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Abstract

In this paper we derive the finite-sample distribution of the esti-

mated weights of the tangency portfolio when both the population and

the sample covariance matrices are singular. These results are used in

the derivation of a statistical test on the weights of the tangency port-

folio where the distribution of the test statistic is obtained under both

the null and the alternative hypotheses. Moreover, we establish the

high-dimensional asymptotic distribution of the estimated weights of

the tangency portfolio when both the portfolio dimension and the sam-

ple size increase to infinity. The theoretical findings are implemented in

an empirical application dealing with the returns on the stocks included

into the S&P 500 index.
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1 Introduction

The fundamental goal of portfolio theory is to optimally allocate investments

between different assets. The mean-variance optimization is a quantitative tool

which allows the making of this allocation through considering the trade-off

between the risk of portfolio and its return.

The foundations of modern portfolio theory have been developed in Markowitz

[11], where a mean-variance portfolio optimization procedure was introduced.

In this, investors incorporate their preferences towards the risk and the ex-

pectation of return to seek the ‘best’ allocation of wealth. This means the

portfolios are selected to maximize anticipated profit subject to achieving a

specified level of risk or, equivalently, to minimize variance subject to achiev-

ing a specified level of expected gain. The risk aversion strategy in the absence

of risk free assets (bonds) leads to the minimal variance portfolio. This has to

be changed in the presence of bonds and the tangency portfolio is a component

for a portfolio that hedges stocks with bond investment or, for higher returns

levels, borrows to invest in the stocks. Nowadays, the mean-variance analysis

of Markowitz remains an important though basic tool for both practitioners

and researchers in the financial sector. Therefore, having a complete under-

standing of the tangency portfolio properties under all realistic conditions is

of great importance for any financial strategist.

To implement these optimal portfolios in practice, the inverse of covari-

ance matrix of asset returns need to be estimated. Traditionally, the sample

covariance matrix has been used for this purpose under the assumption of

non-singular true (population) covariance matrix. However, the problem of

potential multicollinearity and strong correlations of asset returns results in

clear limitations in taking such an approach due to latent singularity or near

singularity of the population covariance. In addition, the number of assets in

a portfolio can be larger than the number of observations and create another

cause for singularity. There is a wide literature concerning cases with very

high-dimensional datasets and a small sample size relative to dimension, see

Pruzek [15] and Stein et al. [16] among many others. However, consequences of

this particular problem for the portfolio theory have not been addressed until

recently. Singular population covariance matrix and small sample size relative

to the portfolio size was first discussed in Bodnar et al. [1] and later results

were extended in Bodnar et al. [2]. In the last paper, the authors analyzed

the global minimum variance portfolio for small sample and singular covari-

ance matrix. Here we tackle properties of the tangency portfolio (TP) under

these two singularity conditions. We derive a stochastic representation of the

tangency portfolio weights estimator as well as a linear test for the portfolio
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weights. We also establish the asymptotic distribution of the estimated port-

folio weights under a high-dimensional asymptotic regime. Theoretical results

are applied to an illustrative example based on 440 actual weekly stock returns.

We conclude this introduction with pointing out importance and some diffi-

culties in practical handling of the singularity and small samples size problem.

Firstly, the singularity of the data typically cannot be observed due to obser-

vational or computational noise. As far as the authors are aware, a detection

problem or formal statistical tests for singularity have not been thoroughly

studied in the literature and deserve a separate treatment. Secondly, the is-

sue of non-normality and time dependence in the singular data will affect the

accuracy of the results based on the normality assumption. Unfortunately,

we are not aware of any statistical test for normality under the singularity

assumption and developing a methodology for such a test deserves a separated

treatment. Here, we heuristically assume that averaging over time blocks that

are long enough brings us to independence and normality of the data. We

estimate the rank of the covariance matrix using a test developed by Nadaku-

diti and Eldeman [13], where the singularity problem was discussed from the

signal processes perspective. We use the method to verify that the rank of the

covariance matrix is less than the portfolio size.

The rest of the paper is structured as follows. In the next section, we

discuss the problem of the estimation of the TP weights and derive a very use-

ful stochastic representation for the estimated weights of this portfolio which

fully characterizes their distribution. This stochastic representation is used to

establish the distributional properties of the estimated TP weights, including

their mean vector and covariance matrix in Section 2.2 and in the derivation

of a statistical test on the TP weights in Section 2.3. In Section 3, the high-

dimensional asymptotic distribution of the estimated weights is present and

a high-dimensional asymptotic test on the TP weights is derived. The theo-

retical findings are applied to real data in Section 4. Several supplementary

theoretical results are formulated and proved in the Appendix.

2 Distributional properties of the estimated

TP weights

Let xi = (x1i, ..., xki)
T denote the k-dimensional vector of log-returns of some

k assets at time i = 1, ..., n and w = (w1, ..., wk)
T be the vector of weights, i.e.,

the parts of the investor wealth invested into those assets. In this section, we

assume that x1, ...,xn are independently and identically distributed with mean

vector µ and covariance matrix Σ which is a non-negative definite matrix with
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rank(Σ) = r < n.

Following the mean-variance analysis suggested in the seminal paper of

Markowitz [11], the optimal portfolio in the case of absence a risk-free asset is

obtained by minimizing the portfolio variance for a given level of the expected

return under the constraint wT1k = 1 where 1k denotes the vector of ones.

The set of all optimal portfolio following Markowitz’s approach constitutes the

efficient frontier. If a risk-free asset is available to an investor, then part of

the investor’s wealth can be invested into the risk-free asset and may reduce

the variance, whereas the rest of the wealth is invested into the tangency

portfolio located on the efficient frontier. This portfolio is obtained by drawing

a tangency line from the location of the risk-free asset (bonds) in the mean-

variance space to the efficient frontier. Then any portfolio from this tangent

line is efficient for the given return level and is obtained by a combination of

the tangent portfolio and the investment (borrowing) in bonds is efficient. In

general, the weights of the portfolio are given by

wTP = α−1Σ−1(µ− rf1k) (1)

if the covariance matrix matrix is positive definite where rf denotes the return

of the risk-free asset and the coefficient α describes the investor’s attitude

towards risk. Changing α ∈ (0,∞), we obtain all portfolios from the tangent

line. It is also noted that the vector wTP in (1) determines only the structure

of the portfolio which corresponds to risky asset only, whereas 1 − wT
TP1k is

the part of the wealth which is invested into the risk-free asset.

