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Abstract

We study the growth of two competing infection types on graphs generated by the configu-
ration model with a given degree sequence. Starting from two vertices chosen uniformly at
random, the infection types spread via the edges in the graph in that an uninfected vertex
becomes type 1 (2) infected at rate λ1 (λ2) times the number of nearest neighbors of type
1 (2). Assuming (essentially) that the degree of a randomly chosen vertex has finite second
moment, we show that if λ1 = λ2, then the fraction of vertices that are ultimately infected by
type 1 converges to a continuous random variable V ∈ (0, 1), as the number of vertices tends
to infinity. Both infection types hence occupy a positive (random) fraction of the vertices.
If λ1 6= λ2, on the other hand, then the type with the larger intensity occupies all but a
vanishing fraction of the vertices. Our results apply also to a uniformly chosen simple graph
with the given degree sequence.

Keywords: Random graphs, configuration model, first passage percolation, competing growth,
coexistence, continuous-time branching process.
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1 Introduction

Fix n ≥ 1 and let (d1, . . . , dn) be a sequence of positive integers that may depend on n. Consider
a graph with n vertices and degrees (d1, . . . , dn) generated by the configuration model, that is,
equip each vertex i ∈ {1, . . . , n} with di half-edges, and pair half-edges uniformly at random
to create edges. For all half-edges to find a partner we assume that the total degree

∑
di is

even. Assign independently to each edge e in the resulting graph two independent exponentially
distributed passage times X1(e) and X2(e) with parameter λ1 and λ2, respectively. At time 0,
two uniformly chosen vertices are infected with infections type 1 and type 2, respectively, and
the infections then spread via nearest neighbors: When a vertex becomes type 1 (2) infected,
the time that it takes for the infection to traverse an edge e emanating from the vertex is given
by X1(e) (X2(e)). If the other end point of the edge e is still uninfected at that time, it becomes
type 1 (2) infected and remains so forever. It also becomes immune to the other infection type.

In this paper we study the above competing growth process on a random graph generated
from a given degree sequence subject to the regularity conditions stated below. These conditions
ensure that the graph contains a giant component occupying all but a vanishing fraction of the
vertices as n → ∞, and hence that almost all vertices will w.h.p. be infected when the process
terminates. The question that we will be interested in is the outcome of this competition.
Specifically, will both types occupy a strictly positive fraction of the vertices in the limit as
n→∞? We show that the answer is yes if and only if λ1 = λ2. This question has previously been



studied for the configuration model with constant degrees [2] and infinite variance degrees [12];
see the end of this section for a summary of earlier work.

Given a degree sequence (d(n)

1 , d(n)

2 , . . . , d(n)
n ) with

∑
d(n)

i even, write Dn for the degree of a
vertex chosen uniformly at random, so that

P(Dn = k) = #{i : di = k}/n.

Our assumptions on the (sequence of) degree sequences are the following:

(A1) (Dn)n≥1 converges in distribution to a random variable D with E[D2] <∞, and

E[D2
n]→ E[D2];

(A2) di ≥ 2 for all i, and P(D > 2) > 0.

Assumption (A1) could equivalently be formulated as the sequence of empirical distributions
being uniformly square integrable and converging to a probability distribution (pd)d∈N on the
positive integers. One standard example in which (A1) is satisfied is when (d1, d2, . . . , dn) are
independent realizations of a random variable D with finite variance. By increasing a randomly
chosen degree by 1, if necessary, we can make sure that the total degree is even. If we condition
on the sequence (Di)

n
i=1 and assume that E[D2] < ∞, P(D ≥ 2) = 1 and P(D > 2) > 0, then

(A1) and (A2) hold w.h.p. and thus our results, as stated below, apply.
A graph generated by the configuration model may contain self-loops and multiple edges,

but the assumption (A1) implies that the probability of obtaining a simple graph is bounded
away from 0 as n → ∞; see [1, 16, 17]. Furthermore, it is well-known that conditioning on the
resulting graph being simple yields a uniform sample among simple graphs with the specified
degree sequence; see [15, Chapter 7]. Hence our results apply also for such a uniformly chosen
simple graph.

Let D∗ be a size biased version of D, that is, P(D∗ = d) = dP(D = d)/E[D]. The threshold
for the occurrence of a (unique) giant component in the graph is given by E[D∗ − 1] = 1; see
[18, 19]. This can be seen by exploring the components in the graph via nearest neighbors,
starting from a uniformly chosen vertex. As n → ∞, this exploration can be approximated by
a branching process and, by construction of the graph, the offspring distribution of explored
vertices in the second and later generations is given by D∗ − 1. The relative size of the giant
component is given by the survival probability in the approximating branching process; see
[18, 20]. Condition (A2) above implies that the survival probability is 1, so that the asymptotic
fraction of vertices in the giant component is 1.

