ([3])
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The next step is to discuss the structure of ξTcomb, viewed in (2.2) as a latent endoge-
nous variable. To this end, let the following five forcings be in focus:

1. Changes in the solar irradiance (Sol),

2. Changes in the orbital position of the Earth (Orb),

3. Changes in the amount of stratospheric aerosols of volcanic origin (Volc),

4. Changes in vegetation and land cover caused by natural and anthropogenic factors
(Land), and

5. Changes in the concentrations of greenhouse gases in the atmosphere (Ghg) also of
both natural and anthropogenic origin.

The reason behind this choice is that these five forcings are regarded as main drivers of
the climate change during the last millennium ([19]). Thus, state-of-the-art Earth System
Model (ESM) simulations driven by these (or some of these) forcings both individually
and jointly are already available ([29]) and further simulations are planned ([19]), thereby
making the issue of their evaluation relevant.

Following the notations of Part I, let the individual temperature responses to each
of the specified forcings be denoted ξTSol, ξ

T

Orb, ξ
T

Volc, ξ
T

Land, and ξ
T

Ghg, respectively. The
last two temperature responses deserve special attention because each of them represents
the overall (joint) temperature response both to natural and anthropogenic changes in
vegetation and in the concentrations of Ghg:s, respectively. Put differently, they are
two-component temperature responses, decomposed as follows:

ξ
T

Land = ξ
T

Land (natural) + ξ
T

Land (anthr) (2.3)

ξ
T

Ghg = ξ
T

Ghg (natural) + ξ
T

Ghg (anthr) (2.4)

Undoubtedly, in the real-world climate, the range of possible causes of natural changes
in Land and Ghg, which give rise to ξTLand (natural) and ξ

T

Ghg (natural), may be very wide.
More precisely, these changes can occur not only due to forcings, but also due to internal
factors. However, under the assumption of the independence between the forced and
unforced components of τ and between the two components of ξTALL in (2.2), internal
factors and the forcings, not included in the combination of interest, are not regarded as
possible causes of natural changes in the Land and Ghg forcings capable of influencing
the temperature systematically. Consequently, taking these independence assumptions
into account, natural changes in vegetation and in the levels of Ghg:s can be explained
only by the forcings that are part of the combination of interest. In our study, they are
the solar, orbital and volcanic forcings.

In Figure 2, giving a graphical overview of these relationships (among others to be
discussed further), the relations between (ξTSol, ξ

T

Orb, ξ
T

Volc), ( ξ
T

Land (natural), ξ
T

Ghg (natural))
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and the associated forcings are highlighted by blue arrows. Following these arrows, we
may say that the first three temperature responses can be viewed as indirect causes (i.e.
through the Land and Ghg forcings) of the last two.

At this point, it is important to stress that, just as in Part I, we wish to analyse
temperature responses to the forcings, not the forcings themselves. In other words, we
are interested in the relationships depicted in Figure 2 where the forcings are excluded.
A direct consequence of excluding the forcings is that ξTSol, ξ

T

Orb and ξ
T

Volc become direct
causes of ξTLand (natural) and ξ

T

Ghg (natural), which is not true from the physical viewpoint:
a temperature response cannot physically be a direct cause of another temperature re-
sponse. Nevertheless, from the pure statistical perspective, this issue is not as relevant
as from the physical one. Without interpreting cause-effect relations between temper-
ature responses literally, viewing ξ

T

Sol, ξ
T

Orb and ξ
T

Volc as direct causes of ξTLand (natural)

and ξ
T

Ghg (natural) would allow us to apply another statistical method of analysing pairwise
associations between latent variables representing these temperature responses. Indeed,
instead of relating them to each other through correlations, which, in fact, is done in the
’optimal fingerprinting’ approach used in many D&A studies and in our factor models
from Part I, cause-effect relations justifies the use of regression models, where the ’causes’
play the role of explanatory (independent, exogenous) variables, while the ’effects’ are
response variables, i.e. dependent (endogenous) variables.

Replacing correlations by regressions offers the advantage of statistical modelling to
some extent the presence of feedbacks in the climate system, meaning in the context
of the present work that natural changes in vegetation and in the levels of Ghg:s are
processes that are physically dependent on the solar, orbital and volcanic forcings. As
already mentioned in the introduction, this replacement is motivated when statistical
models, where the relationships between latent variables are modelled in terms of corre-
lations, failed to provide clear and reliable conclusions. Note that increasing the degree
of complexity of a statistical model by introducing causal links does not guarantee that
the resulting model will lead to acceptable results. But bearing in mind that the clima-
tological relations can be complicated, the development of more complicated statistical
models is highly motivated.

Although cause-effect relations between temperature responses are not to be taken
literally, it does not mean that the direction of influence between them can be deter-
mined arbitrarily. Each link should be justified from the climatological point of view,
which inevitably requires the involvement of forcings, although they are not represented
in our statistical models explicitly. For example, according to Figure 2, the Land- and
Ghg-forcings (whether natural or anthropogenic) cannot impact the temperature by in-
ducing changes in the solar, orbital, and volcanic forcings. Hence, regression models with
( ξTLand (natural), ξ

T

Ghg (natural)) as causes of (ξ
T

Sol, ξ
T

Orb, ξ
T

Volc), would be senseless.

Based on the discussion above, we define ξ
T

Land (natural) and ξ
T

Ghg (natural) as ’causally’
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dependent temperature responses, each of which depends on ξTSol, ξ
T

Orb and ξ
T

Volc. Conse-
quently, the last three temperature responses are defined as ’causally’ independent with
respect to all temperature responses involved, including themselves. Statistically, causal
independence implies that the variables in question can be related to each other only
through correlations (or equivalently, covariances).

It should also be noted that the natural changes in vegetation can also have an
impact on the level of greenhouse gases in the atmosphere through the carbon cycle
and vice versa, thereby establishing a reciprocal relationship between ξ

T

Land (natural) and

ξ
T

Ghg (natural). In other words, these two temperature responses can be ’causally’ depen-
dent on each other as well. In Figure 2, for the sake of neatness, this possible reciprocal
relationship is highlighted by one two-headed blue arrow relating the Land and Ghg
forcings.

The relationships associated with human activity are highlighted in Figure 2 by brown
arrows. Notice that in and of itself human activity is not a forcing, but its presence in
Figure 2 is definitely needed.

We regard human activity as a process physically independent of the natural forcings
(we do not discuss here any possible influence of the changed climate on the actions
of humanity). Therefore, anthropogenic changes in Land and Ghg are also regarded
as forcings physically independent from the natural ones. This makes it reasonable to
classify ξTLand (anthr) and ξ

T

Ghg (anthr) as ’causally’ independent temperature responses with
respect to the temperature responses to the natural forcings. However, with respect to
each other, they can be defined either as (1) ’causally’ independent, or as (2) ’causally’
dependent due to possible reciprocal or unidirectional causal relationships between them.
Compare with the temperature responses to the natural forcings, which are defined ex-
clusively as ’causally’ independent with respect to all temperature responses, including
themselves.

Finally, according to Figure 2, there is one more ’causally’ independent variable that
may be viewed as a ’direct cause’ of ξTLand (natural) and ξ

T

Ghg (natural), namely the temperature
response to all possible interactions between the (physically independent) natural and
anthropogenic forcings. In Figure 2, this is denoted ξTinteract. Admittedly, it would be
more appropriate to separate the interactions between the natural forcings from the
interaction between anthropogenic ones. But, keeping in mind the main aim of our
analysis, requiring ultimately involving climate model simulations in the discussion, we
have to take the issue of the availability of simulated data into account. Just as in Part
I, we assume here that climate model simulations driven by all possible combinations of
forcings are not available. Thus, ξTinteract cannot be split into several terms representing
temperature responses to interactions between various combinations of the given forcings.
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SolarS

Orbital

VolcanicS

–

Forcings:
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to forcings:

ξ
T

Land (anthr)

ξ
T

Land, (natural)

ξ
T

Sol

ξ
T

Orb

ξ
T

Volc

ξ
T

Ghg (natural)

ξ
T

Ghg (anthr)

ξ
T

interact

changesS in

vegetation

and land-cover

- changes in

the levels

of GHG:s

Forcings:

human
activityvia the ξT :s

Figure 2. Schematical (and simplified for the purposes of our analysis) description of the influences of

the real-world natural and anthropogenic forcings on the temperature represented here by its responses to

the five selected forcings of natural and anthropogenic character. Natural influences are highlighted by

blue arrows, anthropogenic influences by brown ones.

