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Abstract

A multi-type preferential attachment model is introduced, and
studied using general multi-type branching processes. For the p-type
case we derive a framework for studying the model where a type i ver-
tex generates new type j vertices with rate wij(n1, n2, . . . , np) where
nk is the number of type k vertices previously generated by the type
i vertex, and wij is a function from Np to R. The framework is then
used to derive results for models with more specific attachment rates.

In the case with linear preferential attachment—where type i ver-
tices generate new type j vertices with rate wij(n1, n2, . . . , np) =
γij(n1 +n2 + · · ·+np)+βij , where γij and βij are positive constants—
we show that under mild regularity conditions on the parameters
{γij}, {βij} the asymptotic degree distribution of a vertex is a power
law distribution. The asymptotic composition of the vertex popula-
tion is also studied.

Keywords: Multi-type preferential attachment; multi-type general branch-
ing process; power law degree distribution; asymptotic composition.



1 Introduction

The preferential attachment model is a well-studied model of random net-
work growth where, traditionally, new vertices arrive according to some pro-
cess (often at integer times {1, 2, . . .}) and upon arrival attach randomly to
an existing vertex with probability proportional to that vertex’s degree. This
may also be interpreted as the existing vertex giving birth to a new vertex.
Preferential attachment is particularly interesting for modeling empirical net-
works since it gives rise to power law degree distributions—something that
is often observed in empirical networks, see [2]. The preferential attachment
model was first introduced in [2] and the degree sequence was rigorously
analyzed in [4].

In this paper we extend the preferential attachment model by allowing
vertices to be of one of p different types, where vertices of different types give
birth to new vertices at different rates. One can think of applications of this
in male-female network growth; networks evolving according to political view,
or level of education; Internet networks with websites of different types; or
more generally, networks exhibiting some level of homophily or heterophily.

Traditionally, preferential attachment is studied in discrete time, but we
will develop the framework for studying the model in continuous time. The
reason for this is that the model can then be analyzed as a general branching
process in continuous time and existing results on such processes can then
be applied.

In studying the model we shall mainly be interested in the asymptotic
degree distribution of a vertex. Usually, in one-type preferential attachment
this is analyzed by first deriving a recursion for the expected fraction of ver-
tices having degree k and showing that this converges. Stronger convergence
results follow with an additional martingale argument, see [4] for a rigorous
treatment. The drawback of this method is that it depends heavily on the
linear structure of the attachment dynamic (new vertices attach proportional
to degree, and not to an arbitrary function of the degree), and it tends to be
difficult to apply the method to more general preferential attachment models,
e.g. multi-type preferential attachment.

An alternative way of studying preferential attachment models is to em-
bed the process in continuous time and interpret it as a general branching
process. This was first done by Rudas et al. [14] and later extended by
Deijfen [6] who also allowed for vertex death. In this article we build on the
methods used in [14], [6] and extend them to the multi-type case. Deijfen
and Fitzner [7] have studied two-type preferential attachment heuristically,
using different methods. In the context of multi-type graphs we also men-
tion the seminal paper [3], which treats a very general model that includes
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an instance resembling preferential attachment.

1.1 The Model

We begin by defining the multi-type degree-based attachment model, of
which the multi-type preferential attachment model is a special case. For
notational simplicity we will let ~n = (n1, . . . , np) ∈ Np throughout. In the
multi-type degree-based attachment model a vertex may be of one of p dif-
ferent types. The vertex population evolves in continuous time where new
vertices are born, but may not die. A type i vertex currently having nk type
k children, k = 1, 2, . . . , p give birth to a new type j child at rate wij(~n)—i.e.
given the number of children ~n of respective types of a type i vertex the time
until the next birth is exponentially distributed with rate wi1(~n)+· · ·+wip(~n)

and the birth is of type j with probability wij(~n)

wi1(~n)+···+wip(~n)
. This process is

then turned into a graph by letting the relation mother-child be represented
by a directed edge from child to mother. The number of children of a vertex
is then the vertex’s in-degree, or total degree minus 1. The graph starts at
time t = 0 with one vertex of any type present.

For a formal definition we let {ξij(·)} i, j = 1, . . . , p be a point process on
R+, and ξij(t) = ξij([0, t]) the counting process associated with it, see [13]
for more details on point processes. The process {ξij(·)} is to be interpreted
as the number of type j vertices that a type i vertex gives birth to in some
time interval. Now, define the multi-type degree-based attachment model as
the stochastic process evolving according to the following dynamics (where
births are represented as directed edges),

(i) The weight functions satisfy wij : Np → (0,∞), i, j = 1, 2, . . . , p.

(ii) {ξij(t), t ≥ 0} is a counting process with ξij(0) = 0, i, j = 1, 2 . . . , p.

(iii) For i = 1, 2, . . . , p the process ~ξi(t) = (ξi1(t), ξi2(t), . . . , ξip(t)) is a
continuous-time Markov chain on Np with transition rates wi(~n) =
wi1(~n) + · · ·+ wip(~n) and transition probabilities

p(~n→ (n1, . . . , nj + 1, . . . , np)) = wij(~n)

wi1(~n)+···+wip(~n)
.

This means that the vertex population evolves according to a multi-type
general branching process, see [12, Ch. 6] or [8], and the graph can therefore
be analyzed within that framework. When the weight functions are increasing
in the type specific degrees we shall instead refer to the model as the multi-
type preferential attachment model, and reserve the pronoun degree-based
for the case when the weight functions are more arbitrary. The preferential
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attachment model is hence a special case of the degree-based attachment
model.

By looking at the graph at the times when new vertices arrive we can
connect it to a discrete time degree-based attachment model. Let G(t) denote
the σ-field generated by the graph up until time t; and σn the birth time of
the n:th vertex. Also let wv(t) be the weight of the vertex v at time t, i.e.

wv(t) =
∑p
j=1wij(~ξi(t)) if v is of type i. Similarly, let wvk(t) = wik(~ξi(t)) if v

is of type i. Then the probability that the (n + 1):th new vertex arriving is
of type i given the current state of the graph is given by

p(i|G(σn)) =

∑n
v=0w

v
i (σn)∑n

v=0w
v(σn)

,

where we have numbered vertices in the order they arrived. Given the current
state of the graph the (n + 1):th vertex v attaches to an old vertex u with
probability

p(v → u|G(σn)) =
wu(σn)∑n
v=0w

v(σn)
.