If Σ is singular, then the weights of the tangency portfolio are calculated

by replacing the inverse with the Moore-Penrose inverse. This leads to

wTP = α−1Σ+(µ− rf1k) . (2)

It is noted that the Moore-Penrose inverse has already been applied in the

portfolio theory. For instance, Pappas et al. [14] and Bodnar et al. [1] used

the Moore-Penrose inverse in the estimation of the mean-variance optimal

portfolio, whereas Bodnar et al. [2] considered the application of the Moore-

Penrose inverse in the estimation of the weights of the global minimum vari-

ance portfolio. Moreover, Pappas et al. [14] showed that the estimator of the

mean-variance portfolio weights which is based on the Moore-Penrose inverse

possesses the minimal Euclidean norm and is an unique solution of the corre-

sponding optimization problem. Similar results also hold in the case of wTP

following Theorem 2.2 of Pappas et al. [14].

The optimal weights wTP depend on the unknown parameters µ and Σ. In
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order to estimate them we use the corresponding sample estimators expressed

as

x =
1

n

n∑
j=1

xj and S =
1

n− 1

n∑
j=1

(xj − x)(xj − x)T .

Replacing µ and Σ with x and S in (2), we get the sample estimator of

optimal tangency portfolio weights which is given by

ŵTP = α−1S+(x− rf1k) (3)

The distribution of ŵTP appears to be singular since the covariance matrix

of ŵTP is singular (see Theorem 3 below). For that reason, we consider linear

combinations of ŵTP and derive their finite-sample distribution. Since the

characteristic function of a random vector Y given by φY(t) = E(exp(itTY))

determines uniquely the distribution of Y, a stochastic representation obtained

for an arbitrary linear combination of ŵTP can be used to characterize the

distribution of ŵTP .

We consider a more general case by deriving the joint distribution of several

linear transformations of wTP . Let

θ = LwTP = α−1LΣ+(µ− rf1k),

where L is a non-random p×k matrix of rank p < r such that rank(LΣ) = p.

The latter condition ensures that the distribution of the sample estimator of

θ expressed as

θ̂ = LŵTP = α−1LS+(x− rf1k) (4)

is non-singular.

2.1 Stochastic representation

It is convenient to represent the distribution of θ̂ = LŵTP in an explicit

stochastic form. From Theorem 4 of Bodnar et al. [1] we have that x ∼
Nk(µ, 1/nΣ), V = (n−1)S ∼ Wk(n−1,Σ), and x, (n−1)S are independent.

Then

θ̂ = LŵTP = α−1LS+(x− rf1k) =
n− 1

α
LV+(x− rf1k).

From that the stochastic representation presented in the following result which

is a direct consequence of Lemma 1 and Corollary 1 both given in the Appendix.
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Theorem 1. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n − 1, and let rank(Σ) = r ≤ n − 1. Consider L a p × k non-

random matrix of rank p < r such that rank(LΣ) = p. Additionally, let

S1 = (LΣ+LT )−1/2LΣ+1/2 and Q1 = ST1 S1. Then the stochastic representa-

tion of θ̂ is given by

θ̂
d
=

n− 1

α
ξ−1

LΣ+1/2z +

√
1

n− r + 1
(LΣ+LT )1/2

×

√zTzIp −

√
zTz−

√
zT (Ip −Q1)z

zTQ1z
S1zzTST1

 t0

 ,
where ξ ∼ χ2

n−r, z ∼ Nk
(
Σ+1/2(µ− rf1k), 1

n
PPT

)
, and t0 ∼ tp(n−r+1; 0, Ip).

Moreover, ξ, z, and t0 are mutually independent. The k × r matrix P is the

semi-orthogonal matrix of the eigenvectors of Σ such that PTP = Ir.

In particular, the special case of p = 1 and L = lT is given by

θ̂
d
=

n− 1

α
ξ−1

lTΣ+(µ− rf1k) +

√√√√( 1

n
+

r − 1

n(n− r + 1)
u

)
lTΣ+lz0

 ,
where ξ ∼ χ2

n−r, z0 ∼ N (0, 1), and u ∼ F(r−1, n− r+1, n(µ− rf1k)TRl(µ−
rf1k)) with Rl = Σ+ − Σ+llTΣ+/lTΣ+l; ξ, u, and z0 are mutually indepen-

dently distributed.

2.2 Mean vector and covariance matrix

In the next theorem, we derive the first two moments of the estimator of the

TP weights by applying the stochastic representation of Theorem 1.

Theorem 2. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n− 1 and let rank(Σ) = r ≤ n− 1. Then it holds that

E(ŵTP ) =
n− 1

n− r − 2
wTP ,

and

V ar(ŵTP ) = c1wTPwT
TP + c2Σ

+
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with

c1 =
(n− r)(n− 1)2

(n− r − 1)(n− r − 2)2(n− r − 4)

c2 =
(n− 1)2(n− 2 + n(µ− rf1k)TΣ+(µ− rf1k))

n(n− r − 1)(n− r − 2)(n− r − 4)α2
.

Proof. First, we derive the expected value of θ̂. From Theorem 1, we get for

an arbitrary l that

E(θ̂) =
n− 1

α
E(ξ−1)×

×

lTΣ+(µ− rf1k) + E


√√√√( 1

n
+

r − 1

n(n− r − 1)
u

)
lTΣ+l

 · E(z0)

 .
Since E(z0) = 0 and E(ξ−1) = 1

n−r−2 , we obtain that

E(θ̂) =
n− 1

α

1

n− r − 2
lTΣ+(µ− rf1k) =

n− 1

n− r − 2
θ.

