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Abstract

The size of the giant component in the configuration model is given by a well-known expres-
sion involving the generating function of the degree distribution. In this note, we argue that
the size of the giant is not determined by the tail behavior of the degree distribution but
rather by the distribution over small degrees. Upper and lower bounds for the component
size are derived for an arbitrary given distribution over small degrees d ≤ L and given ex-
pected degree, and numerical implementations show that these bounds are very close already
for small values of L. On the other hand, examples illustrate that, for a fixed degree tail,
the component size can vary substantially depending on the distribution over small degrees.
Hence the degree tail does not play the same crucial role for the size of the giant as it does
for many other properties of the graph.
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1 Introduction and results

The configuration model is one of the simplest and most well-known models for generating a
random graph with a prescribed degree distribution. It takes a probability distribution with
support on the non-negative integers as input and gives a graph with this degree distribution
as output. The model is very well studied and there are precise answers to most questions
concerning properties of the model such as the threshold for the occurrence of a giant component
[13, 11], the size of the largest component [14, 11], diameter and distances in the supercritical
regime [7, 8, 9], criteria for the graph to be simple [10] etc; see [5, Chapter 7] and [6, Chapters
4-5] for detailed overviews. Empirical networks often exhibit power law distributions, that is,
the number of vertices with degree d decays as an inverse power of d for large degrees. For this
reason, there has been a lot of attention on properties of the configuration model with this type
of degree distribution. Here we focus on the size of the largest component in the supercritical
regime as a functional of the degree distribution. Our main message is that the size of the largest
supercritical component is not determined by the tail behavior of the degree distribution, but by
the distribution over small degrees. While this is not surprising, in view of the general focus on
degree tails in the literature, we think it deserves to be pointed out and elaborated on.

The model and its phase transition
To define the model, fix the number n of vertices in the graph and let F = {pd}d≥0 be a
probability distribution with support on the non-negative integers. Assign a random number Di

of half-edges independently to each vertex i = 1, . . . , n, with Di ∼ F . If the total number of
half-edges is odd, one extra half-edge is added to a uniformly chosen vertex. Then pair half-edges
uniformly at random to create edges, that is, first pick two half-edges uniformly at random and



join them into an edge, then pick two half-edges from the set of remaining half-edges and create
another edge, and so on until all half-edges have been paired. The construction allows for self-
loops and multiple edges between the same pair of vertices. However, if the degree distribution
has finite mean, such edges can be removed without changing the asymptotic degree distribution,
and if the second moment is finite, there is a strictly positive probability that the graph is simple;
see e.g. [2, 10].

Write µ = E[D] and ν = E[D(D−1)]/µ. It is well-known that the threshold for the occurrence
of a giant component in the configuration model is given by ν: if ν > 1, then there is with high
probability a unique giant component occupying a positive fraction ξ of the vertices as n→∞,
while if ν < 1, then the largest component grows sublinearly in n; see [13, 11]. To see this,
consider an exploration of the graph starting from a uniformly chosen vertex and then proceeding
via nearest neighbors. For large n, such an exploration can be approximated by a branching
process, where the offspring (=degree) of the first vertex has distribution F . For vertices in later
generations, their degrees are distributed according to a size biased version of F . Indeed, by
construction of the graph, the vertices constitute the end-points of uniformly chosen half-edges,
and the probability of encountering a vertex with degree d is therefore proportional to d. Since
we arrive at a vertex from one neighbor, the remaining number of neighbors – corresponding to
the offspring of the vertex – has a down-shifted size biased distribution F̃ = {p̃d}d≥0, defined by

p̃d =
(d+ 1)pd+1

µ
. (1)

Infinite survival in the approximating branching process corresponds to a giant component in the
graph, and the critical parameter ν is easily identified as the mean of the distribution (1). The
asymptotic size ξ of the giant component is given by the survival probability in the two-stage
branching process. Write G(s) for the probability generating function for the degree distribution
F and note that the probability generating function for F̃ is given by G′(s)/µ. Let z̃ denote the
probability that a branching process with offspring distribution F̃ goes extinct. Then

ξ = 1−G(z̃), (2)

where z̃ is the smallest non-negative solution to the equation s = G′(s)/µ. A comprehensive
description of the above exploration process can be found e.g. in [6, Chapter 4]. As for notation,
when we want to emphasize the role of the distribution F for the above quantities, we write
ξF and z̃F etc. Furthermore, we always equip quantities related to down-shifted size biased
distributions with a wiggle-hat.