For the one-type case p = 1 with weight function w(k) = k + 1 the graph
model that arises by inspecting the continuous time model at the birth times
coincides with the standard discrete time preferential attachment model.
This connection was noted already in [14].

Remark. Using the connection between the continuous time model and the
discrete time model we see that limit results for the continuous time case are
valid for the discrete time case as long as σn → ∞ when n → ∞, i.e. the
continuous time model does not explode in finite time.

1.2 Notation

Finally, we set some notation. Again, ~n = (n1, . . . , np) ∈ Np and ~ξi(t) =
(ξi1(t), ξi2(t), . . . , ξip(t)) ∈ Np; the letters i and j will always refer to a vertex’s
type; the indexed letters nj and mj will always refer to the number of type
j children of a vertex or, equivalently, its in-degree from type j vertices. We
will use the star notation ∗ to denote the Laplace transform of a function or
a matrix. Throughout we let Z(t) denote the number of vertices in the graph
at time t; Zi(t) the number of type i vertices in the graph at time t; Z~ni (t)
the number of type i vertices in the graph at time t with nj type j children,
j = 1, . . . , p; Zk

i (t) the number of type i vertices in the graph at time t with

k children in total. Also, let f ∼ g denote that lim
t→∞

f(t)
g(t)

= 1.
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1.3 Results for Degree-based Preferential Attachment

The main results concern asymptotic composition of the population and de-
gree distribution: we shall formulate conditions on {wij(~n)} so that the ratios

pi(t) = Zi(t)
Z(t)

, pi(~n, t) =
Z~ni (t)

Z(t)
, and pi(k, t) =

Zki (t)

Z(t)
converges almost surely as

t→∞ and identify the limits.
For each Borel measurable set A in R+ let µij(A) = E(ξij(A))—i.e. the

expected number of type j vertices born by a type j vertex in the time set
A. It follows that µij(A) is a measure (see e.g. [13, Lemma 1.1.1]) and we
define for each θ > 0 the new measure µθij(A) = µij(A, θ) on B(R+) through
the distribution function

µij(t, θ) =
∫ t

0
e−θsµij(ds), θ > 0.

Furthermore, let

µ(t, θ) =


µ11(t, θ) . . . µ1p(t, θ)

...
. . .

...
µp1(t, θ) . . . µpp(t, θ)

 .
Define µ∗ij(θ) = µij(∞, θ) and µ∗(θ) = µ(∞, θ), and let ρ(µ∗(θ)) denote
the largest eigenvalue of µ∗(θ) (also known as the Perron-Frobenius root).
Throughout we shall assume the existence of a Malthusian parameter α ∈
(0,∞) such that ρ(µ∗(α)) = 1 In fact we shall assume that

∃θ0 ∈ (0,∞) : ρ(µ∗(θ0)) ∈ (1,∞). (A1)

The Perron root ρ(µ∗(θ)), is continuous and strictly decreasing in θ, see [11,
Lemma 9.1], and as the Perron root is assumed to be finite the same is true
for the entries of µ∗(θ), θ ≥ θ0. Furthermore, it is a standard result (see e.g.
[10, Ch. 8]) that

min
i

p∑
j=1

µ∗ij(θ) ≤ ρ(µ∗(θ)) ≤ max
i

p∑
j=1

µ∗ij(θ).

Since, by monotone convergence, lim
θ→∞

µ∗ij(θ) = 0 the row sums of µ∗(θ) also

converges to 0 as θ → ∞. Hence, (A1) implies that lim
θ→∞

ρ(µ∗(θ)) = 0,

and ρ(µ∗(θ0)) > 1, as well as that there exists an α > θ0 > 0 such that
the Perron root equals 1. There are two ways for a branching process to
explode in finite time: either

∑p
i=1 µij(0) > 1 or µij(t) = ∞ for some t. It

follows from the model definition that
∑p
i=1 µij(0) = 0, and (A1) implies that
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µij(t) < eαtµ∗ij(α) < ∞ for all t ≥ 0, implying that the multi-type degree
based attachment model satisfying (A1) does not explode in finite time.

The Malthusian parameter α is, even for simple models, given by a very
complicated expression. However, our assumptions ensure that it always
exists and can be calculated numerically. For µ∗(α) we denote the corre-
sponding left eigenvector by u = (u1, . . . , up) and the right eigenvector by
v = (v1, . . . , vp)

t. By the Perron-Frobenius theorem, both these exists, are
positive, and can be normed so that

u1v1 + u2v2 + · · ·+ upvp = v1 + v2 + · · ·+ vp = 1.

We will throughout assume that the eigenvectors are normed in this way.
We can now state our main results. The first one concerns the asymptotic

composition of the vertex population.

Theorem 1. For the multi-type degree-based attachment model starting with
one vertex of any type, with weight functions {wij(~n)} satisfying condition
(A1), the asymptotic proportion of type i vertices satisfies

pi(t) =
Zi(t)

Z(t)
→ ui

u1 + u2 + · · ·+ up
almost surely as t→∞.

The next theorem asserts that the empirical degree distribution converges
almost surely and identifies the limit.

Theorem 2. For the multi-type degree-based attachment model starting with
one vertex of any type, with weight functions {wij(~n)} satisfying condition
(A1), we have that

Z~ni (t)

Z(t)
→ α

ui
u1 + · · ·+ up

Ii(~n) almost surely as t→∞

where Ii(~n) satisfies the recursion

(i) Ii(~0) = 1
α+wi1(~0)+···+wip(~0)

;

(ii) if |~n| > 0 then Ii(~n) =
∑p
j=1

wij(n1,...,nj−1,...,np)Ii(n1,...,nj−1,...,np)

α+wi1(~n)+···+wip(~n)

with wij(~n) = Ii(~n) = 0 if min(n1, . . . , np) < 0, j = 1, . . . , p.

6



1.4 Results on Multi-type Linear Preferential Attach-
ment

A particularly interesting choice of weight functions is wij(~n) = γij(n1 +
· · ·+ np) + βij where γij and βij are positive constants. This is an extension
of one-type linear preferential attachment. We call this model multi-type
linear preferential attachment based on total in-degree. As with its one-
type counterpart the linear multi-type model exhibits a power law degree
distribution as soon as γi1 + · · ·+ γip > 0.

Theorem 3. For the multi-type preferential attachment model starting with
one vertex of any type, with weight functions wij(~n) = γij(n1 + · · ·+np) +βij

where γij ≥ 0 and βij > 0, pi(k) = lim
t→∞

Zki (t)

Z(t)
exists almost surely. Further-

more,

pi(k) ∼

C1 · k
−(1+ α

γi1+···+γip
)

if γi1 + · · ·+ γip > 0,

C2 · e
−k log(1+ α

βi1+···+βip
)

if γi1 + · · ·+ γip = 0.

