Mathematical Statistics
Stockholm University

Asymptotic Expansions for Power-Exponential
Moments of Hitting Times for Nonlinearly
Perturbed Semi-Markov Processes

Dmitrii Silvestrov and Sergei Silvestrov

Research Report 2017:18

ISSN 1650-0377
Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se
Asymptotic Expansions for Power-Exponential Moments of Hitting Times for Nonlinearly Perturbed Semi-Markov Processes

Dmitrii Silvestrov\(^1\) and Sergei Silvestrov\(^2\)

September 2017

Abstract

New algorithms for computing asymptotic expansions for exponential and mixed power-exponential moments of hitting times for nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction and some kind of operational calculus for Laurent asymptotic expansions applied to moments of hitting times for perturbed semi-Markov processes. These algorithms have a universal character. They can be applied to nonlinearly perturbed semi-Markov processes with an arbitrary asymptotic communicative structure of the phase space. Asymptotic expansions are given in two forms, without and with explicit bounds for remainders. The algorithms are computationally effective, due to a recurrent character of the corresponding computational procedures.

Key words: Semi-Markov process, Nonlinear perturbation, Hitting time, Power-exponential moment, Laurent asymptotic expansion.

AMS Mathematical Subject Classification 2010: Primary 60J10, 60J27, 60K15, Secondary 65C40.

\(^1\)Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden, E-mail: silvestrov@math.su.se

\(^2\)Division of Applied Mathematics, Mälardalen University, 721 23 Västerås, Sweden
E-mail: sergei.silvestrov@mdh.se
Asymptotic Expansions for Power-Exponential Moments of Hitting Times for Nonlinearly Perturbed Semi-Markov Processes

Dmitrii Silvestrov1 and Sergei Silvestrov2

16 September, 2017

Abstract. New algorithms for computing asymptotic expansions for exponential and mixed power-exponential moments of hitting times for nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction and some kind of operational calculus for Laurent asymptotic expansions applied to moments of hitting times for perturbed semi-Markov processes. These algorithms have a universal character. They can be applied to nonlinearly perturbed semi-Markov processes with an arbitrary asymptotic communicative structure of the phase space. Asymptotic expansions are given in two forms, without and with explicit bounds for remainders. The algorithms are computationally effective, due to a recurrent character of the corresponding computational procedures.

Key words: Semi-Markov process, Nonlinear perturbation, Hitting time, Power-exponential moment, Laurent asymptotic expansion.

AMS Mathematical Subject Classification 2010: Primary 60J10, 60J27, 60K15, Secondary 65C40.

1. Introduction

In this paper, we present new algorithms for construction of asymptotic expansions, without and with explicit upper bounds for remainders, for exponential and power-exponential moments of hitting times for nonlinearly perturbed semi-Markov processes with finite phase spaces.

Hitting times are also known under such names as first-rare-event times, first passage times, and absorption times, in theoretical studies, and as lifetimes, failure times, extinction times, etc., in applications. These random

1Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden, E-mail: silvestrov@math.su.se
2Division of Applied Mathematics, Mälardalen University, 721 23 Västerås, Sweden E-mail: sergei.silvestrov@mdh.se
functionals and their moments play an important role in theory of semi-Markov processes. We refer to books [1] – [12] and [15] – [20] containing results related to asymptotic expansions for perturbed Markov chains and semi-Markov processes, including results concerned hitting times, as well as their applications to asymptotic analysis of reliability, queuing, bio-stochastic systems, information networks, and other models of perturbed stochastic processes and systems. Also, we would like to mention the resent paper [14], where one can find a comprehensive bibliography of works in the area and the corresponding bibliographical remarks.

We consider models, where the phase space for embedded Markov chains of pre-limiting perturbed semi-Markov processes is one class of communicative states, while it can asymptotically split in one or several closed classes of communicative states and, possibly, a class of transient states.

The initial perturbation conditions are formulated in the forms of Laurent asymptotic expansions for power-exponential moments of transition times for perturbed semi-Markov processes given in two alternative forms, without or with explicit upper bounds for remainders. The algorithms are based on special time-space screening procedures for sequential phase space reduction and algorithms for re-calculation of asymptotic expansions and upper bounds for remainders, which constitute perturbation conditions for the semi-Markov processes with reduced phase spaces. The final asymptotic expansions for exponential and power-exponential moments of hitting times for nonlinearly perturbed semi-Markov processes are given in the form of Laurent asymptotic expansions, without or with explicit upper bounds for remainders.

The present paper continues the line of research of book [4] and the recent authors’ works [14] and [15]. The book [4] contains a detailed presentation of results related to the asymptotic analysis of quasi-stationary distributions for nonlinearly perturbed semi-Markov processes, where the power-exponential moments of hitting times play the central role. In this book, asymptotic expansions for power-exponential moments have been obtained for the non-singularly perturbed semi-Markov processes with the simple asymptotic communicative structure of the set of non-absorbing states, which, in this case, consists of one communicative class plus possibly a class of transient states. However, the method (based on asymptotic analysis of generalised matrix inverses) used in this book does not work well for the more complex model of singularly perturbed semi-Markov processes, where the set of non-absorbing states has a more complex asymptotic structure and can asymptotically split in several closed communicative classes of states plus possibly a class of transient states. In this case, moments of hitting times can be asymptotically unbounded functions of perturbation parameter due to presence of asymptotically absorbing states or subsets of states. Their asymptotic analysis, with
the use of the generalised matrix inverses, becomes rather intricate. Also, the only asymptotic expansions with remainders given in the standard form of \(o(\varepsilon^k) \) have been given in this book. In works [14] and [15], asymptotic expansions are obtained for singularly perturbed semi-Markov processes, with remainders without and with explicit upper bounds for remainders, but only for simpler power moments of hitting times.

In the present paper, we get asymptotic expansions for more complex power-exponential moments of hitting times for singularly perturbed semi-Markov processes. An important novelty of results presented in the paper is that the corresponding asymptotic expansions are obtained with remainders given not only in the standard form of \(o(\varepsilon^k) \), but, also, in the more advanced form, with explicit power-type upper bounds for remainders, \(|o(\varepsilon^k)| \leq G_k \varepsilon^{k+\delta_k} \), asymptotically uniform with respect to the perturbation parameter. The latter asymptotic expansions for power-exponential moments of hitting times for nonlinearly perturbed semi-Markov processes were not known before.

The corresponding computational algorithms have a universal character. They can be applied to perturbed semi-Markov processes with an arbitrary asymptotic communicative structure of phase spaces and are computationally effective due to the recurrent character of computational procedures.

2. Laurent Asymptotic Expansions

Let \(A(\varepsilon) \) be a real-valued function defined on an interval \((0, \varepsilon_0]\), for some \(0 < \varepsilon_0 \leq 1 \), and given on this interval by a Laurent asymptotic expansion, \(A(\varepsilon) = a_{h_A} \varepsilon^{h_A} + \cdots + a_{k_A} \varepsilon^{k_A} + o_A(\varepsilon^{k_A}) \), where (a) \(-\infty < h_A \leq k_A < \infty \) are integers, (b) coefficients \(a_{h_A}, \ldots, a_{k_A} \) are real numbers, (c) function \(o_A(\varepsilon^{k_A})/\varepsilon^{k_A} \to 0 \) as \(\varepsilon \to 0 \). We refer to the Laurent asymptotic expansion \(A(\varepsilon) \) as a \((h_A, k_A)\)-expansion. We also refer to \(A(\varepsilon) \) as a \((h_A, k_A, \delta_A, G_A, \varepsilon_A)\)-expansion, if additionally (d) \(|o_A(\varepsilon^{k_A})| \leq G_A \varepsilon^{k_A+\delta_A} \), for \(0 < \varepsilon \leq \varepsilon_A \), where (e) \(0 < \delta_A \leq 1, 0 < G_A < \infty \), and \(0 < \varepsilon_A \leq \varepsilon_0 \). We say that the Laurent asymptotic expansion \(A(\varepsilon) \) is pivotal if it is known that \(a_{h_A} \neq 0 \).

It is also useful to mention that a constant \(a \) can be interpreted as function \(A(\varepsilon) \equiv a \). Thus, 0 can be represented, for any integer \(-\infty < h \leq k < \infty \), as the \((h, k)\)-expansion, \(0 = 0^h + \cdots + 0^k + o(\varepsilon^k) \), with remainder \(o(\varepsilon^k) \equiv 0 \). Also, 1 can be represented, for any integer \(0 \leq k < \infty \), as the \((0, k)\)-expansion, \(1 = 1 + 0 \varepsilon + \cdots + 0 \varepsilon^k + o(\varepsilon^k) \), with remainder \(o(\varepsilon^k) \equiv 0 \).

Let us consider three Laurent asymptotic expansions, \(A(\varepsilon) = a_{h_A} \varepsilon^{h_A} + \cdots + a_{k_A} \varepsilon^{k_A} + o_A(\varepsilon^{k_A}) \), \(B(\varepsilon) = b_{h_B} \varepsilon^{h_B} + \cdots + b_{k_B} \varepsilon^{k_B} + o_B(\varepsilon^{k_B}) \), and \(C(\varepsilon) = c_{h_C} \varepsilon^{h_C} + \cdots + c_{k_C} \varepsilon^{k_C} + o_C(\varepsilon^{k_C}) \) defined on the interval \((0, \varepsilon_0]\).

Let us denote \(F_A = \max_{h_A \leq i \leq k_A} |a_i| \), \(F_B = \max_{h_B \leq i \leq k_B} |b_i| \), and \(F_C = 3 \).
The following lemma presents operational rules for Laurent asymptotic expansions. The corresponding proofs can be found in the works of authors [14] and [15].

Lemma 1. The following operational rules take place for Laurent asymptotic expansions:

(i) If $A(\varepsilon)$ is a (h_A,k_A)-expansion and c is a constant, then $C(\varepsilon) = cA(\varepsilon)$ is a (h_C,k_C)-expansion such that:
 (a) $h_C = h_A$, $k_C = k_A$; (b) $c_{h_C+r} = c a_{h_C+r}$, $r = 0, \ldots, k_C - h_C$. This expansion is pivotal if and only if $c_{h_C} = c a_{h_A} \neq 0$.