Next, we derive the variance of θ̂. It holds that

V ar(θ̂) = E(θ̂2)− [E(θ̂)]2

=
(
n− 1

α

)2

E(ξ−2)

(lTΣ+(µ− rf1k))2 + E

(
1

n
+

r − 1

n(n− r + 1)
u

)

×lTΣ+l · E(z20)

− ( n− 1

n− r − 2

)2

θ2

= c1θ
2 + c2l

TΣ+l

with c1 and c2 as in the formulation of the theorem. The last result is ob-

tained using the facts that E(z20) = 1, E(ξ−2) = 1
(n−r−2)(n−r−4) , and E(u) =

(n−r+1)(r−1+λ̃)
(r−1)(n−r−1) with λ̃ = n(µ− rf1k)TRl(µ− rf1k)).

Finally, using the fact that l was an arbitrary vector we get that

E(ŵTP ) =
n− 1

n− r − 2
wTP

and

V ar(ŵTP ) = c1wTPwT
TP + c2Σ

+.

The theorem is proved.
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2.3 Inference procedures

We propose statistical testing procedures for the optimal weights of the tan-

gency portfolio. The hypotheses of the test are given by

H0 : lTwTP = 0 against H1 : lTwTP = ρ1 6= 0 (5)

with the following test statistics which extends the one introduced by Bodnar

and Okhrin [4] to the case of singular covariance matrix

T =

√
n− r
n− 1

αlT ŵTP√
lTS+l

√
1
n

+ 1
n−1y

T R̂ly
(6)

where R̂l = S+ − S+llTS+/lTS+l and y = x− rf1k ∼ Nk
(
µ− rf1k, 1

n
Σ
)
.

The next theorem provides the distribution of T both under the null and

under the alternative hypotheses.

Theorem 3. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n−1 and with rank(Σ) = r ≤ n−1. Also, let l be a k-dimensional vector

of constants. Then

(a) the density function of T is given by

fT (x) =
n(n− r + 1)

(r − 1)(n− 1)

∫ ∞
0

ftn−r,ϑ(y)
(x)fFr−1,n−r+1,ns

(
n(n− r + 1)

(r − 1)(n− 1)
y

)
dy,

where ϑ(y) = αρ1√
lT Σ+l( 1

n
+ 1

n−1
y)

and s = (µ − rf1k)
TRl(µ − rf1k) with

Rl = Σ+ − Σ+llTΣ+/lTΣ+l; the symbol tn−r,ϑ(y) denotes a non-central

t-distribution with n− r degrees of freedom and non-centrality parameter

ϑ(y).

(b) under the null hypothesis it holds that T ∼ tn−r.

Proof. Because y and S are independently distributed (c.f., Theorem 4 in

Bodnar et al. [1]), it follows that the conditional distribution of lTS+y given

y = y∗ is equal to the distribution of lTS+y∗. Let L̃ = (l,y∗)T and define

S̃ = L̃((n− 1)S)+L̃T = (n− 1)−1

 lTS+y∗ lTS+y∗

y∗TS+l y∗TS+y∗


and

Σ̃ = L̃S+L̃T =

 lTΣ+y∗ lTΣ+y∗

y∗TΣ+l y∗TΣ+y∗

 .
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From Theorem 1 of Bodnar et al. [1] and Theorem 3.4.1 of Gupta and Nagar

[10] we get that S̃ ∼ IW(n− r+ 4, Σ̃). Then the application of Theorem 3 in

Bodnar and Okhrin [3] leads to

lTS+y∗

lTS+l

∣∣∣∣y∗T R̂ly
∗ ∼ N

(
lTΣ+y∗

lTΣ+l
, (n− 1)−1y∗T R̂ly

∗(lTΣ+l)−1
)
, (7)

(n− 1)−1y∗T R̂ly
∗ ∼ IW(n− r + 3,y∗TRly

∗), (8)

and lTS+l is independent of
lTS+y∗

lTS+l
and y∗T R̂ly

∗. Since lTS+l does not

depend on y, we also obtain that lTS+l is independent of
lTS+y

lTS+l
and yT R̂ly.

Using (7) we get the following stochastic representation

lTS+y

lTS+l
d
=

lTΣ+y

lTΣ+l
+

√
(n− 1)−1yT R̂ly

lTΣ+l
z0,

where z0 ∼ N (0, 1) which is independent of lTΣ+y and yT R̂ly.

From the proof of Corollary 1 given in the Appendix we obtain lTΣ+y ∼
N (lTΣ+y, lTΣ+l/n),

n(n− r + 1)

(n− 1)(r − 1)
yT R̂ly ∼ Fr−1,n−r+1,ns

with s = (µ − rf1k)
TRl(µ − rf1k), and lTΣ+y, yT R̂ly are independent.

Consequently,

lTS+y

lTS+l
|yT R̂ly ∼ N

(
lTΣ+µ

lTΣ+l
,

(
1

n
+

yT R̂ly

n− 1

)
(lTΣ+l)−1

)
.

Hence,

(
1

n
+

yT R̂ly

n− 1

)−1/2
lTS+y

lTS+l
|yT R̂ly ∼ N

( 1

n
+

yT R̂ly

n− 1

)−1/2
lTΣ+µ

lTΣ+l
, (lTΣ+l)−1

 .

Finally, the application of
lTΣ+l

(n− 1)−1lTS+l
∼ χ2

n−r and the independence of

lTS+l and (lTS+y,yT R̂ly) leads to

T |yT R̂ly = y ∼ tn−r,ϑ(y)

with ϑ(y) = αρ1√
lT Σ+l( 1

n
+ 1

n−1
y)

. Now, the result of Theorem 3.(a) follows from

the fact that n(n−r+1)
(n−1)(r−1)y

T R̂ly ∼ Fr−1,n−r+1,ns, whereas the statement of The-
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orem 3.(b) is obtained by noting that ϑ(y) = 0 under H0.