Now consider the competition process described above. Write Ni(n) for the total number of
type i infected vertices when the process terminates, and N̄i(n) = Ni(n)/n for the corresponding
fraction. Note that, since the giant component spans all but a vanishing fraction of the vertices,
we have that N̄1(n) + N̄2(n)

p−→ 1, and it is therefore enough to consider N̄1(n). Furthermore,
by symmetry, we may assume that λ1 ≤ λ2. The following is our main result.

Theorem 1.1. Assume that the degree sequence satisfies (A1) and (A2).

(a) If λ1 = λ2, then N̄1(n)
d−→ V , where V is a continuous random variable with a strictly

positive density on (0, 1).

(b) If λ1 < λ2, then N̄1(n)
d−→ 0.
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Remark. Starting with two given infected vertices, e.g. vertices 1 and 2, or several infected
vertices of each type (fixed in number as n → ∞) gives the same results, except that the
distribution of the limiting fraction V will depend on the degrees of the initially infected vertices.
Moreover, the theorem extends to a fixed number of competing types larger than two, in which
case all types of maximal strength each conquer a positive fraction of the vertices.

Remark. The assumption di ≥ 2 ensures that the giant component comprises almost all ver-
tices. Weakening this condition to E[D∗ − 1] > 1 gives a graph where the giant component
may contain a smaller fraction of the vertices. The competition process can be analyzed also on
such a graph and the non-trivial case then arises when both initial vertices belong to the giant
component. We believe that our methods apply also in this case, but it would require dealing
with a conditioning on both initial vertices being in the giant component. Establishing a version
of Theorem 1.1 in that case would make it applicable also for e.g. the Erdős–Renyi graph and
the generalized random graph analyzed in [8]. These models give simple graphs with random
degrees and, conditionally on the degrees, the graph is uniform on the set of all simple graphs
with those given degrees.

Outline of the proof
In the proof below we establish that there is an initial phase where the outcome of the competi-
tion is determined, followed by a phase that lasts until close to the end, and where the fractions
of two types are essentially constant. An important tool in the proof is a standard technique
for exploring the graph and the evolution of the infections simultaneously. A vertex is detected
when it is reached by the infection and the half-edges attached to the vertex are then declared
active, of type 1 or 2 depending on the type of the vertex. A half-edge remains active until it
is opened for infection. A partner half-edge is then chosen and, if the vertex of this half-edge
is still uninfected at that time, this leads to infection transfer and activation of new half-edges.
The process can be defined in continuous time or in discrete steps by observing it only at the
time points when an edge is opened; see Section 2 for a more detailed description. Write S(i)

k for
the number of active type i half-edges after k steps in this process and Sk = S(1)

k + S(2)

k for the
total number active half-edges. Define Mk to be the fraction of active type 1 half-edges among
all active half-edges, more precisely defined by

Mk :=

S
(1)
k
Sk

if Sk > 0;

Mk−1 if Sk = 0.
(1.1)

In a key step we show that, if λ1 = λ2, then Mk is a martingale. We then give an estimate of
its quadratic variation which implies that Mk is essentially constant for k ≥ νn for any sequence
of integers νn →∞. The probability that a newly infected vertex is infected by type 1 is hence
roughly constant for k ≥ νn and equal to Mνn . The initial stages of the competition, on the
other hand, can be approximated by a branching process and asymptotic results on branching
processes imply that Mνn converges to a continuous random variable V ∈ (0, 1) if λ1 = λ2, and
to 0 if λ1 < λ2. This yields Theorem 1.1(a). The proof of Theorem 1.1(b) is completed by letting
the weaker type 1 infection spread with the same larger intensity λ2 as the type 2 infection for
k ≥ νn. The fraction of type 1 vertices among infected vertices for k ≥ νn in such a process is
close to 0 by the above results, and the type 1 infection clearly captures even fewer vertices in
the original process.

The rest of the paper is organized so that the exploration process is described in more
detail in Section 2, along with the initial branching process approximation. The results on Mk,
specifying the evolution of the infections during the main phase, are then given in Section 3.
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Theorem 1.1 is proved in Section 4. Finally some directions for future work are described in
Section 5.

Previous work
Competition on the configuration model has previously been studied in the case when the degree
distribution follows a power-law with exponent τ ∈ (2, 3), that is, when the mean degree is finite,
but the variance infinite. In that case one of the types occupies all but a finite number of vertices
as n → ∞, and both types have a positive probability of winning, regardless of the values of
the intensities; see [12]. The process has also been studied on random regular graphs generated
by the configuration model with constant degree; see [2]. Our results generalize the results in
[2] when the competition starts from fixed initial sets. However, the results in [2] also cover
the case with growing initial sets, and give precise quantifications of the asymptotic number of
vertices of each type.

In the present work, as well as in [2, 12], the passage times are assumed to be exponential. The
model can of course be defined analogously for passage times with arbitrary distributions. It has
been analyzed in [5, 6] for configuration graphs with power-law exponent τ ∈ (2, 3) and constant
passage times, so that all randomness comes from the underlying graph. When the types have
different speed, the faster type occupies all but a vanishing fraction of the vertices, while when
the speeds are the same, the types may or may not occupy positive fractions depending on the
specific choice of the two initial vertices. A slightly different competition process with constant
passage times is analyzed in [10], and the present competition process is analyzed on preferential
attachment graphs in [3].

