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Abstract

We consider the estimation of the multi-period optimal portfolio obtained by maximiz-

ing an exponential utility. Employing Jeffreys’ non-informative prior and the conjugate

informative prior, we derive stochastic representations for the optimal portfolio weights

at each time point of portfolio reallocation. This provides a direct access not only to the

posterior distribution of the portfolio weights but also to their point estimates together

with uncertainties and their asymptotic distributions. Furthermore, we present the poste-

rior predictive distribution for the investor’s wealth at each time point of the investment

period in terms of a stochastic representation for the future wealth realization. This in

turn makes it possible to use quantile-based risk measures or to calculate the probability

of default. We apply the suggested Bayesian approach to assess the uncertainty in the

multi-period optimal portfolio by considering assets from the FTSE 100 in the weeks after

the British referendum to leave the European Union. The behaviour of the novel portfolio

estimation method in a precarious market situation is illustrated by calculating the pre-

dictive wealth, the risk associated with the holding portfolio, and the default probability

in each period.
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1 Introduction

In portfolio theory, the mean-variance paradigm introduced by Markowitz (1952) is still a popu-

lar reference for understanding the relationship between systematic risk, return and investment

behaviour. A portfolio is determined here by using the asset expected returns and their covari-

ances. As a starting point, Markowitz (1952) was vastly extended in the following 70 years.

While Markowitz (1952) focused only on a single investment period, the multi-period solution

was introduced in Markowitz (1959). Merton (1969) showed that the mean-variance multi-

period setting in the continuous time case is equivalent to expected utility maximization for an

exponential utility function. The multi-period optimal portfolio choice problems for different

utility functions were considered by Mossin (1968), Samuelson (1969), Elton (1974), Brandt

and Santa-Clara (2006), Basak and Chabakauri (2010).

While these studies focus on the continuous time case, Li and Ng (2000), Çanakoğlu and

Özekici (2009), Bodnar, Parolya, and Schmid (2015a,b) presented the results in the discrete

time case for the quadratic utility function and the exponential utility function. In particular,

Bodnar, Parolya, and Schmid (2015b) derived an analytical expression for the multi-period

optimal portfolio weights under the assumption of non-tradable predictable variables and a

VAR(1)-structure which are described as linear combinations of the precision matrix (inverse

covariance matrix) and the expected return vector. While this setting allows for flexibility in

building trading strategies under quite unrestrictive assumptions, there are still shortcomings:

(i) since the parameters of the asset return distribution, namely the mean vector and the

covariance matrix, are unknown quantities, the optimal portfolio weights cannot be constructed

in practice and they are obtained by replacing the unknown parameter of the asset return

distribution by the corresponding estimates; (ii) although the distributional properties of the

estimated optimal portfolio weights and corresponding inference procedures were derived in

a number of literature studies for the single-period investment strategies (see, e.g., Gibbons,

Ross, and Shanken (1989), Shanken (1992), Shanken and Zhou (2007), Okhrin and Schmid

(2006), Bodnar and Schmid (2008, 2011), Bodnar and Schmid (2009)), the problem with the

overlapping estimation windows appears to be very crucial under the multi-period setting; (iii)

due to the multivariate structure, the determination of the joint distribution of the estimated

multi-period optimal portfolio weights is a challenging task.

To tackle all these three challenges, we opt for a Bayesian approach. The Bayesian approach

is a well established method for building trading strategies in a single-period optimal portfolio

choice problem, starting with Winkler (1973) and Winkler and Barry (1975) and continued

until this day. For an overview, see, e.g., Brandt (2010) where also Bayesian portfolio methods
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are discussed, or Avramov and Zhou (2010). As Avramov and Zhou (2010) pointed out, the

Bayesian setting is a realistic description of human decision making processes and information

utilization. Both past events and experiences influence the beliefs of market participants at

least up to a certain degree how an investment will develop. The investor beliefs are modeled

via a prior distributions which represents the relevant information regarding the behaviour

of the asset returns. While there is a plenty of possibilities to specify the prior, we focus

on the non-informative diffuse prior and the informative conjugate prior (see, e.g., Zellner

(1971), and Gelman, Carlin, Stern, and Rubin (2014)) not only for computational reasons

but mainly because of their popularity in the financial literature (c.f., Barry (1974), Brown

(1976), Klein and Bawa (1976), Frost and Savarino (1986), Aguilar and West (2000), Rachev,

Hsu, Bagasheva, and Fabozzi (2008), Avramov and Zhou (2010), Sekerke (2015), Bodnar,

Mazur, and Okhrin (2017)). Furthermore, their application allows to derive the corresponding

posterior distributions in the closed-form what enables us to access important risk measures

and to construct credible sets.

