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Abstract

In this paper new tests for the independence of two high-dimensional vectors are in-

vestigated. We consider the case where the dimension of the vectors increases with the

sample size and propose multivariate analysis of variance-type statistics for the hypothesis

of a block diagonal covariance matrix. The asymptotic properties of the new test statistics

are investigated under the null hypothesis and the alternative hypothesis using random

matrix theory. For this purpose we study the weak convergence of linear spectral statis-

tics of central and (conditionally) non-central Fisher matrices. In particular, a central

limit theorem for linear spectral statistics of large dimensional (conditionally) non-central

Fisher matrices is derived which is then used to analyse the power of the tests under the

alternative.

The theoretical results are illustrated by means of a simulation study where we also

compare the new tests with several alternative, in particular with the commonly used

corrected likelihood ratio test. It is demonstrated that the latter test does not keep

its nominal level, if the dimension of one sub-vector is relatively small compared to the

dimension of the other sub-vector. On the other hand the tests proposed in this paper

provide a reasonable approximation of the nominal level in such situations. Moreover,

we observe that one of the proposed tests is most powerful under a variety of correlation

scenarios.
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1 Introduction

Estimation and testing the structure of the covariance matrix are important problems that have

a number of applications in practice. For instance, the covariance matrix plays an important

role in the determination of the optimal portfolio structure following the well-known mean-

variance analysis of Markowitz (1952). It is also used in prediction theory where the problem

of forecasting future values of the process based on its previous observations arises. In such

applications misspecification of the covariance matrix might lead to significant errors in the

optimal portfolio structure and predictions. The problem becomes even more difficult if the

dimension is of similar order or even larger as the sample size. A number of such situations

are present in biostatistics, wireless communications and finance (see, e.g., Fan and Li (2006),

Johnstone (2006) and references therein).

The sample covariance matrix is the commonly used estimator in practice. However, in

the case of large dimension (compared to the sample size), a number of studies demonstrate

that the sample covariance does not perform well as an estimator of the population covariance

matrix and numerous authors have recently addressed this problem. One approach is based on

the construction of improved estimators in particular shrinkage type estimators which reduce

the variability of the sample covariance matrix at the cost of an additional bias (see, Ledoit

and Wolf (2012), Wang et al. (2015) or Bodnar et al. (2014, 2016) among others). Alternatively

several authors impose structural assumptions on the population covariance matrix such as a

block diagonal structure (e.g., Devijver and Gallopin (2016)), Toeplitz matrix (see, Cai et al.

(2013)), band matrix (see, Bickel and Levina (2008)) or general sparsity assumptions (see Cai

et al. (2011), Cai and Shen (2011), Cai and Zhou (2012) among others) and show, that the

population covariance matrix can be estimated consistently in these cases, even for large dimen-

sions. However, these techniques may fail if the structural assumptions are not satisfied and

consequently it is desirable to validate the corresponding assumptions regarding the postulated

structure of the covariance matrix.

In the present paper we consider the problem of testing for a block diagonal structure of the

covariance, which has found considerable interest in the literature. Early work in this direction

has been done by Mauchly (1940), who proposed a likelihood ratio test for the hypothesis of

sphericity of a normal distribution, that is the independence of all components. This method

has been extended by Gupta and Xu (2006) to the non-normal case and by Bai et al. (2009)

and Jiang and Yang (2013) to the high-dimensional case. An alternative approach is based on

the empirical distance between the sample covariance matrix and the target (e.g., a multiplicity

of the identity matrix) and was initially suggested by John (1971) and Nagao (1973). These

tests can also be extended for testing the corresponding hypotheses in the high-dimensional

setup (see, Ledoit and Wolf (2002), Birke and Dette (2005), Fisher et al. (2010), Chen et al.

(2010)). Other authors use the distributional properties of the largest eigenvalue of the sample

covariance matrix to construct tests (see Johnstone (2001, 2008) for example).

In the problem of testing the independence between two (or more) groups of random variables

under the assumption of normality the likelihood ratio approach has also found considerable
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interest in the literature. The main results for a fixed dimension can be found in the text books

of Muirhead (1982) and Anderson (2003). Recently, Jiang and Yang (2013) have extended the

likelihood ratio approach to the case of high-dimensional data, while Hyodo et al. (2015) and

Yamada et al. (2017) used an empirical distance approach to test for a block diagonal covariance

matrix.

In Section 2 we introduce the testing problem (in the case of two blocks) and demonstrate

by means of a small simulation study that the likelihood ratio test does not yield a reliable

approximation of the nominal level, if the size of one block is small compared to the other one.

In Section 3 we introduce three alternative test statistics which are motivated from classical

multivariate analysis of variance (MANOVA) and are defined as linear spectral statistics of a

Fisher matrix. We derive their asymptotic distributions under the null hypotheses and illus-

trate the approximation of the nominal level by means of a simulation study. A comparison

with the commonly used likelihood ratio test shows that the new tests provide a reasonable

approximation of the nominal level in situations where the likelihood ratio test fails. Section 4

is devoted to the analysis of statistical properties of the new tests under the alternative hypoth-

esis. For this purpose, we present a new central limit theorem for a (conditionally) non-central

Fisher random matrix which is of own interest and can be used to study some properties of the

power of the new tests. Finally, most technical details and proofs are given in the appendix

(see, Section 5).

2 Testing for independence

Let x1, ...,xn be a sample of i.i.d. observations from a p-dimensional normal distribution with

zero mean vector and covariance matrix Σ, i.e. x1 ∼ Np(0,Σ). We define the p×n dimensional

observation matrix X = (x1, ...,xn) and denote by

S =
1

n
XX>

the sample covariance matrix which is used as an estimate of Σ. It is well known that nS

has a p-dimensional Wishart distribution with n degrees of freedom and covariance matrix Σ,

i.e., nS ∼ Wp(n,Σ). In the following we consider partitions of the population and the sample

covariance matrix given by

Σ =

 Σ11 Σ12

Σ21 Σ22

 and nS =

 S11 S12

S21 S22

 , (2.1)

respectively, where Σij ∈ Rpi×pj and Sij ∈ Rpi×pj with i, j = {1, 2} and p1 + p2 = p. We are

interested in the hypothesis that the sub-vectors x1,1 and x1,2 of size p1 and p2 in the vector

x1 = (x>1,1,x
>
1,2)> are independent, or equivalently that the covariance matrix is block diagonal,

i.e.

H0 : Σ12 = O versus H1 : Σ12 6= O . (2.2)

Here the symbol O denotes a matrix of an appropriate order with all entries equal to 0. It is

worthwhile to mention that the case of non-zero mean vector can be treated exactly in the same

way observing that the centred sample covariance matrix, has a 1
n−1

Wp(n− 1,Σ) distribution.
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Throughout this paper we consider the case where the dimension of the blocks is increasing

with the sample size, that is p = p(n), pi = pi(n), such that

lim
n→∞

pi
n

= ci < 1 , i = 1, 2

and define c = c1 + c2. For further reference we also introduce the quantities

γ1,n =
p− p1

p1

, (2.3)

γ2,n =
p− p1

n− p1

, (2.4)

hn =
√
γ1,n + γ2,n − γ1,nγ2,n . (2.5)

A common approach in testing for independence is the likelihood ratio test based on the statistic

Vn =
|S|

|S11||S22|
=
|S11|

∣∣∣S22 − S21S
−1
11 S12

∣∣∣
|S11||S22|

=
∣∣∣Ip−p1 − S21S

−1
11 S12S

−1
22

∣∣∣ .
The null hypothesis is rejected for small values of Vn. Jiang et al. (2013) showed that under

the assumptions made in this section Vn can be written in terms of a determinant of a central

Fisher matrix, that is

Vn =
∣∣∣∣Ip−p1 − F(F +

γ1,n

γ2,n

Ip−p1)
−1

∣∣∣∣ =
∣∣∣∣γ2,n

γ1,n

F + Ip−p1

∣∣∣∣−1

, (2.6)

where F = 1
p1

S21S
−1
11 S12

(
1

n−p1 (S22 − S21S
−1
11 S12)

)−1
. Under the null hypothesis of independent

blocks, the matrix F is a ”ratio” of two central Wishart matrices with p1 and n− p1 degrees of

freedom. Naturally, it is called a central Fisher matrix with p1 and n− p1 degrees of freedom,

an analogue to its one dimensional counterpart (see, Fisher (1939)). In particular, we have the

following result (see, Theorem 8.2 in Yao et al. (2015))

Proposition 1. Under the null hypothesis we have for TLR = log(Vn)

TLR − (p− p1)sLR − µLR
σLR

D−→ N (0, 1) ,

where the quantities µLR, σ
2
LR and sLR are defined by

µLR = 1/2 log

[
(w∗ 2

n − d∗ 2
n )h2

n

(w∗nhn − γ2,nd∗ 2
n )2

]
, σ2

LR = 2 log

[
w∗ 2
n

w∗ 2
n − d∗ 2

n

]
,

sLR = log
(γ1,n

γ2,n
(1− γ2,n)2

)
+

1− γ2,n

γ2,n
log(w∗n)− γ1,n + γ2,n

γ1,nγ2,n
log(w∗n − d∗nγ2/hn)

+


1−γ1,n
γ1,n

log(w∗n − d∗nhn), γ1,n ∈ (0, 1)

0, γ1,n = 1

−1−γ1,n
γ1,n

log(w∗n − d∗n/hn), γ1,n > 1

with w∗n = hn√
γ2,n

and d∗n =
√
γ2,n.
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Figure 1: Simulated distribution of the statistic (TLR − (p − p1)sLR − µLR)/σLR und the

null hypothesis for sample size n = 100, dimension p = 60 and various values of p1 =

50, 45, 40, 30, 15, 10. The solid curve shows the standard normal distribution.

Proposition 1 shows that the likelihood ratio test, which rejects the null hypothesis, whenever

TLR − (p− p1)sLR − µLR
σLR

< −u1−α, (2.7)

is an asymptotic level α test (here and throughout this paper u1−α denotes the (1−α)-quantile

of the standard normal distribution). In Figure 1 we illustrate the approximation of the nom-

inal level of the test (2.7) by means of a small simulation study for the sample size n = 100,

dimension p = 60 and different values of p1 and p2. We considered a centered p-dimensional

normal distribution where the blocks Σ11 and Σ22 in the block diagonal matrix Σ are con-

structed as follows. For the first block Σ11 we took p1 uniformly distributed eigenvalues on the

interval (0, 1] while the corresponding eigenvectors are simulated from the Haar distribution

on the unit sphere. The p2 eigenvalues of the second block Σ22 are drawn from a uniform

distribution on the interval [1, 10] while the corresponding eigenvectors are again Haar dis-

tributed. The matrices Σ11 and Σ22 are then fixed for the generation of multivariate normal

distributed random variables (Σ12 = O). The plots show the empirical distribution of the

statistic (TLR − (p− p1)sLR − µLR)/σLR using 1000 simulation runs and the density of a stan-

dard normal distribution. We observe a reasonable approximation if the dimension p1 of the

sub-vector x1,1 is large compared to the dimension p of the vector x1, that is γ1,n ≤ 1 (see, the

upper part of Figure 1). However, if γ1,n >> 1, there arises a strong bias (see, the lower part

of Figure 1) and the asymptotic statement in Proposition 1 cannot be used to obtain critical

value for the test (2.7).

5



Motivated by the poor quality of the approximation of the finite sample distribution of the

likelihood ratio test by a normal distribution if the dimension p1 is small compared to the

dimension p2 we now construct alternative tests for the hypothesis (2.2), which will yield a more

stable approximation of the nominal level. For this purpose, we first note that a non-singular

partitioned matrix Σ in (2.1) is block diagonal (i.e. Σ21 = O) if and only if Σ21Σ
−1
11 Σ12 = O.