Finally, we mention that competing first passage percolation with exponential passage times
has previously been studied on Zd. In that setting coexistence may occur for equal strength
competitors, whereas the case of unequal strength remains to be fully resolved; see [11] for a
survey and references.

2 The initial phase

In this section we first define the exploration of the graph and the flow of infection in more
detail. We then describe a branching process approximation of the number of active half-edges
of the two types in the early stages of the growth. This leads to a characterization of the limiting
behavior of a continuous time version of Mk (defined in (1.1)) at the end of the initial phase.

The exploration process
To describe the exploration process, fix λ1, λ2 > 0, possibly different. At time 0 we start with
the vertices and the attached half-edges. The pairing of the half-edges however is hidden and
is revealed during the process. Each half-edge is throughout the process classified as either free
or paired, and a free half-edge is in turn labeled as active of either type 1 or 2, or inactive. The
initial set of active type i half-edges consists of the half-edges attached to the uniformly chosen
initial type i vertex, while all other half-edges are inactive. Since the initially infected vertices
are chosen randomly, the initial numbers a1 and a2 of active type 1 and type 2 half-edges,
respectively, are random. However, we condition on them in the sequel, and hence assume that
they are given numbers. The sets of half-edges are now updated inductively in continuous time
as follows, with S(i)

t denoting the number of active half-edges of type i at time t.

(P1) Each active half-edge of type i = 1, 2 infects with intensity λi, that is, it is equipped with
an exponential clock with intensity λi, and infects when the clock rings. When a half-edge
q infects, it picks a partner r uniformly at random from all free half-edges distinct from q.
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Let x and y be the vertices that q and r, respectively, are attached to. Then q and r go
from free to paired and form an edge xy.

(P2) If y is already infected, nothing more happens. In this case, r was also active (of the same
type as q or not), and the number of active half-edges decreases by 2.

(P3) If y is not infected, it becomes infected by the same type as x, and all remaining half-edges
at y become active of this type. This means that, if q has type i and y has degree dy,
then the number S(i)

t of active half-edges of type i increases by dy − 2, while the number
of active half-edges of the other type does not change.

A discrete version of the process is obtained by observing the continuous time process at the
times half-edges are paired. In each step k of the discrete time process, an active half-edge q
is chosen at random, with probability proportional to λi where i is its type. The chosen half-
edge infects as in (P1)–(P3) above. In both cases, if there are no remaining active half-edges,
the infections have stopped, but it still remains to complete the graph. We then join any two
uniformly chosen half-edges, that is, we choose a uniform matching of the remaining half-edges.
The number of active type i half-edges after k steps is denoted by S(i)

k . Throughout, quantities
related to discrete time processes will be denoted by standard roman letter, while quantities
related to processes in continuous time will be denoted by calligraphy letter. For instance Mt

denotes the continuous time version of Mk, defined in (1.1), that is, Mt = S(1)

t /(S(1)

t + S(2)

t ).

Branching process approximation
We now describe how the early evolution of S(i)

t (i = 1, 2) can be coupled with two independent
branching processes. Stronger results in this direction have been obtained in [7]. However, we
only need the coupling up to some time tn → ∞ (without further restrictions on tn). This is
fairly easy to establish and we therefore describe it here.

Our aim is to prove the following result on the fraction of active type 1 half-edges in the
initial phase.

Proposition 2.1. There exists a deterministic sequence of integers tn →∞ such that Mtn
d−→

V as n→∞, where V is a continuous random variable with strictly positive density on (0, 1) if
λ1 = λ2 and V ≡ 0 if λ1 < λ2.

We now consider the initial phase of the continuous time exploration process when t is so
small that rather few vertices have been infected. First consider the general case with λ1, λ2 >
0, possibly different, and the process described by (P1)–(P3) above. In order to study the
initial phase, we introduce the corresponding process where half-edges in (P1) are drawn with
replacement, that is, the half-edge r is chosen uniformly at random from the set of all half-
edges, independently of previous picks. In this version we do not have to keep track of the
actual sets of active half-edges, only their numbers, which we denote by B(1)

t and B(2)

t . Moreover,
we pretend that the chosen half-edge and its vertex are not used before, so we ignore (P2) and
always update B(1) and B(2) as in (P3). This means that B(1) and B(2) are two independent
continuous time Markov branching processes with intensities λ1 and λ2, respectively, and the
same offspring distribution D∗n − 1, where D∗n is the size-biased distribution corresponding to
the empirical distribution Dn, that is, P(D∗n = d) := dP(Dn = d)/E[Dn]. Of course, we take
B(i)

0 = ai.
Furthermore, define B̂(i)

t to be a branching process defined as B(i)

t but with the offspring
distribution changed to D∗ − 1. Thus B̂(i)

t , unlike S(i)

t and B(i)

t , does not depend on n. Since
E[D∗ − 1] = E[D(D − 1)]/E[D] < ∞, there is no explosion, and B̂(i)

t is a.s. finite for all t.
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Specifically, for every fixed T < ∞, the process B̂(i) has a.s. only a finite number of births