The obtained posterior distributions of the optimal portfolio weights under both employed

priors are presented in terms of their stochastic representations. A stochastic representation is

a well established tool in computational statistics (c.f., Givens and Hoeting (2012)) and in the

theory of elliptically contoured distributions (see, e.g. Gupta, Varga, and Bodnar (2013)) which

was already used in Bayesian statistics by Bodnar, Mazur, and Okhrin (2017). It turns out

that the derived stochastic representations are very powerful, allowing us to access not only the

posterior distribution of the multi-period optimal portfolio weights, but also to determine the

predictive distribution for the wealth at each point of the holding period. Therefore, we are able

to access the quantiles for the posterior predictive wealth distribution and can calculate the risk

associated with the portfolio at every point over the lifetime of a portfolio, besides analytical

Bayesian estimates for the weights together with their uncertainties. Besides these pleasing

properties, the developed stochastic representations are highly efficient from a computational

point of view since Markov-Chain Monte-Carlo methods are not longer needed. In addition to

the derivation of these results, we illustrate this method and its properties on real data. We

test the model in an exhaustive study using data from the FTSE 100, where the portfolios

cover the time of Great Britains referendum to leave the European Union on 23.6.2016, more

commonly regarded as “Brexit”, where a slim majority of British voters decided to leave the

European Union. Although this result was regarded as the less likely option in advance, it

was regarded as the option with the least favourable effects on the British economy and should

therefore have an effect on a portfolio covering this period.

The remaining paper is structured in the following way. In Section 2, we briefly review the

solution of the multi-period optial portfolio choice problem with exponential utility derived in

Bodnar, Parolya, and Schmid (2015b). The stochastic representations for the optimal portfolio
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weights under both priors are presented in Theorems 1 and 2 (Section 2.2), which are use

to derive the corresponding Bayes estimates for the weights (Theorem 3) together with their

covariance matrix (Theorem 4) as well as to prove the posterior asymptotic normality (Theorem

5). In Section 2.3, we obtain the posterior predictive distribution for the wealth during the

holding period which is provided in terms of stochastic representation in Theorem 6 under both

employed priors. In Section 3, the suggested Bayesian approach is applied to the Brexit-data

by calculating the asymptotic distributions for the optimal portfolio weights, determining the

credible sets for the portfolio wealth and specifying the default probabilities at each time point.

Section 4 summarizes the main results of the paper, while all technical proofs are moved to the

appendix (Section 5).

2 Bayesian analysis of multi-period optimal portfolios

2.1 Analytical solution of the multi-period optimization problem

Let Xt = (Xt,1, Xt,2, ..., Xt,k)
> be a random vector of returns on k assets taken at time point t.

Throughout the paper we assume that the asset returns X1,X2, ... are infinitely exchangeable

and multivariate centered spherically symmetric. This assumption, in particular, implies (see,

e.g., Bernardo and Smith (2000, Proposition 4.6)) that the asset returns are independently

and identically distributed given mean vector µ and covariance matrix Σ with the conditional

distribution given by Xt|µ,Σ ∼ Nk(µ,Σ) (k-dimensional normal distribution with mean vector

µ and covariance matrix Σ). It is noted that the imposed assumption imply that neither

the unconditional distribution of the asset returns is normal nor that they are independently

distributed. Moroever, the unconditional distribution of the asset returns appears to be heavy-

tailed which is usually observed for financial data.

The quantities µ and Σ denote the parameters of the asset returns distribution where Σ is

assumed to be a k×k dimensional positive definite matrix. We consider a multi-period portfolio

choice problem with the allocation of initial wealth at time point t = 0 and with the subsequent

update of the portfolio structure at time points t ∈ {1, 2, ..., T}. Let vt = (vt,1, ..., vt,k)
> stand

for the vector of portfolio weights determined at time t and let rf,t be the return on the risk-

free asset in period t. We assume that short-selling is allowed, i.e. the weights could also

be negative. The vector vt specifies the structure of the portfolio related to the risky assets,

whereas the part of the wealth equal to 1 − 1>vt is invested into the risk-free asset where 1

denotes the k-dimensional vector of ones. Then the investor’s wealth in period t is expressed

as

Wt = Wt−1(1 + (1− 1>vt−1)rf,t + v>t−1Xt) = Wt−1(1 + rf,t + v>t−1(Xt − rf,t1)).
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An investor seeks to maximize the utility of the final wealth, i.e. U(WT ), where U(x) =

− exp(−γx) is the exponential utility function and the coefficient of absolute risk aversion,

γ > 0, determines the investor’s attitude towards risk. The optimization problem is given by

V (0,W0) = max
{vs}T−1

s=0

E0[U(WT )] (1)

where the maximum is taken with respect to all weights v0,..., vT−1 which specify the portfolio

structure during the initial period of investment as well as during all consequent reallocations.

The solution of (1) is derived in the recursive way starting from the last period by applying

Bellman equations at 0, 1, ... T − 1. The optimization problem at time point T − t is then

given by

V (T − t,WT−t) = max
{vs}T−1

s=T−t

ET−t

 max
{vs}T−1

s=T−t+1

ET−t+1[U(WT )]


= max

vT−t
ET−t

[
V (T − t+ 1,WT−t

(
rf,T−t + w>T−t+1(XT−t+1 − rf,T−t+11)

)
)
]

subject to the terminal condition U(WT ) = − exp(−γWT ) with wT−t+1 as the optimal portfolio

weights in period T−t+1. For details on this method, see e.g. Pennacchi (2008), while Bodnar,

Parolya, and Schmid (2015b) determine an analytical solution of (1) under the exponential

utility. The latter results are summarized in Proposition 1.