Therefore, a test for independence can also be obtained by testing the hypotheses

H0 : Σ21Σ
−1
11 Σ12 = O versus H1 : Σ21Σ

−1
11 Σ12 6= O. (2.8)

In the following section we will propose three tests for the hypothesis (2.8) as an alternative to

the likelihood ratio test.

3 Alternative tests for independence and their null dis-

tribution

Recall the definition of the matrices Σ and S in (2.1) and denote by Σ22·1 = Σ22−Σ21Σ
−1
11 Σ12

and S22·1 = S22 − S21S
−1
11 S12 the corresponding Schur complements. From Theorem 3.2.10 of

Muirhead (1982), it follows that

S21S
−1/2
11 |S11 ∼ Np−p1,p1(Σ̃21Σ

−1
11 S

1/2
11 ,Σ22·1 ⊗ Ip1),

S22·1 ∼ Wp−p1(n− p1,Σ22·1),

and the Schur complement S22·1 is independent of S21S
−1/2
11 and S11. Hence, under the null

hypothesis,

Ŵ = S21S
−1
11 S12 ∼ Wp−p1(p1,Σ22·1),

T̂ = S22·1 ∼ Wp−p1(n− p1,Σ22·1),

and Ŵ and T̂ are independent. Under the alternative hypothesis H1, Ŵ and T̂ are still

independent as well as T̂ ∼ Wp−p1(n−p1,Σ22·1), but Ŵ has a non-central Wishart distribution

conditionally on S11, i.e.,

Ŵ|S11 ∼ Wp−p1(p1,Σ22·1,Ω1(S11))

where the non-centrality parameter is given by

Ω1 = Ω1(S11) = Σ−1
22·1Σ21Σ

−1
11 S11Σ

−1
11 Σ12.

For technical reasons we will use the normalized versions of Ŵ and T̂ throughout this paper.

Thus, the distributional properties of W = 1
p1

Ŵ and T = 1
n−p1 T̂ are very similar to the ones

observed for the within and between covariance matrices in the multivariate analysis of variance

(MANOVA) model (see Fujikoshi et al. (2004), Schott (2007), Kakizawa and Iwashita (2008)).

More precisely, p1W and (n− p1)T are independent (under both hypotheses) and they possess

Wishart distributions under the null hypothesis. However under the alternative hypothesis

the matrix p1W has only conditionally on S11 a non-central Wishart distribution, while the
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unconditional distribution appears to be a more complicated matrix-variate distribution. The

similarity to MANOVA motivates the application of three tests which are usually used in this

context and are given by

(i) Wilks’ Λ statistic:

TW = − log(|T|/|T + W|) = log(|I + WT−1|) =
p−p1∑
i=1

log(1 + vi) (3.1)

(ii) Lawley-Hotelling’s trace criterion:

TLH = tr(WT−1) =
p−p1∑
i=1

vi (3.2)

(iii) Bartlett-Nanda-Pillai’s trace criterion:

TBNP = tr(WT−1(I + WT−1)−1) =
p−p1∑
i=1

vi
1 + vi

(3.3)

where v1 ≥ v2 ≥ ... ≥ vp−p1 denote the ordered eigenvalues of the matrix WT−1. A statistic

very similar to (3.3) was proposed by Jiang and Yang (2013), who used

tr(WT−1(
γ1

γ2

I + WT−1)−1) =
p−p1∑
i=1

vi
γ1
γ2

+ vi

instead of tr(WT−1(I + WT−1)−1). It is remarkable that all proposed test statistics are func-

tions of the eigenvalues of WT−1and can be presented as linear spectral statistics1 calculated

for the random matrix WT−1, which is the so-called Fisher matrix under the null hypothesis

H0 (see Zheng (2012)). This representation is used intensively in proof of our first main result,

which provides the asymptotic distribution of TW , TLH , and TBNP under the null hypothesis in

(2.8). The details of the proof are deferred to the Appendix in Section 5.

Theorem 1. Under the assumptions stated in Section 2 we have

Ta − (p− p1)sα − µa
σa

D−→ N (0, 1) ,

where the index a ∈ {W,LH,BNP} represents the statistic under consideration defined in

(3.1), (3.2) and (3.3), respectively. The asymptotic means and variances are given by

µW = 1/2 log

[
(w2

n − d2
n)h2

n

(wnhn − γ2,ndn)2

]
, σ2

W = 2 log

[
w2
n

w2
n − d2

n

]
,

µLH =
γ2,n

(1− γ2,n)2
, σ2

LH =
2h2

n

(1− γ2,n)4
,

µBNP = −(1− γ2,n)2w2
n(d2

n − γ2,n)

(w2
n − d2

n)2
, σ2

BNP = 2
d2(1− γ2,n)4

w2
n(1 + dn)(w2

n − d2
n)4

(w2
n(w2

n + dn) + d3
n(w2

n − 1)) ,

1The formal definition of the linear spectral statistic is given in Appendix by A.1.
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where wn > dn > 0 satisfy w2
n + d2

n = (1− γ2,n)2 + 1 + h2
n, wndn = hn, and the quantities γ1,n,

γ2,n and hn are defined by (2.3), (2.4) and (2.5), respectively. The centering parameters are

given by

sW = − log
(
(1− γ2,n)2

)
− 1− γ2,n

γ2,n
log(wn) +

γ1,n + γ2,n

γ1,nγ2,n
log(wn − dnγ2,n/hn)

−


1−γ1,n
γ1,n

log(wn − dnhn), γ1,n ∈ (0, 1)

0, γ1,n = 1

−1−γ1,n
γ1,n

log(wn − dn/hn), γ1,n > 1

,

sLH =
1

1− γ2,n
,

sBNP =
1− γ2,n

w2
n − γ2,n

.

Theorem 1 provides a simple asymptotic level α test by rejecting the null hypothesis H0 if

Ta − (p− p1)sa − µa
σa

> u1−α (3.4)

We illustrate the quality of the approximation in Theorem 1 by means of a small simulation

study. For the sake of comparison with the likelihood ratio test, we use the same scenario as

in Section 2, that is n = 100, p = 60 and different values for p1. In Figure 2 - 4 we display the

rejection probabilities of the test (3.4) under the null hypothesis in the case of the Wilk test, the

Lawley-Hotelling’s, and the Bartlett-Nanda-Pillai’s trace criterion. From the results depicted

in Figure 2 we observe that the statistic TW exhibits similar problems as the statistic of the

likelihood ratio test. If the dimension p1 is too small the approximation provided by Theorem

1 is not reliable. This fact seems to be related to the use of the log determinant criterion.

On the other hand, the Lawley-Hotelling’s and the Bartlett-Nanda-Pillai’s trace criterion yield

test statistics which do not possess these drawbacks. The results in Figure 3 and 4 show a

reasonable approximation of the nominal level in all considered scenarios.
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Figure 2: Simulated distribution of the statistic (TW − (p − p1)sW − µW )/σW und the null

hypothesis for sample size n = 100, dimension p = 60 and various values of p1 = 50, 30, 10.

The solid curve shows the standard normal distribution.
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Figure 3: Simulated distribution of the statistic (TLH − (p − p1)sLH − µLH)/σLH und the null

hypothesis for sample size n = 100, dimension p = 60 and various values of p1 = 50, 30, 10.

The solid curve shows the standard normal distribution.
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Figure 4: Simulated distribution of the statistic (TBNP − (p− p1)sBNP − µBNP )/σBNP und the

null hypothesis for sample size n = 100, dimension p = 60 and various values of p1 = 50, 30, 10.

The solid curve shows the standard normal distribution.

4 Distributional properties under alternative hypothesis

In this section we derive the distribution of the considered linear spectral statistics under the

alternative hypothesis. The main difficulty consists in the fact that under the alternative the

random matrix WT−1 has a (conditionally) non-central Fisher distribution in this case. The

following two results, which are proved in the Appendix and of independent interest, specify

the asymptotic distribution of the empirical spectral distribution of the matrix WT−1 under

H1. Throughout the paper

mG(z) =

+∞∫
−∞

dG(t)

t− z

denotes the Stieltjes transform of a distribution function G.

Theorem 2. Consider the alternative hypothesis H1 in (2.2) and assume that the assumptions

of Section 2 are satisfied. If the the matrix R = Σ
−1/2
22·1 Σ21Σ

−1
11 Σ12Σ

−1/2
22·1 is bounded in spectral

norm and its spectral distribution converges weakly to some function G, then for any z ∈ C \R
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the Stieltjes transform of the empirical spectral distribution of the matrix WT−1 converges

almost surely to some deterministic function s, which is the unique solution of the following

system of equations

s(z)

1 + γ2zs(z)
= mH (z(1 + γ2zs(z))) ,

mH(z)

1 + γ1mH(z)
= mH̃((1 + γ1mH(z))[(1 + γ1mH(z))z − (1− γ1)]), (4.1)

mH̃(z)(1− (c− c1)− (c− c1)zmH̃(z))c−1
1 = mG

(
c1z

1− (c− c1)− (c− c1)zmH̃(z)

)
,(4.2)

subject to the condition that ={s(z)} is of the same sign as ={z}.

We will use this result to derive a CLT for the linear spectral statistics of the matrix WT−1,

which can be used for the analysis of the test proposed in Section 3 under the alternative

hypothesis. For this purpose we introduce some useful notations as follows

δ(z) = γ1mH(z) (4.3)

δ̃(z) = δ(z)− 1− γ1

z

η(z) = (1 + δ(z))(1 + δ̃(z)) (4.4)

ξ(z) =
δ′(z)

(zη(z))′
(4.5)

Ψ(z) =

(
1

1 + δ(z)
− 2ξ(z)z +

1− γ1

1 + δ(z)
ξ(z)

)−1

, (4.6)

r = 2
(1 +

√
γ1)2 + λmax(R)(1−√c1)2

(1−√γ2)2
(4.7)

Theorem 3. If the assumptions of Theorem 2 are satisfied, then for any pair f, g of analytic

functions in an open region of the complex plane containing the interval [0, r] the random vector(
(p− p1)

∞∫
0

f(x) d(Fn(x)− F ∗n(x)), (p− p1)

∞∫
0

g(x) d(Fn(x)− F ∗n(x))
)>

converges weakly to a Gaussian vector (Xf , Xg)
> with mean and covariances given by

E[Xf ] =
1

4πi

∮
f(z) dlog(q(z)) +

1

2πi

∮
f(z)B(zb(z)) d(zb(z))

+
1

2πi

∮
f(z)θb,H(z)

(
θb̃,H̃(zb(z))

c21
∫
m3

H̃
(zb(z))t2(c1 + tmH̃(zb(z)))−3dG(t)

(1− c1
∫
m2

H̃
(zb(z))t2(c1 + tmH̃(zb(z)))−2dG(t))2

)
dz (4.8)

Cov[Xf , Xg] = − 1

2π2

∮ ∮
f(z1)g(z2)

∂2 log(z1b(z1)− z2b(z2))

∂z1∂z2
dz1 dz2

− 1

2π2

∮ ∮
f(z1)g(z2)

∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂z1∂z1
dz1 dz2

− 1

2π2

∮ ∮
f(z1)g(z2)

θb̃,H̃(z1b(z1))θb̃,H̃(z2b(z2))

∂2 log
[
mH̃(z2b(z2))−mH̃(z1b(z1))

(z2b(z2)−z1b(z1))

]
∂z1∂z2

dz1 dz2

(4.9)
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respectively, where

b(z) = 1 + γ2zs(z)

b̃(z) = 1 + γ1mH(z) (4.10)

q(z) = 1− γ2

∫
b2(z)dH(t)

(t/z − b(z))2

θb̃,H̃(z) =
b̃(z)

1− γ1mH̃

(
b̃(z)(b̃(z)z − (1− γ1))

)
− b̃(z)γ1(2zb̃(z)− (1− γ1))

∫ dH̃(t)

[t−(b̃(z)(b̃(z)z−(1−γ1)))]
2

mH̃(z) = −1− c1

z
+ c1mH̃(z)

B(z) = Ψ2(z)

[
−ω̃(z)N(z)(1− δ(z)) +

1

1 + δ(z)
N(z) + ξ(z)Ψ−1(z) + zξ2(z)

+ z2δ̃2(z)

(
ξ2(z)− δ(z)N(z)

(
z − 1− γ1

1 + δ(z)
+ 1

))]
(4.11)

with

N(z) =
ξ′(z)Ψ−1(z)

2
− ξ2(z) and ω̃(z) = z2ξ(z) +

1− γ1

1 + δ(z)
Ψ−1(z) .