(infections) in [0, T ]. Moreover, since Dn
d−→ D and E[Dn] → E[D] < ∞, we have that

D∗n
d−→ D∗. It follows that, for every fixed T < ∞, we can couple B(i) and B̂(i) such that they

agree with probability 1 − o(1) each time an individual gets offspring at a time t ≤ T , that is,
w.h.p. B(i)

t = B̂(i)

t for all t ≤ T .
Now return to the actual exploration process. We can obtain it from the version with

replacement by accepting a selected half-edge r if it is free, and otherwise resampling. Moreover,
we also check if the accepted half-edge already is active, and then we apply (P2) instead of
(P3). During a fixed time interval [0, T ], the process B̂(i)

t has a.s. only finitely many births and
thus, since B(i)

t = B̂(i)

t w.h.p. on this interval, the number of births in [0, T ] for B(i)

t is Op(1).
Furthermore, the number of half-edges that are paired in [0, T ] is Op(1), and so is the number
of half-edges that are declared active in [0, T ]. Hence, at each of the Op(1) births in [0, T ], the
probability that a paired or active half-edge is picked in the process B(i)

t is o(1). Consequently,
w.h.p., only free inactive half-edges are selected in B(i)

t for t ≤ T and the process then agrees
completely with S(i)

t for t ≤ T .
We have shown that the processes S(i)

t and B̂(i)

t can be coupled (for i = 1, 2 simultaneously)
such that, for every fixed T , we have that S(i)

t = B̂(i)

t for t ≤ T . Let

τn := inf
{
t ≥ 0 : S(i)

t 6= B̂
(i)

t for some i ∈ {1, 2}
}
.

It follows that P(τn ≤ T )→ 0 for every fixed T , that is, τn
p−→ ∞. This implies that there is a

deterministic sequence tn →∞ such that P(τn ≤ tn)→ 0. In other words, w.h.p.

S(1)

t = B̂(1)

t and S(2) = B̂(2)

t for t ≤ tn. (2.1)

Fix such a sequence tn → ∞ where, for later use, we pick the sequence such that each tn is an
integer. For the proof of Theorem 1.1, it will be useful to adjust the sequence slightly to ensure
that the number of vertices that have been infected at time tn is small. Thus, let Nt be the
number of edges identified in the exploration process at time t; this equals the number of times
that (P1) has been performed. Also let N̂t be the analogous quantity for the process B̂(1)

t ∪ B̂
(2)

t .
With the coupling above, we have Nt = N̂t for t < τn, and hence w.h.p. Ntn = N̂tn . We may
assume, by decreasing tn if necessary, that N̂tn ≤ n1/3 w.h.p.

We also define a related sequence of integers νn such that, in the discrete time exploration
process, the branching process approximation remains valid beyond step νn. To do this, note
that N̂tn

a.s.−→ ∞ as n→∞, since tn → ∞. Hence, N̂tn
p−→ ∞ and Ntn

p−→ ∞, and thus there
exists a deterministic sequence νn of integers such that νn →∞ and w.h.p.

n1/3 ≥ N̂tn = Ntn ≥ νn. (2.2)

Finally note that, by our assumptions, D∗n ≥ 2 and thus D∗ ≥ 2 so that D∗ − 1 ≥ 1.
This means that the branching processes B̂(i)

t never decrease. In particular, they never become
extinct, and therefore B̂(i)

t →∞ a.s. as t→∞.
With the above coupling at hand we can prove Proposition 2.1.

Proof of Proposition 2.1. Suppose first that λ1 = λ2. The branching processes B̂(1)

t and B̂(2)

t are
independent and have the same offspring distribution, but possibly different initial values a1 and
a2. If we restrict to integer values of t, we obtain two independent Galton–Watson processes
B̂(1)

k and B̂(2)

k with the same offspring distribution. Moreover, this offspring distribution has a
finite mean m > 1, since, by assumption, E[D2] < ∞ and thus E[D∗] < ∞ (in fact we have
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m = eE[D
∗−1]). By the Seneta–Heyde theorem [14] (see also [4, Theorem I.10.3]) there exists a

derministic sequence ck such that B̂(i)

k /ck → Wi a.s., where Wi ∈ (0,∞) is a random variable,
and thus

B̂(1)

k

B̂(1)

k + B̂(2)

k

a.s.−→ V

for some random variable V ∈ (0, 1). By [4, Theorem II.5.2] and the subsequent remark, the
variable Wi (i = 1, 2) is continuous with strictly positive density on (0,∞) and hence V is
continuous with strictly positive density on (0, 1). Since tn → ∞, and we have assumed that
tn ∈ N, it follows that

B̂(1)

tn

B̂(1)

tn + B̂(2)

tn

a.s.−→ V ∈ (0, 1) (2.3)

as n→∞. Alternatively, we can use the continuous-time version of the Seneta–Heyde theorem
by Cohn [9] to directly arrive at (2.3). Since S(i)

tn = B̂(i)

tn w.h.p. by (2.1), it follows from (2.3)
that

Mtn =
S(1)

tn

S(1)

tn + S(2)

tn

d−→ V ∈ (0, 1), (2.4)

and the first part of Proposition 2.1 is proved.
Now suppose that λ1 < λ2. By time-scaling we may assume that λ1 = 1 and λ2 = λ > 1.