(ii) Also, if $A(\varepsilon)$ is a $(h_A,k_A,\delta_A,G_A,\varepsilon_A)$-expansion, then $C(\varepsilon)$ is a $(h_C,k_C,\delta_C,G_C,\varepsilon_C)$-expansion such that:
 (c) $\delta_C = \delta_A$; (d) $G_C = |c|G_A$; (e) $\varepsilon_C = \varepsilon_A$.

(iii) If $A(\varepsilon)$ is a (h_A,k_A)-expansion and $B(\varepsilon)$ is a (h_B,k_B)-expansion, then $C(\varepsilon) = A(\varepsilon)$ is a (h_C,k_C)-expansion such that:
 (a) $h_C = h_A \wedge h_B$, $k_C = k_A \wedge k_B$; (b) $c_{h_C+r} = a_{h_C+r} + b_{h_C+r}$, $r = 0, \ldots, k_C - h_C$, where $a_{h_C+r} = 0$ for $0 \leq r < h_A - h_C$ and $b_{h_C+r} = 0$ for $0 \leq r < h_B - h_C$. This expansion is pivotal if and only if $c_{h_C} = a_{h_A} + b_{h_B} \neq 0$.

(iv) Also, if $A(\varepsilon)$ is a $(h_A,k_A,\delta_A,G_A,\varepsilon_A)$-expansion and $B(\varepsilon)$ is a $(h_B,k_B,\delta_B,G_B,\varepsilon_B)$-expansion, then $C(\varepsilon)$ is a $(h_C,k_C,\delta_C,G_C,\varepsilon_C)$-expansion such that:
 (c) $\delta_C = \delta_A \wedge \delta_B$; (d) $G_C = G_A + F_A(k_A - k_C) + G_B + F_B(k_B - k_C)$; (e) $\varepsilon_C = \varepsilon_A \wedge \varepsilon_B$.

(v) If $A(\varepsilon)$ is a (h_A,k_A)-expansion and $B(\varepsilon)$ is a (h_B,k_B)-expansion, then $C(\varepsilon) = A(\varepsilon)$ is a (h_C,k_C)-expansion such that:
 (a) $h_C = (h_A + h_B) \wedge (k_B + h_A)$; (b) $c_{h_C+r} = \sum_{0 \leq i \leq r} a_{h_A+i} b_{h_B+r-i}$, $r = 0, \ldots, k_C - h_C$. This expansion is pivotal if and only if $c_{h_C} = a_{h_A} b_{h_B} \neq 0$.

(vi) Also, if $A(\varepsilon)$ is a $(h_A,k_A,\delta_A,G_A,\varepsilon_A)$-expansion and $B(\varepsilon)$ is a $(h_B,k_B,\delta_B,G_B,\varepsilon_B)$-expansion, then $C(\varepsilon)$ is a $(h_C,k_C,\delta_C,G_C,\varepsilon_C)$-expansion such that:
 (c) $\delta_C = \delta_A \wedge \delta_B$; (d) $G_C = F_A F_B (k_A - h_A + 1) (k_B - h_B + 1) + G_A F_B (k_B - h_B + 1) + G_B F_A (k_A - h_A + 1) + G_A G_B$; (e) $\varepsilon_C = \varepsilon_A \wedge \varepsilon_B$.

(vii) If $A(\varepsilon)$ is a (h_A,k_A)-expansion, and $B(\varepsilon)$ is a pivotal (h_B,k_B)-expansion such that $B(\varepsilon) \neq 0$, $\varepsilon \in (0, \varepsilon_0]$, then $C(\varepsilon) = \frac{A(\varepsilon)}{B(\varepsilon)}$ is a (h_C,k_C)-expansion such that:
 (a) $h_C = h_A - h_B$, $k_C = (k_A - h_B) \wedge (k_B - 2h_B + h_A)$; (b) $c_{h_C+r} = b_{h_B} (a_{h_A+r} - \sum_{1 \leq i \leq r} b_{h_B+i} c_{h_C+r-i})$, $r = 0, \ldots, k_C - h_C$. This expansion is pivotal if and only if $c_{h_D} = a_{h_A} / b_{h_B} \neq 0$.

(viii) Also, if $A(\varepsilon)$ is a $(h_A,k_A,\delta_A,G_A,\varepsilon_A)$-expansion, and $B(\varepsilon)$ is a pivotal $(h_B,k_B,\delta_B,G_B,\varepsilon_B)$-expansion, then $C(\varepsilon)$ is a $(h_C,k_C,\delta_C,G_C,\varepsilon_C)$-expansion such that:
 (c) $\delta_C = \delta_A \wedge \delta_B$; (d) $G_C = \left(\frac{b_{h_B}}{2}\right)^{-1} F_A (k_A - h_A \wedge
\[(h_A + k_B - h_B)) + G_A + F_B F_D (k_B - h_B + 1)(k_D - h_D + 1) + G_B F_D (k_D - h_D + 1)\];

(e) \[\varepsilon_C = \varepsilon_A \land \varepsilon_B \land \left(\frac{|b|}{2(F_B (k_B - h_B) + G_B)}\right)^{1/2} \]

Let \(X = \{0, \ldots, m\}\) and \((\eta_{\varepsilon,n}, \kappa_{\varepsilon,n}), n = 0, 1, \ldots\) be, for every \(\varepsilon \in (0, \varepsilon_0]\), a Markov renewal process, i.e., a homogeneous Markov chain with the phase space \(X \times [0, \infty)\), an initial distribution \(\bar{p}_\varepsilon = \{p_{\varepsilon,i} = P\{\eta_{\varepsilon,0} = i, \kappa_{\varepsilon,0} = 0\} = P\{\eta_{\varepsilon,0} = i\}, i \in X\} and transition probabilities, defined for \((i, s), (j, t) \in X \times [0, \infty)\),

\[Q_{\varepsilon,ij}(t) = P\{\eta_{\varepsilon,1} = j, \kappa_{\varepsilon,1} \leq t/\eta_{\varepsilon,0} = i, \kappa_{\varepsilon,0} = s\}. \tag{1}\]

In this case, the random sequence \(\eta_{\varepsilon,n}\) is also a homogeneous (embedded) Markov chain with the phase space \(X\) and the transition probabilities, defined for \(i, j \in X\),

\[p_{ij}(\varepsilon) = Q_{\varepsilon,ij}(\infty) = P\{\eta_{\varepsilon,1} = j/\eta_{\varepsilon,0} = i\}. \tag{2}\]

The following communication condition plays an important role:

A: There exist sets \(Y_i \subseteq X, i \in X\) such that: (a) probabilities \(p_{ij}(\varepsilon) > 0, j \in Y_i, i \in X, for \varepsilon \in (0, \varepsilon_0]\); (b) probabilities \(p_{ij}(\varepsilon) = 0, j \in Y_i, i \in X, for \varepsilon \in (0, \varepsilon_0]\); (c) there exists, for every pair of states \(i, j \in X\), an integer \(n_{ij} \geq 1\) and a chain of states \(i = l_{ij,0}, l_{ij,1}, \ldots, l_{ij,n_{ij}} = j\) such that \(l_{ij,1} \in Y_{l_{ij,0}}, \ldots, l_{ij,n_{ij}} \in Y_{l_{ij-1,n_{ij}-1}}\).

We refer to sets \(Y_i, i \in X\) as transition sets. Conditions **A** implies that all sets \(Y_i \neq \emptyset, i \in X\ and that the phase space \(X\) of Markov chain \(\eta_{\varepsilon,n}\) is one class of communicative states, for every \(\varepsilon \in (0, \varepsilon_0]\).

The following condition excludes instant transitions:

B: \(Q_{\varepsilon,ij}(0) = 0, i, j \in X, for every \varepsilon \in (0, \varepsilon_0]\).

Let us now introduce a semi-Markov process \(\eta_{\varepsilon}(t) = \eta_{\varepsilon,\nu(t)}, t \geq 0\), where \(\nu(t) = \max(n \geq 0: \zeta_{\varepsilon,n} \leq t)\) is a number of jumps in the time interval \([0, t]\) and \(\zeta_{\varepsilon,n} = \kappa_{\varepsilon,1} + \cdots + \kappa_{\varepsilon,n}, n = 0, 1, \ldots\), are sequential moments of jumps, for the semi-Markov process \(\eta_{\varepsilon}(t)\).

Let us introduce transition power-exponential moments of transition times, for \(\theta \geq 0, k = 0, 1, \ldots, i, j \in X\),

\[\phi_{ij}(k, \theta, \varepsilon) = E_i \kappa_{\varepsilon,1} e^{(\kappa_{\varepsilon,1} + 1)\theta} = \int_0^\infty t^k e^{\theta t}Q_{\varepsilon,ij}(dt). \tag{3}\]
Here and henceforth, notations P_i and E_i are used for conditional probabilities and expectations under condition $\eta_{e,0} = i$.

Conditions $A \ (a) - (b)$ and B imply that, for every $\varepsilon \in (0, \varepsilon_0]$, moments $\phi_{ij}(k, \varrho, \varepsilon) \in (0, \infty)$, for $\varrho \geq 0$, $k = 0, 1, \ldots, j \in Y_i, i \in X$, and $\phi_{ij}(k, \varrho, \varepsilon) = 0$, for $\varrho \geq 0, k = 0, 1, \ldots, j \in Y_i, i \in X$.

Let us assume that the following condition holds for some $\rho > 0$:

C_{ρ_0}: $\phi_{ij}(0, \rho_0, \varepsilon) < \infty$, $j \in Y_i, i \in X$, for $\varepsilon \in (0, \varepsilon_0]$.

Obviously condition C_{ρ_0} implies that moments $\phi_{ij}(k, \varrho, \varepsilon) < \infty$, for any $0 \leq \varrho < \rho_0$, $k = 0, 1, \ldots, j \in Y_i, i \in X$.

It is appropriate to mention two important particular cases.

If $Q_{\varepsilon,ij}(t) = 1(t \geq 1)p_{ij}(\varepsilon), t \geq 0, i, j \in X$, then $\eta_k(t) = \eta_{e,|t|}, t \geq 0$ is a discrete time homogeneous Markov chain embedded in continuous time. In this case, $\phi_{ij}(k, \varrho, \varepsilon) = e^{k\varrho}p_{ij}(\varepsilon) < \infty$, for $\varrho > 0, i, j \in X$.