Definitely, the structure suggested in Figure 2 is not a simple structure, which imme-
diately gives rise to questions as to (1) how the strength of the real-world relationships be-
tween the individual temperature responses can be statistically assessed, and (2) whether
the same relationships hold within the simulated climate system under consideration. In
the present paper, we suggest two possible ways of reasoning, which we call Scheme 1
and Scheme 2. In what follows, we present the basic ideas and assumptions associated
with each of the schemes, which will constitute a basis for formulating statistical models
incorporating single-forcing and multi-forcing climate model simulations of interest.

2.1 Scheme 1: only ’causally’ independent temperature responses

Scheme 1 arises when all causal inputs to ξ
T

Land and ξ
T

Ghg from ξ
T

Sol, ξ
T

Orb, ξ
T

Volc and
ξ
T

interact are ignored. That is, the natural components, ξTLand (natur) and ξ
T

Ghg (natur), are not
related to τ in a systematic way. Instead, they are thought to be a part of the random
internal temperature variability represented by ηinternal (see Eq. (2.1)). Hence, Scheme
1 is associated with the assumption that the effect of natural changes in vegetation and
in the levels of Ghg:s on the temperature is negligible.

Consequently, ξTLand and ξ
T

Ghg are no longer overall temperature responses, but are
one-component responses containing only ξTLand (anthr) and ξ

T

Ghg (anthr), respectively. No-

tice that under Scheme 1, ξTLand (anthr) and ξ
T

Ghg (anthr) cannot be modelled as ’causally’
dependent on each other.

To summarise, the temperature responses of interest under Scheme 1 are: ξTSol, ξ
T

Orb,
ξ
T

Volc, ξ
T

Land (anthr), ξ
T

Ghg (anthr), and ξ
T

interact. Since each of them is ’causally’ independent
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with respect to the others, the structure of ξTcomb and, thus, of ξTALL, can be expressed by
one equation, namely:

ξ
T

ALL = β1 · ξ
T

Sol + β2 · ξ
T

Orb + β3 · ξ
T

Volc + β4 · ξ
T

Land (anthr) + β5 · ξ
T

Ghg (anthr) + β6 · ξ
T

interact︸ ︷︷ ︸
=ξTcomb

+ζ̃
T

ALL.

(2.5)
where ξTcomb and ζ̃

T

ALL are defined in (2.2), and each coefficient βi is a partial coeffi-
cient, meaning that it represents the expected change in τ for a one-unit change in the
corresponding ξT , when the remaining ξT :s are held at constant values.

Keeping in mind that ζ̃TALL is assumed to be independent of ξTcomb, inserting (2.5) into
the expression for τ in (2.1) yields:

τ = ξTcomb + ζ
T

ALL =

= β1 · ξ
T

Sol + β2 · ξ
T

Orb + β3 · ξ
T

Volc + β4 · ξ
T

Land (anthr) + β5 · ξ
T

Ghg (anthr) + β6 · ξ
T

interact + ν̃ (2.6)

where ν̃ = ζ̃
T

ALL + η
T

internal is independent of ξ
T
comb, and of each individual ξT .

Next, the relation between the individual temperature responses in (2.6) needs to be
discussed. ’Causal’ independence entails that the variables in question are related to each
other through correlations. As motivated earlier in this section, ξTLand (anthr) and ξ

T

Ghg (anthr)

might be correlated to each other, but not to ξ
T

Sol, ξ
T

Orb, and ξ
T

Volc. Concerning the last
three temperature responses, we argue that they are rather mutually uncorrelated than
correlated. This is because the forcings causing them are acting on different time scales
and with different character of their temporal evolutions. It is thus reasonable to ex-
pect that their temperature responses will not demonstrate a more or less similar shape,
i.e. a temporal pattern. On the other hand, we found it difficult to hypothesise zero-
correlations between ξTinteract and the ’causally’ independent temperature responses. Thus
ξ
T

interact is allowed to be correlated with ξTLand (anthr), ξ
T

Ghg (anthr), ξ
T

Sol, ξ
T

Orb, and ξ
T

Volc. All
these assumptions about correlations are reflected in a path diagram plotted in Figure 3.

ξ
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T

Orb ξ
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Volc
ξ
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(anthr)

τ

ξ
T

Land
ξ
T

Land
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ξ
T

interact

β 1 β
2

β
3 β

6β 4 β
5

ζ
T

ALL

Figure 3. Path diagram for Eq. (2.6) associated with Scheme 1.
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2.2 Scheme 2: both ’causally’ dependent and ’causally’ independent
temperature responses are involved

Scheme 2 arises when causal inputs to ξTLand and ξ
T

Ghg from ξ
T

Sol, ξ
T

Orb, ξ
T

Volc and/or ξ
T

interact
are allowed. This in turn permits us to relax the assumption that the effect of natural
changes in vegetation and in the levels of Ghg:s on the temperature is negligible. Conse-
quently, ξTLand and ξTGhg under Scheme 2 represent the overall two-component temperature
responses. Recall also from the earlier discussion that they are allowed to be ’causally’
dependent not only on ξ

T

Sol, ξ
T

Orb, ξ
T

Volc, ξ
T

interact but also on each other either reciprocally
or unidirectionally. Statistically, causal dependence implies that the relations between
such variables are modelled by means of (linear) regression models.

Clearly, to express the above relationships, one equation for τ is not sufficient: a
multiequation model is needed. Indeed, expressing ξTLand and ξTGhg as a linear function of
ξ
T

Sol, ξ
T

Orb, ξ
T

Volc, ξ
T

interact and of each other leads to the following nonrecursive, i.e. with
reciprocal loops (see Appendix A1), system of equations:

τ = β1 · ξ
T

Sol + β2 · ξ
T

Orb + β3 · ξ
T

Volc + β4 · ξ
T

Land+

+ β5 · ξ
T

Ghg + β6 · ξ
T

interact + ζ
T

ALL (2.7)

ξ
T

Land = a1 · ξ
T

Sol + a2 · ξ
T

Orb + a3 · ξ
T

Volc + a4 · ξ
T

interact + c1 · ξ
T

Ghg + ξ
T

Land (anthr) (2.8)

ξ
T

Ghg = b1 · ξ
T

Sol + b2 · ξ
T

Orb + b3 · ξ
T

Volc + b4 · ξ
T

interact + c2 · ξ
T

Land + ξ
T

Ghg (anthr). (2.9)

where ζTALL = ζ̃
T

ALL + η
T

internal. Notice that, although the same notations are used, ζTALL
in (2.7) differs from ζ

T

ALL in (2.6) because under Scheme 1 the natural components are
modelled as a part of ζTALL, whereas under Scheme 2 they are not.

Another important remark about Eq. (2.8)-(2.9) is that ξTLand (anthr) and ξ
T

Ghg (anthr)
are considered as disturbance terms (or equivalently, errors in equations), i.e. terms
contributing to the temperature variability randomly. Although disturbance terms are by
definition ’causally’ independent variables, which ξTLand (anthr) and ξ

T

Ghg (anthr) are, treating
these temperature responses as disturbance terms obviously prevents us from analysing
statistically possible systematic effects of the anthropogenic changes in vegetation and
in the levels of Ghg:s on the temperature.