Then B̂(1)

λt and B̂(2)

t are two independent continuous time branching processes, with the same
intensity and the same offspring distribution (with finite mean). Hence, as in the case with
equal intensities, there exist ck such that a.s.

B̂(1)

λk/ck →W1 (2.5)

B̂(2)

k /ck →W2, (2.6)

where W1 and W2 are random variables with Wi ∈ (0,∞) a.s. Furthermore, ck+1/ck → m > 1.
For any fixed j ≥ 0, we have for large enough k that λk ≥ k + j, and thus B̂(1)

k+j ≤ B̂
(1)

λk. Hence,
by (2.5), a.s.

lim sup
k→∞

B̂(1)

k

ck
= lim sup

k→∞

B̂(1)

k+j

ck+j
≤ lim sup

n→∞

B̂(1)

λk

ck
· ck
ck+j

= W1m
−j .

Since W1 < ∞, m > 1 and j ≥ 0 is arbitrary, it follows that lim supk→∞ B̂
(1)

k /ck = 0 a.s. and

thus, recalling from (2.6) that B̂(2)

k /ck → W2 > 0, that B̂(1)

k /B̂
(2)

k
a.s.−→ 0. Hence, (2.3) and (2.4)

hold with V ≡ 0.

3 The deterministic phase

In this section we show that the fractionMk of active type 1 half-edges among all active half-edges
remains roughly constant after the initial phase in the exploration process for equal intensities.
At the very end of the process, when most half-edges have already been paired, this might fail,
but we show that the fraction is indeed constant during the main part of the process. Here we
will work mainly in discrete time, and then connect to continuous time in the proof of Theorem
1.1. We denote the total number of edges in the graph by N , that is,

N =
1

2

∑
i

di;

this is the total number of steps in the discrete time exploration process.
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Proposition 3.1. Assume that λ1 = λ2 = 1 and let νn be defined as in (2.2). As n→∞ we
have for any ε > 0 that

sup
νn≤k≤(1−ε)N

∣∣Mk −Mνn

∣∣ p−→ 0. (3.1)

Remark. Proposition 3.1 is valid for any sequence νn →∞ with νn ≤ (1− ε)N . However, we
will apply it to the sequence νn defined in (2.2) and therefore formulate it for this. The idea
is that the branching process approximation in Section 2 remains valid beyond step νn in the
discrete process, and Proposition 3.1 then ensures that the proportion of type 1 vertices does
not change after that.

The key observation in the proof of Proposition 3.1 is that Mk is a martingale when λ1 = λ2.
We then show that the second moment assumption implies that the contribution to the quadratic
variation of this martingale during the range νn to (1− ε)N is vanishingly small. With this at
hand it is not hard to show (3.1).

Lemma 3.2. If λ1 = λ2, then (Mk)
N
k=0 is a martingale.

Proof. Recall that Sk denotes the total number of active half-edges after k steps. Define ∆Sk =
Sk+1 − Sk, and similarly for other sequences.

Let Fk be the σ-field generated by all events up to step k. Next, reveal whether a new vertex
is infected in step k, and if so, the identity (and thus the degree) of the new infected vertex
(however, we do not yet reveal the classification of the involved half-edges). Let F+

k ⊃ Fk denote
the σ-field generated by the events revealed so far. If a new node of degree d is infected, then
∆Sk = d− 2, and ∆S(1)

k is either d− 2 or 0, with conditional probabilities (given F+
k ) Mk and

1−Mk, respectively. Hence, in this case,

E
[
∆S(1)

k | F
+
k

]
= Mk(d− 2)

and thus
E
[
S(1)

k+1 | F
+
k

]
= S(1)

k +Mk(d− 2) = Mk(Sk + d− 2) = MkSk+1;

Hence, E
(
Mk+1 | F+

k

)
= Mk. If no new vertex is infected, and Sk > 0, then ∆Sk = −2. Since

the two paired half-edges are then both drawn uniformly at random (without replacement) from
the active half-edges, each one of them has (conditional) probability Mk of being of type 1.
Hence

E
[
∆S(1)

k | F
+
k

]
= −2Mk

and thus
E
[
S(1)

k+1 | F
+
k

]
= S(1)

k − 2Mk = Mk(Sk − 2) = MkSk+1.

Consequently, if Sk > 2, so that Sk+1 > 0, then E
[
Mk+1 | F+

k

]
= Mk. If Sk = 2, so that Sk+1 =

0, or if Sk = Sk+1 = 0, then Mk+1 = Mk by definition. Hence, in all cases E
[
Mk+1 | F+

k

]
= Mk,

and thus E [Mk+1 | Fk] = Mk.