In the statistical test (5), we check if a linear combination of the TP weights

is equal to zero under the null hypothesis. This procedure, in particular, can

be used to test if the TP weight of a selected asset is equal to zero or deviates

considerably from zero. On the other hand, it cannot be applied if the investor

wants to verify if the TP weight of a selected asset is equal to a given value,

for example, when the aim is to decide whether to keep the current value

of the weight or to reallocate the wealth into other assets. The situation is

more complicated in the latter case and it is discussed next. We consider the

following test problem

H0 : lTwTP = ρ0 against H1 : lTwTP = ρ1 6= ρ0,

where ρ0, ρ1 ∈ R are preselected constants.

Using the proof of Theorem 3 we obtain

αlT ŵTP

lTS+l
|yT R̂ly = y ∼ N

(
αlTwTP

lTΣ+l
,
(

1

n
+

1

n− 1
y
)

1

lTΣ+l

)

and, hence, under H0

√
lTΣ+l

αlT ŵTP

lT S+l
− αρ0

lT Σ+l√
1
n

+ 1
n−1y

T R̂ly
∼ N (0, 1).

The last statistic depends on the unknown quantity lTΣ+l, which is a nui-

sance parameter. In order to derive an unconditional test without dependence

on lTΣ+l, we consider an additional hypothesis given by

H0 : lTΣ+l = v0 against H1 : lTΣ+l = v1 6= v0

with the test statistic expressed as

T2 = (n− 1)
v0

lTS+l
.

Under the null hypothesisH0 : lTΣ+l = v0 it holds that T2 has a χ2 distribution

with n− r degrees of freedom. Putting these two marginal tests together, we

get a two dimensional test with statistics T̃ = (T ∗1 , T2)
T where

T ∗1 =
√
v0

αlT ŵTP

lT S+l
− αρ0

v0√
1
n

+ 1
n−1y

T R̂ly

10



and the global hypothesis is expressed as

H0 : lTwTP = ρ0, lTΣ+l = v0 against H1 : lTwTP = ρ1 6= ρ0, lTΣ+l = v1 6= v0.

The distribution of the test statistics T̃ is derived in the next theorem.

Theorem 4. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n− 1 and with rank(Σ) = r ≤ n− 1. Then

(a) the density function of T̃ is given by

fT̃ (x, z) =
n(n− r + 1)

(r − 1)(n− 1)
β−1fχ2

n−r

(
z

β

)∫ ∞
0

fN (δ(y),β)(x)

×fFr−1,n−r+1,ns

(
n(n− r + 1)

(r − 1)(n− 1)
y

)
dy,

where δ(y) = αλ1/
√

1
n

+ 1
n−1ω, β = v0/v1, and λ1 =

√
v0(ρ1/v1− ρ0/v0).

(b) under the null hypothesis it holds that T ∗1 ∼ N(0, 1), T2 ∼ χ2
n−r, and T ∗1

is independent of T2.

Proof. Following the proof of Theorem 3 we get that

• lTΣ+l

(n− 1)−1lTS+l
∼ χ2

n−r;

• n(n−r+1)
(n−1)(r−1)y

T R̂ly ∼ Fr−1,n−r+1,ns;

• T ∗1 |yT R̂ly ∼ N (δ(y), β);

• lT ŵTP

lT S+l
and yT R̂ly are independent of lTS+l,

from which part (a) of the theorem follows. The statement of part (b) is

obtained by noting that δ(y) = 0 under the null hypothesis.

From Theorem 4, a joint (1− γ) confidence region for (ρ0, v0) is given by

A =

(ρ, v) : ρ ∈ v lT ŵTP

lTS+l
+
z1−γ̃/2

√
v

α

√
1

n
+

1

n− 1
yT R̂ly (−1, 1) ,

v ∈ lTS+l

n− 1

(
χ2
n−r;γ̃/2, χ

2
n−r;1−γ̃/2

) ,
where γ̃ = 1 − (1 − γ)2 is the Sidak correction of a multiple test; z1−γ̃/2 and

χ2
n−r;1−γ̃/2 are 1− γ̃/2 quantiles of the standard normal and the χ2-distribution

with n− r degrees of freedom respectively.
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3 High-dimensional asymptotics

In this section we investigate the asymptotic behavior of the estimated TP

weights and the corresponding inference procedure under the high-dimensional

asymptotic regime. We treat the rank r = rn of the covariance matrix Σ

as the “actual” dimension of the data-generating process and assume that

rn/n → c ∈ [0, 1) as n → ∞. It is noted that we impose no relationship

between k and n with the exception that k > n and, in reality, the portfolio

dimension k can growth to infinity much faster than the sample size n does, e.g.,

an exponential growth can be considered which is very popular in economic

literature.

In Theorem 5 we derive the high-dimensional asymptotic distribution of a

linear combination of the estimated TP weights that follows from Theorem 1.

Theorem 5. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n − 1 and with rank(Σ) = rn ≤ n − 1. Assume that there exists γ > 0

such that r−γn (µ − rf1k)TΣ+(µ − rf1k) < ∞ uniformly on rn. Also, let l be

a k-dimensional vector of constants such that r−γn lTΣ+l < ∞ uniformly on

rn. Define cn = rn/n. Then, under Assumption (A1), we get the following

high-dimensional asymptotic distribution

√
n− rnσ−1γ

(
lT ŵTP −

n− 1

n− rn
lTwTP

)
d→ N (0, 1), (9)

where

σ2
γ =

α−2

(1− cn)2

lTΣ+l+
(
αlTwTP

)2
+lTΣ+l(µ−rf1k)TΣ+(µ−rf1k)

. (10)

Proof. The application of the stochastic representation from Corollary 1 leads

to

(
lT ŵTP −

n− 1

n− rn
lTwTP

)
= α−1lTΣ+(µ− rf1k)

n− 1

ξ

(
1− ξ

n− rn

)

+ α−1
n− 1

ξ

√(
1 +

rn − 1

n− rn + 1
u
)

lTΣ+l
z0
n

where ξ ∼ χ2
n−rn , z0 ∼ N (0, 1), and u ∼ F(rn − 1, n − rn + 1, ns), s =

(µ − rf1k)TRl(µ − rf1k) with Rl = Σ+ − Σ+llTΣ+/lTΣ+l; ξ, u, and z0 are

mutually independently distributed.