This is a direct implication of treating ξTLand and ξTGhg as joint temperature responses,
whose simulated counterparts are also assumed to be joint. The latter originates from our
assumption that under Scheme 2 climate model simulations driven by the Land(natur)-,
Land(anthr)-, Ghg(natur)- and Ghg(anthr)-forcings separately are not available. Instead,
there are climate model simulations driven by the sum of natural and anthropogenic Land
and Ghg, respectively. Given this limitation, it is not possible to model the four corre-
sponding temperature responses as latent factors, and thus it is not possible to estimate
coefficients associated with these latent factors. Instead, the contribution of anthro-
pogenic changes in vegetation and in the levels of Ghg:s to the variability of the tem-
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perature can be assessed by judging the significance of the variance of the corresponding
disturbance terms.

Regarding the structure of ξTLand and ξTGhg, it should be pointed out that Scheme 2
represents a general situation subsuming other situations as special cases. We do not
exclude that depending on the availability of climate model simulations, one of the two-
component temperature responses can be modelled as one-component, while the other
remains two-component. Such a situation would require the mixing of Scheme 1 and
Scheme 2. Later, in Sec. 3.2.1, we consider one special case when only ξTGhg is modelled
as a two-component temperature response, and we shall see how it changes the structure
of the structural equation model associated with Scheme 2.

In the terminology of structural equation modelling, regression equations in (2.7)-
(2.9) are called structural equations, where the term ”structural” stands for the assump-
tion that the regression coefficients (in this context also called structural) are not just
descriptive measures of association but rather that they reveal an invariant causal rela-
tion. A graphical representation of Eq. (2.7)- (2.9) is given in Figure 4. The figure also
reflects the fact that the assumptions concerning the correlatedness between the latent
exogenous variables remain the same as under Scheme 1 (compare to Figure 3) except
that the correlations between ξTLand (anthr) and ξ

T

interact and between ξTGhg (anthr) and ξ
T

interact
are set to zero. This is done in order to meet the basic assumption of our statistical
models that latent factors are uncorrelated with disturbance terms.

Other conceivable paths that climatologists may wish to add to Figure 4 are the paths
from τ to ξTLand and to ξTGhg. From the climatological perspective, this would allow us to
reflect the idea that the changing climate itself can be a cause of subsequent changes in
the Land and Ghg forcings. Notice that adding τ from (2.7) into Eq. (2.9)-(2.8) entails
the addition of the ζTALL in these equations. Since ζTALL, defined in (2.6), comprises the
residual forced variability and the internal variability due to the internal factors, freeing
the paths from τ to ξTLand and to ξTGhg corresponds to allowing even the excluded forcings
and the internal factors be possible contributors of natural changes in the Land and Ghg
forcings. Note that we are still assuming that the forced and unforced components of τ
are independent.
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Figure 4. Path diagram of cause-effect relationships between the true temperature responses to the five

selected forcings, represented in Eq. (2.7)-(2.9).

Up to now, we have discussed possible ways of relating only the true latent forcing
effects to each other. The next step is to involve the simulated climate system to enable
addressing the question of interest, i.e. the evaluation of climate model simulations
against climate proxy and instrumental records of the near-surface temperature for the
last millennium. Just as in Part I, this can be done by applying the concept of common
factors, that is, factors common for the real-world latent temperature responses and
their simulated counterparts. In the next section, we will demonstrate this process and
describe the statistical models associated with each structure.

As mentioned earlier in the Introduction, the first scheme is associated with a fac-
tor model, while the second, involving causal links between latent variables, requires a
structural equation model (SEM). A general description of a factor model was given in
Appendix A in Part I, while a general definition of a structural equation model can be
found in Appendix A here. We conclude this section by pointing out that a general factor
model is a special case of a general SEM, which implies that the issues of estimation,
hypothesis testing, identifiability, and model evaluation for SEM parallel those associated
with factor analysis.

3 Statistical models involving both true and simulated tem-
perature responses: moving from factor models to struc-
tural equation models

Let x comb denote a time series of simulated temperatures generated by a climate model
driven by a combination of reconstructed forcings, sampled over the same spatial and
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temporal domain that is represented by the true temperature τ . Analogously to τ , the
mean-centered xcomb can also be decomposed into the forced and unforced components:

xcomb = ξScomb + δ̃comb , (3.1)

where
...ξScomb - the fixed S imulated overall temperature response to reconstructed forcings

in question,
...δ̃comb - the simulated internal random temperature variability, including any ran-

dom variability due to the presence of the forcings.

Note that if a combination of forcings is represented by only one forcing, i.e. comb
≡ single forcing, the definition from (3.1) is applicable even to simulated temperatures
generated by single-forcing climate models.

3.1 Statistical model under Scheme 1: a factor model

Although we have already demonstrated in Part I the process of formulating factor mod-
els, let us, for the convienience of the readers, repeat the main steps of this process.

The first step is to express x comb and τ as (linear) functions of common factors,
which are the true temperature responses to the forcings under consideration. Under
Scheme 1, they are: ξTSol, ξ

T
Orb, ξ

T
Volc, ξ

T
Land (anthr), ξ

T
Ghg (anthr), and ξ

T
interact. As a matter of

fact, τ is already represented as a linear function of these temperature responses in Eq.
(2.6). Nevertheless, we repeat the same equation, but with the coefficients, used in our
statistical models. To write ξScomb as a linear function of the common factors, the latter
are to be extracted from ξScomb, which yields:

τ = {(2.6)} = ξTcomb + ν̃ =

= Strue · ξTSol +Otrue · ξTOrb +Vtrue · ξTVolc + Ltrue · ξTLand (anthr)+

+Gtrue · ξTGhg (anthr) + Itrue · ξTinteract ++ν̃ , (3.2)

x comb = ξScomb + δ̃ comb =

= Ssim · ξTSol +Osim · ξTOrb +Vsim · ξTVolc + Lsim · ξTLand (anthr)+

+Gsim · ξTGhg (anthr) + Isim · ξTinteract + ζ̃Scomb + δ̃ comb︸ ︷︷ ︸
=δ comb

(3.3)

where

1. ζ̃Scomb represent the residual part of ξScomb, which remains after extracting the com-
mon factors from ξScomb. This residual term is assumed to be independent of all
common factors, δ̃ comb, and of ν̃. Hence, ν̃ and δ comb = ζ̃Scomb+ δ̃ comb are mutually
independent. and independent of each common factor.

2. The coefficients (Ssim, Osim, . . . , Itrue) are standardised partial coefficients (or
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factor loadings). They are standardised because the variances of all common factors
are standardised to have a unit variance. That is, we are talking about changes
measured in standard deviation units. Standardised coefficients are particularly
useful when comparisons are to be made across different variables. It makes it
easier to judge the relative importance of latent variables.

Analogously, we decompose the single-forcing simulated temperatures, assumed to be
available (for example, just as in [29]):

x Sol = ξ
S

Sol + δ̃Sol = Ssim · ξTSol + (ζ̃
S

Sol + δ̃Sol)︸ ︷︷ ︸
=δ Sol

,

xOrb = ξ
S

Orb + δ̃Orb = Osim · ξTOrb + (ζ̃
S

Orb + δ̃Orb)︸ ︷︷ ︸
=δOrb

,

xVolc = ξ
S

Volc + δ̃Volc = Vsim · ξTVolc + (ζ̃
S

Volc + δ̃Volc)︸ ︷︷ ︸
=δVolc

, (3.4)

x Land = ξ
S

Land + δ̃Land = {under Scheme 1} =

= ξ
S

Land (anthr) + δ̃Land = Lsim · ξTLand (anthr) + ζ̃SLand + δ̃ Land︸ ︷︷ ︸
=δ Land

,

xGhg = ξ
S

Ghg + δ̃Ghg = {under Scheme 1} =

= ξ
S

Ghg (anthr) + δ̃Ghg = Gsim · ξTGhg (anthr) + ζ̃SGhg + δ̃Ghg︸ ︷︷ ︸
=δGhg

.

Further, on comparing (3.4) with (3.3) one notes that ξTsingle forcing is expected to have
equal (direct) influence (or contribution, which might be a more suitable notion in the
climatic perspective) on the associated single-forcing simulation and on the multi-forcing
simulation x comb. To exemplify, the (direct) influence of ξTSol on xSol and x comb is repre-
sented by Ssim. This can be justified only under the condition that the same reconstruc-
tion and implementation of a single forcing in question has been employed to generate
xsingle forcing and x comb and, of course, that the same climate model is used in both cases.