In order to obtain a bound on the quadratic variation of (a stopped version of) Mk, we need
to show that Sk grows at least linearly in k throughout the range νn to (1− ε)N .

Lemma 3.3. If λ1 = λ2, then, for every ε > 0 there exists c > 0 such that w.h.p. Sk ≥ ck
whenever νn ≤ k ≤ (1− ε)N .
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Proof. Assume that λ1 = λ2 = 1. The total set of active half-edges then evolves as in a one-type
process with a single unit rate infection type. We consider a continuous time representation of
such a process, inspired by [18]. As in our continuous time exploration process, each half-edge is
throughout classified as free or paired, and free half-edges are labeled as active or inactive. All
half-edges are assigned independent unit rate exponential life lengths and, to start the growth,
two vertices are chosen uniformly at random and their half-edges are declared active, while all
other half-edges are inactive. The process then evolves in that an active half-edge q is chosen
uniformly at random and, when the life length of a free half-edge r 6= q (active or inactive)
expires, then q and r are paired. The vertex to which r is attached becomes infected (if it was
not infected already) and its remaining half-edges are activated. This procedure is repeated until
there are no active half-edges left. It is straightforward to verify that the process is equivalent
to the two-type growth process with equal rates once types are ignored, and we furthermore
ignore the time scales. Note that, in the original continuous time process, the growth is slow in
the beginning when there are few active half-edges, while in this version, the growth is fast in
the beginning when there are many free half-edges whose life lengths compete.

We first show that a large proportion of the edges are identified in finite time.

Claim 3.4. For every ε > 0 there exists t0 = t0(ε) such that the number of pairings up to time
t0 is at least (1− ε)N w.h.p.

Proof of claim. Note that the time of the kth pairing is the sum of k independent exponentials
with parameters 2N − 1, 2N − 3, . . . , 2N − 2k + 1. Let ξ1, ξ2, . . . , ξN be independent and expo-
nentially distributed with parameter 2 and write ξ(1) < ξ(2) < · · · < ξ(N) for the order statistics
of the ξk’s. Due to the memoryless property ξ(k) is the sum of k independent exponentials
with parameters 2N, 2N − 2, . . . , 2N − 2k + 2, and it follows that the time of the kth pairing
is stochastically dominated by ξ(k+1). We are hence done if we show that ξ(d(1−ε)Ne+1) ≤ t0
w.h.p. for some t0 or, equivalently, that the number of ξk that exceed t0 is at most εN −1. This
however follows from the law of large numbers if we pick t0 large such that P(ξk > t0) < ε.

Claim 3.5. There exists δ > 0 such that throughout the interval [0, t0] the proportion of unin-
fected vertices with degree at least 3 is at least δ w.h.p.

Proof of claim. Fix d ≥ 3 such that pd > 0. Let Vd(t) denote the number of vertices of degree
d with all half-edges with life lengths longer than t. Again by the (weak) law of large numbers
we have that ∣∣∣ 1

n
Vd(t0)− pd e−dt0

∣∣∣ p−→ 0 as n→∞.

The number of uninfected vertices of degree d at time t0 is at least Vd(t0) − 2, so the claim
follows.

We now return to the discrete time exploration process. Recall that ∆Sk = Sk+1 − Sk and
that Fk is the σ-field of events determined by the process up to time k. After k steps there are
2N − 2k unpaired half-edges and hence

P
(
∆Sk = −2

∣∣Fk) =
Sk − 1

2N − 2k − 1
≤ Sk

2N − 2k
.

If the active half-edge that is paired in step k+ 1 is connected to an inactive half-edge attached
to a vertex with degree at least 3, then the number of active half-edges increases. The degree
of the vertex of the inactive half-edge has a size biased distribution, and hence the probability
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that it is at least 3 is at least as large as the proportion of uninfected vertices with degree at
least 3. Combining the above two claims we find that, for all k = 1, 2, . . . , (1− ε)N , w.h.p.

P
(
∆Sk ≥ 1

∣∣Fk) ≥ δ
(
1− Sk

2N − 2k

)
.

In particular, whenever 1 ≤ Sk ≤ εδN/4, we have that

P
(
∆Sk = −2

∣∣Fk) ≤ δ/8 and P
(
∆Sk ≥ 1

∣∣Fk) ≥ δ/2.
Now, let ζ1, . . . , ζN be i.i.d. random variables taking values −2 and 1 with probability δ/8 and
δ/4 + εδ/8, respectively, and otherwise the value 0, and define Xk :=

∑k
j=1 ζj . Then, by the law

of large numbers, Xk > εδk/16 w.h.p. for all k ≥ νn, while Xk is unlikely to ever exceed εδN/4.
Moreover, since νn = o(

√
n) by (2.2), the number of active half-edges is unlikely to ever hit zero

in the first νn steps.1 We conclude that there is a coupling between (Sk)k≥1 and (Xk)k≥1 such
that w.h.p.