Basic examples
We will be interested in how the size ξ of the giant component depends on properties of the degree
distribution F . Despite the large interest in the configuration model in the context of network
modeling, there has been surprisingly little work on this issue. One recent example however is
[12], where component sizes are compared when degree distributions are ordered according to
various concepts of stochastic domination. We also mention [3], where a distribution is identified
that maximizes the size of the largest component for a given mean degree: this is achieved by
putting all mass at 0 and two consecutive integers. Here, we will throughout restrict to the class
of distributions with p0 = 0, that is, to graphs without isolated vertices. We hence require that
all vertices have a chance of being included in a giant component (if such a component exists),
and rule out cases where the component size can be tuned by removing some fraction of the
vertices. We remark however that the bounds in Theorem 1.1 are valid also when p0 > 0.

First note that, when the mean µ is fixed, the critical parameter ν increases as the variance
of the distribution increases, making it easier to form a giant component. This might lead one to
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Figure 1: Asymptotic size ξ of the giant (solid line) and critical parameter ν (dotted line in (a))
plotted against p1 with mean fixed at µ = 2.1.

suspect that the size of the giant component is also increasing in ν. This however is not true, in
fact it is typically the other way around, as elaborated on in [12]. To understand this, note that
fixing the mean and increasing the variance implies that there will be more vertices with small
degree in the graph. Vertices with small degree are those that may not be included in the giant
component, which then becomes smaller. Consider a very simple example with D ∈ {1, 2, 3}
where the probability p1 of degree 1 is varied and the probabilities p2 and p3 are tuned so that
the mean is kept fixed. As p1 increases, hence also the probability p3 increases, implying a larger
variance. Figure 1(a) shows a plot of the component size and the critical parameter against p1
when µ = 2.1, and we see that the giant component shrinks from occupying all vertices to a
fraction 0.85 of them, while the critical parameter increases linearly. Figure 1(b) shows a similar
plot (with only the component size) when D ∈ {1, 2, 10} and again µ = 2.1, and we see that the
component size decreases from 1 to less than 0.65. Note that these examples also illustrate that
the mean in itself does not determine the component size, since the mean is constant in both
pictures.

In the example we see that the component size ξ decreases as the fraction of degree 1 vertices
increases. This is very natural since degree 1 vertices serve as dead ends in the component. If
P(D ≥ 2) = 1, then the extinction probability z̃ equals 0, implying that ξ = 1. The size of the
giant is hence determined by the balance between degree 1 vertices and vertices of larger degree.
Increasing the variance in a distribution with a fixed mean typically implies an increase in the
number of low degree vertices, and our main message is that the distribution over small degrees
is in fact more important for the size of the giant component than the precise distribution over
very large degrees. In particular, the tail behavior of the degree distribution does not play the
same crucial role for the size of the giant as it does for certain other quantities such as e.g. the
scaling of the distances in the giant component [7, 8].

That the distribution over small degrees can play a significant role is illustrated in Figure
2, where the degrees have a fixed tail distribution and the remaining probability is allocated
at small degrees in different mean-preserving ways. In Figure 2(a), the degrees distribution is
fixed for d > 3 (we consider a Poisson(2) distribution and a power-law with exponent -3) and
the remaining probability is allocated at the degrees 1, 2 and 3. Specifically, the probability p1
is varied and p2 and p3 are then adjusted so that the mean is kept fixed at µ = 2.2. Figure
2(a) shows plots of the component size against p1 and we see that, although the tails remain the
same, the component size changes with p1 in both cases. Figure 2(b) shows as similar plot when

3



0.2 0.25 0.3 0.35 0.4 0.45 0.5

p
1

0.84

0.86

0.88

0.9

0.92

0.94

c
o
m

p
o
n
e
n
t 
s
iz

e

(a) Blue: pd = P(Po(2) = d)
Red: pd = 2d−3
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Figure 2: Asymptotic size ξ of the giant plotted against p1 with (a): pd fixed for d ≥ 4 and mean
µ = 2.2 (b): and pd fixed for d ≥ 10 and mean µ = 3.5 in (b).

the tail is fixed for d > 10 (Poisson and power-law) and the mean is equal to 3.5.