The second step is to replace the unobservable τ by observational data, v, consisting
of instrumental data when available and/or temperature reconstructions from proxies
(see also Eq. (4.1.3) in Part I, Sec. 4.1). Replacing τ in (3.2) by v leads to

v = Strue · ξTSol +Otrue · ξTOrb +Vtrue · ξTVolc + Ltrue · ξTLand (anthr)+

+Gtrue · ξTGhg (anthr) + Itrue · ξTinteract + ν (3.5)

where ν is the sum of ν̃ from (3.2) and the residual non-climatic variation. Just as in
Part I, the latter is assumed to be uncorrelated with τ , and it is also, in the context of
this article, assumed to have constant variance, implying that the variance of ν, σ2ν , is
constant.
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The third step is to combine the equations for observed and simulated temperatures
in a factor model. Combining (3.3), (3.2) and (3.4) leads to a 7-indicator 6-factor model,
abbr. FA(7,6), presented in Table 2. As follows from this table, a priori knowledge of the
specific-factor variances, associated with simulations, is required, otherwise the model is
underidentified. A possible estimator of σ2δ , based on the availability of ensembles, can
be found in Appendix B in Part I.

Availability of ensembles allows us also to analyse ensemble-mean sequences instead
of single members of ensembles. As known (e.g. [5]), averaging over replicates of the same
type of forced model leads to a time series with an enhanced forced climate signal and a
reduced effect of the internal variability of the corresponding forced climate model. The
use of mean-sequences requires replacing the specific-factor variances σ2 ∗δf i by σ2 ∗δ fi

/k fi,
where k fi is the number of replicates in the associated ensemble.

However, as discussed in Part I, a disadvantage of using the suggested independent
estimator of σ2δ is that this estimator estimates the variance of δ̃, not the variance of δ.
The latter, according to (3.3) and (3.4), is the sum of the residual term ζ̃S and δ̃. If the
variance of ζ̃S is not negligible, the use of this estimator might lead to the biasedness of
some parameter estimates. Despite this, the factor model in Table 2 is to be evaluated
under the assumption of the negligibility of the variance of ζ̃S , because freeing up the
δ-factor variances would lead to underidentifiability.

In Part I, we suggested to use replicates of each single-forcing climate model as ad-
ditional indicators in order to investigate whether this assumption is appropriate for
single-forcing simulations (see for example model (4.1.10) in Part I, Sec. 4.1). A similar
procedure can be applied even to the factor model presented in Table 2, or to its final
version. As a further comment on this factor model, let us note that although all indi-
cators in the model are assumed to be constructed by averaging over replicates. we do
not use the bar notation to designate the mean sequences.

Table 2. Parameters of the 7-indicator 6-factor model, abbr. FA(7,6).
Indicator Common factors Specific-

factor 1 factor 2 factor 3 factor 4 factor 5 factor 6 -factor

ξTSol ξTOrb ξTVolc ξTLand (anthr) ξTGhg (anthr) ξTinteract variances

1. x Sol Ssim 0 0 0 0 0 σ2 ∗
δSol

2. xOrb 0 Osim 0 0 0 0 σ2 ∗
δOrb

3. xVolc 0 0 Vsim 0 0 0 σ2 ∗
δVolc

4. x Land 0 0 0 Lsim 0 0 σ2 ∗
δLand

5. xGhg 0 0 0 0 Gsim 0 σ2 ∗
δGhg

6. x comb Ssim Osim Vsim Lsim Gsim Isim σ2 ∗
δcomb

7. v Strue Otrue Vtrue Ltrue Gtrue Itrue σ2
ν
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———–Correlations among Common Factors
—ppp– ———1 0 0 0 0 φSI

1 0 0 0 φOI
1 0 0 φV I

1 φLG φLI
1 φGI

1
∗ the parameter assumed to be known a priori, i.e. estimated independently.

As pointed out by [26], free parameters, i.e. parameters to be estimated, are not as-
sociated with hypotheses because nothing is specified by freeing the parameter, meaning
that no restriction(-s), imposed on the implied variance-covariance matrix of the indica-
tors3, is associated with this parameter. The estimated value of the parameter may turn
out to be negative, positive, or zero! Nevertheless, the sign and strength of parameter
estimates are important aspects for judging how reasonable numerical results are. If
estimates cannot be linked to (in our case climatological) properties of latent factors,
then the model can hardly be accepted as a good approximation of the underlying latent
structure. By taking into consideration such aspects like
• the time period, time unit, seasons,
• region and its size,
• our knowledge about the real-world forcings,
• the properties of the reconstructions of forcings used to generate climate model simu-
lations,
• results from previous studies,
researchers can arrive at different conceptions about expected magnitudes of the esti-
mates of factor loadings. For example, it seems to be reasonable to expect that the
influence of the anthropogenic land use forcing in Antarctica during the last millennium
prior to the industrialisation period is negligible. So it would be difficult to accept a
numerical result leading to the opposite conclusion.

When discussing the expected signs of the factor loadings, such properties of the
forcings like positiveness/negativeness can be added to the above-mentioned aspects. For
example, consider orbital forcing. In the summer of the northern hemisphere, this forcing
is associated with a negative trend in incoming solar radiation throughout the millennium,
while the corresponding trend during the summer of the southern hemisphere is positive.
That would motivate letting Osim be negative if we study summer temperatures in
Europe but positive if we study summer temperatures in Australia.

What is important to keep in mind when determining the expected sign is that
the solution remains unique even if the observed sign is changed to an opposite one

3Recall from Part I that the basic idea of confirmatory factor analysis is that the population variance-
covariance matrix of the indicators, Σ, can be represented as a function of the model parameters θ. The
resulting matrix, denoted Σ(θ), is called the implied (or model’s reproduced) variance-covariance matrix
of the indicators.
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in accordance with substantive justifications. In general, a sign change corresponds
merely to changing the sign of the factor, which, however, might require a sign change of
other parameters associated with this factor. In our factor model, other parameters are
correlations.

Regarding correlations among the latent factors, caution is needed when too high
estimates are observed, say over 0.8 in absolute value. This is because (1) a high correla-
tion means that two temperature responses are almost proportional, which is difficult to
interpret physically, and (2) it can in effect indicate problems with identifiability rather
than two temperature responses being correlated.

Under the assumptions that the specific factors are uncorrelated and their variances
can be estimated a priori, the FA(7,6)-model in Table 2 is (over-)identified with 11 de-
grees of freedom. Nevertheless, setting only Isim to zero makes the associated correlation
coefficients underidentified, i.e. each of them can take on any real value without chang-
ing the variance-covariance matrix of the observed variables. So when one wishes to test
whether the interaction effect is negligible or not, it is necessary to eliminate all correla-
tion coefficients associated with ξTinteract from the vector of the model parameters. This
increases the degrees of freedom to 18.

The hypothesis of main interest within our analysis, i.e. the hypothesis of consistency
between the latent simulated and true temperature responses, is tested by imposing the
following six equality constraints: Ssim=Strue, Osim=Otrue, Vsim=Otrue, Lsim=Ltrue,
Gsim=Gtrue, and Isim=Itrue. This gives us six additional degrees of freedom: one degree
of freedom for each equality constraint. It is also possible to introduce only some subset
of these equality constraints, which, however, reduces the degrees of freedom accordingly.

We do not discuss in detail all possible models nested within the least restricted
FA(7,6)-model because the way of reasoning is similar to that associated with the FA(5,4)-
model, given in Part I (see Table 4). In addition, the FA(7,6)-model is analysed practi-
cally in Part III (see [10]) so more details can be found there.

Prior to moving on to the discussion about a structural equation model, arising under
Scheme 2, we summarise the FA(7,6)-model graphically by means of a path diagram (see
Figure 5), which might contribute to a better understanding of differences and similari-
ties between these two statistical models.
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Figure 5. Path diagram describing the relationships among the latent common temperature responses

under the assumption of their mutual causal independence.