Sk ≥ Xk for all k = 1, 2, . . . , (1− ε)N.

Consequently, Sk ≥ εδk/16 w.h.p. whenever νn ≤ k ≤ (1− ε)N .

Fix ε > 0 and c as in Lemma 3.3, and let τ be the stopping time min{k ≥ νn : Sk < ck}.
Thus, by Lemma 3.3, w.h.p. τ > (1− ε)N . Let M̃k := Mk∧τ , that is, the martingale M stopped
at τ . Then (M̃k)

N
k=0 is also a martingale. We consider the quadratic variation of this martingale.

Lemma 3.6. As n→∞,

E

(1−ε)N∑
k=νn

|∆M̃k|2
→ 0.

Proof. Throughout the proof, C denotes a constant, possibly depending on ε and c, that may
be different on each occurrence. Let k ∈ [νn, (1 − ε)N ]. We may suppose that Sk ≥ ck, since
otherwise τ ≤ k and ∆M̃k = 0. Then,

∆M̃k = ∆Mk =
S(1)

k + ∆S(1)

k

Sk + ∆Sk
−
S(1)

k

Sk
=
Sk∆S

(1)

k − S
(1)

k ∆Sk
Sk(Sk + ∆Sk)

. (3.2)

If a new vertex of degree d is infected at time k+ 1, then ∆S(1)

k equals either 0 or ∆Sk = d− 2.
In either case, (3.2) implies that

|∆M̃k| ≤
d− 2

Sk + d− 2
≤ d

Sk + d
≤ d

ck + d
≤ C d

k + d
.

If no new vertex is infected at time k + 1, then ∆Sk = −2 and (3.2) yields (for large k)

|∆M̃k| ≤
2

Sk − 2
≤ 2

ck − 2
≤ C

k
.

Hence, if d(k) is the degree of the vertex infected at time k + 1, with d(k) = 0 if there is no such
vertex, then

E

(1−ε)N∑
k=νn

|∆M̃k|2
 ≤ CE

(1−ε)N∑
k=νn

( d(k)

k + d(k)

)2+ C
∞∑

k=νn

1

k2
. (3.3)

1Indeed, either Sk exceeds 2νn before reaching zero, which is good, or the probability of pairing two active
half-edges is at most 2νn/(N − 2νn) in each of these step, so the claim follows from the union bound.
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After step k, there are 2(N − k) free half-edges and hence, for each vertex i and step k ≤
(1 − ε)N , the probability that i is infected in step k + 1, given that it has not been infected
earlier, equals di/(2(N − k)− 1) ≤ Cdi/n. Hence, for any k ≤ (1− ε)N ,

E
[( d(k)

k + d(k)

)2]
≤ C

n∑
i=1

di
n

( di
k + di

)2
= C

1

n

n∑
i=1

d3i
(k + di)2

= CE
[

D3
n

(k +Dn)2

]
. (3.4)

For any d ≥ 1, we have the estimates

∞∑
k=1

d3

(k + d)2
≤

d∑
k=1

d3

d2
+

∞∑
k=d+1

d3

k2
≤ d2 +

d3

d
= 2d2

and ∞∑
k=νn

d3

(k + d)2
≤

∞∑
k=νn

d3

(k + 1)2
≤ d3

νn
.

Hence,
∞∑

k=νn

D3
n

(k +Dn)2
≤ 2D2

n ∧
D3
n

νn
. (3.5)

By assumption, Dn
d−→ D and νn →∞, and thus 2D2

n ∧ ν−1n D3
n ≤ ν−1n D3

n
p−→ 0. Furthermore,

D2
n is uniformly integrable, and thus so is 2D2

n ∧ ν−1n D3
n. Consequently, we have by (3.5) that

E

 ∞∑
k=νn

D3
n

(k +Dn)2

 ≤ E
[
2D2

n ∧
D3
n

νn

]
→ 0. (3.6)

The proposition now follows from (3.3), (3.4) and (3.6).

Proof of Proposition 3.1. Since M̃k − M̃νn , with k ≥ νn, is a martingale, Doob’s inequality and
Lemma 3.6 yield

E
[

sup
νn≤k≤(1−ε)N

∣∣M̃k − M̃νn

∣∣2] ≤ 4E
[∣∣M̃b(1−ε)Nc − M̃νn

∣∣2] = 4E

b(1−ε)Nc−1∑
k=νn

|∆M̃k|2
→ 0.

Hence, supνn≤k≤(1−ε)N
∣∣M̃k − M̃νn

∣∣ p−→ 0, and (3.1) follows since by Lemma 3.3, w.h.p. τ >

(1− ε)N and thus Mk = M̃k for k ≤ (1− ε)N .

4 Proof of Theorem 1.1

We can now prove Theorem 1.1 by combining Proposition 2.1 and Proposition 3.1.