Here the integrals are taken over an arbitrary positively oriented contour which contains the

interval [0, r], moreover the contours in (4.9) are non-overlapping.

It follows from the proof of Theorem 2 that

W
d
≤ 2

( 1

p1

XX> + MM>
)
,

where nMM> ∼ Wp−p1(n,R) and all entries of X are independent and standard normally

distributed. Consequently the largest eigenvalue of the matrix W will asymptotically be smaller

than 2
(
(1 +

√
γ1)2 + λmax(R)(1−√c1)2

)
and the quantity r defined in (4.7) is an upper bound

for the limiting spectrum of the matrix WT−1.

Although, the limiting mean and variance presented in Theorem 3 are very difficult to

calculate in a closed form even for simple cases, there are several important implications of

Theorem 3.

Remark 1 (Eigenvectors). Going through the proof of Theorem 3 one can see that Lemma 1

in Section 5 reveals a very interesting fact that the resulting asymptotic distributions depend

neither on the eigenvectors of the non-centrality matrix Ω1 nor on the eigenvectors of the matrix

R = Σ
−1/2
22·1 Σ21Σ

−1
11 Σ12Σ

−1/2
22·1 for the normally distributed data. Loosely speaking, without loss

of generality (w.l.g.), we can restrict ourselves to the case when Ω1 and R are diagonal matrices,

which simplifies the simulations in a remarkable way. This result can not be deduced from

previous literature (see, e.g., Yao (2013)).

Remark 2 (Generalizations and simplifications). The non-central Fisher matrix in our case

arises only conditionally on S11 where the non-centrality matrix Ω1 is random in our framework.

As a consequence Theorem 3 generalizes the result of Yao (2013), where a deterministic non-

centrality matrix was considered. Moreover, all the asymptotic quantities including δ(z) are

11



expressed in a more convenient form, like, δ(z) = γ1mH(z). Finally, the expression of the bias

term B(z) is significantly simplified which makes it possible to do numerical computations more

efficiently and to investigate the results of Theorem 3 deeper in the future.

Remark 3 (Finite rank alternatives). Combining Theorem 2 and Theorem 3 one observes

that finite rank alternatives with a bounded spectrum have no influence on the asymptotic

power of the tests, because the asymptotic means and variances under the null hypothesis and

alternative hypothesis coincide. Indeed, assuming that the matrix R has a finite rank, say k,

and a bounded spectrum we get

mFR(z) =
∫ dFR(t)

t− z
=

1

p− p1

p−p1∑
i=1

1

λi(R)− z
=

1

p− p1

k∑
i=1

1

λi(R)− z
− p− p1 − k

p− p1

1

z
→ −1

z
.

Thus, it follows that mG(z) = −1
z
, and therefore G is the distribution function of the Dirac

measure concentrated at the point 0. Consequently we obtain mH̃(z) = −1/z and the third

summands in (4.8) and in (4.9) vanish, that is

∫ t2

(c1 + tmH̃(z))3
dG(t) =

∫ t2

(c1 + tmH̃(z))3
δ0(t)d(t) = 0,

∂2 log
[
mH̃(z2)−mH̃(z1)

z2−z1

]
∂z1∂z2

=
m′
H̃

(z1)m′
H̃

(z2)

(mH̃(z1)−mH̃(z2))2
− 1

(z1 − z2)2
= 0 ,

for any z, z1, z2 ∈ C+. The other summands in (4.8) and in (4.9) do not depend on the eigenval-

ues of matrix R, which reflects the alternative hypothesis H1 via Σ12, thus, they are expected

to be equal to the corresponding quantities under the null hypothesis H0 given in Theorem

1. Consequently, all tests based on a linear spectral statistic cannot detect the alternative

hypothesis H1 if the matrix R has no large eigenvalues.

On the other hand, if λmax(R) is an increasing function of the dimension p−p1 the spectrum

of λmax(R) is not bounded and Theorem 3 is not applicable. Although we have no theoretical

result in this case we expect that the power of the tests will be an increasing function of

λmax(R). These properties have been verified numerically by means of a simulation study.

Remark 4 (Full rank alternatives). As we have already mentioned, the formulas in Theorem

2 and Theorem 3 are very complex, which makes it difficult to calculate the power functions

of the considered tests in an analytic form. For instance, we need to solve the system of three

equations in Theorem 2 which leads to the cubic equation already for mH(z) even in the simple

case R = ρ2I. On the other hand, the whole system in Theorem 2 simplifies to a quadratic

equation under the null hypothesis H0. Nevertheless, we believe that these results may be

useful for future investigations of the power of the considered tests on the block diagonality of

the covariance matrix. For example, one may consider the numerical approximations discussed

in Zheng et al. (2017).
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Figure 5: Empirical power of different tests for block diagonality for sample size n = 100,

dimension p = 60 and various values of p1 = 50, 30, 10 as a function of the correlation coefficient

ρ = σ12
σ

in [0, 0.0325].

To illustrate these remarks and comments, we present a comparison of the power of the dif-

ferent tests under consideration by means of a small simulation study. In order to demonstrate

the results in a clear way we assume for simplicity that Σ11 = Σ22 = σI which yields

R =
1

σ
(σI− 1

σ
Σ21Σ12)−1/2Σ21Σ12(σI− 1

σ
Σ21Σ12)−1/2.

Note that the spectrum of matrix R is the same as that of the matrix Σ21Σ12(σ2I−Σ21Σ12)−1.

First, we take Σ12 as a rank 1 matrix with all components equal to σ12 ∈ [0, 1.3] (equicorrelation)

and in order to assure positive definiteness of Σ in that range we choose σ = 40. Note that

if σ12 varies in the interval [0, 1.3] the correlation coefficient ρ = σ12/σ will change in the

interval [0, 0.0325]. Further, we increase the rank of Σ12 by setting some of its elements to zero

(sparsifying). The empirical rejection probailities of the proposed tests in the case of rank 1

alternatives are given in Figure 5. Here, we also included the trace criterion recently proposed

by Jiang and Yang (2013) and the test proposed by Yamada et al. (2017), which is based on an

empirical distance between the full and a block diagonal covariance matrix. Figure 5 justifies

our theoretical findings, i.e., none of the tests can detect the alternatives for ρ ∈ [0, 0.01] (the

power function in this region is basically flat and close to the nominal level 0.05). On the other

hand, if the correlation is greater than 0.01 in absolute value, then all of the tests gain power.

For p1 = 30 (case of equal blocks) all test are powerful enough to reject H0 if the correlation is

greater than 0.03. These results are in accordance with the discussion in Remark 3, because in

the considered scenario the largest eigenvalue of the matrix R is given by

p1(p− p1)ρ2

1− p1(p− p1)ρ2
.

Thus, if the correlation coefficient ρ is close to 1/
√
p1(p− p1) we will get a spike (note that

1/
√
p1(p− p1) ≈ 0.0333 if p1 = 30, p = 60). Moreover, here we have a clear winner - the Lawley-

Hotelling’s (LH) trace criterion. The test of Yamada et al. (2017), and Wilk’s test with the

corrected likelihood ratio (LR) criterion are ranked on the second and third, respectively, while

the Bartlett-Nanda-Pillai’s (BNP) trace criterion is on the fourth position and the trace criterion
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of Jiang and Yang (2013) shows the worst performance. The same ranking was observed for

p1 = 50 with the only difference of a decreasing power of all tests. Note that Wilk’s test and the

LR test have the same power for p1 = 50. In light of the previous findings obtained under the

null hypothesis H0, the case p1 = 10 is most interesting one. Indeed, here we observe that the

Wilk’s and the LR tests are not reliable anymore, while other tests show a similar behaviour

as in the case p1 = 50. As before, the LH test is the most powerful in all three situations.
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Figure 6: Empirical power of different tests for block diagonality for sample size n = 100,

dimension p = 60 and various values of p1 = 50, 30, 10 as a function of the correlation coefficient

ρ = σ12
σ

in [0, 0.04] and sparsity level of 20%.
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Figure 7: Empirical power of different tests for block diagonality for sample size n = 100,

dimension p = 60 and various values of p1 = 50, 30, 10 as a function of the correlation coefficient

ρ = σ12
σ

in [0, 0.06] and sparsity level of 50%.

In order to investigate the robustness of the tests we increase the sparsity of the matrix Σ12,

where 20% and 50% of the elements are set randomly to zero, while all other elements are still

equal to σ12. By this procedure we increase the probability that Σ12 has full rank. The results

are summarized in Figures 6 and 7.

We observe a similar behaviour as in the non-sparse case (see Figure 5). The LH test and

the test proposed in Yamada et al. (2017) show the best performance. The latter is slightly

better than the LH test for the sparsity level 50%, while a superiority of the LH test could

be observed for a sparsity level of 20% . Of course, by increasing the sparsity level we make

the alternative hypothesis harder to detect. For this reason the non-sensitivity interval [0, 0.01]
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(the interval where the test is not sensitive to the alternative H1) is increased to [0, 0.02] and

[0, 0.03] in case of 20% and 50% sparsity levels, respectively. As a conclusion, although the

LH trace criterion is the most simple one among the linear spectral statistics of the matrix

WT−1 (f = id), it seems to be the most robust and powerful test on the block diagonality

of the large-dimensional covariance matrix. On the other hand the corrected LR and Wilk’s

criteria can not be recommended, if the size of the first block is much smaller than the size of

the second one.
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5 Appendix

Proof of Theorem 1. A linear spectral statistics for the matrix WT−1 is generally defined

by

LSSn = (p− p1)

∞∫
0

f(x) dFn(x) =
p−p1∑
i=1

f(vi) , (A.1)
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where v1 ≥ v2 ≥ ... ≥ vp−p1 are the ordered eigenvalues of the matrix WT−1,

Fn(x) =
1

p− p1

p−p1∑
i=1

1(−∞,vi](x)

denotes the corresponding empirical spectral distribution and the symbol 1A is the indicator

function of the set A. Define

F ∗n(dx) = qn(x)1[an,bn](x)dx+ (1− 1/γ1,n)1γ1,n>1δ0(dx) with

qn(x) =
1− γ2,n

2πx(γ1,n + γ2,nx)

√
(bn − x)(x− an), an =

(1− hn)2

(1− γ2,n)2
, b =

(1 + hn)2

(1− γ2,n)2
,

where γ1,n, γ2,n and hn are defined by (2.3), (2.4) and (2.5), respectively. Note that F ∗n is a

finite sample proxy of limiting spectral distribution F of Fn, which is obtained by replacing

γ1,n and γ2,n by their corresponding limits (see Bai and Silverstein (2010)), that is

F (dx) = q(x)1[a,b](x)dx+ (1− 1/γ1)1γ1>1δ0(dx) with (A.2)

q(x) =
1− γ2

2πx(γ1 + γ2x)

√
(b− x)(x− a), a =

(1− h)2

(1− γ2)2
, b =

(1 + h)2

(1− γ2)2
. (A.3)

where

γ1 = lim
n→∞

γ1,n = lim
n→∞

p− p1

p1

, γ2 = lim
n→∞

γ2,n = lim
n→∞

p− p1

n− p1

,

h = lim
n→∞

hn =
√
γ1 + γ2 − γ1γ2 .