If $Q_{\varepsilon,ij}(t) = (1 - e^{-\lambda_i(\varepsilon)t})p_{ij}(\varepsilon), t \geq 0, i, j \in X$ (here, $0 < \lambda_i(\varepsilon) < \infty, i \in X$), then $\eta_k(t), t \geq 0$ is a continuous time homogeneous Markov chain. In this case $\phi_{ij}(k, \varrho, \varepsilon) = \frac{k\lambda_i(\varepsilon)}{(\lambda_i(\varepsilon) - \varrho)k+t}p_{ij}(\varepsilon) < \infty$, for $\varrho < \lambda_i(\varepsilon), i, j \in X$.

Let us define the hitting time for the semi-Markov process $\eta_k(t)$ to the state 0 (of course, this state can be replaced by any other state $i \in X$),

$$\tau_{e,0} = \frac{\nu_{e,0}}{n=1} \kappa_{e,n}, \text{ where } \nu_{e,0} = \min(n \geq 1 : \eta_{e,n} = 0).$$

(4)

The object of our interest are power-exponential moments for hitting times, for $\varrho \geq 0, k = 0, 1, \ldots, i \in X$,

$$\Phi_i(k, \varrho, \varepsilon) = E_i^k \tau_{e,0} e^{\varrho\tau_{e,0}}.$$

(5)

Condition C_{ρ_0} does not imply that exponential moments $\Phi_i(0, \rho_0, \varepsilon)$ are finite.

Necessary and sufficient conditions of finiteness for exponential moments of hitting times are given in terms of so-called test-functions in [4] and [13].

We refer to functions $v(i), i \in X$ defined on the space X and taking value in the interval $[0, \infty)$ as test-functions.

Let us introduce condition:

D_{ρ_o}: There exist, for every $\varepsilon \in (0, \varepsilon_0]$, a test-function $v_{\varepsilon,\rho_0}(i), i \in X$, such that the following test inequalities hold,

$$v_{\varepsilon,\rho_0}(i) \geq \phi_{i0}(0, \rho_0, \varepsilon) + \sum_{j \in X, j \neq 0} \phi_{ij}(0, \rho_0, \varepsilon)v_{\varepsilon,\rho_0}(j), i \in X.$$

(6)
Lemma 1. Let conditions A, B and C\(_{\rho_0}\) hold. Then, the exponential moments \(\Phi_{d0}(0, \rho_0, \varepsilon) < \infty, i \in \mathcal{X}\), for \(\varepsilon \in (0, \varepsilon_0]\), if and only if condition \(D_{\rho_0}\) holds. In this case, inequalities \(\Phi_{d0}(0, \rho_0, \varepsilon) \leq v_{\varepsilon, \rho_0}(i), i \in \mathcal{X}\), hold, for \(\varepsilon \in (0, \varepsilon_0]\), and the exponential moments \(\Phi_{d0}(0, \rho_0, \varepsilon), i \in \mathcal{X}\) are, for every \(\varepsilon \in (0, \varepsilon_0]\), the unique solution for the system of linear equations,

\[
\Phi_{d0}(0, \rho_0, \varepsilon) = \phi_{i0}(0, \rho_0, \varepsilon) + \sum_{j \in \mathcal{X}, j \neq 0} \phi_{ij}(0, \rho_0, \varepsilon)\Phi_{j0}(0, \rho_0, \varepsilon), i \in \mathcal{X}. \tag{7}
\]

In what follows, we always assume that conditions A, B, C\(_{\rho_0}\), and \(D_{\rho_0}\) hold.

It is obvious that \(\Phi_{d0}(k, \rho, \varepsilon) \leq L_{k, \rho_0-\varepsilon}\Phi_{d0}(0, \rho_0, \varepsilon) < \infty, \) for \(0 \leq \varepsilon < \rho_0, k = 0, 1, \ldots, i \in \mathcal{X}\), where \(L_{k, \rho_0-\varepsilon} = \sup_{x \geq 0} x^ke^{-(\rho_0-\varepsilon)x} < \infty\).

Let us assume that the following perturbation condition, based on Laurent asymptotic expansions, holds, for some integer \(d \geq 0\) and real \(0 < \rho < \rho_0\):

\(E_{d,\rho}\): \(\phi_{ij}(k, \rho, \varepsilon) = \sum_{l = h_{ij}^+[k, \rho]} \sum_{l = h_{ij}^-[k, \rho]} g_{ij}[k, \rho, l] \varepsilon^l + a_{k, \rho, ij}(\varepsilon^{h_{ij}^+[k, \rho]}), \varepsilon \in (0, \varepsilon_0], \) for \(k = 0, \ldots, d, \) \(i, j \in \mathcal{Y}_i, i \in \mathcal{X}\), where \(a\) \(-\infty < h_{ij}^+[k, \rho] \leq h_{ij}^+[k, \rho] < \infty\) are integers, coefficients \(g_{ij}[k, \rho, l], l = h_{ij}^+[k, \rho], \ldots, h_{ij}^+[k, \rho]\) are real numbers, and \(g_{ij}[k, \rho, h_{ij}^-[k, \rho]] > 0, \) for \(k = 0, \ldots, d, \) \(j \in \mathcal{Y}_i, i \in \mathcal{X}\); \(b\) function \(a_{k, \rho, ij}(\varepsilon^{h_{ij}^+[k, \rho]})/\varepsilon^{h_{ij}^+[k, \rho]} \rightarrow 0\) as \(\varepsilon \rightarrow 0\), for \(k = 0, \ldots, d, \) \(j \in \mathcal{Y}_i, i \in \mathcal{X}\).

We refer here to the book [4], where the asymptotic expansions appearing in condition \(E_{d,\rho}\) are explicitly given for the cases of discrete and continuous time Markov chains.

If \(\eta_{\varepsilon,0} \neq 0\), then the first hitting time \(\tau_{\varepsilon,0} \geq \tau_{\varepsilon} = \sum_{n \geq 1} \kappa_{\varepsilon,n}\), where \(\mu_\varepsilon = \max(n \geq 0: \eta_{\varepsilon,n} \neq \eta_{\varepsilon,0})\). This inequality implies that, for \(\varepsilon \geq 0, i \neq 0\) and \(\varepsilon \in (0, \varepsilon_0]\),

\[
\Phi_i(0, \rho, \varepsilon) \geq E_i\varepsilon^{\mu_\varepsilon} = \sum_{n \geq 1} \phi_{i0}(0, \rho, \varepsilon)^n \sum_{j \neq i} \phi_{ij}(0, \rho, \varepsilon) = \frac{\sum_{j \neq i} \phi_{ij}(0, \rho, \varepsilon)}{1 - \phi_{i0}(0, \rho, \varepsilon)}. \tag{8}
\]

Thus, condition \(D_{\rho_0}\) implies that the following inequalities should also hold, for \(\varepsilon \in (0, \varepsilon_0]\),

\[
\phi_{i0}(0, \rho_0, \varepsilon) < 1, i \neq 0. \tag{9}
\]

Condition \(E_{d,\rho}\) and inequalities (9) imply that the following condition should also hold:
\(\mathbf{F}_\rho \): For every \(i \neq 0 \), either (a) \(h_{ii}^+[0, \rho] > 0 \), or (b) \(h_{ii}^-[0, \rho] = 0 \) and \(g_{ii}[0, \rho, h_{ii}^-[0, \rho]] < 1 \), or (c) \(h_{ii}^+[0, \rho] = 0 \), \(g_{ii}[0, \rho, h_{ii}^+[0, \rho]] = 1 \), \(h_{ii}^+[0, \rho] \geq 1 \), and there are non-zero terms in the sequence \(g_{ii}[0, \rho, h_{ii}^+[0, \rho]] \), moreover, the first such term, say \(g_{ii}[0, \rho, l_i] \), where \(1 \leq l_i \leq h_{ii}^+[0, \rho] \), is a negative number.

It is useful to note that proposition (i) of Lemma 1 and conditions \(\mathbf{E}_{d, \rho} \) and \(\mathbf{F}_\rho \) imply that the function,

\[
1 - \phi_{ii}(0, \rho, \varepsilon) = 1 - \sum_{l = h_{ii}^-[0, \rho]}^{h_{ii}^+[0, \rho]} -g_{ii}[k, \rho, l] \varepsilon^l - o_{0, \rho, iii}(\varepsilon^{h_{ii}^+[0, \rho]})
\]

\[
= \sum_{l = h_{ii}^-[0, \rho]}^{h_{ii}^+[0, \rho]} \tilde{g}_{ii}[k, \rho, l] \varepsilon^l + o_{0, \rho, iii}(\varepsilon^{h_{ii}^+[0, \rho]}), \quad \varepsilon \in (0, \varepsilon_0],
\]

(10)
is, for every \(i \in \mathbb{Y}_i, i \neq 0 \), a pivotal Taylor asymptotic expansion, with parameters \(\tilde{h}_{ii}^-[0, \rho] \) equal to 0 if alternative (a) or (b) takes place, or \(l_i \) if alternative (c) takes place in condition \(\mathbf{F}_\rho \), \(\tilde{h}_{ii}^+[0, \rho] = h_{ii}^+[0, \rho] \), and the corresponding coefficients and remainder determined in an obvious way by relation (10). Note also that \(1 - \phi_{ii}(0, \rho, \varepsilon) = 1 \), for \(i \in \mathbb{Y}_i, i \neq 0 \).

Conditions \(\mathbf{E}_{d, \rho} \) and \(\mathbf{F}_\rho \) guarantee that there exists \(\varepsilon_0 \in (0, \varepsilon_0] \) that function \(\phi_{ii}(0, \rho, \varepsilon) \) given by the asymptotic expansion appearing in condition satisfies, for every \(i \neq 0 \) and \(\varepsilon \in (0, \varepsilon_0] \), inequality \(0 < \phi_{ii}(0, \rho, \varepsilon) < 1 \). For simplicity, we just assume that \(\varepsilon_0 = \varepsilon_0 \).