By summing over all type i vertices it is easy to see that the total asymp-
totic proportion of vertices with degree k also follows a power law distribu-
tion, i.e.

p(k) = lim
t→∞

Zk(t)

Z(t)
=

p∑
i=1

lim
t→∞

Zk
i (t)

Z(t)
∼ C · k−(1+ α

maxi{γi1+···+γip}
)
.

The rest of the paper is organized as follows. In the next section we intro-
duce the theory for multi-type branching processes needed to prove Theorem
1, 2, and 3. In Section 3 we prove Theorem 1 and 2, and in Section 4 we prove
Theorem 3. Finally, in Section 5, we investigate the results numerically.

2 General Multi-type Branching Processes

General branching processes has been extensively studied, and it is not our
intention to summarize the results here, for this see e.g. the book by Jagers
[9] for the single-type case and [8, 12] for multi-type generalizations. We
shall, however, explain some of the concepts and results needed for proving
Theorems 1, 2, and 3. When defining general multi-type branching processes
we will follow the terminology of [12], and in applying the theory we will
mainly use the results of [8]. The main result needed from [8] is stated below
as Theorem 4.

A p-type general branching process is a process where individuals can
be of one of p different types, and i-type individuals live for a random time
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λi ∈ [0,∞] during which they give birth to j-type individuals according to
the points of a point process ξij defined on R+. Individuals live and reproduce
independently of each other, but there is no restriction on the dependence
between an individual’s life time and reproduction process. Individuals of
the same type have the same reproduction and life-time law.

We denote individuals by x and their type by τ(x) ∈ {1, 2, . . . , p}. If
x = (0, τ0; i1, τ1; . . . ; in, τn) then x is the in:th child of type τn of . . . of the
i1:th child of type τ1 of the ancestor 0, which is of type τ0. The space of
possible individuals is denoted J and is defined by

J =
∞⋃
k=0

Jk

J0 = {(0, 1), (0, 2) . . . , (0, p)}
Jk = {(0, τ0; i1, τ1, . . . , ik, τk); ij ∈ {1, 2, . . .}, τj ∈ {1, 2, . . . , p}, j ∈ {0, 1, . . .}}, k > 0.

To each individual x we assume there is a probability space (Ωx,Bx,Px)
associated, on which x’s life-length λx, a characteristic φx (defined below
and more stringent in [8]), and x’s reproduction ξx = (ξ1

x, . . . , ξ
p
x) are defined.

A characteristic is a product-measurable, separable (random) process φ :
Ω × R → R with φ(ω, t) = 0 if t < 0: Let φx(t) = φ(ω↓x, t) where ω↓x is
the outcome of the branching process starting with individual x as ancestor.
Hence, φx(t) = φ(ω↓x, t) is the score given to the individual x of age t.
Note that φx(t) is allowed to depend on x and its whole progeny, a fact
which is a major strength of random characteristics. However, we shall only
use characteristics that depends only on the life history of x, not its entire
progeny.

We can now define the p-type process with ancestor x0 on the probability
space

(Ω,B,P) =
∏
x∈J

(Ωx,Bx,Px)

through the birth times {σx} defined by induction

σx0 = 0, and if x = (x′; jk, τk)

σx = σx′ + inf{t ≥ 0, ξjkx′ ([0, t]) ≥ jk}.

We note that an individual x who is never born will have σx =∞. Also note
that Px = Py if x and y are of the same type. Now, let Zφ(t) denote the total
score of the population at time t, that is,

Zφ(t) =
∑
x∈J

φx(t− σx).
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We call {Zφ(t), t ≥ 0} the general multi-type φ-counted branching process.
When necessary we use the notation iZ

φ(t) to emphasize that the process
starts with one type i individual. Different choices of φ give rise to different
processes, e.g. if φx(t) = 1, t ≥ 0 then Zφ(t) represents the number of
individuals that have been born up to time t; and if φx(t) = 1{0 ≤ t ≤ λx}
then Zφ(t) represents the number of individuals alive at time t.

Remark. Note that the process always starts with a single individual x0 of
type τ0 and that we omit this in the notation to simplify expressions.

For all Borel measurable sets A in R+ let µij(A) = E(ξjx(A)) if x is of
type i. It follows that µij is a measure, see [13, Lemma 1.1.1 ]. For each
θ > 0, define the new measure µθij(A) = µij(A, θ), A ∈ B(R+), through the
distribution function

µij(t, θ) =
∫ t

0
e−θsµij(ds), θ > 0.

Also, define

M(θ) = µ∗(∞, θ) = [µij(∞, θ)]i,j.

Following [8] we shall assume throughout this section that:

(C1) For i, j = 1, 2, . . . , p, the measure µij is non-lattice, i.e. not concen-
trated on any set {b+ λ · Z, λ ∈ R}

(C2) Either M(0) has at least one infinite entry, or only finite entries and
Perron root ρ > 1. Also M(0)n is assumed to have all positive entries
(possibly infinite) for some n ≥ 1.

(C3) There exists an α > 0 such that M(α) has only finite entries and Perron
root ρ = 1, with corresponding left and right positive eigenvalues u and
v normed such that uvT = 1vt = 1.

(C4) For i, j = 1, 2, . . . , p we have that
∫∞

0 ue−αuµij(du) <∞.

The following assumption will only be in force when explicitly stated:

(C5) There is some θ ∈ (0, α) such that M(θ) has finite entries only.

Remark. In the proof of Theorem 1 we shall see that, for multi-type degree-
based attachment, condition (A1) implies conditions (C1)-(C5). Condition
(C3) implies that the process does not explode in finite time, also know as
regularity. For regularity to hold, we need µij(t) < ∞ and

∑p
i=1 µij(0) ≤ 1.

That µij(t) <∞ follows by the same argument as for (A1) (see page 4), and∑p
i=1 µij(0) ≤ 1 follows from that M(θ)→ [µij(0)]i,j as θ →∞ and since the

Perron root is decreasing we get ρ([µij(0)]i,j) < 1 and regularity follows from
[11, p. 148].
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Most limit results on general branching processes are first proved with
methods from renewal theory, often by solving a renewal type equation. This
tends to yield convergence results in a weak sense, e.g. convergence of ex-
pectation. For stronger convergence results (e.g. almost sure convergence),
a martingale argument is needed in addition to results from renewal theory.
Unfortunately, the proofs of the stronger results are more complicated. In
Theorem 4, we state the main result from branching process theory needed
in order to prove Theorem 1, 2, and 3. Intuition on the theorem and how the
Malthusian parameter, the Perron root and the corresponding eigenvectors
determine the growth of the branching process can be found in the Appendix.