3.2 Statistical model under Scheme 2: a structural equation model
(SEM)

Under Scheme 2, the general underlying structure of ξTcomb and ξScomb includes the follow-
ing common factors: ξTSol, ξ

T
Orb, ξ

T
Volc, the two-component factors ξTLand and ξTGhg, and,

finally, ξTinteract. Rewriting Eq. (2.8) and (2.9) with the coefficients, used in our statistical
models, we get

ξTLand = ξTLand (natural) + ξTLand (anthr) =

= SL · ξTSol +OL · ξTOrb +VL · ξTVolc + IL · ξTinteract +GL · ξTGhg + ξTLand (anthr)

ξTGhg = ξTGhg (natural) + ξTGhg (anthr) = (3.6)

= SG · ξTSol +OG · ξTOrb +VG · ξTVolc + IG · ξTinteract + LG · ξTLand + ξTGhg (anthr) (3.7)

In the equations above, the common factors ξTSol, ξ
T
Orb, ξ

T
Volc and ξ

T
interact are standardised

to have a unit variance. The common factors ξTLand (anthr) and ξ
T
Ghg (anthr), because of being

modelled as disturbance terms 4,5, have unstandardised variances, and coefficients fixed
to 1,00. Based on significance of the estimates of these variances, conclusions about the
contribution of the anthropogenic changes in Ghg:s to the temperature variability can
be drawn.

As for ξTLand and ξTGhg, their variances cannot be standardised either, which is due to
4The reason for this was discussed earlier in connection with Eq. (2.8)-(2.9).
5It should be remarked that modelling ξTLand (anthr) and ξ

T
Ghg (anthr) as disturbance terms should not be

interpreted as that their effects on the temperature are necessarily smaller than the effects of the natural
forcings. Recall from Part I that the effect of the internal climate processes on the temperature variability
is also modelled as a disturbance term not only in our analysis but also in measurement models used in
many D&A studies. Nevertheless, this does not preclude that the contribution of internal factors to the
temperature variability might be strong.
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the fact that the variances of latent endogenous variables in structural equation models
are not model parameters (but can be calculated afterwards, see (A1.2) and (A3.7) in
Appendix). Therefore, following the theory of structural equation modelling, measure-
ment scales of these latent factors ought be established by fixing the coefficients for ξTLand
and ξTGhg to 1,00 in relation to one of their indicators, which are: v, x comb, xLand or
xGhg. To be able to analyse only simulations without involving the climate record v, it
was decided to fix the coefficients in relation to x comb. This immediately implies that
the coefficients are to be fixed to 1,00 in relation to the single-forcing indicators as well,
because the same reconstruction and implementation of a given reconstructed forcing is
employed both in the multi-forcing climate model and in the associated single-forcing
climate model.

Based on the discussion above, the following expressions for v, xcomb, xLand, and xGhg
are obtained:

v = Strue · ξTSol +Otrue · ξTOrb +Vtrue · ξTVolc + Ltrue · ξTLand+

+Gtrue · ξTGhg + Itrue · ξTinteract + ν, (3.8)

(recall from Sec. 3.1 that within the present work ν is assumed to have a constant
variance, denoted σ2ν),

x comb = ξScomb + δ̃ comb =

= Ssim · ξTSol +Osim · ξTOrb +Vsim · ξTVolc + ξTLand+

+ ξTGhg + Isim · ξTinteract + ζ̃S + δ̃ comb︸ ︷︷ ︸
=δ comb

. (3.9)

x Land = ξ
S

Land + δ̃Land = ξTLand + (ζ̃SLand + δ̃Land)︸ ︷︷ ︸
=δ Land

(3.10)

xGhg = ξ
S

Ghg + δ̃Ghg = ξTGhg + (ζ̃SGhg + δ̃Ghg)︸ ︷︷ ︸
=δGhg

. (3.11)

The expressions for x Sol, xOrb, and xVolc remain the same as under Scheme 1.

Prior to combining Eq. (3.6)-(3.11) into a structural equation model, it is impor-
tant to stress that v and xcomb are common indicators for the latent exogenous and
latent endogenous variables. However, according to the definition of a general structural
equation model (see Appendix A), the sets of indicators for latent exogenous and latent
endogenous variables should be disjoint 6. One way to extricate ourselves from this dif-
ficulty is to regard v and x comb as latent variables. This is achieved by introducing two
’new’ variables, say x+comb and v+, such that x+comb = xcomb and v+ = v, meaning that

6Note that this requirement is completely satisfied when only single-forcing simulations are analysed.
However, the disadvantages of such an analysis is that inferences about interactions between the forcings
and about the ability of involved climate models to simulate the observed climate change are not possible.
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the disturbance variances of x+comb and v+ are set to zero. Hence, x+comb and xcomb are
the same variable. Analogously, v+ and v are the same variable. The resulting structural
equation model is graphically presented in Figure 6, while the associated equations are
summarised in Appendix B.

ξTSol
ξ1: ξSol ξTOrb ξTVolc ξTinteract

ξ1: ξSol

x comb v

ξTLand ξTGhg

1 Gtrue

LG

GL

SL SG

OL
OGVL

VG

IL

IG

1
Ltrue

Ss
im

Str
ueO

sim Ot
ru

eVsim

V
tr

ue
Isim

Itrue

φSI

φOI

φV I

ξTLand (anthr)SSSSwwww ξTGhg (anthr)

σξGhg (anth
r)ξLand (anth

r)

xSol

δ Sol

Ssim

xOrb

δOrb

Osim

xVolc

δ Volc

Vsim

xLand

δ Land

1

xGhg

δ Ghg

1

x+comb

1δ comb

v+

1
ν

Figure 6. Path diagram for a nonrecursive Structural Equation Model arising under Scheme 2.

We use this model as a point of departure for constructing different SEM models,
meaning that the model can be modified in many ways by deleting some of the depicted
paths or by adding new ones. For example, as discussed earlier, xcomb and/or v can
influence back the endogenous ξLand and/or ξGhg, which amounts to expressing the idea
that the changing climate itself can be a cause of subsequent changes. In other words,
it permits us to reflect the idea that not only the forcings under consideration but also
the excluded forcings and/or the internal factors may contribute to natural changes in
vegetation and in the levels of Ghg:s.

From the perspective of structural equation modelling, freeing paths from observed
variables to latent ones entails the movement from the general standard representation
of a SEM model to its alternative representation. More details about these two repre-
sentations and their connection to each other can be found in Appendix A.

If an initial SEM model demonstrates a reasonable fit 7, model simplifications might
be of more interest than model expansions. On the other hand, if the initial model has
a bad fit, introducing additional relationships might improve the fit. Useful means in
providing clues to specific model modification are standardised (normalised) residuals 8,

7See Appendix A in Part I for descriptions of the χ2 test and heuristic goodness-of-fit indices that
can be used as measures of the overall model fit to the data

8Residuals are elements in the residual matrix, defined as the difference between S and the estimated
reproduced variance-covariance matrix Σ(θ̂), S − Σ(θ̂). A standardised residual is a fitted residual
divided by its asymptotic standard error. Normalised residuals that exceed 1.96 or 2.58 in absolute
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and the modification indices 9. Importantly, introducing additional paths should be done
judiciously because we do not want to free too many parameters because it leads to a
decrease in the degrees of freedom.

The hypothesis of consistency is tested in a similar way as under the factor model
arising under Scheme 1, that is, by testing whether the direct effects of each latent
factor on xcomb and on v are equal or not. In terms of parameters, it requires imposing
the following equality constraints: Strue=Ssim, Otrue=Osim, Vtrue=Vsim, Itrue=Isim,
Ltrue=1, and Gtrue=1.