The asymptotic properties of a centred version of (A.2) have been determined by Zheng (2012),

who showed that for any functions f, g, which are analytic in an open region of the complex

plane containing the interval [a, b], the random vector

(
(p− p1)

∞∫
0

f(x) d(Fn(x)− F ∗n(x)), (p− p1)

∞∫
0

g(x) d(Fn(x)− F ∗n(x))
)>

converges weakly to a Gaussian vector (Xf , Xg)
> with means and covariances given by

E[Xf ] =
1

2πi

∮
f(z) dlog

( 1−c
1−c1m

2
0(z) + 2m0(z) + 2− c/c1

1−c
1−c1m

2
0(z) + 2m0(z) + 1

)

+
1

2πi

∮
f(z) dlog

(
1− c−c1

1−c1m
2
0(z)

(1 +m2
0(z))2

)

Cov[Xf , Xg] = − 1

2π2

∮ ∮ f(z1)g(z2)

(m0(z1)−m0(z2))2
dm0(z1) dm0(z2)

respectively. Here m0(z) = mγ2(−m(z)) with mγ2(z) = −1−γ2
z

+ γ2mγ2(z) and m(z) = −1−γ1
z

+

γ1m(z), where m(z) denotes the Stieltjes transform of the function (A.2) and mγ2(z) is the

Stieltjes transformation of the matrix W under H0. The integrals are taken over arbitrary

positively oriented countur which contains the interval [a, b]. Note that this result is only
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applicable under the null hypothesis H0, because under H1 the unconditional distribution of the

random matrix W is no longer a central Wishart distribution. Therefore further investigation

are needed in this situation (see the proof of Theorem 2)

The distributions of the test statistics TW , TLH , and TBNP are obtained as special cases

using the functions fW (x) = log(1+x), fLH(x) = x and fBNP (x) = x
1+x

, respectively. Thus, we

need to calculate the asymptotic means, variances and the terms
∫
f(x)dF (x) in these cases.

The asymptotic means and variances for fW and fLH can be deduced from Examples 4.1 and

4.2 in Zheng (2012) and we only need to find the corresponding quantities for fBNP .

Let w and d be the positive solutions of the equation

|1 + hz|2 + (1− γ2)2 = |w + dz|2 (A.4)

for any z ∈ C with |z| = 1 which also satisfy

w2 + d2 = h2 + 1 + (1− γ2)2 and wd = h

and, consequently, it holds that

(1− γ2)2 = (1− d2)(w2 − 1) , (1 + h)2 = (w + d)2 − (1− γ2)2 , (1− h)2 = (w − d)2 − (1− γ2)2 .

Further, without loss of generality2 we assume that w > d.

In using that |1+hz|2 = (1+hz)(h+z)/z, |w+dz|2 = (w+dz)(d+wz) and due to Corollary

3.2 of Zheng (2012), we get

E[XfBNP ] = lim
r↓1

1

4πi

∮
|z|=1

|1 + hz|2/(1− γ2)2

|1 + hz|2/(1− γ2)2 + 1

[
1

z − r−1
+

1

z + r−1
− 2

z + γ2/h

]
dz

= lim
r↓1

1

4πi

∮
|z|=1

|1 + hz|2

|w + dz|2

[
1

z − r−1
+

1

z + r−1
− 2

z + γ2/h

]
dz

= lim
r↓1

1

4πi

∮
|z|=1

(1 + hz)(h+ z)

(w + dz)(d+ wz)

[
1

z − r−1
+

1

z + r−1
− 2

z + γ2/h

]
dz

= lim
r↓1

1

2

[
(1 + hz)(h+ z)

(w + dz)(d+ wz)

∣∣∣∣
z=r−1

+
(1 + hz)(h+ z)

(w + dz)(d+ wz)

∣∣∣∣
z=−r−1

− 2
(1 + hz)(h+ z)

(w + dz)(d+ wz)

∣∣∣∣
z=− γ2

h

]

+ lim
r↓1

1

2w

(1 + hz)(h+ z)

(w + dz)

[
1

z − r−1
+

1

z + r−1
− 2

z + γ2/h

]∣∣∣∣
z=−d/w

= lim
r↓1

1

2

[
(1 + hr−1)(h+ r−1)

(w + dr−1)(d+ wr−1)
+

(1− hr−1)(h− r−1)

(w − dr−1)(d− wr−1)

− 2
(1− γ2)(h− γ2/h)

(w − γ2d/h)(d− γ2w/h)
+ 2

(1− dh/w)(h− d/w)

(w2 − d2)

(
− d/w

(d/w)2 − r−2
− 1

γ2/h− d/w

)]
.

2It holds that |w + dz|2 = |d+ wz|2 for |z| = 1.
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Taking now the limit r ↓ 1 in (A.5) we obtain the following result for the mean

E[XfBNP ] =
1

2

[
(1 + h)2

(w + d)2
+

(1− h)2

(w − d)2

]
− (1− γ2)(h2 − γ2)

(w2 − γ2)(d2 − γ2)
+

(1− d2)(w2 − 1)d2(w2 − γ2)

(w2 − d2)2(d2 − γ2)

=

(
1− (1− γ2)2(w2 + d2)

(w2 − d2)2

)
−
(

1 +
(1− γ2)2γ2

(w2 − γ2)(d2 − γ2)

)
+

(1− γ2)2d2(w2 − γ2)

(w2 − d2)2(d2 − γ2)

= −(1− γ2)2(w2 + d2)

(w2 − d2)2
− (1− γ2)2γ2

(w2 − γ2)(d2 − γ2)
+

(
(1− γ2)2γ2(w2 − γ2)

(w2 − d2)2(d2 − γ2)
+

(1− γ2)2(w2 − γ2)

(w2 − d2)2

)
=

(1− γ2)2

(w2 − d2)2

(
−(d2 + γ2)− γ2

[
(w2 − d2)2 − (w2 − γ2)2

(w2 − γ2)(d2 − γ2)

])
= −(1− γ2)2w2(d2 − γ2)

(w2 − d2)2
.

Similarly, we have for the variance

Var[XfBNP ] = − lim
r↓1

1

2π2

∮
|z2|=1

(1 + hz2)(h+ z2)

(w + dz2)(d+ wz2)

 ∮
|z1|=1

(1 + hz1)(h+ z1)

(w + dz1)(d+ wz1)(z1 − rz2)2
dz1

dz2

= − lim
r↓1

i

π

∮
|z2|=1

(1 + hz2)(h+ z2)

(w + dz2)(d+ wz2)

(
(1 + hz1)(h+ z1)

w(w + dz1)(z1 − rz2)2

∣∣∣∣
z1=− d

w

)
dz2

= − i
π

∮
|z2|=1

(1 + hz2)(h+ z2)

(w + dz2)(d+ wz2)

(
− dw(1− d2)(w2 − 1)

(w2 − d2)(d+ wz2)2

)
dz2

= − h(1− γ2)2

w3(w2 − d2)

[
∂2

∂z2
2

(1 + hz2)(h+ z2)

(w + dz2)

∣∣∣∣
z2=−d/w

]

= −2
hd(w2 − 1)(1− γ2)2

w3(w2 − d2)2

[
1− (w2 − 1)d

w2 − d2
+
d2w2(1− d2)

(w2 − d2)2

]
= 2

d2(1− γ2)4

w2(1 + d)(w2 − d2)4
(w2(w2 + d) + d3(w2 − 1)) .

Due to Theorem 2.23 in Yao et al. (2015), the terms
∫ b
b f(x) dF (x) can be calculated in the

following way

b∫
b

f(x) dF (x) = −h
2(1− γ2)

4πi

∮
|z|=1

f

(
|1 + hz|2

(1− γ2)2

)
(1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz ,

(A.5)

where the interval [a, b] is the support of limiting spectral distribution F of the Fisher matrix

WT−1 defined in (A.3). The function fLH has already been considered in Yao et al. (2015),

Example 2.25, that is sLH =
∫ b
b x dF (x) = 1

1−γ2 . Next we determine he corresponding terms for

fW and fBNP noting that

sW = −h
2(1− γ2)

4πi

∮
|z|=1

log ((1− γ2)−2|w + dz|2) (1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz = − log

(
(1− γ2)2

)
+ I1 + I2 ,
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where we used again (A.4) and the terms I1 and I2 are defined by

I1 = −h
2(1− γ2)

4πi

∮
|z|=1

log(w + dz)(1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz

I2 = −h
2(1− γ2)

4πi

∮
|z|=1

log(w + dz̄)(1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz .

A change of variables yields I1 = I2 and we obtain (see Yao et al. (2015) for detailed calculation)

2I1 = −h
2(1− γ2)

2πi

∮
|z|=1

log(w + dz)(1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz


1−γ1
γ1

log(w − dh), γ1 ∈ (0, 1)

0, γ1 = 1

−1−γ1
γ1

log(w − d/h), γ1 > 1 ,

which yields the desired representation of sw. Similarly, we obtain

sBNP = −h
2(1− γ2)

4πi

∮
|z|=1

(1 + hz)(h+ z)

(w + dz)(d+ wz)

(1− z2)2

z(1 + hz)(z + h)(γ2z + h)(γ2 + hz)
dz

= −h
2(1− γ2)

4πi

∮
|z|=1

(1− z2)2

z(w + dz)(d+ wz)(γ2z + h)(γ2 + hz)
dz

= −h
2(1− γ2)

2

(
(1− z2)2

hz(w + dz)(d+ wz)(γ2z + h)

∣∣∣∣
z=− γ2

h

+
(1− z2)2

zw(w + dz)(γ2z + h)(γ2 + hz)

∣∣∣∣
z=− d

w

+
(1− z2)2

(w + dz)(d+ wz)(γ2z + h)(γ2 + hz)

∣∣∣∣
z=0

)
=

1− γ2

w2 − γ2
,

which completes the proof of Theorem 1.

Proof of Theorem 2: Since (n−p1)T ∼ Wp−p1(n−p1,Σ22·1), p1W|S11 ∼ Wp−p1(p1,Σ22·1,Ω1)

with Ω1 = Ω1(S11) = Σ−1
22·1Σ21Σ

−1
11 S11Σ

−1
11 Σ12 = Σ−1

22·1MM>, S11 ∼ Wp−p1(p1,Σ22·1), and T

is independent of W and S11 we get the following stochastic representations for T and W

expressed as

W
d
=

1

p1

Σ
1/2
22·1(X + Σ

−1/2
22·1 M)(X + Σ

−1/2
22·1 M)>Σ

1/2
22·1

T
d
=

1

n− p1

Σ
1/2
22·1YY>Σ

1/2
22·1 ,

where X ∼ Np−p1,p1(O, I⊗ I), Y ∼ Np−p1,n−p1(O, I⊗ I), and X, Y, S11 are mutually indepen-

dent. Then, the stochastic representation of WT−1 is given by

WT−1 d
=

1

p1

Σ
1/2
22·1(X + Σ

−1/2
22·1 M)(X + Σ

−1/2
22·1 M)>Σ

1/2
22·1

(
1

n− p1

Σ
1/2
22·1YY>Σ

1/2
22·1

)−1

.

The last equality in distribution implies that the spectral distribution of WT−1 is the same as

the spectral distribution of W̃T̃−1 with

W̃ =
1

p1

(X + Σ
−1/2
22·1 M)(X + Σ

−1/2
22·1 M)> and T̃ =

1

n− p1

YY>.