12



In using Lemma 3 from Bodnar and Reiß [5], we get

ξ

n− rn
− 1

a.s.→ 0 and
√
n− rn

(
ξ

n− rn
− 1

)
d→ N (0, 2).

The application of the stochastic representation of a non-central F -distributed

random variables, i.e., u =
η1/(rn − 1) + (z1 +

√
n
√
s)2/(rn − 1)

η2/(n− rn + 1)
with inde-

pendent variables η1 ∼ χ2
rn−2, η2 ∼ χ2

n−rn+1, and z1 ∼ N (0, 1), leads to

u− 1− ns

rn − 1
=

(
η1/(rn − 1) + (z1 +

√
n
√
s)2/(rn − 1)

η2/(n− rn + 1)
− 1− ns

rn − 1

)

=
η1/(rn − 1) + (z1 +

√
n
√
s)2/(rn − 1)− 1− ns

rn−1
η2/(n− rn + 1)

−
(

1 +
ns

rn − 1

)
n− rn + 1

η2

(
1− η2

n− rn + 1

)
a.s.→ 0 .

Putting these results together and using that ξ and z0 are independent, we

obtain the statement of the theorem.

From Theorem 5 we obtain the distribution of any finite combination of the

estimated TP weights. Namely, for the q linear combinations of ŵTP presented

by matrix L, it holds that

√
n− rnΩ−1/2γ

(
LŵTP −

n− 1

n− rn
LwTP

)
d→ Nq(0, I),

where

Ωγ =
α−2

(1− cn)2

LΣ+LT + LΣ+(µ− rf1k)(µ− rf1k)TΣ+LT

+ (µ− rf1k)TΣ+(µ− rf1k)LΣ+LT

 .
It is remarkable that, we impose no assumption on the eigenvalues of the

covariance matrix Σ in Theorem 5. The derived asymptotic results are also

valid when Σ possesses unbounded spectrum, i.e. when its largest eigenvalue

tends to infinity as rn →∞. Consequently, our findings can also be applied in

the case of a factor model which is a popular model for the asset returns with

an unbounded spectrum (see, e.g., Chamberlain [6]; Fan et al. [7, 9, 8]; Bodnar

and Reiß [5]). Finally, the constant γ is a technical one and has only a minor

influence on the results presented in Theorems 5 and 6. It only controls the

growth rate of the quadratic form and we mainly require that they are of the

13



same order for rn →∞ as n→∞.

Next, we derive the joint distribution of the test statistics T presented in

(6) both under the null and under the alternative hypotheses.

Theorem 6. Let x1, ...,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ),

k > n − 1 and with rank(Σ) = rn ≤ n − 1. Assume that there exists γ > 0

such that r−γn (µ− rf1k)TΣ+(µ− rf1k) <∞ uniformly on rn. Also, let l be a

k-dimensional vector of constants such that r−γn lTΣ+l < ∞ uniformly on rn.

Define cn = rn/n. Then, under Assumption (A1), we get

(a)

σ−1T

T −
√
nαρ1√

lTΣ+l
(
1 + rn−1

n−rn+1

(
1 + n

rn−1s
))
 d→ N (0, 1) , (11)

where

σ2
T = 1 +

(αρ1)
2

lTΣ+l(1 + s)

(
2 +

s2 + c+ 2s

2(1 + s)2

)
,

with s = (µ− rf1k)Rl(µ− rf1k)T with Rl = Σ+ −Σ+llTΣ+/lTΣ+l;

(b) under the null hypothesis it holds that T ∼ N (0, 1).

Proof. From the proof of Theorem 3, we get that

T |yT R̂ly = y ∼ tn−rn,ϑ(y)

where ϑ(y) = αρ1√
lT Σ+l( 1

n
+ 1

n−1
y)

. Consequently, the stochastic representation of

T is given by

T
d
=

√
n− rn
ξ


√
nαρ1√

lTΣ+l
(
1 + rn−1

n−rn+1
u
) + z0


where z0 ∼ N (0, 1), ξ ∼ χ2

n−rn and u = n(n−rn+1)
(n−1)(rn−1)y

T R̂ly ∼ Frn−1,n−rn+1,ns;

z0, ξ, and u are independent.

14



It holds that

T −
√
nαρ1√

lTΣ+l
(
1 + rn−1

n−rn+1

(
1 + n

rn−1s
))

=

√
n− rn
ξ

z0 +
αρ1√

lTΣ+l
(
1 + rn−1

n−rn+1
u
)

×

√n
(√

n− rn
ξ
− 1

)
+
√
n

1−

√
1 + rn−1

n−rn+1
u√

1 + rn−1
n−rn+1

(
1 + n

rn−1s
)

 ,

where √
1 +

rn − 1

n− rn + 1

(
1 +

n

rn − 1
s
)
−
√

1 +
rn − 1

n− rn + 1
u

=

rn−1
n−rn+1

(
1 + n

rn−1s− u
)

√
1 + rn−1

n−rn+1
u+

√
1 + rn−1

n−rn+1

(
1 + n

rn−1s
) .

Next, we use the stochastic properties of the non-central F -distribution,

i.e., there are exist independent random variables η1 ∼ χ2
rn−2, η2 ∼ χ2

n−rn+1,

and z1 such that

u
d
=
η1/(rn − 1) + (z1 +

√
n
√
s)2/(rn − 1)

η2/(n− rn + 1)
.

It leads to

√
n
(

1 +
n

rn − 1
s− u

)
=
√
n

(
1 +

n

rn − 1
s− η1/(rn − 1) + (z1 +

√
n
√
s)2/(rn − 1)

η2/(n− rn + 1)

)

=
(

1 +
n

rn − 1
s
)√

n

(
1− n− rn + 1

η2

)
+
n− rn + 1

η2

√
n
(

1− η1
rn − 1

)

+
n− rn + 1

η2

√
n

z21
rn − 1

+ 2z1
n

rn − 1

√
s
n− rn + 1

η2
.