In addition to direct effects, one can also analyse indirect and total effects of latent
variables. These questions are of interest even within our analysis both from the cli-
matological and statistical perspectives. Nevertheless, we focus only on analysing direct
effects. To motivate it, let us remind that the starting point of the present work is to for-
mulate SEM models that can be use as an alternative to ME models used in many D&A
studies and to our factor models. That is, SEM models should be capable of addressing
the same questions as those addressed by the above-mentioned models, namely
- to investigate whether a simulated latent temperature response to a given forcing is cor-
rectly represented in the climate model under consideration, compared to its real-world
counterpart embedded in observations, and
- to investigate the magnitude of the influence of real-world forcings on the observed/reconstructed
temperature.
Since addressing these questions requires the comparison of just direct effects, we refrain
here from discussing the issue of estimating and interpreting indirect and total effects,
which may call for a separate paper.

Turning our attention back to our SEM model in Figure 6, we would like once again
to stress the importance of the issue of identifiability. It should be realised that this SEM
model is underidentified despite the fact that the number of the nonduplicated equations
in the variance-covarince matrix of the indicators expressed as a function of unknown
parameters θ, Σ = Σ(θ), is larger than the number of unknown parameters, 28 > 27.
The easiest way to see underidentifiability is to note that cov(xSol, xOrb), cov(xSol, xVolc),
and cov(xOrb, xVolc) are zeros, meaning that 27 parameters are in effect to be determined
from 25 equations. More restrictions on the model parameters are required to achieve
identifiability.

For very simple versions of our SEM model (with one or two causal links not leading
to reciprocal loops), identifiability may be established algebraically by solving structural

value are considered statistically significant at the significance level of 5% and 1%, respectively. Ideally,
no more than 5% of normalised residuals should be greater than 1.96. Similary, no more than 1% should
be greater than 2.58.

9Developed by [38], these indices attempt to estimate which missing paths, if added to the current
model, would result in the greatest reduction of the discrepancy between model and data. The way to
use these indices is to free the fixed parameter associated with the largest reduction and reanalyse the
resulting model.
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covariance equations Σ = Σ(θ) for unknown parameters in θ. However, as the model in-
creases in complexity, the attempts of establishing the model’s identifiability algebraically
are very likely to be error-prone and time-consuming. Given such a situation, researchers
may resort to empirical tests for identifiability. One of them is the empirical test on the
information matrix defined as the matrix of second-order derivatives of the discrepancy
function used to estimate the model (see Eq. A.4 in Appendix in Part I). According
to [20], ”if the model is identified, the information matrix is almost certainly positive
definite. If the information matrix is singular, the model is underidentified”. The test
is automatically calculated in all statistical packages developed to estimate structural
equation models, for example, LISREL, EQS, and the R package sem.

The inverse of the information matrix provides an estimate of the variance-covariance
matrix of the asymptotic distribution of the model estimates 10. Examining this matrix is
also helpful for revealing empirical underidentifiability. If the model is nearly underiden-
tified, it will be reflected in high covariances between two or more parameter estimates.

According to [20], identifiability can also be checked by the following two-steps test.
The first step is to analyse the sample variance-covariance matrix, S, as usual and to
save the predicted covariance matrix based on the estimates of the model parameters,
i.e. Σ(θ̂). Next, substitute Σ(θ̂) for S and rerun the same program. If the model is
identified, the new estimates should be identical to the first ones that were generated.

The fourth possible check for identifiability is to estimate the model with different
starting values for free parameters in the iterative estimation algorithm to see whether or
not the algorithm converges to the same parameter estimates each time. This empirical
test, however, should be used with great care. Choosing inappropriate starting values
may cause the failure of convergence although the model is theoretically identified.

Finally, modification indices 11 can be used to determine whether a parameter, which
is held fixed in a model, will be identified if it is set free. If a modification index for a fixed
parameter is not zero and positive, this indicates that this parameter will be identified if
it is set free.

3.2.1 Mixing Scheme 1 and Scheme 2

It is obviously impossible within the confines of this article to go through all possible
models derived by modifying the SEM model depicted in Figure 6. Nevertheless, it is
worthwhile to mention SEM models that combine the features of Scheme 1 and Scheme
2, where only one of the endogenous variables, ξTLand or ξTGhg, is a two-component variable.

10Recall from Part I that under the assumption of normality of data, the Maximum Likelihood esti-
mates are consistent and jointly asymptotically normally distributed.

11Developed by [38], these indices attempt to estimate which missing paths, if added to the current
SEM model, would result in the greatest reduction of the discrepancy between model and data. The way
to use these indices is to free the fixed parameter associated with the largest reduction and reanalyse
the resulting model.
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Mixing the schemes can help us take the properties of the climate model under study
into account. Depending on those properties, the schemes can be mixed in different
ways. To exemplify, let us assume that it was justified that ξTLand is to be modelled as
a one-component temperature response comprising only ξTLand (anthr). This seems to be
a realistic situation because the currently used implementations of land use/land cover
forcings (e.g. by [30] and [17]) in many climate model simulations, e.g. such as those by
[29], only represent changes in vegetation that are due to changed human agricultural
and pastoral activities without including dynamic natural changes in vegetation that
may occur within the climate system. This means that the type of natural vegetation is
prescribed in each grid cell and held constant (at pre-specified level).

The temperature response to the Ghg forcing, on the other hand, is still modelled
as a joint two-component latent factor because prescribed reconstructed greenhouse gas
concentrations, used in those simulations, are likely to contain information about both
natural and anthropogenic influences. The resulting SEM model is depicted in Figure 7.
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Figure 7. Path diagram for a Structural Equation Model arising when Scheme 1 and Scheme 2 are

combined in such a way that ξGhg remains a joint two-component temperature response, while ξLand is a

one-component temperature response containing only ξLand (anthr).

Comparing the path diagrams in Figure 6 and 7, we can see the consequences of
mixing the schemes. Since ξTLand (anthr) is now a latent factor, i.e. not a disturbance term,
it is allowed to be correlated with the interaction term, but not with ξTGhg (anthr), which is
still modelled as a disturbance term. Further, the reciprocal relation between ξTLand and
ξTGhg is replaced by an unidirectional path from ξTLand (anthr) to ξ

T
Ghg, which seems to be the

only climatologically defensible way to relate these temperature responses to each other
statistically without involving the discussion about the influence of the changing climate
on human agricultural activity.
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Obviously, if the influence of ξTLand (anthr) on ξTGhg turns out to be statistically sig-
nificant, this means that the natural component of the latter, ξTGhg (natur), is no longer
of purely natural character. Strictly speaking, it was not such even under Scheme 2
because the influence of the joint interaction term, which can be of both natural and
anthropogenic origin, may also turn out to be statistically significant.

Just as in the case of the SEM model from Figure 6, a prudent approach to analysing
the SEM model from Figure 7 would be to start without involving observational data v.
In case the associated SEM model is rejected, it does not make sense to proceed further
with analysing the data with the observed climate record included. Further, it can be
recommended to start with SEM models where the latent endogenous variables, ξTLand
and/or ξTGhg, are influenced by at most two ’causally’ independent variables, for example,
ξTSol and ξ

T
Orb.

It cannot be emphasised enough that the choice of a final or tentative model should
not be made exclusively on the basis of statistical information - any modification ought
to be defensible from the climatological point of view and reflect our knowledge about
the real-world climate system and about the climate model under consideration. Another
important aspect to highlight is that a final model obtained as a result of a purely data-
driven modification process, should not be taken as a correct model. We can only say that
”the model may be valid” because it does not contradict our assumptions and knowledge
about the climate system.

4 Summary

In the present paper, two statistical approaches have been employed for formulating sta-
tistical models that can be used for evaluation of temperature data from forced climate
model simulations against observational data for (approximately) the last millennium.
The first approach is known as confirmatory factor analysis (CFA), while the second in-
vokes structural equation modelling (SEM). Although closely related to each other (CFA
is a special case of SEM), the approaches have distinct features.

One of the main differences is that CFA does not allow causal relationships between
latent factors, while SEM does. As argued in Sec. 2, introducing causal links within our
analysis is highly defensible from the climatological point of view because this permits us
to describe to some extent some feedback mechanisms, e.g. vegetation-climate interac-
tions. As a consequence, the associated latent temperature responses can be modelled as
two-component responses, which in turn allows us to separate their variability due to nat-
ural and anthropogenic causes. Admittedly, statistical inferences about two-component
variables might be not so straightforward as for single-component variables, but their use
is definitely motivated for situations when separate reconstructions of natural respective
anthropogenic changes in a given forcing are not available, implying that corresponding

27



climate model simulations are not available either. Instead, there are climate model sim-
ulations driven by a reconstruction of the forcing, in which natural and anthropogenic
changes are coupled together.