21



From Theorem 2.1 of Zheng et al. (2015) it holds that the Stieltjes transform of W̃T̃−1 given

W̃ m
FW̃T̃−1 |W̃(z) converges to s

W̃
(z) which satisfies the following equation

zs
W̃

(z) = −1 +
∫ tdH(t)

t− z(1 + γ2zsW̃(z))
, (A.6)

where H(t) = H
W̃

(t) is the limiting spectral distribution of the matrix W̃, which is a deter-

ministic function following Theorem 1.1 of Dozier and Silverstein (2007). Noting that the right

hand-side of (A.6) does not depend on the condition W̃ and rewriting (A.6), we get the limiting

spectral distribution of WT−1, which is equal to W̃T̃−1, is given by s(z) = s
W̃

(z) expressed

as

zs(z) =
∫ zγ2(zs(z) + 1)dH(t)

t− z(1 + γ2zs(z))
= z(γ2zs(z) + 1)mH(z(γ2zs(z) + 1)),

where (see Theorem 1.1 of Dozier and Silverstein (2007))

mH(z) =
∫ (1 + γ1mH(z))dH̃(t)

t− (1 + γ1mH(z))[(1 + γ1mH(z))z − (1− γ1)]

= (1 + γ1mH(z))mH̃((1 + γ1mH(z))[(1 + γ1mH(z))z − (1− γ1)])

with H̃ the limiting spectral distribution of

R̃ = 1/p1Σ
−1/2
22·1 Σ21Σ

−1
11 S11Σ

−1
11 Σ12Σ

−1/2
22·1 = c−1

1,n1/nΣ
−1/2
22·1 Σ21Σ

−1
11 S11Σ

−1
11 Σ12Σ

−1/2
22·1 .

satisfying the following equation

mH̃(z) =
∫ (1− (c− c1)− (c− c1)zmH̃(z))−1dG(t)

c−1
1 t− z

1−(c−c1)−(c−c1)zmH̃(z)

= c−1
1 (1− (c− c1)− (c− c1)zmH̃(z))−1mG

(
c1z

1− (c− c1)− (c− c1)zmH̃(z)

)

where G(t) is the limiting spectral distribution of the matrix R = Σ
−1/2
22·1 Σ21Σ

−1
11 Σ12Σ

−1/2
22·1 which

is deterministic as well.

In the proof of Theorem 3 we make use of the following lemma which simplifies the conditions

used in Theorem 2.2 of Zheng et al. (2015).

Lemma 1. Conditionally on S11 the distribution of the matrix ŴT̂−1 solely depends on the
eigenvalues of the non-centrality matrix Ω1(S11) and does not depend on the corresponding

eigenvectors. Moreover, the unconditional distribution of the eigenvalues of matrix ŴT̂−1

depends only on the eigenvalues of the matrix R̃ = Σ
−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 . Precisely, it holds

for p1 ≥ p− p1

gv1,v2,...,vp−p1
(l1, l2, ..., lp−p1

) =
π(p−p1)2/2Γp−p1

(
n
2

)
Γp−p1

(
p1

2

)
Γp−p1

(
n−p1

2

)
Γp−p1

(
p−p1

2

) |Ip1
+ R̃|−n/2 |L|p1−(p+1)/2

|Ip−p1 + L|n/2

p−p1∏
i<j

(li − lj)

× 2F
(p−p1)
1

(n
2
,
n

2
;
p1

2
; (Ip1

+ R̃)−1R̃,L(Ip−p1
+ L)−1

)
,
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whereas for p1 < p− p1 we have

gv1,v2,...,vp−p1
(l1, l2, ..., lp−p1

) =
Γp1

(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) πp2
1/2

Γp1

(
p1

2

) |Ip1
+ R̃|−n/2 |L|(p−1)/2−p1

|Ip1
+ L|n/2

p1∏
i<j

(li − lj)

× 2F
(p1)
1

(
n

2
,
n

2
;
p− p1

2
; (Ip1 + R̃)−1R̃,L(Ip−p1 + L)−1

)
with L = diag(l1, . . . , lp−p1).

Proof. First, we note that this distribution is independent of Σ22·1 since the eigenvalues of

ŴT̂−1 coincide with the eigenvalues of W̃T̃−1 with

W̃ = Σ
−1/2
22·1 ŴΣ

−1/2
22·1 and T̃ = Σ

−1/2
22·1 T̂Σ

−1/2
22·1 ,

where Σ
1/2
22·1 denotes the symmetric square root of Σ22·1; T̃ ∼ Wp−p1(n − p1, I); W̃|S11 ∼

Wp−p1(p1, I,Ω1(S11)); T̃ and (W̃,S11) are independent.

We distinguish between the following two cases: (a) p1 ≥ p− p1 and (b) p1 < p− p1.

Case (a): p1 ≥ p− p1

Here, we first note, that the eigenvalues of W̃1/2T̃−1W̃1/2, where W̃1/2 is the symmetric

square root of W̃, coincides with W̃T̃−1 and, consequently, with ŴT̂−1. Furthermore, the ap-

plication of (Muirhead, 1982, Theorem 10.4.1) leads to the conditional density of W̃1/2T̃−1W̃1/2

given S11, expressed as

g
W̃1/2T̃−1W̃1/2|S11

(F|S11) = etr
(
−1

2
Ω1(S11)

)
1F1

(
n

2
;
p1

2
;
1

2
Ω1(S11)F(Ip−p1 + F)−1

)

×
Γp−p1

(
n
2

)
Γp−p1

(
p1
2

)
Γp−p1

(
n−p1

2

) |F|p1−(p+1)/2

|Ip−p1 + F|n/2
for F > O,

where etr(A) = exp(tr(A)) for a symmetric matrix A, Γm(q) = πm(m−1)/4∏m
i=1 Γ

(
q − 1

2
(i− 1)

)
,

q > (m− 1)/2 is the multivariate m-dimensional gamma function, the statement F > O means

that F is positive definite, and 1F1

(
n
2
; p1

2
; 1

2
Ω1(S11)F(1 + F)−1

)
is the hypergeometric function

of matrix argument defined by (see, e.g., (Gupta and Nagar, 2000, Section 1.6))

qFk(a1, ..., aq; b1, ..., bk; A) =
∞∑
i=0

∑
κ

(a1)κ...(aq)κ
(b1)κ...(bk)κ

Cκ(A)

i!
, (A.7)

where A : m × m is a symmetric matrix,
∑
κ denotes the summation over all partitions κ,

(c)κ = Γm(c,κ)
Γm(c)

with Γm (c, κ) = πm(m−1)/4∏m
j=1 Γ

(
c+ ij − 1

2
(j − 1)

)
, c > (m − 1)/2 − im, for

κ = (i1, ..., im) with i1 ≥ ...im ≥ 0 and
∑m
j=1 ij = i, Cκ(A) stands for the zonal polynomial (c.f.,

(Gupta and Nagar, 2000, Section 1.5)).

Let O(p− p1) denote the space of (p− p1)× (p− p1) orthogonal matrices. Then, the density

of the eigenvalues of W̃1/2T̃−1W̃1/2, v1 ≥ v2 ≥ ... ≥ vp−p1 > 0, given S11 is expressed as (see,
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e.g., (Muirhead, 1982, Theorem 3.2.17))

gv1,v2,...,vp−p1 |S11(l1, l2, ..., lp−p1|S11) =
Γp−p1

(
n
2

)
Γp−p1

(
p1
2

)
Γp−p1

(
n−p1

2

) π(p−p1)2/2

Γp−p1
(
p−p1

2

) p−p1∏
i<j

(li − lj)

× etr
(
−1

2
Ω1(S11)

) ∫
H∈O(p−p1)

|HLH′|p1−(p+1)/2

|Ip−p1 + HLH′|n/2 1F1

(
n

2
;
p1

2
;
1

2
Ω1(S11)HL(Ip−p1 + L)−1H′

)
dH

=
Γp−p1

(
n
2

)
Γp−p1

(
p1
2

)
Γp−p1

(
n−p1

2

) π(p−p1)2/2

Γp−p1
(
p−p1

2

) |L|p1−(p+1)/2

|Ip−p1 + L|n/2
p−p1∏
i<j

(li − lj)

× etr
(
−1

2
Ω1(S11)

)
1F

(p−p1)
1

(
n

2
;
p1

2
;
1

2
Ω1(S11),L(Ip−p1 + L)−1

)
where the last equality follows from (Gupta and Nagar, 2000, Theorem 1.6.1) and qF

(m)
k denotes

the hypergeometric function of two matrices defined by

qF
(m)
k (a1, ..., aq; b1, ..., bk; A,B) =

∞∑
i=0

∑
κ

(a1)κ...(aq)κ
(b1)κ...(bk)κ

Cκ(A)Cκ(B)

k!Cκ(Im)
, (A.8)

Using (A.8), integrating over S11, applying (Gupta and Nagar, 2000, Lemma 1.5.2) and

(A.7), we get the unconditional distribution of v1 ≥ v2 ≥ ... ≥ vp−p1 > 0 given by

gv1,v2,...,vp−p1 (l1, l2, ..., lp−p1) =
∫

S11>O

gv1,v2,...,vp−p1 |S11(l1, l2, ..., lp−p1|S11)g(S11)dS11

=
Γp−p1

(
n
2

)
Γp−p1

(
p1
2

)
Γp−p1

(
n−p1

2

) π(p−p1)2/2

Γp−p1
(
p−p1

2

) |L|p1−(p+1)/2

|Ip−p1 + L|n/2
p−p1∏
i<j

(li − lj)
1

2p1n/2Γp1
(
n
2

) |Σ11|−n/2

×
∫

S11>O

|S11|(n−p1−1)/2etr
(
−1

2
S11Σ

−1
11

)
etr

(
−1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11

)

× 1F
(p−p1)
1

(
n

2
;
p1

2
;
1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11 ,L(Ip−p1 + L)−1

)
dS11

=
π(p−p1)2/2Γp−p1

(
n
2

)
Γp−p1

(
p1
2

)
Γp−p1

(
n−p1

2

)
Γp−p1

(
p−p1

2

) |Ip1 + Σ
−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 |−n/2 |L|

p1−(p+1)/2

|Ip−p1 + L|n/2
p−p1∏
i<j

(li − lj)

× 2F
(p−p1)
1

(
n

2
,
n

2
;
p1

2
; (Ip1 + Σ

−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 )−1Σ

−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 ,L(Ip−p1 + L)−1

)
.

Now the statement of the lemma follows from the definition of the hypergeometric function.

Case (b): p1 < p− p1

In this case the matrix ŴT̂−1 is not longer a positive definite matrix. In order to derive the

joint distribution of the non-zero eigenvalues of ŴT̂−1, we use that Ŵ = S21S
−1
11 S12 and T̂ =

ZZ′, where S21S
−1/2
11 |S11 ∼ Np−p1,p1

(
Σ21Σ

−1
11 S

1/2
11 ,Σ22·1 ⊗ Ip1

)
and Z ∼ Np−p1,n−p1 (O,Σ22·1 ⊗ In−p1).

Then the application of (Muirhead, 1982, Theorem 10.4.4) leads to the conditional density of

S
−1/2
11 S12T̂

−1S21S
−1/2
11 given S11, which is expressed as

g
S
−1/2
11 S12T̂−1S21S

−1/2
11 |S11

(F|S11) = etr
(
−1

2
Ω̃1(S11)

)
1F1

(
n

2
;
p− p1

2
;
1

2
Ω̃1(S11)F(Ip1 + F)−1

)

×
Γp1

(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) |F|(p−1)/2−p1

|Ip1 + F|n/2
for F > O,
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with Ω̃1(S11) = S
1/2
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 S

1/2
11 .