We shall mainly be interested in results regarding the ratio of the process

counted in different ways, i.e. lim
t→∞

Zφ(t)
Zψ(t)

. However, one needs to put some

restrictions on the random characteristics. Let ψ be a random characteristic
not 0 a.e. and with paths in the Skorohod space D(R) of right-continuous
functions with finite left limits. Also assume that there exists a θ < α such
that, for i = 1, 2, . . . , p,

E(sup
t≥0

e−θtφi(t)) <∞. (C6)

Remark. In the degree-based attachment setting we will work with bounded
random characteristics and hence (C6) is trivially satisfied.

Finally, we can quote the result we need.

Theorem 4. [8, Theorem 2.7] Assume that {Z(t)} is a branching process
with intensity measures {µij} satisfying conditions (C1)-(C5). Furthermore
assume that φ and ψ are both random characteristics satisfying condition
(C6). Then on the event that {Z(t)→∞}

Zφ(t)

Zψ(t)
→

∑p
j=1 uj

∫∞
0 E(e−αsφj(s))ds∑p

j=1 uj
∫∞
0 E(e−αsψj(s))ds

a.s. as t→∞.

3 General Degree-Based Attachment

In this section we will provide a general framework for deriving asymptotic
ratio results on the multi-type degree-based attachment model as defined in
Section 1.1. It is clear from the model definition that the vertex population
of the multi-type degree-based attachment model evolves as a general multi-
type branching process. Recall that, in addition to being a non-lattice process
(which follows from model definition), the model is assumed to satisfy (A1)
throughout.
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Clearly of much importance is the matrix

µ∗(θ) =


µ∗11(θ) . . . µ∗1p(θ)

...
. . .

...
µ∗p1(θ) . . . µ∗pp(θ)

 .
as it is part of the condition (A1). Hence, we need a way of calculating the
integrals

µ∗ij(θ) =
∫ ∞

0
e−θtµij(dt).

One way of doing this is to calculate the Radon-Nikodym derivate of µij
with respect to the Lebesgue measure. An application of the fundamental
theorem of calculus gives us the next useful result.

Proposition 1. The intensity measure µij has a Radon-Nikodym derivative
hij(t) with respect to the Lebesgue measure (dt) on R+ satisfying

hij(t) = E(wij(~ξi(t))), i, j = 1, 2, . . . , p.

Proof. Let ~ξi(t) = (ξi1(t), . . . , ξip(t)). It follows from the model definition
that

P(ξij(t+ dt)− ξij(t) = 1|~ξi(t) = ~n) = wij(~n)dt+ o(dt)

P(ξij(t+ dt)− ξij(t) > 1|~ξi(t) = ~n) = o(dt).

Condition (A1) implies that the process does not explode in finite time, since
µ∗ij(θ) is finite implying that the same must hold true for µij(t). We get

µij(dt) = E (ξij([t, t+ dt])) =
∑
~n∈Np

E
(
ξij([t, t+ dt])|~ξi(t) = ~n

)
· P(~ξi(t) = ~n)

=
∑
~n∈Np

wij(~n)dt · P(~ξi(t) = ~n) +K · o(dt)

=
∑
~n∈Np

wij(~n) · P(~ξi(t) = ~n)dt+ o(dt) = E(wij(~ξi(t))dt+ o(dt). (1)

As every null set can be covered by a countable union of open intervals with
arbitrary small total length it follows that µij is absolutely continuous with
respect to the Lebesgue measure. By the Radon-Nikodym theorem there
exists a measurable function hij(t) : R+ → R+ such that

µij(A) =
∫
A
hij(t)dt, A ∈ B(R+).

Taking A = [0, t] and differentiating we see that hij(t) = µij(dt). Dividing

with dt in (1) and taking dt→ 0 shows that hij(t) = E(wij(~ξi(t)).
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Using Proposition 1 we can calculate µij(t, α) through

µij(t, α) =
∫ t

0
e−αshij(s)ds =

∫ t

0
e−αsE(wij(~ξi(s)))ds.

3.1 A Useful Integral

In what follows we shall see that the integral

Ii(~n, θ) =
∫ ∞

0
e−θsP(~ξi(t) = ~n)ds, ~n ∈ Np

is very useful in deriving Theorem 1, 2, and 3. This is because many quanti-
ties of interest can be written as a sum of Ii(~n, θ) over some set. For instance,

µ∗ij(θ) =
∫ ∞

0
e−θshij(s)ds =

∑
~n∈Np

wij(~n)Ii(~n, θ).

We shall therefore spend some time investigating Ii(~n) ≡ Ii(~n, α), and deriv-
ing a recursion for it.

Proposition 2. Let ~ξi(t) = (ξi1(t), . . . , ξip(t)) where ξij(t) are the counting
processes of a multi-type degree-based attachment model. For ~n = (n1, . . . , np) ∈
Np define

Ii(~n) =
∫ ∞

0
e−αsP(~ξi(t) = ~n)ds.

Then

(i) Ii(~0) = 1
α+wi1(~0)+···+wip(~0)

;

(ii) if |~n| > 0 then Ii(~n) =
∑p
j=1

wij(n1,...,nj−1,...,np)Ii(n1,...,nj−1,...,np)

α+wi1(~n)+···+wip(~n)
.

where wi1(~n) = wip(~n) = Ii(~n) = 0 if min(n1, . . . , np) < 0, i, j = 1, 2, . . . , p.

Proof. By definition, ~ξi(t) is a Markov process on Np and, by condition (A1),
it does not explode in finite time. Hence, it satisfies the Kolmogorov forward
equations.

Assuming that that n1, . . . , np > 1, we get

d

dt
P(~ξi(t) = ~n) =

p∑
j=1

wij(n1, . . . , nj−1, . . . , np)P(~ξi(t) = (n1, . . . , nj−1, . . . , np))

− (wi1(~n) + · · ·+ wip(~n))P(~ξi(t) = ~n).