In the case, where Laurent asymptotic expansions with explicit upper bounds for remainders are the objects of interest, the assumption \(\mathbf{E}_d \) (b) imposed on the remainders \(o_{k, ij}(\varepsilon^{h_{ij}^+[k, \rho]}) \) should be replaced by the following stronger condition:

\[
\mathbf{G}_{d, \rho}: |o_{k, \rho, ij}(\varepsilon^{h_{ij}^+[k, \rho]})| \leq G_{ij}[k, \rho] \varepsilon^{h_{ij}^+[k, \rho] + \delta_{ij}[k, \rho]}, \quad 0 < \varepsilon \leq \varepsilon_{ij}[k, \rho], \quad \text{for } k = 0, \ldots, d, \quad j \in \mathbb{Y}_i, \quad i \in \mathbb{X},
\]

where \(0 < \delta_{ij}[k, \rho] \leq 1 \), \(0 \leq G_{ij}[k, \rho] < \infty \), \(0 < \varepsilon_{ij}[k, \rho] \leq \varepsilon_0 \), for \(k = 0, \ldots, d, \quad j \in \mathbb{Y}_i, \quad i \in \mathbb{X} \).

It is also useful to note that, in this case, the above \((\tilde{h}_{ii}^-[0, \rho], \tilde{h}_{ii}^+[0, \rho]) \)-expansion for function \(1 - \phi_{ii}(0, \rho, \varepsilon) \) is a \((\tilde{h}_{ii}^-[0, \rho], \tilde{h}_{ii}^+[0, \rho], \delta_{ii}[k, \rho], G_{ii}[k, \rho], \varepsilon_{ii}[k, \rho]) \)-expansion, for \(i \neq 0 \).

Condition \(\mathbf{E}_{d, \rho} \) does not imply that there exist limits, \(\lim_{\varepsilon \to 0} p_{ij}(\varepsilon) \), \(i, j \in \mathbb{X} \). However, any sequence \(\varepsilon_n \to 0 \) as \(n \to \infty \) obviously contains a subsequence \(\varepsilon_{nN} \to 0 \) as \(N \to \infty \) such that there exist limits, \(\lim_{N \to \infty} p_{ij}(\varepsilon_{nN}) = p_{ij}(0), \quad i, j \in \mathbb{X} \). Matrix \(\|p_{ij}(\varepsilon)\| \) is stochastic, for every \(\varepsilon \in (0, \varepsilon_0] \); and, thus, matrix \(\|p_{ij}(0)\| \) is also stochastic. It is possible that matrix \(\|p_{ij}(0)\| \) has more
zero elements than matrices \(\| p_{ij}(\varepsilon) \| \). Therefore, a Markov chain \(\eta_{0,n} \), with the phase space \(X \) and the matrix of transition probabilities \(\| p_{ij}(0) \| \) can be non-ergodic, and its phase space \(X \) can consist of one or several closed classes of communicative states plus, possibly, a class of transient states.

3. Reduced Semi-Markov Processes

In what follows, we assume that conditions \(A - D_{\rho_0} \) hold.

Let us choose some state \(r \neq 0 \) and consider the reduced phase space \(rX = X \setminus \{ r \} \), with the state \(r \) excluded from the phase space \(X \).

We define the sequential moments of hitting space \(rX \) by the embedded Markov chain, \(r\xi_{\varepsilon,n} = \min(k > r\xi_{\varepsilon,n-1}, \eta_{\varepsilon,k} \in rX) \), where \(r\xi_{\varepsilon,0} = 0 \), and the random sequence, \(\{ r\eta_{\varepsilon,n}, r\kappa_{\varepsilon,n} \} = (\eta_{\varepsilon, r\xi_{\varepsilon,n}}, \sum_{k=r\xi_{\varepsilon,n}+1}^{\infty} \kappa_{\varepsilon,k}) \), \(n = 1, 2, \ldots \), \(r\eta_{\varepsilon,0}, r\kappa_{\varepsilon,0} = (\eta_{\varepsilon,0}, 0) \).

This sequence is also a Markov renewal process with the phase space \(X \times [0, \infty) \), the initial distribution \(r\bar{p}_\varepsilon = \{ r p_{\varepsilon,i} = p_{\varepsilon,i}, i \in X \} \), and transition probabilities, defined for \((i, s), (j, t) \in X \times [0, \infty) \),

\[
r Q_{\varepsilon,ij}(t) = P\{ r\eta_{\varepsilon,1} = j, r\kappa_{\varepsilon,1} \leq t / r\eta_{\varepsilon,0} = i, r\kappa_{\varepsilon,0} = s \}.
\]

The transition probabilities \(r Q_{\varepsilon,ij}(t) \) are expressed via the transition probabilities \(Q_{\varepsilon,ij}(t) \) by the following formula, for \(i, j \in X \), \(t \geq 0 \),

\[
r Q_{\varepsilon,ij}(t) = Q_{\varepsilon,ij}(t) + \sum_{n=0}^{\infty} Q_{\varepsilon,ir}(t) * Q_{\varepsilon,rr}(t) * Q_{\varepsilon,rj}(t).
\]

(11)

Here, symbol * is used to denote the convolution of distribution functions.

The above formula directly implies the following formula for transition probabilities of the embedded Markov chain \(r\eta_{\varepsilon,n} \), for \(i, j \in X \),

\[
r p_{ij}(\varepsilon) = r Q_{\varepsilon,ij}(\infty) = p_{ij}(\varepsilon) + p_{ir}(\varepsilon) \frac{p_{rj}(\varepsilon)}{1 - p_{rr}(\varepsilon)}.
\]

(12)

The transition distributions for the Markov chain \(r\eta_{\varepsilon,n} \), are concentrated on the reduced phase space \(rX \), i.e., for every \(i \in X \),

\[
\sum_{j \in rX} r p_{ij}(\varepsilon) = \sum_{j \in rX} p_{ij}(\varepsilon) + p_{ir}(\varepsilon) \sum_{j \in rX} \frac{p_{rj}(\varepsilon)}{1 - p_{rr}(\varepsilon)}
\]

\[= \sum_{j \in rX} p_{ij}(\varepsilon) + p_{ir}(\varepsilon) = 1.
\]

(13)

If the initial distribution \(\bar{p}_\varepsilon \) is concentrated on the phase space \(rX \), i.e., \(p_{\varepsilon,r} = 0 \), then the random sequence \(\{ r\eta_{\varepsilon,n}, r\kappa_{\varepsilon,n} \}, n = 0, 1, \ldots \) can also be
considered as a Markov renewal process with the reduced phase \(\mathcal{X} \times [0, \infty) \),
the initial distribution \(\bar{r}p_\varepsilon = \langle p_{\varepsilon,i} = P\{r_\varepsilon,0 = i, r_\varepsilon,0 = 0\} = P\{r_\varepsilon,0 = i\}, i \in \mathcal{X} \rangle \) and transition probabilities \(\bar{r}Q_{\varepsilon,ij}(t), t \geq 0, i, j \in \mathcal{X} \).

If the initial distribution \(\bar{p}_\varepsilon \) is not concentrated on the phase space \(\mathcal{X} \),
i.e., \(p_{\varepsilon,r} > 0 \), then the random sequence \((r_\varepsilon, n, r_{\varepsilon,1}, \ldots) \) can be considered as a Markov renewal process with so-called called transition period.

Respectively, one can define the transformed semi-Markov process,
\[
r_\eta(t) = r_\eta, r_\eta(t), t \geq 0,
\]
where \(r_\eta(t) = \max(n \geq 0 : r_\zeta, n \leq t) \) is a number of jumps at time interval \([0, t]\), for \(t \geq 0 \), and \(r_\zeta, n = r_{\zeta,1} + \cdots + r_{\zeta,n}, n = 0, 1, \ldots \) are sequential moments of jumps, for the semi-Markov process \(r_\eta(t) \).

If the initial distribution \(\bar{p}_\varepsilon \) is concentrated on the phase space \(\mathcal{X} \), then process \(r_\eta(t) \) can be considered as a standard semi-Markov process with the reduced phase \(\mathcal{X} \), the initial distribution \(r_\varepsilon p_\varepsilon = \langle r_\varepsilon p_i = P\{r_\varepsilon(0) = i\}, i \in \mathcal{X} \rangle \) and transition probabilities \(r_\varepsilon Q_{\varepsilon,ij}(t), t \geq 0, i, j \in \mathcal{X} \).

According to the above remarks, we can refer to the process \(r_\eta(t) \) as a reduced semi-Markov process.

If the initial distribution \(\bar{p}_\varepsilon \) is not concentrated on the phase space \(\mathcal{X} \),
then the process \(r_\eta(t) \) can be interpreted as a reduced semi-Markov process with transition period.

Let us introduce the following sets, for \(i, r \in \mathcal{X} \),
\[
\mathcal{U}_i^- = \{ j \in \mathcal{X} : j \in \mathcal{V}_i \} \quad \text{and} \quad \mathcal{U}_i^+ = \begin{cases} \{ j \in \mathcal{X} : j \in \mathcal{V}_i \} & \text{if } r \in \mathcal{V}_i, \\ \emptyset & \text{if } r \notin \mathcal{V}_i. \end{cases}
\]
and
\[
r_\mathcal{V}_i = \mathcal{U}_i^- \cup \mathcal{U}_i^+, \quad i \in \mathcal{X}.
\]

It is readily seen that, for every \(r \neq 0 \), condition A holds for the reduced Markov chains \(r_\eta, n \), with the phase space \(\mathcal{X} \). In this case, \(r_\mathcal{V}_i, i \in \mathcal{X} \) are the corresponding transition sets.

Condition A implies that \(p_{rr}(\varepsilon) \in [0, 1], r \neq 0, \varepsilon \in (0, \varepsilon_0] \).

This relations and formulas (12) – (13) imply that transition probabilities \(r_{\varepsilon,ij}(\varepsilon) > 0, j \in \mathcal{V}_r, \mathcal{V}_r \setminus \{r\}, \) for \(\varepsilon \in (0, \varepsilon_0] \), or \(r_{\varepsilon,ij}(\varepsilon) = 0, j \in \mathcal{V}_r, \) for \(\varepsilon \in (0, \varepsilon_0] \).

Thus, if \(r_\eta, n \) is a reduced Markov chain with transition period, then set \(\mathcal{X} \) is a closed class of communicative states, while \(r \) is a transient state, for every \(\varepsilon \in (0, \varepsilon_0] \).