Bounds for a given distribution over small degrees
We also argue that, conversely, fixing the distribution over small degrees typically leaves lit-
tle room for controlling the component size by tuning the tail. This requires bounds for the
component size for a given distribution over small degrees. To formulate our results here, let
pL = {p1, . . . , pL} denote a fixed set of probabilities associated with degrees 1, . . . , L for some
L ≥ 1, and write F(µ,pL) for the set of all distributions having mean µ and those specific
probabilities up to L. It turns out that a lower bound for the component size for distributions
in F(µ,pL) is obtained by placing all remaining mass p>L = 1 −

∑L
i=1 pi at the point L + 1

and, under a mild technical condition, an upper bound is obtained by placing all remaining mass
at two specific consecutive integers. The upper bound is optimal in the sense that any smaller
bound is violated by some distribution in F(µ,pL), and the lower bound can be modified into
an optimal one under a similar technical condition as for the upper bound.

For a fixed pL, consider a distribution FL+1 with pL+1 = p>L (and pi = 0 for i ≥ L+2), write
GL+1(s) for its probability generating function and ξL+1 for the size of the giant component in a
configuration graph with this degree distribution. Note that FL+1 6∈ F(µ,pL) since the mean is
not equal to µ. Furthermore, denote

κ = E[D|D > L],

where D ∼ F , and note that fixing pL and µ implies that also κ is fixed, that is, κ = κ(µ,pL)

does not depend on other properties of F . Next, let Fκ = {p(κ)i } be a distribution where all
remaining mass is placed at the two integers bκc and dκe (or one integer if κ is an integer) in
such a way that the mean is preserved, that is,

p
(κ)
i =


pi for i = 0, . . . , L;
(bκc+ 1− κ)p>L for i = bκc;
(κ− bκc)p>L for i = bκc+ 1.

Write Gκ for the associated generating function and ξκ for the component size in the correspond-
ing configuration graph. Finally, let z̃L+1 and z̃κ denote the extinction probabilities in branching
processes with offspring distributions given by down-shifted size biased versions of the above
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distributions. Our bounds on the component size with fixed initial probabilities pL and fixed
mean µ are as follows.

Theorem 1.1. Fix pL and µ.

(a) We have that ξF ≥ ξL+1 for all F ∈ F(µ,pL).
(b) If pL and µ are such that L+ 1 ≥ |(log z̃L+1)

−1|, then

ξF ≥ 1−GL+1

(
z̃
(µ)
L+1

)
for all F ∈ F(µ,pL),

where z̃(µ)L+1 is the smallest non-negative solves to the equation s = G′L+1(s)/µ.

(c) If pL and µ are such that L+ 1 ≥ 2 |(log z̃κ)−1|, then

ξF ≤ ξκ for all F ∈ F(µ,pL).

The bounds in (b) and (c) are optimal under the given conditions, that is, in (c), for any ξ < ξκ,
there exists a distribution F0 ∈ F(µ,pL) such that ξF0 > ξ, and similarly for (b).

Remark 1. The restrictions on pL and µ in (b) and (c) are imposed for technical reasons.
They imply that, if the extinction probabilities z̃L+1 and z̃κ are close to 1, then L has to be large,
that is, a sufficiently large part of the distribution has to be fixed. We believe that this serves
to avoid e.g. situations where F(µ,pL) contains both subcritical and supercritical distributions.
For most distributions, the conditions are mild, in the sense that they are satisfied already for
moderate values of L (in relation to µ); see Table 1 for examples. 2