12



Using this together with integration by parts yields

Ii(~n) =
∫ ∞

0
e−αsP(~ξi(s) = ~n)ds =

1

α

∫ ∞
0

e−αs
d

ds
P(~ξi(s) = ~n)ds

=
1

α

p∑
j=1

wij(n1, . . . , nj − 1, . . . , np)Ii(n1, . . . , nj − 1, . . . , np)

− 1

α
(wi1(~n) + · · ·+ wip(~n))Ii(~n).

Solving for Ii(~n) we get

Ii(~n) =
p∑
j=1

wij(n1, . . . , nj − 1, . . . , np)Ii(n1, . . . , nj − 1, . . . , np)

α + wi1(~n) + · · ·+ wip(~n)
.

Special cases for |~n| ≤ 1 follows by the same method.

We can now prove Theorem 1 and 2.

Proof of Theorem 1. Let φx(t) = 1{τ(x) = i} be the random characteristic
assigning type i vertices score 1 and type j 6= i vertices score 0. The branch-
ing process Zi(t) = Zφ(t) starting with 1 vertex of any type represents the
number of type i vertices at time t.

Let ψx(t) ≡ 1 and put Z(t) = Zψ(t)—this is the original branching
process counting the number of vertices alive at time t.

We want to apply Theorem 4 to the ratio Zi(t)
Z(t)

and need to check that con-

ditions (C1)-(C6) are satisfied. The random characteristics trivially satisfy
the condition (C6) of Theorem 4 and, since µij(t) are non-lattice measures
by design, also condition (C1) is fulfilled.

It remains to prove that condition (A1) implies conditions (C2)-(C5). By
(A1), the Perron root exists for all λ ≥ θ0. Since ρ(µ∗(θ0)) > 1 for some
θ0 > 0 and as ρ(µ∗(θ)) is a decreasing function, ρ(µ∗(0)) is larger than 1 (or
an entry is infinite) and condition (C2) is satisfied. We have previously seen
(in Section 1.3) that conditions (C3) and (C5) follows from (A1). Left to
show is that (C4) is satisfied, i.e. that∫ ∞

0
ue−αuµij(du) <∞.

It follows from (A1) that α > θ0 and
∫∞

0 e−θ0uµij(du) <∞. For large enough
u, we have that ue−αu < e−θ0u and therefore that∫ ∞

0
ue−αuµij(du) <

∫ u0

0
ue−αuµij(du) +

∫ ∞
u0

e−θ0uµij(du) <∞.

13



All conditions of Theorem 4 are satisfied and applying it to lim
t→∞

Zi(t)
Z(t)

yields

lim
t→∞

Zi(t)

Z(t)
=

ui
u1 + · · ·+ up

The proof of Theorem 2 is similar.

Proof of Theorem 2. Again we wish to apply Theorem 4. Let φx(t) = 1{τ(x) =
i, ξ(t) = ~n} be the random characteristic assigning score 1 to type i ver-
tices with nk children of type k, k = 1, . . . , p. Let Z~ni (t) = Zφ(t) be the
branching process associated with this characteristic. Similarly let ψx(t) = 1
and Z(t) = Zψ(t) be the branching process counting the number of vertices
born/alive at time t.

The proof of Theorem 1 shows that we can apply Theorem 4 and we get

lim
t→∞

Z~ni (t)

Z(t)
=
ui
∫∞

0 e−αsP(ξi(t) = ~n)

(u1 + . . .+ up)/α
= α

ui
u1 + . . .+ up

Ii(~n).

The latter part of the theorem follows directly from Proposition 2.

4 Multi-type Linear Preferential Attachment

In this section the theory from Section 3 is applied to investigate the limiting
behavior of the degree distribution, and asymptotic composition of the vertex
population, for a specific family of weight functions wij(~n). We consider the
case when the weight functions are given by wij(~n) = γij(n1 + · · ·+np) +βij,
with γij and βij being positive constants. We call this model multi-type
linear preferential attachment based on total in-degree. The main purpose
of this section is to prove Theorem 3. Most of the results in this section are
for the slightly more general case when wij(~n) = wij(n1 + · · ·+ np), but the
rate function is not necessarily linear.

First we will need to investigate if condition (A1) is satisfied. Hence, we
will need to calculate µ∗ij(α). First note that the density (Radon-Nikodym
derivative) in Proposition 1 is given by

hij(t) = E(wij(~ξi(t))) = E(wij(ξi1(t) + · · ·+ ξip(t))) =
∞∑
k=0

wij(k)P(ξΣ
i (t) = k)

where ξΣ
i (t) = ξi1(t) + · · ·+ ξip(t). In deriving an expression for µ∗ij(α) it will

first be useful to study Ii(k) =
∑
n1+···+np=k Ii(~n) =

∫∞
0 e−λsP(ξΣ

i (s) = k)ds.

14



Proposition 3. If the weight functions of the multi-type preferential attach-
ment model satisfy wij(~n) = wij(n1 + · · ·+ np) then

Ii(k) =
1

α + wi1(k) + · · ·+ wip(k)

k−1∏
n=0

wi1(n) + · · ·+ wip(n)

α + wi1(n) + · · ·+ wip(n)

where an empty product is defined to equal 1.

Proof. We prove the formula by induction. First note that it holds k =
0. Assume that it holds for k > 0. By Proposition 2 and the induction
assumption

Ii(k+1) =
∑

n1+···+np=k+1

Ii(~n) =
∑

n1+···+np=k+1

p∑
j=1

wij(k)Ii(n1, . . . , nj − 1, . . . , np)

α + wi1(k + 1) + · · ·+ wip(k + 1)

=
p∑
j=1

wij(k)

α + wi1(k + 1) + · · ·+ wip(k + 1)

∑
n1+···+np=k

Ii(~n)

=
p∑
j=1

wij(k)

α + wi1(k + 1) + · · ·+ wip(1 + k)
Ii(k) =

(
∑p
j=1wij(k))Ii(k)

α + wi1(k + 1) + · · ·+ wip(k + 1)

which proves the formula.

This result is easily extended to an expression for µ∗ij(θ) given that the
weight functions depend only on the total in-degree.