Obviously, condition B also holds for the reduced semi-Markov processes \(r_\eta(t) \).
Taking into account that \(r_{\xi,1} \) is a Markov time for the Markov renewal process \((\eta_{\varepsilon,n}, \kappa_{\varepsilon,n}) \), we can write down the following system of stochastic equalities, for every \(i, j \in \mathcal{X} \),

\[
\begin{cases}
 r_{\xi,i,1}I(\eta_{\varepsilon,i,1} = j) \overset{d}{=} \kappa_{\xi,i,1}I(\eta_{\varepsilon,i,1} = j) + (\kappa_{\xi,i,1} + r_{\xi,r,1})I(\eta_{\varepsilon,i,1} = r)I(\eta_{\varepsilon,r,1} = j), \\
 r_{\xi,r,1}I(\eta_{\varepsilon,r,1} = j) \overset{d}{=} \kappa_{\xi,r,1}I(\eta_{\varepsilon,r,1} = j) + (\kappa_{\xi,r,1} + r_{\xi,r,1})I(\eta_{\varepsilon,r,1} = r)I(\eta_{\varepsilon,r,1} = j),
\end{cases}
\tag{17}
\]

where: (a) \((\eta_{\varepsilon,i,1}, \kappa_{\varepsilon,i,1}) \) is a random vector, which takes values in space \(\mathcal{X} \times [0, \infty) \) and has the distribution \(P\{\eta_{\varepsilon,i,1} = j, \kappa_{\varepsilon,i,1} \leq t\} = Q_{ij}(t), j \in \mathcal{X}, t \geq 0, \) for every \(i \in \mathcal{X} \); (b) \((\eta_{\varepsilon,i,1}, r_{\xi,r,1}) \) is a random vector which takes values in the space \(\mathcal{X} \times [0, \infty) \) and has distribution \(P\{\eta_{\varepsilon,i,1} = j, r_{\xi,r,1} \leq t\} = P\{\eta_{\varepsilon,i,1} = j, r_{\xi,r,1} \leq t\} = Q_{ij}(t), j \in \mathcal{X}, t \geq 0, \) for every \(i \in \mathcal{X} \); (c) \((\eta_{\varepsilon,i,1}, \kappa_{\varepsilon,i,1}) \) and \((\eta_{\varepsilon,r,1}, r_{\xi,r,1}) \) are independent random vectors, for every \(i, r \in \mathcal{X} \).

Here, symbol \(\overset{d}{=} \) is used to show that random variables on the left and right hand sides of the corresponding equality have the same distribution.

Let us introduce transition power-exponential moments, for \(\varrho \geq 0, k = 0, 1, \ldots, r \neq 0, i \in \mathcal{X}, j \in \mathcal{X}, \)

\[
r_{\varphi_{ij}}(k, \varrho, \varepsilon) = \int_{0}^{\infty} t^{k} e^{t} r_{Q_{ij}}(dt).
\tag{18}
\]

By computing exponential moments in stochastic relations (17) we get, for every \(0 \leq \varrho \leq \rho_{0}, r \neq 0, i, j \in \mathcal{X} \) and \(\varepsilon \in (0, \varepsilon_{0}] \), the following system of linear equations for the exponential moments \(r_{\varphi_{rj}}(0, \varrho, \varepsilon), r_{\varphi_{ij}}(0, \varrho, \varepsilon), \)

\[
\begin{cases}
 r_{\varphi_{rj}}(0, \varrho, \varepsilon) = r_{\varphi_{rj}}(0, \varrho, \varepsilon) + \varphi_{rr}(0, \varrho, \varepsilon) r_{\varphi_{rj}}(0, \varrho, \varepsilon), \\
 r_{\varphi_{ij}}(0, \varrho, \varepsilon) = r_{\varphi_{ij}}(0, \varrho, \varepsilon) + \varphi_{ir}(0, \varrho, \varepsilon) r_{\varphi_{ij}}(0, \varrho, \varepsilon).
\end{cases}
\tag{19}
\]

It is possible that the moments \(\varphi_{rr}(0, \varrho, \varepsilon) \) or \(\varphi_{ir}(0, \varrho, \varepsilon) \) equals to 0, while the moment \(\varphi_{jr}(0, \varrho, \varepsilon) \) equal to \(+\infty\) in relation (19). In such cases, one should set the product \(0 \cdot \infty \) to be 0 when calculating the products at the right-hand side of equality (19).

However, inequality (9) and relation (19) imply that \(r_{\phi_{ij}}(0, \rho_{0}, \varepsilon) < \infty, \) for every \(r \neq 0, i \in \mathcal{X}, j \in \mathcal{X} \) and \(\varepsilon \in (0, \varepsilon_{0}] \).

Thus, relation (19) yields the following formulas for moments \(r_{\varphi_{rj}}(0, \varrho, \varepsilon) \) and \(r_{\varphi_{ij}}(0, \varrho, \varepsilon) \), for every \(0 \leq \varrho \leq \rho_{0}, r \neq 0, i, j \in \mathcal{X}, \)

\[
\begin{cases}
 r_{\varphi_{rj}}(0, \varrho, \varepsilon) = \frac{\varphi_{rj}(0, \varrho, \varepsilon)}{1 - \varphi_{rr}(0, \varrho, \varepsilon)}, \\
 r_{\varphi_{ij}}(0, \varrho, \varepsilon) = \varphi_{ij}(0, \varrho, \varepsilon) + \frac{\varphi_{ir}(0, \varrho, \varepsilon) \varphi_{ij}(0, \varrho, \varepsilon)}{1 - \varphi_{rr}(0, \varrho, \varepsilon)}.
\end{cases}
\tag{20}
\]
It is useful to note that the second formula in relation (20) reduces to the first one, if to assign \(i = r \) in this formula.

Thus, condition \(C_{\rho_0} \) holds for the reduced semi-Markov processes \(\eta_\ell(t) \).

Obviously, \(r\phi_{ij}(k, \varrho, \varepsilon) \leq L_{k, \rho_0-\varrho} r\phi_{ij}(0, \rho_0, \varepsilon) \), for \(0 \leq \varrho < \rho_0 \), \(k = 0, 1, \ldots \), \(r \neq 0, i \in X, j \in rX \) and \(\varepsilon \in (0, \varepsilon_0] \).

Also, it is easily seen that for every \(0 \leq \varrho < \rho_0 \), \(k = 1, \ldots, r \neq 0, i \in X, j \in rX \) and \(\varepsilon \in (0, \varepsilon_0] \), function \(r\phi_{ij}(0, \varrho, \varepsilon) \) has a derivative of order \(k \), and it is the function \(r\phi_{ij}(k, \varrho, \varepsilon) \).

Therefore, we can differentiate equations (19) and get the following system of linear equation, for every \(0 \leq \varrho < \rho_0 \), \(k = 1, \ldots, r \neq 0, i \in X, j \in rX \) and \(\varepsilon \in (0, \varepsilon_0] \),

\[
\begin{align*}
\left\{ \begin{array}{l}
 r\phi_{rj}(k, \varrho, \varepsilon) = r\lambda_{rj}(k, \varrho, \varepsilon) + \phi_{rr}(0, \varrho, \varepsilon) r\phi_{rj}(0, \varrho, \varepsilon), \\
 r\phi_{ij}(k, \varrho, \varepsilon) = r\lambda_{ij}(k, \varrho, \varepsilon) + \phi_{ir}(0, \varrho, \varepsilon) r\phi_{rj}(0, \varrho, \varepsilon),
\end{array} \right. \\
(21)
\end{align*}
\]

where,

\[
r\lambda_{ij}(k, \varrho, \varepsilon) = \phi_{ij}(k, \varrho, \varepsilon) + \sum_{l=0}^{k-1} \binom{k}{l} \phi_{ir}(k-l, \varrho, \varepsilon) r\phi_{rj}(l, \varrho, \varepsilon).
(22)
\]

Relation (21) yields the following formulas for moments \(r\phi_{rj}(k, \varrho, \varepsilon) \) and \(r\phi_{ij}(k, \varrho, \varepsilon) \), which can be used, for every \(0 \leq \varrho < \rho_0 \), \(k = 0, 1, \ldots, r \neq 0, i, j \in rX \) and \(\varepsilon \in (0, \varepsilon_0] \),

\[
\begin{align*}
\left\{ \begin{array}{l}
 r\phi_{rj}(k, \varrho, \varepsilon) = r\lambda_{rj}(k, \varrho, \varepsilon) + \phi_{rr}(0, \varrho, \varepsilon) r\phi_{rj}(0, \varrho, \varepsilon), \\
 r\phi_{ij}(k, \varrho, \varepsilon) = r\lambda_{ij}(k, \varrho, \varepsilon) + \phi_{ir}(0, \varrho, \varepsilon) r\phi_{rj}(0, \varrho, \varepsilon).
\end{array} \right. \\
(23)
\end{align*}
\]

Formulas (23) have recurrent character since expressions for functions \(r\lambda_{rj}(k, \varrho, \varepsilon) \), \(r\lambda_{ij}(k, \varrho, \varepsilon) \) include functions \(r\phi_{rj}(l, \varrho, \varepsilon) \), \(l = 0, 1, \ldots, k-1 \).

For \(k = 0 \), formulas (23) reduce to formulas (20).

Let us define the hitting times for the reduced semi-Markov processes, for \(r \neq 0 \),

\[
r\tau_{\varrho, 0} = \sum_{n=1}^{\nu_{\varrho, 0}} r\kappa_{\varrho, n}, \text{ where } r\nu_{\varrho, 0} = \min(n \geq 1 : r\kappa_{\varrho, n} = 0),
(24)
\]

and the corresponding power-exponential moments, for \(\varrho \geq 0 \), \(k = 0, 1, \ldots \), \(i \in X \),

\[
r\Phi_i(k, \varrho, \varepsilon) = E_i r\tau_{\varrho, 0}^k e^{r\tau_{\varrho, 0}}.
(25)
\]

The following proposition follows from the fact that hitting of state \(j \in rX \) by the semi-Markov process \(\eta_\ell(t) \) can occur only at moments of hitting
space \(X \) by the semi-Markov process \(\eta_\varepsilon(t) \). Its proof can be found, for example, in [14] and [15].