Remark 2. The distribution FL+1 can be thought of as the limiting case of a distribution
Fm where most of the remaining mass p>L is placed at L+1 and a vanishing amount on another
integer m→∞; see the proof of Theorem 1.1(b). The mean in this distribution Fm is kept fixed
at µ, and the bound in (b) differs from the component size ξL+1 obtained for the distribution
FL+1 in that the correct mean µ is used instead of the mean of FL+1 in the equation defining
z̃(µ)
L+1 (explaining the notation). Note that the spread in the distribution of the remaining mass
is maximized in the distribution Fm. In the distribution Fκ, on the other hand, the mass is
concentrated as much as possible (while still keeping the mean fixed). We remark that it can
be shown that the size of the giant is always, without any technical conditions, maximized by
concentrating the remaining mass at L+1 and two consecutive integers; see [4], which generalizes
a result from [3]. The general result however does not identify the two integers, and is therefore
not quantitatively useful for us. 2

Table 1 contains numerical values of the bounds in Theorem 1.1 for a number of different
distributions (that all fulfill the technical conditions). We note that, in all cases, the upper and
lower bound on the size of the giant are very close, supporting the claim that, if the distribution
over low degrees is fixed, then the size of the giant is not affected much by the tail of the
distribution.

The rest of the paper is organized so that the proof of Theorem 1.1 is given in Section 2, and
some suggestions of further work in Section 3.

2 Proof of Theorem 1.1

Assume throughout this section that pL and µ are fixed.
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pL = (p1, . . . , pL) L p>L µ ξL+1 1−GL+1(z̃
(µ)
L+1) ξκ

(0.31, 0.31, 0.21) = Po(2)>0 3 0.17 3 0.9140 0.9504 0.9508
(0.43, 0.32) = Po(1.5)>0 2 0.25 3 0.5896 0.9019 0.9103
(0.2, 0.4) 2 0.4 2.5 0.9537 0.9665 0.9695
(0.2, 0.4) 2 0.4 5 0.9537 0.9894 0.9896
(0.7, 0, 0) 3 0.3 2.5 0.7023 0.7247 0.7318
(0.7, 0, 0) 3 0.3 3 0.7023 0.8319 0.8366
(0.5, 0.25, 0.125) 3 0.125 2 0.7047 0.7553 0.7680
(0.5, 0.25, 0.125) 3 0.125 3 0.7047 0.8836 0.8851
(0.9, 0, 0, 0) 4 0.1 2 0.2848 0.5827 0.5948
(0.86, 0.03, 0.02, 0.01) 4 0.1 2 0.2674 0.6101 0.6215

Table 1: Bounds for the size of the giant component from Theorem 1.1. The first two examples
are Poisson probabilities conditional on the degree being strictly positive. All distributions satisfy
the technical conditions in Theorem 1.1(b) and (c).

Proof of Theorem 1.1(a). Fix a distribution F ∈ F(µ,pL). Since the component size ξ is given
by (2), and ξL+1 by the analogous expression for the distribution FL+1, we need to show that
G(z̃) ≤ GL+1(z̃L+1). It is clear that G(s) ≤ GL+1(s) for any s, and hence, since generating
functions are increasing, this follows if we show that z̃ ≤ z̃L+1. Let {p̃(L+1)

i }Li=0 denote the
probabilities defining the down-shifted size biased version F̃L+1 of FL+1 and recall that {p̃i},
defined in (1), denote the corresponding probabilities for F . It is not hard to see that p̃i ≤ p̃(L+1)

i

for all i = 0, . . . , L (and p̃(L+1)

i = 0 for i ≥ L+ 1). Hence F̃L+1 is stochastically smaller than F̃ ,
implying that z̃ ≤ z̃L+1, as desired.

Proof of Theorem 1.1(b). We begin by defining a sequence of distributions {Fm}m≥κ where a
vanishing (as m → ∞) fraction of the remaining mass is placed at m and the rest at L + 1, in
such a way that the mean of the distribution is fixed. Specifically, Fm = {p(m)

i }i≥1 is defined by

p(m)

i =


pi for i = 0, . . . , L;

(1− rm)p>L for i = L+ 1 where rm = κ−(L+1)
m−(L+1) ;

rmp>L for i = m.