The application of (Muirhead, 1982, Theorem 3.2.17) leads to the density of the eigenvalues

of S
−1/2
11 S12T̂

−1S21S
−1/2
11 , v1 ≥ v2 ≥ ... ≥ vp1 > 0, given S11 which is expressed as

gv1,v2,...,vp1 |S11(l1, l2, ..., lp1 |S11) = etr
(
−1

2
Ω̃1(S11)

) Γp1
(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) π(p1)2/2

Γp1
(
p1
2

) p1∏
i<j

(li − lj)

×
∫

H∈O(p1)

|HLH′|(p−1)/2−p1

|Ip1 + HLH′|n/2 1F1

(
n

2
;
p− p1

2
;
1

2
Ω̃1(S11)HL(Ip1 + L)−1H′

)
dH

=
Γp1

(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) πp
2
1/2

Γp1
(
p1
2

) |L|(p−1)/2−p1

|Ip1 + L|n/2
p1∏
i<j

(li − lj)

× etr
(
−1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11

)
1F

(p1)
1

(
n

2
;
p− p1

2
;
1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11 ,L(Ip1 + L)−1

)
,

where the last equality follows from (Gupta and Nagar, 2000, Theorem 1.6.1)

Then the unconditional density of v1 ≥ v2 ≥ ... ≥ vp1 > 0 is obtained by using (A.8),

integrating over S11, applying (Gupta and Nagar, 2000, Lemma 1.5.2) and (A.7). It leads to

gv1,v2,...,vp1 (l1, l2, ..., lp1) =
∫

S11>O

gv1,v2,...,vp1 |S11(l1, l2, ..., lp1 |S11)g(S11)dS11

=
Γp1

(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) πp
2
1/2

Γp1
(
p1
2

) |L|(p−1)/2−p1

|Ip1 + L|n/2
p1∏
i<j

(li − lj)

× 1

2p1n/2Γp1
(
n
2

) |Σ11|−n/2
∫

S11>O

|S11|(n−p1−1)/2etr
(
−1

2
S11Σ

−1
11

)

× etr
(
−1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11

)
1F

(p1)
1

(
n

2
;
p− p1

2
;
1

2
S11Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11 ,L(Ip1 + L)−1

)
dS11

=
Γp1

(
n
2

)
Γp1

(
p−p1

2

)
Γp1

(
n−p+p1

2

) πp
2
1/2

Γp1
(
p1
2

) |Ip1 + Σ
−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 |−n/2 |L|

(p−1)/2−p1

|Ip1 + L|n/2
p1∏
i<j

(li − lj)

× 2F
(p1)
1

(
n

2
,
n

2
;
p− p1

2
; (Ip1 + Σ

−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 )−1Σ

−1/2
11 Σ12Σ

−1
22·1Σ21Σ

−1/2
11 ,L(Ip−p1 + L)−1

)

The results of Lemma 1 shows that both the unconditional distribution of the eigenvalues

of WT−1 and its conditional distribution given S11 depend only on the eigenvectors of Ω1(S11)

and of R̃ = Σ
−1/2
22·1 Σ21Σ

−1
11 S11Σ

−1
11 Σ12Σ

−1/2
22·1 , respectively, for any fixed dimension p and sample

size n. Consequently, without loss of generality both matrices Ω1(S11) and of R̃ can be taken

as diagonal. These simplifies the validation of the conditions present in Theorem 2.2.1 and

Theorem 2.2.2 of Yao (2013).

Proof of Theorem 3: Throughout the proof of Theorem 3, we assume that the complex

number z belongs to the arbitrary positively oriented contour C, which contains the limiting

support [0, b̃]. We consider

(p− p1)
(
mFWT−1 (z)− sn(z)

)
= (p− p1)

(
mFWT−1 (z)− s∗n(z)

)
+ (p− p1) (s∗n(z)− sn(z)) ,(A.9)

25



where sn(z) and s∗n(z) are unique roots of the following equations

zsn(z) = −1 +
∫ tdHn(t)

t− z(1 + γ2,nzsn(z))
(A.10)

zs∗n(z) = −1 +
∫ tdFW

n (t)

t− z(1 + γ2,nzs∗n(z))
(A.11)

with γ2,n = p−p1
n−p1 . The symbol Hn denotes the discretized limiting distribution of W with γ2

replaced by γ2,n and FW
n stands for the empirical spectral distribution of W.

Following the proof of Theorem 2.2 by Zheng et al. (2015), we get that the first summand

(p− p1)
(
mFWT−1 (z)− s∗n(z)

)
in (A.9) conditionally on the matrix W converges to a Gaussian

process M1(z) with the mean function

E(M1(z)) =
γ2b

3(z)

z2q2(z)

∫ tdH(t)

(t/z − b(z))3
=

1

2
(log(q(z))′ (A.12)

and the covariance function

Cov(M1(z1),M1(z2)) = 2
(z1b(z1))′(z2b(z2))′

(z1b(z1)− z2b(z2))2
= 2

∂log((z1b(z1)− z2b(z2)))

∂z1∂z2

, (A.13)

where

b(z) = 1 + γ2zs(z),

q(z) = 1− γ2

∫ b2(z)dH(t)

(t/z − b(z))2
(A.14)

for z1 and z2 from C. Since all quantities in (A.12)-(A.14) do not depend on the condition

W, we get that this is also the unconditional distribution and both summands in (A.9) are

independent.

Next, we derive the asymptotic distribution of the second summand (p− p1) (s∗n(z)− sn(z))

in (A.9). Let

b∗n(z) = 1 + γ2,nzs
∗
n(z) and bn(z) = 1 + γ2,nzsn(z) .

Then, by using the definition of the Stieltjes transform, (A.10), and (A.11) we get

(p− p1)(s∗n(z)− sn(z)) = (p− p1)
(
b∗n(z)mFW

n
(zb∗n(z))− bn(z)mHn(zbn(z))

)
= (p− p1)(b∗n(z)− bn(z))mFW

n
(zb∗n(z)) + (p− p1)bn(z)(mFW

n
(zb∗n(z))−mFW

n
(zbn(z)))

+ (p− p1)bn(z)(mFW
n

(zbn(z))−mHn(zbn(z)))

= (p− p1)γ2,nz(s∗n(z)− sn(z))mFW
n

(zb∗n(z)) + (p− p1)bn(z)γ2,nz
2(s∗n(z)− sn(z))

×
∫ dFW

n (t)

(t− zb∗n(z))(t− zbn(z))
+ (p− p1)bn(z)(mFW

n
(zbn(z))−mHn(zbn(z))) .

Hence,

(p− p1)(s∗n(z)− sn(z)) = (p− p1)(mFW
n

(zbn(z))−mHn(zbn(z)))

× bn(z)

1− γ2,nzmFW
n

(zb∗n(z))− bn(z)γ2,nz2
∫ dFWn (t)

(t−zb∗n(z))(t−zbn(z))

,
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where

bn(z)

1− γ2,nzmFW
n

(zb∗n(z))− bn(z)γ2,nz2
∫ dFWn (t)

(t−zb∗n(z))(t−zbn(z))

a.s.→ θb,H(z) =
b(z)

1− γ2zmH(zb(z))− b(z)γ2z2
∫ dH(t)

(t−zb(z))2
=
b2(z)

q(z)
,

where the last equality follows from (A.14) and

γ2zb(z)mH(zb(z)) = b(z)− 1 . (A.15)

Next, we derive the asymptotic distribution of (p − p1)(mFW
n

(zbn(z)) − mHn(zbn(z))). It

holds that

(p− p1)(mFW
n

(zbn(z))−mHn(zbn(z))) = (p− p1)(mFW
n

(zbn(z))−m
H

S11
n

(zbn(z)))(A.16)

+ (p− p1)(m
H

S11
n

(zbn(z))−mHn(zbn(z)))(A.17)

where m
H

S11
n

(z) and mHn(z) are the unique solutions of the equations

m
H

S11
n

(z)

(1 + γ1,nmH
S11
n

(z))
=

∫ dF R̃
n (t)

t− (1 + γ1,nmH
S11
n

(z))
[
(1 + γ1,nmH

S11
n

(z))z − (1− γ1,n)
](A.18)

mHn(z)

(1 + γ1,nmHn(z))
=

∫ dH̃n(t)

t− (1 + γ1,nmHn(z)) [(1 + γ1,nmHn(z))z − (1− γ1,n)]
, (A.19)

where R̃ = 1/p1Σ
−1/2
22·1 Σ21Σ

−1
11 S11Σ

−1
11 Σ12Σ

−1/2
22·1 , H̃n(t) stands for its discretized limiting spectral

distribution, and F R̃
n (t) is the empirical spectral distribution of R̃.

First, we consider the second summand in (A.17). Let

b̃∗n(z) = 1 + γ1,nmH
S11
n

(z) and b̃n(z) = 1 + γ1,nmHn(z) .

Similarly, using the definition of Stieltjes transform, (A.18) and (A.19) one can write

(p− p1)(m
H

S11
n

(z)−mHn(z))

= (p− p1)
(
b̃∗n(z)m

F R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
− b̃n(z)mH̃n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

))
= (p− p1)(b̃∗n(z)− b̃n(z))m

F R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
+ (p− p1)b̃n(z)

[
m
F R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
−m

F R̃
n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
+ (p− p1)b̃n(z)

[
m
F R̃
n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)
−mH̃n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
= (p− p1)γ1,n(m

H
S11
n

(z)−mHn(z))m
F R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
+ (p− p1)b̃n(z)γ1,n

(
m
H

S11
n

(z)−mHn(z)
)

(z(b̃∗n + b̃n)− (1− γ1,n))

×
∫ dF R̃

n (t)[
t−

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)] [
t−

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
+ (p− p1)b̃n(z)

[
m
F R̃
n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)
−mH̃n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
.
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Rearranging terms, we get

(p− p1)(m
H

S11
n

(z)−mHn(z))

= (p− p1)
[
m
F R̃
n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)
−mH̃n

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]

× b̃n(z)

1− γ1,nmF R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
− b̃n(z)γ1,n(z(b̃∗n + b̃n)− (1− γ1,n))

×
∫ dF R̃

n (t)[
t−

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)] [
t−

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
−1

,

where

b̃n(z)
(

1− γ1,nmF R̃
n

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)
− b̃n(z)γ1,n(z(b̃∗n + b̃n)− (1− γ1,n))

×
∫ dF R̃

n (t)[
t−

(
b̃∗n(z)(b̃∗n(z)z − (1− γ1,n))

)] [
t−

(
b̃n(z)(b̃n(z)z − (1− γ1,n))

)]
−1

a.s.→ θb̃,H̃(z) =
b̃(z)

1− γ1mH̃

(
b̃(z)(b̃(z)z − (1− γ1))

)
− b̃(z)γ1(2zb̃(z)− (1− γ1))

∫ dH̃(t)

[t−(b̃(z)(b̃(z)z−(1−γ1)))]
2

,

where b̃(z) is given in (4.10).

The application of Lemma 1.1 in Bai and Silverstein (2004) proves that (p−p1)(m
H

S11
n

(zbn(z))−
mHn(zbn(z))) converges to a Gaussian process M3(z) with the mean function

E(M3(z)) = θb̃,H̃(zb(z))
c2

1

∫
m3
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−3dG(t)

(1− c1

∫
m2
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−2dG(t))2

and the covariance function

Cov(M3(z1),M3(z2)) = 2θb̃,H̃(z1b(z1))θb̃,H̃(z2b(z2))

×

 ∂

∂(z1b(z1))

mH̃(z1b(z1)) ∂
∂(z2b(z2))

mH̃(z2b(z2))

(mH̃(z1b(z1))−mH̃(z2b(z2)))2
− 1

(z1b(z1)− z2b(z2))2

 ,

where mH̃(z) = −1−c1
z

+ c1mH̃(z) and G(t) is the limiting spectral distribution of the matrix

R = Σ
−1/2
22·1 Σ21Σ

−1
11 Σ12Σ

−1/2
22·1 .