Lemma 2. The hitting times \(\tau_{\varepsilon,0} \) and \(r \tau_{\varepsilon,0} \) to the state 0, respectively, for semi-Markov processes \(\eta_\varepsilon(t) \) and \(r \eta_\varepsilon(t) \), coincide, for every state \(r \neq 0 \) and \(\varepsilon \in (0, \varepsilon_0] \).

The following lemma, which is a corollary of Lemma 2, plays an important role in what follows.

Lemma 3. The exponential moments, \(r \Phi_{i0}(0, \rho, \varepsilon) = \Phi_{i0}(0, \rho, \varepsilon) < \infty \), for any \(0 \leq \rho \leq \rho_0, r \neq 0, i \in X \) and \(\varepsilon \in (0, \varepsilon_0] \), and the power-exponential moments, \(r \Phi_{i0}(k, \rho, \varepsilon) = \Phi_{i0}(k, \rho, \varepsilon) < \infty \) for any \(0 \leq \rho < \rho_0, k = 0, 1, \ldots, r \neq 0, i \in X \) and \(\varepsilon \in (0, \varepsilon_0] \).

Let us summarise the above remarks.

Lemma 4. Conditions A – D\(\rho_0 \) assumed to hold for the semi-Markov processes \(\eta_\varepsilon(t) \), also hold for the reduced semi-Markov processes \(\eta_\varepsilon(t) \).

Since condition D\(\rho_0 \) holds for reduced semi-Markov processes \(\eta_\varepsilon(t) \), the following inequalities also hold, for \(\varepsilon \in (0, \varepsilon_0] \),

\[
r \phi_{ii}(0, \rho_0, \varepsilon) < 1, \ i \neq 0, r.
\]

4. Asymptotic Expansions for Mixed Power-Exponential Moments of Hitting Times

Let us now describe algorithms for construction of asymptotic expansions for power-exponential moments of hitting times.

Proofs of Theorems 1 and 2 presenting these algorithms are based on recurrent application of operational rules for Laurent asymptotic expansions given in Lemma 1 to the reduced semi-Markov processes constructed with the use of the recurrent time-space screening procedures of phase space reduction described below. In fact, one should correctly describe to which functions, in which order, and which operational rules should be applied for getting the corresponding expansions (their parameters, coefficients and parameters of upper bounds for remainders) as well as to indicate some particular cases, where the corresponding computational steps should be modified. This is exactly what is done in the proofs of Theorems 1 and 2. An explicit writing down of the corresponding operational formulas representing the recurrent algorithms described below (which could be given as corollaries of the above theorems) would, in fact, replicate the above proofs in the formal form, require implementation of a huge number of intermediate notations, take too much space, etc., but would not add any new essential information about the
corresponding algorithms. That is why the decision was made, just, to say in each theorem that the description of the corresponding algorithm is given in its proof. This makes formulations slightly unusual. But, as we think, this is the most compact way for presentation of the corresponding asymptotic results and algorithms.

Theorem 1. The following propositions take place:

(i) If conditions \(A - F_{\rho} \) hold for the semi-Markov processes \(\eta_{k}(t) \), then these conditions also hold for the reduced semi-Markov processes \(r\eta_{k}(t) \), for every \(r \neq 0 \). The corresponding pivotal \((r, h_{ij}^{k}[k, \rho], rG_{ij}[k, \rho])\)-expansions for the mixed power-exponential moments \(r\phi_{ij}(k, \rho, \varepsilon) \), \(k = 0, \ldots, d, j \in r\mathbb{Y}_{r}, i \in \mathbb{X} \) are given by the algorithm described below, in the proof of the theorem.

(ii) If, additionally, condition \(G_{d,\rho} \) holds for the semi-Markov processes \(\eta_{k}(t) \), then this condition also hold for the reduced semi-Markov processes \(r\eta_{k}(t) \). In this case, the above \((r, h_{ij}^{k}[k, \rho], rG_{ij}[k, \rho])\)-expansions are also the pivotal \((r, h_{ij}^{k}[k, \rho], r\delta_{ij}[k, \rho], rG_{ij}[k, \rho] r\varepsilon_{ij}[k, \rho])\)-expansions, with parameters \(r\delta_{ij}[k, \rho], rG_{ij}[k, \rho], r\varepsilon_{ij}[k, \rho] \) given by the algorithm described below, in the proof of the theorem.

Proof. Lemma 4 implies that conditions \(A - D_{\rho} \) hold for the semi-Markov processes \(r\eta_{k}(t) \), with the same parameter \(\varepsilon_{0} \) as for the semi-Markov processes \(\eta_{k}(t) \), and the transition sets \(r\mathbb{Y}_{r}, i \in r\mathbb{X} \) given by relation (16).

In order to prove that condition \(E_{d,\rho} \) also holds for semi-Markov processes \(r\eta_{k}(t) \), with the same parameter \(\varepsilon_{0} \) and the transition sets \(r\mathbb{Y}_{r}, i \in r\mathbb{X} \) given by relation (16), let us construct the corresponding asymptotic expansions appearing in this condition.

Let \(r \neq 0, i \in \mathbb{X} \) and \(j, r \in \mathbb{Y}_{r} \). At the initial step, we construct the asymptotic expansions for exponential moments \(r\phi_{j}(1, \rho, \varepsilon) \) and \(r\phi_{ij}(0, \rho, \varepsilon) \) using formulas (20) and the corresponding asymptotic expansions appearing in condition \(E_{d,\rho} \).

First, proposition (vi) (the multiplication rule) of Lemma 1 should be applied to the product \(\phi_{ir}(0, \rho, \varepsilon) \phi_{j}(0, \rho, \varepsilon) \).

Second, proposition (vii) (the division rule) of Lemma 1 should be applied to the quotient \(\phi_{ir}(0, \rho, \varepsilon) \phi_{j}(0, \rho, \varepsilon) \). Here, the asymptotic expansion for function \(1 - \phi_{ir}(0, \rho, \varepsilon) \) given in relation (10) should be used.

Third, proposition (iii) (the summation rule) of Lemma 1 should be applied to the sum \(\phi_{ij}(0, \rho, \varepsilon) + \frac{\phi_{ir}(0, \rho, \varepsilon) \phi_{j}(0, \rho, \varepsilon)}{1 - \phi_{ir}(0, \rho, \varepsilon)} \).

If \(j \notin \mathbb{Y}_{r} \) then \(\phi_{ij}(0, \rho, \varepsilon) \equiv 0 \); if \(j \notin \mathbb{Y}_{r} \) then \(\phi_{j}(0, \rho, \varepsilon) \equiv 0 \); if \(r \notin \mathbb{Y}_{r} \) then \(\phi_{ir}(0, \rho, \varepsilon) \equiv 0 \); if \(r \notin \mathbb{Y}_{r} \) then \(1 - \phi_{ir}(0, \rho, \varepsilon) \equiv 1 \). In these cases, the above algorithm is readily simplified.
According to Lemma 1, the \((r, h_{ij}^{-}[0, \rho], h_{ij}^{+}[0, \rho])\)-expansions,
\[
 r\phi_{ij}(0, \rho, \varepsilon) = \sum_{l=-h_{ij}^{-}[0, \rho]}^{r h_{ij}^{+}[0, \rho]} r g_{ij}[0, \rho, l] \varepsilon^l + r o_{0,\rho,ij}(\varepsilon^{r h_{ij}^{+}[0,\rho]}),
\]
yielded by the above algorithm, for \(r \neq 0, i \in \mathbb{X}, j \in \mathbb{Y}_i\), are pivotal.

Steps of the algorithm described above should be recurrently repeated for
\(k = 1, \ldots, d\).

Let assume that the corresponding pivotal asymptotic expansions for
power-exponential moments \(r\phi_{ij}(l, \rho, \varepsilon), r\phi_{ij}(l, \rho, \varepsilon), l = 0, \ldots, k - 1\) have
been already constructed with the use of formulas (22) – (23). In this case,
the asymptotic expansions for moments \(r\phi_{ij}(k, \rho, \varepsilon), r\phi_{ij}(k, \rho, \varepsilon)\) can be
constructed using the above asymptotic expansions, formulas (22) – (23), and
the corresponding asymptotic expansions appearing in condition \(E_{d,\rho\varepsilon}\), in the
following way.

First, propositions (i) (the multiplication by constant rule) and (v) (the
multiplication rule) of Lemma 1 should be applied to the products \(\binom{k}{l}\phi_{qr}(k - l, \rho, \varepsilon)\), \(r\phi_{ij}(l, \rho, \varepsilon)\), for \(l = 0, \ldots, k - 1\) and \(q = i, r\).

Second, proposition (iii) (the summation rule) of Lemma 1 should be
recurrently applied to the sum \(r\lambda_{ij}(n, k, \rho, \varepsilon) = \phi_{ij}(k, \rho, \varepsilon) + \sum_{l=0}^{n} \binom{k}{l}\phi_{qr}(k - l, \rho, \varepsilon) \), \(r\phi_{ij}(l, \rho, \varepsilon)\), for \(n = 1, \ldots, k - 1\), in order to get the asymptotic expansion for sum \(r\lambda_{ij}(k, \rho, \varepsilon) = r\phi_{ij}(k - 1, k, \rho, \varepsilon) = \phi_{ij}(k, \rho, \varepsilon) + \sum_{l=0}^{k-1} \binom{k}{l}\phi_{qr}(k - l, \rho, \varepsilon) \), \(r\phi_{ij}(l, \rho, \varepsilon)\), for \(q = i, r\).

Third, proposition (v) (the multiplication rule) of Lemma 1 should be
applied to the product \(\phi_{rr}(0, \rho, \varepsilon) r\lambda_{ij}(k, \rho, \varepsilon)\).

Fourth, proposition (vii) (the division rule) of Lemma 1 should be applied
to the quotient \(\frac{\phi_{rr}(0, \rho, \varepsilon) r\lambda_{ij}(k, \rho, \varepsilon)}{1 - \phi_{rr}(0, \rho, \varepsilon)}\). Here, the asymptotic expansion for function
\(1 - \phi_{rr}(0, \rho, \varepsilon)\) given in relation (10) should be used.