Corollary 1. If the weight functions of the multi-type preferential attachment
model satisfy wij(~n) = wij(n1 + · · ·+ np), then for θ > 0

µ∗ij(θ) =
∞∑
k=0

wi1(k)

θ + wi1(k) + · · ·+ wip(k)

k−1∏
n=0

wi1(n) + · · ·+ wip(n)

θ + wi1(n) + · · ·+ wip(n)

Proof. Let ξΣ
i (t) = ξi1(t) + · · ·+ ξip(t) then

µ∗ij(θ) =
∫ ∞

0
e−θsµij(ds) =

∫ ∞
0

e−θshij(s)ds

=
∫ ∞

0
e−θs

∞∑
k=0

wij(k)P(ξΣ
i (s) = k)ds =

∞∑
k=0

wij(k)
∫ ∞

0
e−θsP(ξΣ

i (s) = k)ds =
∞∑
k=0

wij(k)Ii(k, θ)

where the second to last equality follows from monotone convergence. An
application of Proposition 3 yields the desired result.
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Remark. The above expression for µ∗ij(θ) is in accordance with the results of
[14] and [6] when p = 1. Also, note that µ∗ij(λ) may well be infinite if θ < θ0,
with θ0 as in (A1).

Given that the weight functions are linear in total degree we can derive
an even more explicit result for the Laplace transform µ∗ij(θ).

Corollary 2. If the weight functions of the multi-type preferential attachment
model satisfy wij(~n) = γij(n1 + · · · + np) + βij, with γij ≥ 0, βij > 0 and
γi1 + · · ·+ γip > 0, then

µ∗ij(θ) =
∫ ∞

0
e−θsµij(ds) =

∞ if 0 < θ ≤ γi1 + · · ·+ γip,
βij
θ

+ γij(βi1+···+βip)

θ(θ−(γi1+···+γip))
if θ > γi1 + · · ·+ γip

Proof. For convenience set γ = γi1 + · · ·+ γip and β = βi1 + · · ·+ βip. First
assume that γij > 0. By Corollary 1, whenever the Laplace transform exists,
we have

µ∗ij(θ) =
∞∑
k=0

wi1(k)

θ + wi1(k) + · · ·+ wip(k)

k−1∏
n=0

wi1(n) + · · ·+ wip(n)

θ + wi1(n) + · · ·+ wip(n)

=
∞∑
k=0

γijk + βij
γk + α + β

k−1∏
n=0

γn+ β

γn+ α + β
.

We want to use the relation
∏k
i=0(i+ c) = Γ(k+1+c)

Γ(c)
and therefore re-write the

above expression as

µ∗ij(θ) =
γij
γ

∞∑
k=0

k + βij/γij
k + α/γ + β/γ

k−1∏
n=0

n+ β/γ

n+ α/γ + β/γ

=
γij
γ

∞∑
k=0

k + β/γ − β/γ + βij/γij
k + α/γ + β/γ

k−1∏
n=0

n+ β/γ

n+ α/γ + β/γ

=
γij
γ

( ∞∑
k=0

k∏
n=0

n+ β/γ

n+ α/γ + β/γ
+ (βij/γij − β/γ)

∞∑
k=0

∏k−1
n=0 n+ β/γ∏k

n=0 n+ α/γ + βγ

)

=
γijΓ(α/γ + β/γ)

γΓ(β/γ)

( ∞∑
k=0

Γ(k + 1 + β/γ)

Γ(k + 1 + α/γ + β/γ)
+ (βij/γij − β/γ)

∞∑
k=0

Γ(k + β/γ)

Γ(k + 1 + αγ + β/γ)

)
.

Using the relation
∑n
k=0

Γ(k+a)
Γ(k+c)

= 1
1+a−c

(
Γ(n+1+a)

Γ(n+c)
− Γ(a)

Γ(c−1)

)
valid for all real

numbers a, c (see [6]) together with Stirling’s formula Γ(k+ c)/Γ(k) ∼ kc we
get

Γ(n+ 1 + a)

Γ(n+ c)
→ 0 as n→∞ if 1 + a < c =⇒

∞∑
k=0

Γ(k + a)

Γ(k + c)
=

1

c− a− 1

Γ(a)

Γ(c− 1)
, if 1 + a < c.
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We note that the sum diverges if 1 + a ≥ c. Hence, µ∗ij(θ) converges if and
only if θ > γ = γi1 + · · ·+ γip. For θ > γ, we get

µ∗ij(θ) =
γijΓ(α/γ + β/γ)

γΓ(β/γ)

(
Γ(1 + β/γ)

(θ/γ − 1)Γ(θ/γ + β/γ)
+ (βij/γij − β/γ)

Γ(β/γ)

θ/γΓ(θ/γ + β/γ)

)
.

All together we then have (again using
∏k
i=0(i+ c) = Γ(k+1+c)

Γ(c)
),

µ∗ij(θ) =

∞, if θ ≤ γi1 + · · ·+ γip
βij
θ

+ γij(βi1+···+βi2)

θ(θ−(γi1+···+γip))
, if θ > γi1 + · · ·+ γip.

Next assume that γij = 0. Then µ∗ij(θ) is just the Laplace transform of
the intensity measure of a Poisson process which is in accordance with the
formula, i.e. µ∗ij(θ) = βij

θ
.

Corollary 2 immediately implies that condition (A1) is satisfied for multi-
type linear preferential attachment since

min
i

p∑
j=1

µ∗ij(θ) ≤ ρ(µ∗(θ))

and lim
θ↓γi1+···+γip

µ∗ij(θ) =∞.

Using Corollary 2, it is possible to calculate the Perron root of µ∗(θ) and
Malthusian parameter α as well as the corresponding eigenvectors. However,
already for p = 2 these expressions are rather complicated and are better
calculated numerically.

We are finally ready to prove Theorem 3.

Proof of Theorem 3. Given that the model starts with one vertex we have
by Theorem 4 that

Zk
i (t)

Zi(t)
→ α

ui
u1 + · · ·+ up

Ii(k) as t→∞

i.e. the proportion of type i vertices with k children in total converges to the
expression on the right-hand side above. Again let γ = γi1 + · · · + γip and
β = βi1 + · · ·+ βip. First assume that γ > 0. Then by Proposition 3

Ii(k) =

∏k−1
n=0 γn+ β∏k

n=0 α + γn+ β
=

Γ(α+β
γ

)

γΓ(β
γ
)

Γ(k + β
γ
)

Γ(k + 1 + α+β
γ

)
.
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By the same methods as in the proof of Corollary 2, we get

Ii(k) ∼ C · k−(1+α
γ

)

and the first part of the theorem is proved.
Secondly, assume that γi1 + · · ·+ γip = 0. Then

Ii(k) =
1

α + β

(
β

α + β

)k
=

1

α + β
e−k(log(1+α

β
))

and the second part of the theorem is proved.

5 Numerical Examples

We now numerically investigate the behavior of the asymptotic composition
of the vertex population as well as the exponent of the empirical degree
distribution for some natural examples.