Of course, it is, in principle, possible to model the temperature response to a given
”two-component” forcing as a single latent variable representing in that case the overall
temperature response to this forcing. But this definitely would prevent us from getting
any ideas about the magnitude of contributions of natural and anthropogenic changes in
the forcing to the climate change, in particular, with respect to temperature. In addition,
this also transforms the overall latent temperature response from an endogenous latent
variable to an exogenous one, whose relation to other latent exogenous variables can be
modelled exclusively in terms of correlations (just as in factor models, where all latent
variables are exogenous). In turn, this may lead to difficulties with reflecting our knowl-
edge about the relations and properties of forcings involved. Indeed, it might happen
that one part of the overall temperature response can be motivated to be correlated with
some other latent temperature responses, while the other part cannot.

Further, in factor analysis, observed variables cannot be viewed as causes of latent
factors, thereby preventing us from expressing the idea that temperature changes can
cause subsequent changes in some forcings, e.g. vegetation and/or the concentration of
greenhouse gases in the atmosphere. In SEM models, this is possible.

At this point, we would like to emphasise that the discussion above should not be
taken as an exhortation to refrain from applying factor models when evaluating climate
model simulations or analysing them without involving observational data. We strongly
recommend starting with considering an appropriate factor model. According to the
principle of parsimony, it is always motivated to prefer a simpler model demonstrating
an acceptable and adequate performance to a more complicated one. So if the factor
model is not rejected then we have no reason to proceed with estimation of the associ-
ated SEM model. But if the factor model is rejected or if researchers have some doubts
about the reliability of results obtained, then it becomes justified to move on to the SEM
model.

Note also the general nature of our discussion above, although in the present work
we have formulated a specific factor model (see Table 2 and Figure 5) with a specific
corresponding SEM model (see Figure 6). They were formulated under condition that
the climate model simulation to be evaluated is forced by five specific forcings, namely
changes in solar radiation, changes in the orbital parameters for the Earth, changes in
the amount of stratospheric aerosols of volcanic origin, anthropogenic changes in land
use/land cover and changes in concentrations of greenhouse gases in the atmosphere of
both natural and anthropogenic origin.

Confining our attention to this specific combination of forcings, our aim was to il-
lustrate and exemplify a possible way of reasoning. Clearly, depending on the number
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of forcings, their climatological properties and the characteristics of climate model sim-
ulations to be evaluated, in particular, the characteristics of reconstructions of forcings,
and, finally, depending on the availability of data, different factor models with different
associated SEM models can be formulated.

The performance of the statistical models developed here, in Part II, is investigated
and compared in a controlled numerical experiment, where the true temperature is re-
placed by temperature data from an appropriate climate model simulation. The results
of this analysis is presented in Part III.

We conclude this paper by emphasising the fact that the statistical framework sug-
gested here is the very first step in modelling more complex relationships between latent
temperature responses than those associated with ME models used in many D&A stud-
ies and in factor models proposed in Part I ([9]). Therefore, we do not exclude further
theoretical modifications/improvements of our framework as more experience and under-
standing of the problem will be gained.

Appendix A

A1

Structural Equation Model (SEM): a standard representation

A structural equation model consists of two submodels: a latent variable model, linking
latent variables to each other, and a measurement model, linking latent variables to their
indicators.

Submodel 1: Latent Variable Model

A structural equation for the latent variable model is given by ([2], [20]):

η = Bη + Γξ + ζ, (A1.1)

where
η an m×1 vector of latent endogenous (dependent) variables, i.e. the variables that

are determined within the model;
ξ an n × 1 vector of latent exogenous (independent) variables, i.e. the variables

whose causes lie outside the model;
ζ an m × 1 vector of latent errors in equations (random disturbance terms). Each

ζi represents influences on ηi that are not included the structural equation for ηi;
B an m×m matrix of coefficients, representing direct effects of η-variables on other

η-variables. B always has zeros in the diagonal, which ensures that a variable is
not an immediate cause of itself;
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Γ an m × n matrix of coefficients, representing direct effects of ξ-variables on η-
variables.

Further, model (A1.1) assumes that

• E(η) = 0, E(ξ) = 0, E(ζ) = 0,

• ζ is uncorrelated with ξ (otherwise, inconsistent coefficient estimators are likely).

• I −B is nonsingular,

• ζi t, i = 1, 2, . . . ,m, is homoscedastic and nonautocorrelated, meaning that the associ-
ated covariance matrix of ζ, Ψ, is the same for all time points t, and that all observations
on ζi are mutually uncorrelated.

Importantly, the structure of Ψ depends on whether a model is recursive or nonre-
cursive. Recursive models are systems of equations that contain no reciprocal causation,
implying that the B matrix can be written as a lower triangular matrix. In this case,
the errors in equations are assumed to be uncorrelated, entailing that Ψ is diagonal.

Unlike recursive models, nonrecursive models contain reciprocal causation and/or
feedback loops, entailing thatB is not lower triangular. Under such models, ζ-disturbances
can be assumed either correlated or not.

The variance-covariance matrix of ξ is a n× n symmetrical matrix denoted Φ. That
is, exogenous latent variables can be correlated, implying that Φ in that case is not
diagonal. Notice that the covariance matrix of η is not a free parameter matrix in the
model. However, one can calculate this matrix afterwards (if required) according to the
following formula:

Cov(η) = (I −B)−1
(
Γ Φ Γ′ + Ψ

) [
(I −B)−1

]′
. (A1.2)

A2

Structural Equation Model (SEM): a standard representation

Submodel 2: Measurement model

As a matter of fact, vectors η and ξ are not observed. Instead, vectors y′ = (y1, y2, . . . , yp)

and x′ = (x1, x2, . . . , xq) are observed, such that

y = Λyη + ε, (A2.1)

x = Λxξ + δ, (A2.2)

where
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y a p× 1 vector of observed indicators of η;

x a q × 1 vector of observed indicators of ξ;

ε a p× 1 vector of measurement errors for y with the associated covariance matrix
Θε(p× p);

δ a q × 1 vector of measurement errors for x with the associated covariance matrix
Θδ(q × q);

Λy a p×m matrix of coefficients relating y to η;
Λx a q × n matrix of coefficients relating x to ξ.

The model assumptions are:
• E(η) = 0, E(ξ) = 0, E(ε) = 0, and E(δ) = 0,
• ε is uncorrelated with η, ξ, and δ
• δ is uncorrelated with ξ, η, and ε.

To summarise, the full SEM is defined by three equations:

Latent variable model: η = Bη + Γξ + ζ

Measurement model for y : y = Λyη + ε

Measurement model for x : x = Λxξ + δ

(A2.3)

Rewriting η in the reduced form, that is,

η = (I −B)−1 (Γ ξ + ζ) . (A2.4)

and substituting (A2.4) for η in (A2.3) permits us to derive the expression for the co-
variance matrix of the observed variables as a function of the model parameters, Σ(θ)

([2], p. 325):

Σ(θ) =

[
Σyy(θ)

Σxy(θ) Σxx(θ)

]
, (A2.5)

where

Σyy(θ) = ΛyA (Γ Φ Γ′ + Ψ) A′Λ′y + Θε

Σxy(θ) = Λx Φ Γ′A′Λ′y

Σxx(θ) = Λx Φ Λ′x + Θδ,

where A = (I −B)
−1.

An important point to realise about the full SEM is that it subsumes many models
as special cases. In the context of our analysis, it is relevant to mention one of the cases,
namely confirmatory factor model. To see the relation between the models, set B = 0,
Γ = 0, Θε = 0, Λy = 0 and Ψ = 0 in (A2.3) and (A2.5). This reduces the full SEM to
the measurement model for x which is a general factor model associated with Σxx(θ),
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the lower-right quadrant of (A2.5).
This straightforward connection between SEM and factor analysis immediately im-

plies that the issues of estimation, hypothesis testing, identifiability, and model evaluation
for SEM parallel those associated with factor analysis, discussed in Part 1.