In order to derive the asymptotic distribution of the first summand in (A.16), we use the

results in Yao (2013) to the conditional distribution of (p− p1)(mFW
n

(zbn(z))−m
F

S11
n

(zbn(z)))

given S11.

From the proof of Theorem 2, we know that the empirical spectral distribution of W is the

same as of W̃ given by

W̃ = (
1
√
p1

X +
1
√
p1

Σ
−1/2
22·1 M)(

1
√
p1

X +
1
√
p1

Σ
−1/2
22·1 M)> .

with M = Σ21Σ
−1
11 S

1/2
11 . Furthermore, following Lemma 1 it is enough to consider the case

where Σ
−1/2
22·1 MMTΣ

−1/2
22·1 is diagonal and, consequently, Σ

−1/2
22·1 M is pseudo-diagonal.
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Finally, in using that X consists of i.i.d. entries which are normally distributed and applying

the results of Section 2.2.2 in Yao (2013), we get that (p−p1)(mFW
n

(zbn(z))−m
F

S11
n

(zbn(z))) con-

verges to a Gaussian process M2(z) with the mean function E(M2(z)) and Cov(M2(z1),M2(z2))

given in the following lemma which is proved below the proof of the theorem.

Lemma 2. The random process (p−p1)(mFW
n

(zbn(z))−m
F

S11
n

(zbn(z))) converges to a Gaussian

process M2(z) with the mean function E(M2(z)) and Cov(M2(z1),M2(z2)) given by

E(M2(z)) = B(zb(z))

and the covariance function

Cov(M2(z1),M2(z2)) = 2
∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂(z1b(z1))∂(z2b(z2))

which are independent of S11. The functions B(z), δ(z), Ψ(z), ξ(z) and η(z) are given by

(4.11), (4.3), (4.6), (4.5) and (4.4), respectively.

Thus, merging the results for the independent asymptotic processes M2(z) and M3(z), we

get

(p− p1)(s∗n(z)− sn(z))→ θb,H(z) (M2(z) +M3(z)) ,

i.e., converges to a Gaussian process with mean and covariance functions given by

θb,H(z)

(
B(zb(z)) + θb̃,H̃(zb(z))

c2
1

∫
m3
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−3dG(t)

(1− c1

∫
m2
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−2dG(t))2

)
(A.20)

and

2θb,H(z1)θb,H(z2)

[
∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂(z1b(z1))∂(z2b(z2))

+ θb̃,H̃(z1b(z1))θb̃,H̃(z2b(z2))

(
∂

∂(z1b(z1))mH̃(z1b(z1)) ∂
∂(z1b(z1))mH̃(z2b(z2))

(mH̃(z1b(z1))−mH̃(z2b(z2)))2
− 1

(z1b(z1)− z2b(z2))2

)]
,(A.21)

respectively. Remind that H is the asymptotic spectral distribution of the matrix W (and,

thus, of W̃). Furthermore, it holds

θb,H(z1)θb,H(z2)
∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂(z1b(z1))∂(z2b(z2))

=
b2(z1)

q(z1)(z1b(z1))′
b2(z2)

q(z2)(z2b(z2))′
∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂z1∂z2

=
∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂z1∂z2

, (A.22)

where the last equality in (A.22) follows from (A.15) and

q(z)(zb(z))′ =

(
1− γ2(b(z)z)2m

′
H(zb(z))

(zb(z))′

)
(zb(z))′ = (zb(z))′ − (zb(z))2(− 1

z2
+

(zb(z))′

(zb(z))2
) = b2(z) .
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Similarly, we get

θb,H(z1)θb,H(z2)

 ∂
∂z1b(z1)

mH̃(z1b(z1)) ∂
∂z2b(z2)

mH̃(z2b(z2))

(mH̃(z1b(z1))−mH̃(z2b(z2)))2
− 1

(z1b(z1)− z2b(z2))2


=

b2(z1)

q(z1)(z1b(z1))′
b2(z2)

q(z2)(z2b(z2))′

∂2 log
(
mH̃(z1b(z1))−mH̃(z2b(z2))

z1b(z1)−z2b(z2)

)
∂z1∂z2

=
∂2 log

(
mH̃(z1b(z1))−mH̃(z2b(z2))

z1b(z1)−z2b(z2)

)
∂z1∂z2

. (A.23)

At last, combining the results (A.12), (A.13), (A.20), (A.21) together with (A.22) and (A.23)

we get that the process (p − p1)
(
mFWT−1 (z)− sn(z)

)
is asymptotically Gaussian with mean

and covariance functions given by

1

2
dlog(q(z)) + θb,H(z)

(
B(zb(z) + θb̃,H̃(zb(z))

c2
1

∫
m3
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−3dG(t)

(1− c1

∫
m2
H̃

(zb(z))t2(c1 + tmH̃(zb(z)))−2dG(t))2
)

)
and

2

∂2 log(z1b(z1)η(z1b(z1))− z2b(z2)η(z2b(z2)))

∂z1∂z2
+ θb̃,H̃(z1b(z1))θb̃,H̃(z2b(z2))

∂2 log
(
mH̃(z1b(z1))−mH̃(z2b(z2))

z1b(z1)−z2b(z2)

)
∂z1∂z2

 .
Since the process of interest (p − p1)

(
mFWT−1 (z)− sn(z)

)
= M1,n + M2,n + M3,n forms a

tight sequence (see, Bai and Silverstein (2004), Yao (2013) and Zheng et al. (2015)), the Cauchy

integral formula leads to

p−p1∑
i=1

f(λi)− (p− p1)
∫
f(x)Fn(dx) = − 1

2πi

∮
f(z)(p− p1)(mFWT−1 (z)− sn(z))dz , (A.24)

where λi is the ith eigenvalue of the matrix WT−1 and f is an arbitrary analytic function with

the support containing the interval [0, r], which is the asymptotic support of the matrix WT−1.

The application of (A.24) to our process together with some elementary calculus lead to the

result of the theorem.

Proof of Lemma 2

Proof. Let

Tn(z) =

(
1

1 + δn(z)
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 − z(1 + δ̃n(z))Ip−p1

)−1

T̃n(z) =

(
1

1 + δ̃n(z)
M>Σ−1

22·1M− z(1 + δn(z))Ip1

)−1

,

where δn(z) and δ̃n(z) are the unique solutions of the following system of equations

δn(z) =
1

p1

tr
(
Tn(z)

)
, δ̃n(z) =

1

p1

tr
(
T̃n(z)

)
in the class of Stieltjes transforms of non-negative measures3 with support in R+.

3In fact, δn is the Stieltjes transform of a measure with total mass equal to p−p1

p1
while δ̃n is the Stieltjes

transform of a measure with total mass equal to 1 (see, Hachem et al. (2012))
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The functions Tn(z) and T̃n(z) are the deterministic approximations of the resolvents

Qn(z) =
(
(X + Σ

−1/2
22·1 M)(X + Σ

−1/2
22·1 M)> − zIp−p1

)−1
,

Q̃n(z) =
(
(X + Σ

−1/2
22·1 M)>(X + Σ

−1/2
22·1 M)− zIp1

)−1
,

respectively, in the sense that

1

p− p1

tr(Qn(z)− Tn(z))
a.s.−→ 0 and

1

p1

tr(Q̃n(z)− T̃n(z))
a.s.−→ 0 as n→∞ .

First, we find the connection between δn(z) and the Stieltjes transform mH(z), where H is

the limiting spectral distribution of W. For that reason, we consider the asymptotic values of

δn(z) and δ̃n(z) given by

δn(z) =
p− p1

p1

(1 + δn(z))
1

p− p1

tr
(
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 − z(1 + δ̃n(z))(1 + δn(z))Ip−p1

)−1

= (1 + δn(z))
p− p1

p1

∫ dH̃n(t)

t− zηn(z)
−→ δ(z) = (1 + δ(z))γ1mH̃(zη(z))

δ̃n(z) =
1

p1

(1 + δ̃n(z))tr
(
M>Σ−1

22·1M− z(1 + δ̃n(z))(1 + δn(z))Ip1
)−1

= (1 + δ̃n(z))
1

p1

∫ dH̃n(t)

t− zη(z)
−→ δ̃(z) = (1 + δ̃(z))mH̃(zηn(z))

= (1 + δ̃(z))

(
−1− γ1

zη(z)
+ γ1mH̃(zη(z))

)

with

ηn(z) = (1 + δn(z))(1 + δ̃n(z)) and η(z) = (1 + δ(z))(1 + δ̃(z)).

Equivalently, we have

δ(z)

1 + δ(z)
= γ1mH̃

(
zη(z)

)
and

δ̃(z)

1 + δ̃(z)
= mH̃(zη(z)) = −1− γ1

zη(z)
+ γ1mH̃

(
zη(z)

)
,(A.25)

which leads to

δ̃(z) = −1− γ1

z
+ δ(z) . (A.26)

We claim that in fact we have

δ(z) = γ1mH(z) (A.27)

and, consequently, δ̃(z) = −1−γ1
z

+ γ1mH(z). In order to prove (A.27), we plug δ(z) = γ1mH(z)

into (A.25) and use (A.26). It leads to

mH(z)

1 + γ1mH(z)
= mH̃

(
z[1 + γ1mH(z)]

[
1 + γ1mH(z)− 1− γ1

z

])
= mH̃

(
[1 + γ1mH(z)][z(1 + γ1mH(z))− (1− γ1)]

)
,
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which is exactly (4.1). From the uniqueness of the solution the claim (A.27) follows. Thus, in

light of Theorem 2 we get as n→∞

δn(z) −→ γ1mH(z),

δ̃n(z) −→ −1− γ1

z
+ γ1mH(z) = mH(z) .

For all z ∈ C+, we define

∆n(z) =
(

1−
1
p1

tr[T 2
n(z)Σ

−1/2
22·1 MM>Σ

−1/2
22·1 ]

(1 + δn(z))2

)2

− z2ξn(z)ξ̃n(z)

Ψn(z) =
(

1− zξn(z)−
1
p1

tr
(
T 2
n(z)Σ

−1/2
22·1 MM>Σ

−1/2
22·1

)
(1 + δn(z))2

)−1

ωn(z) =
1

p1

p1∑
j=1

z2t̃2jj

ζn(z) =
1

p− p1

p−p1∑
k=1

p−p1∑
l=1

k 6=l

(m>k Tn(z)ml)
2

with t̃jj being the diagonal elements of the matrix T̃n and mk - the kth column of matrix

Σ
−1/2
22·1 M, while

ξn(z1, z2) =
1

p1

tr(Tn(z1)Tn(z2)), ξ̃n(z1, z2) =
1

p1

tr(T̃n(z1)T̃n(z2)) (A.28)

and, obviously, ξn(z) ≡ ξn(z, z) and ξ̃n(z) ≡ ξ̃n(z, z).

Next, we simplify the above expressions. In using (A.25), we get

ξn(z1, z2) =
p− p1

p1

(1 + δn(z1))(1 + δn(z2))

p− p1

× tr
([

Σ
−1/2
22·1 MM>Σ

−1/2
22·1 − z1ηn(z1)Ip−p1

]−1 [
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 − z2ηn(z2)Ip−p1

]−1
)

−→ ξ(z1, z2) = γ1(1 + δ(z1))(1 + δ(z2))
∫ dH̃(t)

(t− z1η(z1))(t− z2η(z2))

= γ1(1 + δ(z1))(1 + δ(z2))
mH̃(z1η(z1))−mH̃(z2η(z2))

z1η(z1)− z2η(z2)

=
δ(z1)− δ(z2)

z1η(z1)− z2η(z2)
.