Since z0, z1, ξ, η1, η2 are independent, we get

σ−1T

T −
√
nαρ1√

lTΣ+l
(
1 + rn−1

n−rn+1

(
1 + n

rn−1s
))
 d→ N (0, 1)
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with

σ2
T = 1 +

(αρ1)
2

lTΣ+l(1 + s)
(1− c)

×
(

2
1

1− c
+

(1− c)2

4(1 + s)2
c2

(1− c)2

(
2
(

1 +
s

c

)2 1

1− c
+

2

c
+ 4

s

c2

))

= 1 +
(αρ1)

2

lTΣ+l(1 + s)

(
2 +

s2 + c+ 2s

2(1 + s)2

)
.

The statement of Theorem 6.(b) is obtained by noting that ρ1 = 0 under

H0.

4 Empirical study

In this section the results of an empirical study are presented. It is shown how

we can apply the theory from the previous sections to real data. We consider

the log return weekly data from S&P 500 of 440 stocks for the period from the

30th of April, 2007 to the 21st of April, 2017 resulting in 513 observations. The

weekly returns on the three-month US treasury bill are used as the risk-free

rate. The risk aversion coefficient α is set to 100.

One of the main issues considered in the empirical study is that the sin-

gularity of the covariance matrix and, consequently, in the data generating

process can never be observed in the strict sense, since the observational noise

will prevent us from obtaining the determinant of the estimated covariance

matrix exactly equal to zero. We assume that our observations are coming

from the model

Y = X + E,

where X is following the singular model that is discussed in our work, while

E is an observational noise. In order to verify that the data generating model

of X is indeed singular, we conduct the test developed in Nadakuditi and

Eldeman [13] to find the rank of Σ. Figure 1 presents the behaviour of the

estimator for the rank of the covariance matrix by using the rolling estimator

with the estimation window of 300 weeks. We observe a relatively stable

behaviour in the resulting estimators for the rank lying between 115 and 140.

The smallest value of the estimated ranks is present at the beginning of 2015

following a slight increase in 2016 and 2017. To this end, all obtained ranks are

considerably smaller than the sample size n = 300. The latter finding leads

to the conclusion that a large amount of noise is present in the considered

financial data which influences both the estimation of the covariance matrix

and the determination of the structure of optimal portfolios. Moreover, the

16



2014 2015 2016 2017

11
5

12
0

12
5

13
0

13
5

14
0

Year

R
an
k

Figure 1: The rolling estimator for the rank of the covariance matrix with the
estimation window of 300 weeks.

obtained empirical result motivates the application of the derived theoretical

findings to the considered data.

Next, we assess the quality of the asymptotic results presented in Theorem 5

by comparing the asymptotic distribution of the estimated TP weights derived

under the high-dimensional asymptotic regime to the corresponding exact ones

obtained by applying the stochastic representation of Theorem 1. In order to

make this comparison for practically relevant values of the mean vector and

the covariance matrix, we replace these quantities in the expressions provided

by Theorems 1 and 5 with the corresponding sample counterparts obtained by

using the most recent 300 observation vectors of the returns.

In Figure 2, both the high-dimensional asymptotic and the finite-sample

densities of the TP weights corresponding to Abbott Laboratories, Accenture

plc, Air Products & Chemicals Inc, and 3M Company are present. The asymp-
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Figure 2: The densities of the sampling and the high-dimensional asymptotic
distributions of the TP portfolio weights for four stocks: Abbott Laboratories,
Accenture plc, Air Products & Chemicals Inc, and 3M Company.

totic densities are calculated following Theorem 5, while for the finite-sample

densities we apply the stochastic representation of Theorem 1 which is used

to generate samples of N = 105 independent realizations of the estimated TP

weights. Based on these simulated data, the sampling densities are obtained by

the kernel density estimation. We observe that the high-dimensional asymp-

totic results provide a very good approximation even for the moderate sample

size, like n = 300. There are only minor differences in the two densities pre-

sented in each out of four plots in Figure 2. Moreover, we conclude that only

the estimated TP weight in the case of Accenture plc deviates considerably

from zero, while the estimated TP weights of all other considered stocks have
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Figure 3: p-values of the exact and the asymptotic tests on the tangency
portfolio weights applied to four stocks: Abbott Laboratories, Accenture plc,
Air Products & Chemicals Inc, and 3M Company.

a large amount of probability mass around zero.

Since some estimated TP weights possess a positive probability mass around

zero, we run statistical tests to verify if their population counterparts are equal

to zero. In practice, this procedure might reduce the size of the portfolio and,

consequently, the transaction costs. The results obtained in Theorems 3 and

6 are used for this purpose. In Figure 3, we present the time series behaviour

of the p-values obtained from the exact test and the asymptotic test on the

hypothesis (5). The same rolling window procedure as in Figure 1 is used here.

The four plots in Figure 3 show the results for the four stocks: Abbott Labo-

ratories, Accenture plc, Air Products & Chemicals Inc, and 3M Company. We
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observe that the p-values are relatively large in almost all of the considered

cases leading to the conclusion that the null hypothesis (5) cannot be rejected.

The deviations from zero are present mainly for the TP weight of Abbott Lab-

oratories in 2015 and of Accenture plc at the end of 2016 and at beginning of

2017.

5 Summary

Since recognizing the impact of the estimation error on the behaviour of opti-

mal portfolios, estimating and testing the structure of optimal portfolios have

become important topics in financial literature. Since the expressions of opti-

mal portfolio weights involve both the mean vector and the covariance matrix,

the common statistical tests on the mean vector and on the covariance matrix

cannot be applied in this situation and new approaches have to be developed.

We deal with this problem under the additional challenge of singularity

which is present in both the population covariance matrix and the sample

covariance matrix. The finite-sample distributions of the estimated TP weights

are characterized by deriving their stochastic representation employing which

the mean vector and the covariance matrix of the estimated TP weights are

obtained. Furthermore, we develop exact tests on the structure of the TP

and derive the distribution functions of the test statistics under both the null

hypothesis and the alternative hypothesis.