To begin with, just as in factor analysis, the structure of (A2.5) depends on restric-
tions, imposed on the model parameters in accordance with a priori knowledge/hypotheses
researchers have. Researchers can express their substantive ideas and hypotheses in form
of fixed and constrained parameters (in our own analysis, the primary interest concerns
constrained-equal parameters). Estimation of free parameters in SEM is performed ex-
actly in the same way as in factor analysis, that is, under normality assumption of data,
one minimises the discrepancy between Σ(θ̂) and the sample covariance matrix of the
indicators given fixed and constrained parameters (see the discrepancy function in Ap-
pendix A in Part 1). The overall fit of SEM is also assessed by the same means as
the overall fit of factor model. Clearly, even the issue of identification of SEM can be
addressed in the same way as it is done for factor models. As discussed in Part 1, iden-
tifiability of factor model can be established algebraically, i.e. by solving the covariance
structural equations, Σ = Σ(θ), for the unknown free parameters. However, due to the
higher complexity of SEM, the determination of its identification status algebraically
can be much more tedious and thus more error-prone. In case the model of interest is
very complex, researchers may resort to several rules that aid in the identification of the
model, or, as advised by [20], confine themselves to determining which of the parameters
can be solved for and which cannot without solving the equations explicitly.

What distinguishes SEM models from factor models are the notions of indirect and
total effects. In factor analysis, it is relevant to talk only about direct effects, more pre-
cisely, direct effects of ξ-variables on their indicators, x-variables. In SEM, ξ-variables
may, in addition, have direct effects on η-variables, meaning that they indirectly affect
the indicators of η-variables. Direct and indirect effects together constitute the total
effect. We do not proceed with discussing this topic in greater depth because (1) our
main hypothesis, i.e. the hypothesis of consistency between the latent simulated and true
temperature responses to forcings, concerns only direct effects of latent variables, and
(2) without knowing the ability of the suggested SEM-model to address the question of
interest in practice, it is quite unmotivated to discuss what additional questions can be
addressed by means of this model. As mentioned in the introduction, the performance of
our SEM-model and the factor model arising under Scheme 1 is investigated in Part III.

A3

An alternative representation of SEM

The representation of a general structural equation model given above is known as a
standard representation. Being sufficient for capturing the relation between variables
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within some analyses, the standard representation might be insufficient within other
analyses due to its restrictions. For example, it is not allowed that observed variables
influence latent variables, in particular the endogenous ones, which in the context of
the present work would prevent climatologically defensible causal links from observable
temperatures (simulated and/or observed) to the latent temperature responses due to
the Land and Ghg forcings. To overcome those restrictions, a two-equation model has
been suggested (see [2], Ch. 9):

η+ = B+ η+ + ζ+ (A3.1)

y+ = Λ+
y η

+, (A3.2)

where η+, B+, ζ+, and y+ are related to the variables from the standard representation
in the following way:

η+ =


y
x
η
ξ

 , ζ+ =


ε
δ
ζ
ξ

 , y+ =

[
y

x

]
(A3.3)

B+ =


0 0 Λy 0
0 0 0 Λx

0 0 B Γ
0 0 0 0

 , Λ+
y =

[
Ip+q 0

]

where Ip+q is an order-(p + q) identity matrix picking out the observed variables from
η+. The Λ+

y is consequently (p+ q)× (p+ q +m+ n). Further,
• η+ and ζ+ are (p+ q +m+ n)× 1,

• y+ is (p+ q)× 1, and

• B+ is (p+ q +m+ n)× (p+ q +m+ n).
The final matrix for this alternative representation is the covariance matrix for ζ+

denoted Ψ+. Its relation to the standard parameters is

Ψ+ =


Θε

0 Θδ

0 0 Ψ

0 0 0 Φ

 . (A3.4)

Substituting the reduced form of η+, given by

η+ =
(
I −B+)−1

ζ+, (A3.5)

into (A3.1), the reproduced covariance matrix of η+ is derived:

Ση+(θ) =
(
I −B+)−1

Ψ+ ((I −B+)−1)′ . (A3.6)

Inserting (A3.5) into (A3.2) gives the reproduced covariance matrix of the observed
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variables only:
Σy+(θ) =

(
Λ+
y

(
I −B+)−1

)
Ψ+

(
Λ+
y

(
I −B+)−1

)′
(A3.7)

The matrices B+ from (A3.3) and Ψ+ from (A3.4) make explicit the implicit con-
straints of the standard representation. However, by changing the fixed zero elements in
these matrices we can relax many of those constraints. An important point to keep in
mind, when relaxing the assumptions of the standard representation, is that the resulting
model should be identified.

Appendix B

Equations for the nonrecursive Structural Equation Model depicted in Figure
6: the standard representation

Combining our notations used in Figure 6 and the notations associated with the standard
general representation of a structural equation model given in Appendix A1 and A2, the
structural equation model depicted in Figure 4 has the following equations:

The latent variable model:
ξTLand

ξTGhg

x comb

v


︸ ︷︷ ︸

=η

=


0 GL 0 0

LG 0 0 0

1 1 0 0

Ltrue Gtrue 0 0


︸ ︷︷ ︸

=B

·


ξTLand

ξTGhg

x comb

v


︸ ︷︷ ︸

=η

+


SL OL VL IL
SG OG VG IG
Ssim Osim Vsim Isim
Strue Otrue Vtrue Itrue


︸ ︷︷ ︸

=Γ

·


ξTSol

ξTOrb

ξTVolc

ξTinteract


︸ ︷︷ ︸

=ξ

+


ξTLand (anthr)

ξTGhg (anthr)

δcomb

ν


︸ ︷︷ ︸

=ζ

,

where the variance-covariance matrices of ξ and ζ are given by

Φξ =


1 0 0 φSI

1 0 φOI
1 φV I

1

 and Ψζ =


σ2
ξLand (anthr)

σξLand (anthr) ξLand (anthr) 0 0

σ2
ξGhg (anthr)

0 0

σ2 ∗
δcomb

0

σ2
ν

 ,

where σ2 ∗δcomb
is assumed to be known a priori.

The measurement model for x-variables, i.e. the indicators of the latent exogenous
variables ξ: x Sol

xOrb

xVolc


︸ ︷︷ ︸

=x

=

Ssim 0 0 0

0 Osim 0 0

0 0 Vsim 0


︸ ︷︷ ︸

=Λx

·


ξTSol
ξTOrb
ξTVolc
ξTinteract


︸ ︷︷ ︸

=ξ

+


δ Sol

δOrb

δVolc


︸ ︷︷ ︸

=δ

,

where the variance-covariance matrix of δ is given by Θδ = diag
(
σ2 ∗δSol

, σ2 ∗δOrb
, σ2 ∗δVolc

)
.
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Each of the three variances is assumed to be known a priori.

The measurement model for y-variables, i.e. the indicators of the latent endogenous
variables η: 

x Land

xGhg

x+comb

v+


︸ ︷︷ ︸

=y

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

=Λy

·


ξTLand

ξTGhg

x comb

v


︸ ︷︷ ︸

=η

+


δ Land

δGhg

0

0


︸ ︷︷ ︸

=ε

,

where the variance-covariance matrix of ε is given by Θε = diag
(
σ2 ∗δLand

, σ2 ∗δGhg
, 0, 0

)
,

where σ2 ∗δLand
and σ2 ∗δGhg

are regarded as known a priori.

Having elucidated the correspondence between our notations and the notations as-
sociated with the general structural equation model given in Appendix A1 and A2, it is
not difficult to rewrite the equations above in accordance with the alternative represen-
tation summarised in Eq. (A3.1)-(A3.3) in Appendix A3. However, we omit here the
alternative representation of the SEM model in Figure 6 due to the considerable size of
the resulting matrices.
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