In the case of z1 = z2 = z, we obtain

ξn(z) −→ ξ(z) = γ1(1 + δ(z))2
∫ dH̃(t)

(t− zη(z))2

= γ1

m′
H̃

(zη(z))

zη′(z) + η(z)
(1 + δ(z))2 =

δ′(z)

(zη(z))′
.
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Similarly, using (A.25) we get for ξ̃n(z1, z2), i.e.,

ξ̃n(z1, z2) −→ ξ̃(z1, z2) =
δ̃(z1)− δ̃(z2)

z2η(z2)− z1η(z1)
= (1− γ1)

z1 − z2

(z1η(z1)− z2η(z2))z1z2
+

δ(z1)− δ(z2)

z1η(z1)− z2η(z2)

=
(1− γ1)

z1z2

z1 − z2

z1η(z1)− z2η(z2)
+ ξ(z1, z2)

ξ̃n(z) −→ ξ̃(z) =

(
1−γ1
z2

+ δ′(z)
)

(zη(z))′
=

(1− γ1)

z2(zη(z))′
+ ξ(z) .

In using these results as well as

m′
H̃

(zη(z)) =
∂

∂z

∫ dH̃(t)

(t− zη(z))
=
∫ dH̃(t)

(t− zη(z))2
(zη(z))′, (A.29)

γ1m
′
H̃

(zη(z)) =
δ′(z)

(1 + δ)2
(A.30)

and applying

γ1

∫
dH̃(t)

(t− zη(z))2
=

δ′(z)

(1 + δ(z))2

1

(zη(z))′
=

ξ(z)

(1 + δ(z))2
,

γ1

∫
tdH̃(t)

(t− zη(z))2
= γ1

∫
H̃(t)

(t− zη(z))
+ γ1zη(z)

∫
H̃(t)

(t− zη(z))2
=

δ(z)

1 + δ(z)
+

ξ(z)

(1 + δ(z))2
zη(z) ,

we get

∆n(z) −→ ∆(z) =

(
1− γ1

∫ tH̃(t)

(t− zη(z))2

)2

− z2ξ(z)ξ̃(z)

=

(
1

1 + δ(z)
− zη(z)

(1 + δ(z))2
ξ(z)

)2

− z2ξ(z)ξ̃(z)

=

(
1

1 + δ(z)
− zξ(z) +

1− γ1

1 + δ(z)
ξ(z)

)2

− z2ξ2(z)− 1− γ1

(zη(z)′)
ξ(z) (A.31)

Moreover, the term (zη(z))′ can be rewritten further as follows

(zη(z))′ = (z(1 + δ(z))(1 + δ̃(z)))′ =
(
z(1 + δ(z))

(
1 + δ(z)− 1− γ1

z

))′
= (z(1 + δ(z))2 − (1− γ1)(1 + δ(z)))′ = (1 + δ(z))2 + 2(1 + δ(z))δ′(z)z − (1− γ1)δ′(z)

= (1 + δ(z))2 + 2(zη(z))′(1 + δ(z))ξ(z)z − (1− γ1)(zη(z))′ξ(z) ,

which yields to

1

(zη(z))′
=

1

1 + δ(z)

(
1

1 + δ(z)
− 2ξ(z)z +

1− γ1

1 + δ(z)
ξ(z)

)

Similarly,

Ψ−1
n (z) −→ Ψ−1(z) =

1

1 + δ(z)
− zη(z)

(1 + δ(z))2
ξ(z)− zξ(z)

=
1

1 + δ(z)
− 2ξ(z)z +

1− γ1

1 + δ(z)
ξ(z) , (A.32)
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which is exactly equal to (1 + δ(z))/(zη(z))′. Now, (A.32) and (A.31) lead to

∆(z) =

(
1

1 + δ(z)
+

1− γ1

1 + δ(z)
ξ(z)

)(
1

1 + δ(z)
− 2ξ(z)z +

1− γ1

1 + δ(z)
ξ(z)

)
− 1− γ1

(zη(z))′
ξ(z)

=

(
1

1 + δ(z)
+

1− γ1

1 + δ(z)
ξ(z)

)
Ψ−1(z)− 1− γ1

1 + δ(z)
ξ(z)Ψ−1(z)

=
1

1 + δ(z)
Ψ−1(z) (A.33)

From Lemma 1 we get that the matrices Tn(z) and T̃n(z) could be chosen without loss of

generality as diagonal matrices, which implies

ωn(z) = z2 1

p1

p1∑
j=1

t̃2jj=z
2tr(T̃ 2

n(z))→ z2δ̃2(z),

ζn(z) =
1

p− p1

p−p1∑
k=1

p−p1∑
l=1

k 6=l

(m>k Tn(z)ml)
2 = 0 .

Now, Theorems 2.2.1 and 2.2.2 by Yao (2013) reveal that M2,n(z) = (p − p1)(mFW(z) −
mHn(z)) converges to a Gaussian process M2(z) with mean function and covariance function
given by

E(M2(z)) =
Ψn(z)

∆n(z)

(
z2ξ̃n(z)

1

p1
tr
(
T 3
n(z)

)
+ ζn(z)

1

p1
tr
(
T 3
n(z)

)
+ 2

1
p1

tr
(
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 T

3
n(z)

)
(1 + δn(z))2

1−
1
p1

tr
(
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 T

2
n(z)

)
(1 + δn(z))2


+

ωn(z)

(1 + δn(z))2

(
1

p1
tr
(
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 T

3
n(z)

)
ξn(z)− 1

p2
1

tr
(
Σ
−1/2
22·1 MM>Σ

−1/2
22·1 T

2
n(z)

)
tr
(
T 3
n(z)

)))
Cov(M2(z1),M2(z2)) = 2

(z1ηn(z1))′(z2ηn(z2))′

(z1ηn(z1)− z2ηn(z2))2
.

Since ηn(z)→ η(z), we get that

Cov(M2(z1),M2(z2)) −→ 2
η′(z1)η′(z2)

(η(z1)− η(z2))2
= 2

∂ log(η(z1)− η(z2))

∂z1∂z2

.

Furthermore,

E(M2(z)) −→ B(z) =
Ψ(z)

∆(z)

(
z2ξ̃(z)γ1

∫
dH̃(t)

(t− zη(z))3
(1 + δ(z))3 + 2γ1

∫
tdH̃(t)

(t−zη(z))3 (1 + δ(z))3

(1 + δ(z))2

[
Ψ−1(z) + zξ(z)

]
+

z2δ̃2(z)

(1 + δ(z))2

(
γ1

∫
tdH̃(t)

(t− zη(z))3
(1 + δ(z))3ξn(z)− γ21

∫
tdH̃(t)

(t− zη(z))2

∫
dH̃(t)

(t− zη(z))3
(1 + δ(z))5

))
,

where from (A.33) it follows that

Ψ(z)

∆(z)
= (1 + δ(z))Ψ2(z) .
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Because of (A.29), (A.30) and

∂2

∂z2

∫ tdH̃(t)

(t− zη(z))
= 2

∫ dH̃(t)

(t− zη(z))3

[
(zη(z))>

]2
+
∫ dH̃(t)

(t− zη(z))2
(zη(z))

′′

= 2
∫ dH̃(t)

(t− zη(z))3
[(zη(z))′]

2
+m′

H̃
(zη(z))

(zη(z))
′′

(zη(z))′

= 2
∫ dH̃(t)

(t− zη(z))3
[(zη(z))′]

2
+ γ−1 δ′(z)

(1 + δ(z))2

(zη(z))
′′

(zη(z))′
,

γ1m
′′

H̃
(zη(z)) =

δ
′′
(z)

(1 + δ(z)2
− 2

δ
′ 2(z)

(1 + δ(z))3
,

we obtain

γ1

∫ dH̃(t)

(t− zη(z))3
=

δ
′′

(z)
(1+δ(z))2

− 2 δ
′ 2(z)

(1+δ(z))3
− δ′(z)

(1+δ(z))2
(zη(z))

′′

(zη(z))′

2(zη(z))′ 2
.

On the other hand, it holds that

ξ′(z) =
δ
′′
(z)

(zη(z))′
− δ′(z)

(zη(z))
′′

(zη(z))′ 2
=

δ
′′
(z)

(zη(z))′
− ξ(z)

(zη(z))
′′

(zη(z))′
.

Thus, we have

γ1

∫ dH̃(t)

(t− zη(z))3
=

ξ′(z)

2(1 + δ(z))2(zη(z))′
− ξ2(z)

(1 + δ(z))3

=
1

(1 + δ(z))3

(
ξ′(z)Ψ−1(z)

2
− ξ2(z)

)
.

and

γ1

∫
tdH̃(t)

(t− zη(z))3
= γ1

∫
dH̃(t)

(t− zη(z))2
+ γ1zη(z)

∫
dH̃(t)

(t− zη(z))3

=
1

(1 + δ(z))2

(
ξ(z) +

(
z − (1− γ1)

1 + δ(z)

)(
ξ′(z)Ψ−1(z)

2
− ξ2(z)

))
.
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As a result, it holds that

B(z) = (1 + δ(z))Ψ2(z)

((
z2ξ(z) +

1− γ1

1 + δ(z)
Ψ−1(z)

)(
ξ>(z)Ψ−1(z)

2
− ξ2(z)

)
+

2

1 + δ(z)

(
ξ(z) +

(
z − 1− γ1

1 + δ(z)

)(
ξ′(z)Ψ−1(z)

2
− ξ2(z)

))(
Ψ−1(z) + zξ(z)

)
+

ω(z)

(1 + δ(z))

(
ξ(z)

(
ξ(z) +

(
z − 1− γ1

1 + δ(z)

)(
ξ′(z)Ψ−1(z)

2
− ξ2(z)

))
− (δ(z) + ξ(z)(z(1 + δ(z))− (1− γ1)))

(
ξ′(z)Ψ−1(z)

2
− ξ2(z)

)))
= (1 + δ(z))Ψ2(z)

[
ω̃(z)N(z) +

2

1 + δ(z)

(
ξ(z) +

(
z − 1− γ1

1 + δ(z)

)
N(z)

)[
Ψ−1(z) + zξ(z)

]
+

ω(z)

1 + δ(z)

(
ξ2(z)− δ(z)N(z)

(
z − 1− γ1

1 + δ(z)
+ 1

))]
= (1 + δ(z))Ψ2(z)

[
ω̃(z)N(z) +

2

1 + δ(z)

(
−ω̃(z)N(z) + ξ(z)(Ψ−1(z) + zξ(z))

+ z

(
2zξ(z)− 1− γ1

1 + δ(z)
ξ(z)− 1

1 + δ(z)

)
︸ ︷︷ ︸

−Ψ−1(z)

N(z) +
1

1 + δ(z)
N(z) + zΨ−1(z)N(z)

)

+
ω(z)

1 + δ(z)

(
ξ2(z)− δ(z)N(z)

(
z − 1− γ1

1 + δ(z)
+ 1

))]
= (1 + δ(z))Ψ2(z)

[
ω̃(z)N(z)

δ(z)− 1

1 + δ(z)

+
1

1 + δ(z)

(
1

(1 + δ(z))
N(z) + ξ(z)

(
Ψ−1(z) + zξ(z)

))
+

ω(z)

1 + δ(z)

(
ξ2(z)− δ(z)N(z)

(
z − 1− γ1

1 + δ(z)
+ 1

))]
with

N(z) =
ξ′(z)Ψ−1(z)

2
− ξ2(z) and ω̃(z) = z2ξ(z) +

1− γ1

1 + δ(z)
Ψ−1(z) .
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