Consider first the two-type linear preferential attachment model with
w11(k) = γ11k + 1 and w12(k) = w21(k) = w22(k) = k + 1. We now vary
the rate at which type 1 vertices generate new type 1 vertices, i.e. γ11, while
keeping everything else fixed. For γ11 < 1 we expect fewer type 1 than type
2 vertices in the graph and the opposite for γ11 > 1. This is indeed true,
see Figure 1. Recall from Theorem 3 that the asymptotic behavior of the
empirical degree distribution is given by

lim
t→∞

Zk
i (t)

Z(t)
∼ C1 · k−(1+ α

γi1+γi2
)

if γi1 + γi2 > 0. (2)

Hence, a lower absolute value of the power law exponent corresponds to a
heavier tail of the degree distribution. Clearly, for large values of γ11, type 1
will have a heavier tail, and this can be observed in Figure 1.
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Figure 1: w11(k) = γ11k + 1 and w12(k) = w21(k) = w22(k) = k + 1

Next consider the case when w12(k) = γ12k + 1 and w11(k) = w21(k) =
w22(k) = k + 1. We now vary the rate at which type 1 vertices generate
new type 2 vertices while keeping everything else fixed. In Figure 2 we can
see that for γ12 < 1 there is a majority of type 1 vertices, while for γ12 > 1
there is a majority of type 2 vertices. In fact, the qualitative behavior of the
asymptotic composition is the opposite of previous model, compare Figure
1 and 2. Although there are more type 2 vertices for values of γ12 > 1 we
note that it is type 1 vertices that generate them. Hence, there should still
be more type 1 vertices with high total degree. This is indeed true, and can
be observed in Figure 2. We note that power law exponents are the same as
for the previous model—this follows from (2).
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Figure 2: w12(k) = γ12k + 1 and w11(k) = w21(k) = w22(k) = k + 1

The value of the parameters {βij} influences the power law exponents
through the Malthusian parameter, and the asymptotic composition through
the left eigenvector u. For the last example we consider the model where
w11(k) = γ11k + 1, w12(k) = k + 10, = w21(k) = k + 1 and w22(k) = k + 10.
Hence, the model has larger constants for generating type 2 vertices. Even
for large values of γ11 there are still more type 2 than type 1 vertices in
the graph, i.e. the constants β12 = 10 and β22 = 10 have a large influence
on the asymptotic composition of the vertex population. Comparing Figure
3 with Figure 1 and 2 we see that degree distributions have thinner tails.
This is because the larger values of the constants β12 and β21 weaken the
preferential attachment mechanic in that it puts more weight on vertices
with lower degree, e.g. degree 0 vertices have rate 10 instead of 1 as in the
previous two examples.

Comparing the figures above we conclude that {βij} has a large influence
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on asymptotic composition of the vertex population, and less influence on
the degree distributions.

Figure 3: w11(k) = γ11k + 1, w12(k) = k + 10, = w21(k) = k + 1 and
w22(k) = k + 10.

6 Further Work

There are special cases of the model which can be studied further. For
instance, the framework can be applied to the case when the rate functions
are given by wij(~n) = wij(nj), i.e. when the reproduction processes of a
vertex are independent. Using the framework one can identify the limit of

lim
t→∞

Zφ
j

i (t)

Z(t)
, where Zφj

i (t) is the number of vertices at time t of type i with

k type j children. For instance, if wij(~n) = γijnj + βij then the asymptotic

21



behavior in k of this fraction is given by

lim
t→∞

Zφj

i (t)

Z(t)
∼ C · k−(1+ α

γij
)
, C ∈ R.

This follow by noting that, by Theorem 4, we have

lim
t→∞

Zφj

i (t)

Z(t)
= C1α

∫ ∞
0

e−αsP(ξij(s) = k)ds = C
∑

~n: nj=k

Ii(~n)

and, by Proposition 2 and the proof of Corollary 2, we get

∑
~n: nj=k

Ii(~n) =
1

α + wij(k)

k−1∏
n=0

wij(k)

α + wij(k)

=
1

α + γijk + βij

k−1∏
n=0

γijn+ βij
α + γijn+ βij

=
Γ(α+βij

γij
)

γijΓ(βij
γij

)

Γ(k + βij
γij

)

Γ(k + 1 + α+βij
γij

)
∼ C·k−(1+ α

γij
)
.

However, an expression for how the fraction of type i vertices with k
children in total behaves as k grows large does not follow easily from the
framework, and is left as an open problem.

There are also extensions of the model which can be studied. Following
[6] we could allow for vertex death. The framework developed here can not be
directly applied to this situation, but it should be possible to extend to allow
for vertex death. With no vertex death the preferential attachment graph
is a tree, and questions about the largest component are not interesting.
However, with vertex death the graph becomes a forest, and questions about
the largest component arise. Will a large component emerge? If so, how
large is it?
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8 Appendix

For the reader interested in how the Malthusian parameter, the Perron root,
and the corresponding eigenvectors enters Theorem 4 and how they play a
role in the theory more generally we give an indication. Define mφ

i (t) =
E(e−αtiZ

φ(t)) where iZ
φ(t) is the process starting with one type i individual

and counted with the random characteristic φ. Denote by φi(t) the random
score of a type i individual of age t. With this notation we get the standard
system of renewal equations for a general multi-type branching process, see
e.g. [12].

Lemma 1. The processes {mφ
i (t)}, i = 1, 2, . . . , p, satisfies a system of re-

newal equations

mφ
i (t) = E(e−αtφi(t)) +

p∑
j=1

∫ t

0
mφ
j (t− s)e−αsµij(ds), i = 1, 2, . . . , p. (3)

It is reasonable to assume that E(Z(t)) (and by proxy E(Zφ(t))) grows
exponentially, as exponential growth is inherent in supercritical branching
processes. Indeed, if each individual is, on average, replaced with more than
one individual, the process should grow exponentially. For instance, in the
single-type Galton-Watson case we have that E(Zn) = mn, where m is the
expected number of children of an individual. Another example of expo-
nential growth is the two-type Markovian branching process with constant
reproduction rates and no deaths; in our multi-type preferential attachment
terminology wij(m,n) = γij. Let mi(t) = E(Zi(t)) be the expected number
of type i individuals alive at time t. As the process is Markovian, the number
of type i individuals alive at time t+ dt given the population sizes Z1(t) and
Z2(t) is the sum of every individual alive at t of type i and all type i offspring
produced in the interval [t, t+ dt]. We get

mi(t+ dt) = E(E(Zi(t+ dt)|Z1(t), Z2(t)))

= E(Zi(dt)|τ(x0) = 1)E(Z1(t)) + E(Zi(dt)|τ(x0) = 2)E(Z2(t)).