Note that Fm ∈ F(µ,pL). Consider the extinction probability z̃m of a branching process with
offspring distribution given by a down-shifted size biased version F̃m of Fm. We will show that (i)
z̃m is increasing for large m and converges to the solution z̃(µ)

L+1 of the equation s = G′L+1(s)/µ,
and (ii) that GF (z̃F ) ≤ GL+1(z̃

(µ)

L+1) for all F ∈ F(µ,pL). First note that it follows from the
proof of Theorem 1.1(a) that z̃m ≤ z̃L+1, and the assumption L+1 ≥ |(log z̃L+1)

−1| ensures that
z̃L+1 < 1. The extinction probability z̃m solves the equation s = G′m(s)/µ and hence it follows
that z̃m is increasing for large m if G′m(z̃m) ≤ G′m+1(z̃m) when m is large – indeed, the smallest
solution z̃m+1 of s = G′m+1(s)/µ must then be larger than z̃m. It is straightforward to bound

G′m+1(z̃m)−G′m(z̃m) ≥ (L+ 1)(rm − rm+1)− z̃m−(L+1)
L+1 ,

which is positive for large m since rm − rm+1 is positive and of order m−2 while the last term
is exponentially small. Since z̃m is increasing for large m and bounded from above by z̃L+1 < 1
it converges to some limit that is strictly smaller than 1. That this limit solves the equation
s = G′L+1(s)/µ follows by taking limits on both sides in the equality z̃m = G′m(z̃m)/µ. We denote
the limit z̃(µ)

L+1.
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As for (ii), fix a distribution F ∈ F(µ,pL). Since GF (s) ≤ GL+1(s) for all s and generating
functions are increasing, the desired conclusion follows if z̃F ≤ z̃(µ)

L+1, which in turn follows if
G′F (z̃F ) ≤ G′L+1(z̃F ), since the smallest solution z̃(µ)

L+1 of s = G′L+1(s)/µ must then be larger than
z̃F = G′F (z̃F )/µ. The assumption L + 1 ≥ |(log z̃L+1)

−1| ensures that functions of the form
f(d) = dsd−1, with s ≤ z̃L+1, are strictly decreasing for d ≥ L+1. Since z̃F ≤ z̃L+1 (as shown in
part (a)), this means that

∞∑
d=L+1

dz̃d−1F pd ≤ (L+ 1)z̃LFp>L,

which implies that G′F (z̃F ) ≤ G′L+1(z̃F ), as desired.
Finally note that the derived bound is optimal: Since Gm(z̃m) ↗ GL+1(z̃

(µ)
L+1), for any ξ >

1−GL+1(z̃
(µ)
L+1) there exist an m such that ξFm < ξ

The following simple lemma will be used in the proof of Theorem 1.1. It will be applied to
N = D|D > L and the mean is therefore denoted by κ.

Lemma 2.1. Let N be an integer valued random variable with mean κ. There exist integer
valued random variables N1 and N2 with E[N1] = bκc and E[N2] = bκc + 1 such that, with
Z ∼ Be(bκc+ 1− κ), we have that

N
d
= ZN1 + (1− Z)N2.

Proof. Let Nlow = N |N ≤ bκc and Nhi = N |N > bκc and write κlow and κhi for the respective
means. Furthermore, let X and Y be Bernoulli variables with parameter κhi−bκc

κhi−κlow and κhi−bκc−1
κhi−κlow ,

respectively. Then set

N1 = XNlow + (1−X)Nhi N2 = Y Nlow + (1− Y )Nhi.

It is straightforward to confirm that P(ZN1 + (1− Z)N2 = i) = P(N = i) for all i.

Proof of Theorem 1.1 (c). We need to show that GF (z̃F ) ≥ Gκ(z̃κ) for all F ∈ F(µ,pL). To this
end, we begin by showing that

GF (s) ≥ Gκ(s) for all s ∈ [0, 1] and all F ∈ F(µ,pL). (3)

Pick F ∈ F(µ,pL) and let D ∼ F . The probability generating function GF (s) can be written as

GF (s) = E
[
sD
]
= E

[
sD|D ≤ L

]
(1− p>L) + E

[
sD|D > L

]
p>L.

Applying Lemma 2.1 with N = D|D > L, we can write

E
[
sD|D > L

]
= E

[
sN1

]
P(Z = 1) + E

[
sN2

]
P(Z = 0),

where E[N1] = bκc, E[N2] = bκc + 1 and Z ∼ Be(bκc + 1 − κ). Jensen’s inequality then yields
that

E
[
sD|D > L

]
≥ sbκcP(Z = 1) + sbκc+1P(Z = 0).