Another point treated in the paper deals with the problem of high-dimensional

optimal portfolios which have risen in popularity in financial literature re-

cently. We contribute by deriving the asymptotic distributions of the esti-

mated TP weights under the high-dimensional asymptotic regime, i.e. when

both the portfolio dimension and the sample size increase. Additionally, the

high-dimensional asymptotic distribution of the considered test statistic is ob-

tained under both hypotheses.

The theoretical findings are applied to real data. In using the method

suggested by Nadakuditi and Eldeman [13] to determine the rank of the co-

variance matrix, we find that the covariance matrix of the returns on the stocks

included into the S&P 500 index is singular. This empirical result motivates

the application of the obtained theoretical findings to the considered data. Fi-

nally, we find that some weights of the TP do not deviate significantly from

zero, which allows the reduction of the portfolio size and, consequently, can

lead to smaller transaction costs.
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Appendix

In this section, we consider the distributional properties of the product of the

singular inverse Wishart random matrix and a normal vector, which are used

in the derivation of our main results presented in Section 2.

Let A ∼ Wk(n,Σ), i.e., the random matrix A has a k-dimensional singular

Wishart distribution with n degrees of freedom and covariance matrix Σ which

is non-negative definite with rank(Σ) = r ≤ n < k. Also, let Ik be the k × k
identity matrix and the symbol

d
= stands for the equality in distribution.

Since A and Σ are singular, then the Moore-Penrose inverse W+ of a

matrix W will be employed as an important tool of analysis. Let us recall that

a matrix W+ is the Moore-Penrose inverse of W if the following conditions

hold

(I) WW+W = W,

(II) W+WW+ = W+,

(III) (WW+)T = WW+,

(IV) (W+W)T = W+W.

Next, we define the square root of the Moore-Penrose inverse W+ of a

symmetric singular matrix W with rank(W) = r. Let W = HDHT be the

singular value decomposition of W where D = diag(d1, . . . , dr) is the r × r

matrix of non-zero eigenvalues and H : k × r is the semi-orthogonal matrix

of the corresponding eigenvectors such that HTH = Ir. Then (W+)1/2 =

HD−1/2HT with D−1/2 = diag(d
−1/2
1 , ..., d−1/2r ).

In Lemma 1, we derive the stochastic representation of linear symmetric

transformations of the product of a singular Wishart matrix and a normal

vector.

Lemma 1. Let A ∼ Wk(n,Σ), z ∼ Nk(µ, λΣ) with λ > 0, and rank(Σ) =

r ≤ n < k. Let A and z be independent. Consider L a p × k non-random

matrix of rank p < r such that rank(LΣ) = p. Additionally, let S1 =

(LΣ+LT )−1/2LΣ+1/2 and Q1 = ST1 S1. Then the stochastic representation of

LA+z is given by

LA+z
d
= ξ−1

LΣ+1/2y +

√
1

n− r + 2
(LΣ+LT )1/2

×

√yTyIp −

√
yTy −

√
yT (Ik −Q1)y

yTQ1y
S1yyTST1

 t0

 ,
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where ξ ∼ χ2
n−r+1, t0 ∼ tp(n − r + 2; 0, Ip), and y ∼ Nk

(
Σ+1/2µ, λPPT

)
where P : k × r is the semi-orthogonal matrix of the eigenvectors of Σ such

that PTP = Ir. Moreover, ξ, y, and t0 are mutually independent. The sym-

bol tp(d; a,B) stands for the p-dimensional multivariate t-distribution with d

degrees of freedom, location parameter a, and dispersion matrix B.

Proof. Since z and A are independently distributed, it follows that the condi-

tional distribution of LA+z given z = z∗ is equal to the distribution of LA+z∗

which can be expressed in the following form

LA+z∗ = z∗TΣ+z∗
LA+z∗

z∗TA+z∗
z∗TA+z∗

z∗TΣ+z∗
. (12)

Next, we show that z∗TA+z∗/z∗TΣ+z∗ is independent of z∗TΣ+z∗LA+z∗/z∗TA+z∗,

and derive their distributions.

Let L̃ = (LT , z∗)T such that rank(L̃) = p+1 ≤ r and define Ã = L̃A+L̃T ={
Ãij

}
i,j=1,2

with Ã11 = LA+LT , Ã12 = LA+z∗, Ã21 = z∗TA+LT , and Ã22 =

z∗TA+z∗. Similarly, we define Σ̃ = L̃Σ+L̃T =
{
Σ̃ij

}
i,j=1,2

with Σ̃11 = LΣ+LT ,

Σ̃12 = LΣ+z∗, Σ̃21 = z∗TΣ+LT , and Σ̃22 = z∗TΣ+z∗. Since A ∼ Wk(n,Σ) and

rank(L̃) = p+ 1 ≤ r we get from Theorem 1 of Bodnar et al. [1] and Theorem

3.4.1 of Gupta and Nagar [10] that the random matrix Ã =
{
Ãij

}
i,j=1,2

has

the (p+1)-variate inverse Wishart distribution with (n− r+2p+3) degrees of

freedom and the non-singular covariance matrix Σ̃, i.e. Ã ∼ IW(n− r+ 2p+

3, Σ̃). Then from Theorem 3 of Bodnar and Okhrin [3] we get that z∗TA+z∗

is independent of LA+z∗/z∗TA+z∗ for given z∗. Hence, z∗TA+z∗/z∗TΣ+z∗ is

independent of z∗TΣ+z∗LA+z∗/z∗TA+z∗.

The application of Corollary 1 in Bodnar et al. [1] leads to

z∗TΣ+z∗

z∗TA+z∗
∼ χ2

n−r+1, (13)

and is independent of z∗. Consequently, ξ =
zTΣ+z

zTA+z
∼ χ2

n−r+1 and it is

independent of z. Moreover, zTA+z/zTΣ+z and zTΣ+zLA+z/zTA+z are

independent as well.