Fifth, the proposition (i) (the summation rule) of Lemma 1 should be
applied to sum \(r\lambda_{ij}(k, \rho, \varepsilon) + \frac{\phi_{rr}(0, \rho, \varepsilon) r\lambda_{ij}(k, \rho, \varepsilon)}{1 - \phi_{rr}(0, \rho, \varepsilon)}\).

As it was already mentioned above, five steps of the above algorithm
should be recurrently repeated for \(k = 1, 2, \ldots, d\).

If \(j \notin \mathbb{Y}_i\) then \(\phi_{ij}(k, \rho, \varepsilon) \equiv 0, k = 0, \ldots, d\); if \(j \notin \mathbb{Y}_r\) then \(\phi_{ij}(k, \rho, \varepsilon) \equiv 0, k = 0, \ldots, d\); if \(r \notin \mathbb{Y}_i\) then \(\phi_{ir}(k, \rho, \varepsilon) \equiv 0, k = 0, \ldots, d\); if \(r \notin \mathbb{Y}_r\) then \(\phi_{rr}(k, \rho, \varepsilon) \equiv 0, k = 1, \ldots, d\) and \(1 - \phi_{rr}(0, \rho, \varepsilon) \equiv 1\). In these cases, the
above recurrent algorithm is readily simplified.

Note that parameter \(\varepsilon_0\) does not change in the multiplication and summation steps as well as in the division step, since \(1 - \phi_{rr}(0, \rho, \varepsilon) > 0, \varepsilon \in (0, \varepsilon_0]\).
According to Lemma 1, the \((r \hat{h}_{ij}^-[k, \rho], r \hat{h}_{ij}^+[k, \rho])\)-expansions,
\[
r \phi_{ij}(k, \rho, \varepsilon) = \sum_{t=0}^{r \hat{h}_{ij}^+[k, \rho]} r g_{ij}[k, \rho, t] \varepsilon^t + r o_{k, \rho, ij}(\varepsilon^{r \hat{h}_{ij}^+[k, \rho]}),
\]
yielded by the above recurrent algorithm, for \(k = 1, \ldots, d, r \neq 0, i \in X, j \in \gamma_i, r \neq 0\).

It remains to note that condition \(E_{d, \rho}\) and inequalities (26) imply that condition \(F_{\rho}\) also holds for the reduced semi-Markov process \(r \eta(t)\), for every \(r \neq 0\).

This completes the proof of proposition (i) of Theorem 1.

In order to prove proposition (ii) of Theorem 1, one should repeat the same sequence of recurrent steps described above and, additionally, to apply to every intermediate asymptotic expansion, obtained with the use of operational rules given in propositions (i), (iii), (v) or (vii) of Lemma 1, the corresponding additional operational rules given, respectively, in propositions (ii), (vi), (vi) or (viii), for computing parameters of the corresponding upper bounds for remainders. □

Remark 1. It is worth noting that the above algorithm yields the asymptotic expansions for mixed power-exponential moments \(r \phi_{ij}(k, \rho, \varepsilon)\) for \(k = 1, \ldots, d, r \neq 0, i \in X, j \in \gamma_i\), i.e., for the corresponding transition characteristics of the reduced semi-Markov processes \(r \eta(t)\) with transition period defined in Section 4.

Let us choose some state \(q \neq 0\) and let \(\tilde{r}_{q,m} = \langle r_{q,0}, \ldots, r_{q,m} \rangle = \langle r_{q,0}, \ldots, r_{q,m} \rangle\) be a permutation of the sequence \(\langle 0, \ldots, m \rangle\) such that \(r_{q,m-1} = q, r_{q,m} = 0\), and let \(\tilde{r}_{q,n} = \langle r_{q,0}, \ldots, r_{q,n} \rangle, n = 0, \ldots, m\) be the corresponding chain of growing sequences of states from space \(X\).

Theorem 2. The following propositions take place:

(i) Let conditions \(A - F_{\rho}\) hold for the semi-Markov processes \(r \eta(t)\). Then, for every \(i \in X\), the pivotal \((\hat{h}_{ij}^-[k, \rho], \hat{h}_{ij}^+[k, \rho])\)-expansions for the power-exponential moments of hitting times \(\Phi_{ij}(k, \rho, \varepsilon), k = 1, \ldots, d, i = q, 0\) are given, for every \(q \neq 0\), by the recurrent algorithm based on the sequential exclusion of states \(r_{q,0}, \ldots, r_{q,m-2, q}\) from the phase space \(X\) of the processes \(r \eta(t)\). This algorithm is described below, in the proof of the theorem. The above \((\hat{h}_{ij}^-[k, \rho], \hat{h}_{ij}^+[k, \rho])\)-expansions are invariant with respect to any permutation \(\tilde{r}_{q,m} = \langle r_{q,0}, \ldots, r_{q,m-2, q}, 0 \rangle\) of sequence \(\langle 0, \ldots, m \rangle\).

(ii) If, additionally, condition \(G_{d, \rho}\) holds for the semi-Markov processes \(r \eta(t)\), then the above \((\hat{h}_{ij}^-[k, \rho], \hat{h}_{ij}^+[k, \rho])\)-expansions for the power-exponential moments of hitting times \(\Phi_{ij}(k, \rho, \varepsilon), k = 1, \ldots, d, i = q, 0\) also are, for every \(q \neq 0\), pivotal \((\hat{h}_{ij}^-[k, \rho], \hat{h}_{ij}^+[k, \rho], r G_{ij}[k, \rho], r o_{k, \rho, ij}(\varepsilon^{r \hat{h}_{ij}^+[k, \rho]}), r G_{i0}[k, \rho], r \hat{h}_{i0}[k, \rho])\)-expansions,
with parameters $\bar{r}_{i,m} \delta_0[k, \rho]$, $\bar{r}_{i,m} G_0[k, \rho]$, $\bar{r}_{i,m} \varepsilon_0[k, \rho]$ given by the algorithm described below, in the proof of the theorem.

Proof. Let us exclude state $r_{i,0}$ from the phase space of the semi-Markov process $\eta_e(t)$ using the time-space screening procedure described in Section 4. Let $\eta_{e,\bar{r}_{i,0}}(t) = \eta_{e,0}\eta_e(t)$ be the corresponding reduced semi-Markov process, with the phase space $\bar{r}_{i,0} \mathbb{X} = \mathbb{X} \setminus \{r_{i,0}\}$. The above procedure can be repeated. The state $r_{q,1}$ can be excluded from the phase space of the semi-Markov process $\eta_{e,\bar{r}_{q,0}}(t)$. Let $\eta_{e,\bar{r}_{q,1}}(t) = \bar{r}_{q,1} \eta_{e,\bar{r}_{q,0}}(t)$ be the corresponding reduced semi-Markov process, with the phase space $\bar{r}_{q,1} \mathbb{X} = \mathbb{X} \setminus \{r_{q,0}, r_{q,1}\}$.

By continuing the above procedure for states $r_{q,2}, \ldots, r_{q,n}$, we construct the reduced semi-Markov process $\eta_{e,\bar{r}_{q,n}}(t) = \eta_{e,\bar{r}_{q,n}}(t)$. This semi-Markov process has the phase space $\eta_{e,\bar{r}_{q,n}}(t)$. Let us take $\hat{r}_{q,n} \mathbb{Y}_i, i \in \hat{r}_{q,n-1} \mathbb{X}$ and $\hat{r}_{q,n} \phi_{ij}(k, \rho, \varepsilon), j \in \hat{r}_{q,n} \mathbb{Y}_i, i \in \hat{r}_{q,n-1} \mathbb{X}$ be, respectively, the transition sets and transition power-exponential moments for process $\eta_{e,\bar{r}_{q,n}}(t) = \eta_{e,\bar{r}_{q,n}}(t)$ defined in the same way as the transition sets $\mathbb{Y}_i, i \in \mathbb{X}$ and the transition power-exponential moments $\phi_{ij}(k, \rho, \varepsilon), j \in \mathbb{Y}_i, i \in \mathbb{X}$ for process $\eta_e(t)$.

Theorem 1 implies, by induction, that conditions $\mathbf{A} - \mathbf{F}_\rho$ hold for the reduced semi-Markov processes $\eta_e(t), \eta_{e,\bar{r}_{q,0}}(t), \ldots, \eta_{e,\bar{r}_{q,n}}(t)$.

Thus, the recurrent application of the algorithm described in Theorem 1 to processes $\eta_{e,\bar{r}_{q,0}}(t), \ldots, \eta_{e,\bar{r}_{q,n}}(t)$ let us construct the pivotal Laurent asymptotic expansions for transition power-exponential moments $\hat{r}_{q,n} \phi_{ij}(k, \rho, \varepsilon), j \in \hat{r}_{q,n} \mathbb{Y}_i, i \in \hat{r}_{q,n-1} \mathbb{X}$.

Let us take $n = m - 1$. In this case, the semi-Markov process $\eta_{e,\bar{r}_{q,m-1}}(t)$ has the phase space $\bar{r}_{q,m-1} \mathbb{X} = \{0\}$, which is a one-state set. Also, the space $\bar{r}_{q,m-1} \mathbb{X} = \{q, 0\}$ is a two-states set.

By Lemma 3, the power-exponential moments of hitting times, $\Phi_{\rho}(k, \rho, \varepsilon)$, coincide for the semi-Markov processes $\eta_e(t), \eta_{e,\bar{r}_{q,0}}(t), \ldots, \eta_{e,\bar{r}_{q,m-1}}(t)$, for every $k = 0, \ldots, d_i, i = q, 0$.

Also, for the reduced semi-Markov process $\eta_{e,\bar{r}_{q,m-1}}(t) = \eta_{e,\bar{r}_{q,m-2}}(t)$, the exponential moment $\Phi_{\rho}(k, \rho, \varepsilon) = \bar{r}_{q,m-1} \phi_{ij}(k, \rho, \varepsilon)$, for every $k = 0, \ldots, d_i, i = q, 0$.