The probability generating function Gκ(s) can be written as

Gκ(s) = E
[
sD|D ≤ L

]
(1− p>L) +

(
sbκcP(Z = 1) + sbκc+1P(Z = 0)

)
p>L,
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and hence (3) follows. Since generating functions are increasing, the desired bound now follows
if z̃F ≥ z̃κ, which in turn follows if G′F (z̃κ) ≥ G′κ(z̃κ). The assumption L + 1 ≥ 2 |(log z̃κ)−1|
ensures that this is the case: Let Dκ ∼ Fκ. Note that, since the two distributions F and Fκ
agree up to L, the desired inequality follows if E[Dz̃Dκ |D > L] ≥ E[Dκz̃

Dκ
κ |Dκ > L]. We have

that
E
[
Dκz̃

Dκ
κ |Dκ > L

]
= bκcz̃bκcκ (bκc+ 1− κ) + (bκc+ 1)z̃bκc+1

κ (κ− bκc).

By Lemma 2.1, with N = D|D > L, we can write

E
[
Dz̃Dκ |D > L

]
= E

[
N1z̃

N1
κ

]
(bκc+ 1− κ) + E

[
N2z̃

N2

]
(κ− bκc),

where N1, N2 > L, E[N1] = bκc and E[N2] = bκc + 1. The assumption L + 1 ≥ 2 |(log z̃κ)−1|
implies that f(d) = dz̃dκ is convex for d ≥ L+ 1. It follows from a straightforward modification
of Jensen’s inequality (specifically, a restriction to [L+ 1,∞)) that

E
[
N1z̃

N1
κ

]
≥ bκcz̃bκc, E

[
N2z̃

N2
κ

]
≥ (bκc+ 1)z̃bκc+1

and the bound follows. That the bound is optimal follows by noting that Fκ ∈ F(µ,pL), that is,
the distribution defining the bound is included in the class.

References

[1] Angel, O., van der Hofstad, R. and Holmgren, C. (2016): Limit laws for self-loops and
multiple edges in the configuration model, arxiv.org/abs/1603.07172.

[2] Britton, T., Deijfen, M. and Martin-Löf, A. (2006): Generating simple random graphs with
prescribed degree distribution, J. Stat. Phys. 124, 1377-1397.

[3] Britton, T. and Trapman, P. (2012): Maximizing the size of the giant, J. Appl.Probab. 49,
1156-1165.

[4] Deijfen, M., Rosengren, S. and Trapman, P. (2017): Maximizing the size of the giant for a
given distribution over small degrees, work in progress (preprint available upon request).

[5] van der Hofstad, R. (2017): Random graphs and complex networks, Volume I, Cambridge
Univeristy Press.

[6] van der Hofstad, R. (2015): Random graphs and complex networks, Volume II, available at
http://www.win.tue.nl/∼rhofstad.

[7] van der Hofstad, R., Hooghiemstra, G. and van Mieghem, P. (2005): Distances in random
graphs with finite variance degrees, Rand. Struct. Alg. 26 76-123.

[8] van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2007): Distances in random
graphs with finite mean and infinite variance degrees, Electr. J. Probab. 12 703-766.

[9] van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2009): A phase transition for
the diameter of the configuration model, Internet Math. 4 113-128.

[10] Janson, S. (2009): The probability that a random multigraph is simple, Comb. Probab.
Computing 18, 205-225.

8



[11] Janson, S. and Luczak, M. (2009): A new approach to the giant component problem, Rand.
Struct. Alg. 34, 197-216.

[12] Leskelä, L. and Ngo, H. (2017): The impact of degree variability on connectivity properties
of large networks, Internet Math. 13.

[13] Molloy, M. and Reed, B. (1995): A critical point for random graphs with a given degree
sequence, Rand. Struct. Alg. 6, 161-179.

[14] Molloy, M. and Reed, B. (1998): The size of the giant component of a random graphs with
a given degree sequence, Comb. Prob. Comp. 7, 295-305.

9