Ignoring the infinitesimal probability that two births can occur in a small time
interval we have that E(Z1(dt)|τ(x0) = 1) = 1 − γ11dt + 2γ11dt = 1 + γ11dt
and E(Z1(dt)|τ(x0) = 2) = γ21dt (here we do not count type 2 individuals
that are alive). We get the system of equations

m1(t+ dt) = (1 + γ11dt)m1(t) + γ21m2(t)dt

m2(t+ dt) = γ12m1(t)dt+ (1 + γ22dt)m2(t).
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Implying that

m′1(t) = γ11m1(t) + γ21m2(t)

m′2(t) = γ12m1(t) + γ22m2(t)

m1(0) = m, m2(0) = n.

Such a system is solved by mi(t) = c1e
λ1tv1 + c2e

λ2tv2, where λ1 and λ2 are
the eigenvalues of the matrix M = [γij] and v1 and v2 corresponding right
eigenvectors. Hence, mi(t) grows as eλt where λ is the largest eigenvalue of
M .

We have argued that general branching processes exhibit exponential
growth, however at which rate remains to be understood. It turns out
that the rate of the growth is determined by the Malthusian parameter.
For instance, in the Markov example above, one can easily show that the
Malthusian parameter equals the largest eigenvalue of the matrix M =
[γij], and therefore determines the growth of Z(t). In fact, Malthusian
growth holds for a large class of multi-type general branching processes,
e.g. processes satisfying (C1)-(C5). But why does the Malthusian param-
eter α — satisfying ρ(µ∗(α)) = 1 — determine the growth? To answer
that we first need to set some notation. Let m∗i (θ) =

∫∞
0 e−θsmφ

i (s)ds,
φ∗i (θ) =

∫∞
0 e−θsE(φi(s))ds, and finally µ∗ij(θ) =

∫∞
0 e−θsµij(ds). Let m∗(θ) =

[m∗i (θ)]i,Φ
∗(θ) = [φ∗i (θ)]i, µ

∗(θ) = [µ∗ij(θ)]ij, i, j = 1, . . . , p. By Lemma 1,

mφ
i (t) satisfies

mφ
i (t) = E(e−αtφi(t)) +

p∑
j=1

∫ t

0
mφ
j (t− s)e−αsµij(ds), i = 1, 2, . . . , p.

Taking the Laplace transform of this and expressing it in matrix notation we
get

m∗(θ) = Φ∗(α + θ) + µ∗(α + θ)m∗(θ), θ > 0.

By [11, Lemma 8.2], condition (C5) shows that the Laplace transform indeed
exists. Solving for m∗(θ) we get

m∗(θ) = (I − µ∗(α + θ))−1Φ∗(α + θ).

Since ρ(µ∗(α)) = 1 and ρ(µ∗(θ)) is decreasing we have that ρ(µ∗(α+ θ)) < 1,
implying that det((I − µ∗(α + θ))) 6= 0. Therefore (I − µ∗(α + θ)) must be
invertible. Let B(α + θ) be the adjoint matrix of (I − µ∗(α + θ)) and let
∆(α+θ) be the determinant of (I−µ∗(α+θ)). We note that ∆(α) = 0 since
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α is the Malthusian parameter. It is well know that

(I − µ∗(α + θ))B(α + θ) = B(α + θ)(I − µ∗(α + θ)) = ∆(α + θ)I,

(I − µ∗(α + θ))−1 =
B(α + θ)

∆(α + θ)
.

We can then write m∗i (θ) as

m∗i (θ) =
B(α + θ)Φ∗(α + θ)

∆(α + θ)
.

Readers familiar with complex analysis will realize that m∗i (θ) has a pole at
θ = 0, as ∆(α) = 0, and m∗i (θ)’s behavior around θ = 0 will determine the
growth of mφ

i (t).
Furthermore, B(α)µ∗(α) = µ∗(α)B(α) = B(α). Therefore, as the Perron

root equals 1, every column vector in B(α) must be a multiple of the right
eigenvector v of µ∗, and every row vector in B(α) must be a multiple of the
left eigenvector u of µ∗(α). Hence, B(α) = c · vu.

By the standard version of the Laplace transform final value theorem, see
[5], lim

t→∞
mφ
i (t) = lim

t→∞
e−αtE(Zφ(t)) exists and equal

lim
t→∞

mφ
i (t) = lim

θ→0
θm∗i (θ) = cvi

(
lim
θ→0

θ

∆(α + θ)

) p∑
j=1

ujφ
∗
j(α).

Is is shown in [1, p. 454] that lim
θ→0

θ
∆(α+θ)

exists and is positive (also this is

where the non-lattice assumption is used). In conclusion

mφ
i (t)→ Cvi

p∑
j=1

uj

∫ ∞
0

e−αsE(φj(s))ds as t→∞, i = 1, 2, . . . , p

where u = (u1, . . . , up) and v = (v1, . . . , vp)
t are the left and right eigenvectors

corresponding to the eigenvalue λ = 1 of the matrix µ∗(α).

Hence, as lim
t→∞

mφi (t)

mψi (t)
=

∑p

j=1
uj
∫∞
0

E(e−αsφj(s))ds∑p

j=1
uj
∫∞
0

E(e−αsψj(s))ds
we might expect

lim
t→∞

iZ
φ(t)

iZψ(t)
=

∑p
j=1 uj

∫∞
0 E(e−αsφj(s))ds∑p

j=1 uj
∫∞
0 E(e−αsψj(s))ds

to converge in a stronger sense than a ratio of expectations. This is indeed
true as shown in Theorem 4, but it is much more difficult to prove.

Finally, a word on the non-lattice assumption (C1). Consider the tradi-
tional single-type Galton-Watson branching process but in continuous time.
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This process is then governed by a lattice measure—the intensity measure is
concentrated on the integer one. Why does not E(Z(t))/eαt converge? From
standard result on the discrete time version of the process we know that
E(Z([t]))/m[t] → 1 as t → ∞, where m is the expected number of children
of an individual. It follows that α = log(m). Hence,

E(Z(t))

eαt
=

E(Z([t]))

m[t]
e− log(m)([t]−t)

and this does not converge.

27