Proof. First assume that λ1 = λ2. Fix ε > 0 and let the sequences νn and tn be as in Propositions
2.1 and 3.1. Recall from the paragraph preceding (2.2) that Nt denotes the number of steps
(pairings of half-edges) that have been performed at time t in the continuous time exploration
process. By definition, we have that Mtn = MNtn

and, by (2.2), that Ntn ≥ νn w.h.p. Hence,
by Proposition 3.1,

sup
νn≤k≤(1−ε)N

∣∣Mk −Mtn

∣∣ p−→ 0.
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Furthermore, by Proposition 2.1, the fraction Mtn converges in distribution to a continuous
random variable with support on (0, 1). Since a vertex that is infected in step k + 1 in the
discrete time exploration process is infected by type 1 independently with probability Mk, it
follows from the law of large numbers that the fraction of type 1 vertices among all vertices that
are infected at steps k ∈ [νn, (1− ε)N ] converges in distribution to V .

Recall from (2.2) that νn ≤ n1/3 by definition. Hence the number of vertices that are infected
before step νn does not exceed n1/3. The number of vertices that are infected after step (1−ε)N
w.h.p. does not exceed ε(E[D] + 1)n, since N ≤ (E[D] + 1)n w.h.p. The asymptotic fraction of
vertices infected for k ∈ [νn, (1− ε)N ] is hence at least 1−Cε. Since ε > 0 is arbitrary, part (a)
of the theorem follows.

To prove part (b), assume that λ1 < λ2 and consider a modified version of the process
where, after time tn, the weaker type 1 infection spread with the same larger intensity λ2 as the
type 2 infection. To generate this process, we independently equip each half-edge h with two
independent Poisson processes P (1)

h and P (2)

h , both with rate λ2, and let P̌ (1)

h denote a thinned
version of P (1)

h where each point is kept with probability λ1/λ2, so that P̌ (1)

h is a Poisson process
with rate λ1. The process is then generated by letting the possible infection times for an active
type 1 or 2 half-edge h be specified by P̌ (1)

h and P (2)

h , respectively, up until time tn, and by P (1)

h

and P (2)

h after that time. The original process can be generated by using the thinned process
P̌ (1)

h for type 1 throughout the whole time course. The corresponding discrete time processes
are defined by observing the continuous time processes at the times of pairings.

Let Š(i)

t denote the number of active type i half-edges at time t in the modified process, and
similarly for other quantities. The above construction provides a coupling of the original process
and the modified process where Š(i)

t = S(i)

t for t ≤ tn and i = 1, 2, while Š(1)

t ≥ S
(1)

t and Š(2)

t ≤ S
(2)

t

for t > tn. It follows that M̌t = Mt for t ≤ tn and M̌t ≥ Mt for t > tn. Analogously, if V (i)

i

denotes the set of infected vertices of type i at time t, we have that V̌ (1)

t ⊇ V
(1)

t and V̌ (2)

t ⊆ V
(2)

t

for all t. Hence the number of type 1 infected vertices is at least as large in the modified process
as in the original process, and it will suffice to show that the fraction of type 1 infected vertices
in the modified process converges to 0.

The modified process has equal intensities for the infection types after time tn, that is, after
step Ntn in the discrete time process. By (2.2), we have Ntn ≥ νn w.h.p. and it then follows
from Proposition 3.1 that

sup
Ntn≤k≤(1−ε)N

∣∣M̌k − M̌tn

∣∣ p−→ 0.

Up to time tn, on the other hand, type 1 spreads with a strictly smaller intensity and thus, by
Proposition 2.1, the fraction M̌tn converges to 0 in probability. By the same arguments as in
the proof of part (a), this yields that the fraction of type 1 infected vertices in the modified
process converges to 0, as desired.

5 Further work

We have studied competing first passage percolation on the configuration model with finite
variance degrees and exponential edge weights, and shown that both infection types occupy
positive fractions of the vertex set if and only if they spread with the same intensity. There are
several natural extensions of this work. One would be to investigate the scaling of the number
of vertices of the losing type when the intensities are different. The results in [2] contain results
in this direction for random regular graph and we conjecture that the results would be similar
for finite variance graphs. Specifically we conjecture that, when λ1 < λ2, the number of vertices
occupied by type 1 is of the order nλ1/λ2 . In contrast to the case when the degree variance is
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infinite, treated in [12], the winner hence does not take it all, but the loosing type also grows to
infinity with n.

In [2], also more general initial conditions are considered, where the initial number of one or
both types may grow with n. This could also be done in our case and, in addition, one could
consider initial sets where the vertices are chosen based on degree. Is it for instance possible for
a weaker type to capture a positive fraction of the vertices if it can start from one or more high
degree vertices, while the stronger type starts from a vertex with small degree?

Another extension would be to study more general passage time distributions, possibly dif-
ferent for the two types. Also in the general case, the initial growth of the types can be approx-
imated by branching processes, but these are then not Markovian. A reasonable guess is that
the possibility for both types to occupy positive fractions of the vertex set is determined by the
relation between the Malthusian parameters of these branching processes, as discussed in [5].
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