Thus, the recurrent algorithm of sequential phase space reduction described above let to construct, for $k = 1, \ldots, d_i, i = q, 0$, the pivotal $(\hat{h}_{\rho}^0[k, \rho], \hat{h}_{\rho}^0[k, \rho])$-expansions expansion,

$$
\Phi_{\rho}(k, \rho, \varepsilon) = \sum_{l=\hat{h}_{\rho}^0[k, \rho]}^{\hat{h}_{\rho}^0[k, \rho]} \hat{g}_{\rho}[k, \rho, l] \varepsilon^l + \hat{\delta}_{k, \rho, 0j}(\varepsilon^{\hat{h}_{\rho}^0[k, \rho]}), \quad (29)
$$

The above Laurent asymptotic expansions coincide with the correspond-
ing Laurent asymptotic expansions for the transition power-exponential moments \(r_{q,m-1} \phi_{i0}(k, \rho, \varepsilon) \).

The summation and multiplication operational rules for Laurent asymptotic expansions presented in propositions (iii) and (v) of Lemma 1 possess commutative, associative and distributive properties, which should be understood as identities for the corresponding Laurent asymptotic expansions, i.e., identities for the corresponding parameters \(h, k \), coefficients and remainders of functions represented in two alternative forms in the corresponding functional identities. We refer to works of the authors [14, 15], for the corresponding details.

This makes it possible to prove that the Laurent asymptotic expansions for power-exponential moments \(\bar{r}_{q,m} - 1 \phi_{i0}(k, \rho, \varepsilon) \) are invariant with respect to any permutation \(\bar{r}_{q,m} = \langle r_{q,0}, \ldots, r_{q,m-2}, q, 0 \rangle \) of sequence \(\langle 0, \ldots, m \rangle \).

This legitimates notations (with omitted index \(r_{q,m-1} \)) used for parameters, coefficients and remainder in the asymptotic expansions (29).

Let \(0 \leq n \leq m - 2 \) and \(\bar{r}'_{q,n} = \langle r_{q,0}, \ldots, r'_{q,n} \rangle \) be a permutation of the sequence \(\bar{r}_{q,n} \).

The corresponding reduced semi-Markov process \(\eta_{\varepsilon, \bar{r}'_{q,n}}(t) \) is constructed as the sequence of states for the initial semi-Markov process \(\eta_{\varepsilon}(t) \) at sequential moments of its hitting into the same reduced phase space \(\bar{r}_{q,n}X = X \setminus \{ r'_{q,0}, \ldots, r'_{q,n} \} = r_{q,n}X = X \setminus \{ r_{q,1}, \ldots, r_{q,n} \} \). The times between sequential jumps of the reduced semi-Markov process \(\eta_{\varepsilon, \bar{r}'_{q,n}}(t) \) are the times between sequential instants of hitting the above reduced phase space by the initial semi-Markov process \(\eta_{\varepsilon}(t) \).

This obviously implies that the transition power-exponential moment \(r_{q,m} \phi_{ij}(k, \rho, \varepsilon) \) is, for every \(k = 0, \ldots, d \), \(j \in r_{q,n}Y_i \), \(i \in r_{q,n-1}X \), \(n = 0, \ldots, m - 1 \), invariant (as functions of \(\varepsilon \)) with respect to any permutation \(\bar{r}'_{q,n} \) of the sequence \(\bar{r}_{q,n} \).

Moreover, as follows from the recurrent algorithms presented above, the transition power-exponential moment \(r_{q,n} \phi_{ij}(k, \rho, \varepsilon) \) is a rational function of the initial transition power-exponential moment \(\phi_{ij}(k, \rho, \varepsilon) \), \(j \in Y_i \), \(i \in X \) (quotients of sums of products for some of these moments).

By using identity arithmetical transformations (disclosure of brackets, imposition of a common factor out of the brackets, bringing a fractional expression to a common denominator, permutation of summands or multipliers, elimination of expressions with equal absolute values and opposite signs in the sums and elimination of equal expressions in quotients) the rational functions \(r_{q,n} \phi_{ij}(k, \rho, \varepsilon) \) can be transformed, respectively, into the rational functions \(r'_{q,n} \phi_{ij}(k, \rho, \varepsilon) \) and wise versa.

In fact, one should only check this for the case, where the permutation \(\bar{r}'_{q,n} \) is obtained from the sequence \(\bar{r}_{q,n} \) by exchange of a pair of neighbour
states \(r_{q,l}\) and \(r_{q,l+1}\), for some \(0 \leq l \leq n - 1\). Then, the proof can be repeated for a pair of neighbour states for the sequence \(r'_{q,n}\), etc. In this way, the proof can be expanded to the case of an arbitrary permutation \(r'_{q,n}\) of the sequence \(r_{q,n}\). The above mentioned proof of pairwise permutation invariance involves processes \(\tilde{r}_{q,1} \eta_s(t)\) (for the moment, we denote as \(\tilde{r}_{q,1} \eta_s(t) = \eta_s(t)\) the initial semi-Markov process), \(\tilde{r}_{q,n} \eta_s(t)\) and \(\tilde{r}_{q,1} \eta_s(t)\). It is absolutely analogous, for \(0 \leq l \leq n - 1\). Taking this into account, we just show how this proof can be accomplished for the case \(l = 0\).

The transition exponential moments \(\tilde{r}_{q,1} \phi_{ij}(0, \rho, \varepsilon)\) and \(\tilde{r}_{q,1} \phi_{ij}(0, \rho, \varepsilon)\) for the sequences \(\tilde{r}_{q,1} = \langle r_0, r_1 \rangle\) and \(\tilde{r}_{q,1} = \langle r_1, r_0 \rangle\) (here, \(i, j \neq r_0, r_1\)) can be transformed into the same symmetric (with respect to \(r_0\) and \(r_1\)) rational function of the corresponding exponential moments, using the identity arithmetical transformations listed above,

\[
\begin{align*}
\tilde{r}_{q,1} \phi_{ij}(0, \rho, \varepsilon) &= r_0 \phi_{ij}(0, \rho, \varepsilon) + r_0 \phi_{ir_1}(0, \rho, \varepsilon) - \frac{r_0 \phi_{ij}(0, \rho, \varepsilon)}{1 - r_0 \phi_{ir_1}(0, \rho, \varepsilon)} \\
&= \phi_{ij}(0, \rho, \varepsilon) + \phi_{ir_1}(0, \rho, \varepsilon) - \frac{\phi_{ir_1}(0, \rho, \varepsilon)}{1 - \phi_{ir_1}(0, \rho, \varepsilon)} \\
&= \phi_{ij}(0, \rho, \varepsilon) + (\phi_{ir_1}(0, \rho, \varepsilon) - 1) \\
&= \phi_{ij}(0, \rho, \varepsilon).
\end{align*}
\]

The above proof for the power-exponential moments \(\tilde{r}_{q,n} \phi_{ij}(k, \rho, \varepsilon)\) is analogous.

Due to commutative, associative and distributive properties of operations
rules for Laurent asymptotic expansions, the above arithmetical transformations do not affect the corresponding asymptotic expansions for functions \(r_{q,n} \phi_{ij}(k, \rho, \varepsilon) \) and, thus, these expansions are invariant with respect to any permutation \(r'_{q,n} \) of the sequence \(r_{q,n} \).

Therefore, the Laurent asymptotic expansions for the transition power-exponential moments \(r_{q,n} \phi_{ij}(k, \rho, \varepsilon) \) and \(r'_{q,n} \phi_{ij}(k, \rho, \varepsilon) \), given by the recurrent algorithm of sequential phase space reduction described above, are identical.

We refer to the book of authors [15], where one can find an analogous proof, concerned the invariance property of the corresponding Laurent asymptotic expansions for transition power moments for hitting times, presented in the more detailed form.

The described above recurrent algorithm for construction of Laurent asymptotic expansions for power-exponential moments \(\Phi_{i0}(k, \rho, \varepsilon), k = 0, \ldots, d, i = q, 0 \) can be repeated for every \(q \neq 0 \).

This completes the proof of proposition (i) of Theorem 2.

In order to prove proposition (ii) of Theorem 2, one should repeat the same sequence of recurrent steps described above and, additionally, to apply to every intermediate asymptotic expansion, obtained above with the use of operational rules given in propositions (i), (iii), (v), and (vii) of Lemma 1, the corresponding additional operational rules given, respectively, in propositions (ii), (vi), (vi), and (viii) of Lemma 1, for computing parameters of the corresponding upper bounds for remainders.

Unfortunately, the summation and multiplication operational rules for Laurent asymptotic expansion with explicit upper bound for remainders, presented in propositions (iv) and (vi) of Lemma 1, possess commutative but do not possess associative and distributive properties. This makes parameters \(r_{q,m} \delta_{i0}[k, \rho], r_{q,m} G_{i0}[k, \rho], r_{q,m} \varepsilon_{i0}[k, \rho], k = 0, \ldots, d, i = q, 0 \) given by the algorithm described below dependent of the choice of the sequence \(r_{q,m} \), for \(q \neq 0 \).

Remark 2. Formulas for parameter \(\delta_C \) given in Lemma 1 imply, however, that, the following explicit inequalities take place, for any sequence of states \(r_{q,m} \) and \(k = 0, \ldots, d, i = q, 0, q \neq 0, \)

\[
\tilde{r}_{i,m} \delta_{i0}[k, \rho] \geq \delta^*[k, \rho] = \min_{j \in Y, t \in X, n=0, \ldots, k} \delta_{ij}[n, \rho]. \tag{31}
\]

We would like to note that, despite bulky forms, the algorithms for computing coefficients in the asymptotic expansions, and parameters for upper bound for remainders presented in Theorems 1 and 2, are computationally effective due to their recurrent character.

In conclusion, we would like to mention again that the power-exponential moments, which are interesting objects themselves, play the central role in
studies of so-called quasi-stationary phenomena in stochastic systems. This phenomena describe the behaviour of stochastic systems with random lifetimes. The core of the quasi-stationary phenomenon is that one can observe something that resembles a stationary behaviour of the system before the lifetime goes to the end. The corresponding quasi-stationary distribution can be expressed via the exponential moments of sojourn times and the first order power-exponential moments of return times, with parameter ρ, which is the characteristic root for the distributions of the corresponding return times. Related formulas and comments can be found in the book [4]. The asymptotic expansions for quasi-stationary distributions of nonlinearly perturbed semi-Markov processes do involve higher order power-exponential moments of return times and asymptotic expansions for these moments. We hope to publish the corresponding asymptotic results for nonlinearly and singularly perturbed semi-Markov processes in a near future.

References