Finally, using the proof of Theorem 5 of Bodnar et al. [1] we obtain

z∗TΣ+z∗
LA+z∗

z∗TA+z∗
∼ tp

(
n− r + 2; LΣ+z∗,

z∗TΣ+z∗

n− r + 2
LRz∗L

T

)
, (14)

where Ra = Σ+ −Σ+aaTΣ+/aTΣ+a for a k-dimensional vector a.

Substituting (13) and (14) in (12) we get the following stochastic represen-
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tation of LA+z

LA+z
d
= ξ−1

LΣ+z +

√
zTΣ+z

n− r + 2
(LRzL

T )1/2t0

 ,
where ξ ∼ χ2

n−r+1, z ∼ Nk (µ, λΣ), and t0 ∼ tp(n − r + 2; 0, I). Moreover, ξ,

z, and t0 are mutually independent.

Next, we calculate the square root of LRzL
T using the equality

(D− bbT )1/2 = D1/2(Ip − cD−1/2bbTD−1/2)

with c =
1−
√

1−bT D−1b

bT D−1b
, D = zTΣ+zLΣ+LT , and b = LΣ+z.

This leads to

LA+z
d
= ξ−1

(
LΣ+z +

√
1

n− r + 2
(LΣ+LT )1/2

×

[
√

zTΣ+zIp −
√

zTΣ+z−
√

zT (Σ+ −Σ+1/2Q1Σ+1/2)z

zTΣ+1/2Q1Σ+1/2z
S1Σ

+1/2zzTΣ+1/2ST1

]
t0

)

with S1 = (LΣ+LT )−1/2LΣ+1/2 and Q1 = ST1 S1.

Let Σ = PΛPT be the singular value decomposition of Σ where Λ =

diag(δ1, . . . , δr) is the r× r matrix of non-zero eigenvalues and P : k× r is the

semi-orthogonal matrix of the corresponding eigenvectors such that PTP = Ir.

Then after the transformation y = Σ+1/2z ∼ Nk
(
Σ+1/2µ, λPPT

)
we get the

statement of the theorem.

In the next corollary, we consider an important special case of Lemma 1

when p = 1 and L = lT .

Corollary 1. Let A ∼ Wk(n,Σ), and z ∼ Nk(µ, λΣ) with λ > 0 and

rank(Σ) = r ≤ n < k with r ≥ 2. Let A and z be independent. Also, let

l be a k-dimensional vector of constants. Then the stochastic representation of

lTA+z is given by

lTA+z
d
= ξ−1

lTΣ+µ +

√√√√λ(1 +
(r − 1)

n− r + 2
u

)
lTΣ+lz0

 , (15)

where ξ ∼ χ2
n−r+1, z0 ∼ N (0, 1), and u ∼ F(r − 1, n − r + 2;µTRlµ/λ)

(non-central F -distribution with r − 1 and n − r + 2 degrees of freedom and

non-centrality parameter µTRlµ/λ) with Rl = Σ+ − Σ+llTΣ+/lTΣ+l; ξ, u,

and z0 are mutually independently distributed.

Proof. From the proof of Lemma 1 we get the following stochastic representa-
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tion of lTA+z expressed as

lTA+z
d
= ξ−1

lTΣ+1/2y +

√
lTΣ+l

n− r + 2
ηt0

 ,
where η = yT (Ik − Q)y with Q = Σ+1/2llTΣ+1/2/lTΣ+l, ξ ∼ χ2

n−r+1, t0 ∼
tn−r+2 (t-distribution with n−r+2 degrees of freedom), and y ∼ Nk

(
Σ+1/2µ, λPPT

)
.

Next we prove that λ−1η ∼ χ2
r−1;δ2 , where δ2 = µTRlµ/λ. First, we note

that Σ+1/2 = P∆−1/2PT , where ∆ and P are the same as in the proof of The-

orem 1, and ∆−1/2 = diag(δ
−1/2
1 , . . . , δ−1/2r ). Second, we have that the matrix

(Ik −Q) is an idempotent matrix, since Q is an idempotent. Furthermore,

(i) tr
[(
λ−1(Ik −Q)

) (
λPPT

)]
= tr[PTP]− tr[Q] = r − 1;

(ii)
(
λPPT

) (
λ−1(Ik −Q)

) (
λPPT

) (
λ−1(Ik −Q)

) (
λPPT

)
=
(
λPPT

) (
λ−1(Ik −Q)

) (
λPPT

)
;

(iii) µTΣ+1/2
(
λ−1(Ik −Q)

) (
λPPT

) (
λ−1(Ik −Q)

)
Σ+1/2µ = µTΣ+1/2

(
λ−1(Ik −Q)

)
Σ+1/2µ;

(iv) µTΣ+1/2
[(
λ−1(Ik −Q)

) (
λPPT

)]2
= µTΣ+1/2

(
λ−1(Ik −Q)

) (
λPPT

)
.

Now, the application of Theorem 5.1.3 of Mathai and Provost [12] shows

that λ−1η is a χ2
r−1,δ2 variable with δ2 = µTRlµ/λ. Since (Ik−Q)

(
λPPT

)
Σ+1/2l =

0, the application of Theorem 5.4.3 in Mathai and Provost [12] proves that

lTΣ+1/2y and η are independently distributed.

Finally, we note that the random variable t0 ∼ t(n − r + 2, 0, 1) has the

following stochastic representation

t0
d
= z0

√
n− r + 2

ζ
,

where z0 ∼ N (0, 1) and ζ ∼ χ2
n−r+2; z0 and ζ are independent. Hence,

lTΣ+1/2y +

√
lTΣ+l

n− r + 2
ηt0|η, ζ ∼ N

(
lTΣ+µ, λlTΣ+l

(
1 +

λ−1η

ζ

))

= N
(
lTΣ+µ, λlTΣ+l

(
1 +

r − 1

n− r + 2
u
))

,

where

u =
λ−1η/(r − 1)

ζ/(n− r + 2)
∼ F(r − 1, n− r + 2,µTRlµ/λ).

Putting all together we get the statement of the corollary.
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