Proposition 1. Let Xt, t = 0, ..., T be a sequence of conditionally independently and identically

distributed vectors of k risky assets with Xt|µ,Σ ∼ Nk(µ,Σ). Let Σ be positive definite. Then

the optimal multi-period portfolio weights are given by

wt = CtΣ
−1(µ− rf,t+11), with Ct = (γWt

T∏
i=t+2

Rf,i)
−1 (2)

for t = 0, ..., T − 1 where Rf,i = 1 + rf,i and
∏T
i=T+1Rf,i ≡ 1.

Although Proposition 1 provides a simple solution of the multi-period portfolio choice prob-

lem, the formula (2) cannot directly be applied in practice since µ and Σ are unknown param-

eters of the asset return distribution. As a result, these two quantities have to be estimated

before the portfolio (2) is constructed. However, the usage the estimated mean vector and the

estimated covariance matrix instead of the population ones does not ensure that the estimated

portfolio weights coincide with true ones. Then two main questions raise: (i) how strongly

deviates the estimated portfolio from the population one? and (ii) is it reasonable to invest

into the estimated portfolio? Both questions have to be treated by using statistical methods

and are very closely connected to the distributional properties of the estimates constructed for

µ and Σ.

The traditional approach of estimating the portfolio weights relies on the methods from the

conventional statistics where the sample mean vector and the sample covariance matrix are
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used. Let xt−n+1, ...,xt be the observation vectors of asset returns which are considered as

realizations of the corresponding random vectors Xi, i = t− n+ 1, ..., t. Then the mean vector

and the covariance matrix at time point t are estimated by

xt =
1

n

t∑
i=t−n+1

xi and St =
1

n− 1

t∑
i=t−n+1

(xi − xt)(xi − xt)
> . (3)

The sample estimate of the multi-period optimal portfolio is obtained by replacing µ and Σ in

(2) by the corresponding estimates from (3). This leads to

ŵt = CtS
−1
t (xt − rf,t+11) with Ct = (γWt

T∏
i=t+2

Rf,i)
−1 for t = 0, ..., T − 1. (4)

Using the findings in Bodnar and Okhrin (2011), we obtain the density function, the mo-

ments and the stochastic representation of the sample multi-period optimal portfolio weights

from the viewpoint of frequentist statistics. These results provide answers on the above two

questions and allow us to characterize the distributional properties of each vector of weights ŵt

separately. On the other hand, they do not take into account the multi-period nature of the

considered investment procedure. More precisely, it is not possible to provide the characteri-

zation of the whole multi-period optimal portfolio, since the overlapping samples are used and

the dependence structure between the estimated portfolio weights becomes severe.

For that reason, we deal with the problem of estimating the multi-period optimal portfolio

from the viewpoint of Bayesian statistics and consider the portfolio constructed by using (4) as

a benchmark portfolio without investigating its distributional properties in detail. In contrast

to the methods of the frequentist statistics, the application of the Bayesian approach allows

the sequential update of the available information which is a very important property needed

for estimating the multi-period portfolio weights.

2.2 Bayesian estimation of portfolio weights

Let xt,n = (xt−n+1, ...,xt) denote the observation matrix at time point t which consists of n

asset return vectors from t − n + 1 to t. According to Bayes theorem, the beliefs regarding

µ and Σ are updated in the presence of occurring data, yielding the posterior distribution

π(µ,Σ|xt,n) to be proportional to the product of the likelihood function L(xt,n|µ,Σ) and the

prior distribution π(µ,Σ). The posterior is, then, used to derive Bayesian estimates for the

multi-period optimal portfolio weights as well as their characteristics, like the covariance matrix

and a credible region which is an analogue to a confidence region in the conventional statistics.

The Bayes theorem states that

π(µ,Σ|xt,n) ∝ L(xt,n|µ,Σ)π(µ,Σ).
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The choice of the prior π(µ,Σ) is an important step in the Bayesian decision process. Al-

though the prior should reflect the investor’s belief regarding the parameters of the asset return

distribution, it also strongly affects the model’s computational properties since it influences

the accessibility of the posterior distribution. Several priors for the mean vector and covari-

ance matrix of the asset returns have been suggested in literature (see, e.g., Barry (1974),

Brown (1976), Klein and Bawa (1976), Frost and Savarino (1986), Rachev, Hsu, Bagasheva,

and Fabozzi (2008), Avramov and Zhou (2010), Sekerke (2015)) with the recent paper of Bod-

nar, Mazur, and Okhrin (2017) summarizing these results. In the following, we choose Jeffreys’

non-informative prior and a conjugate informative prior for both µ and Σ. These two priors

are widely used in the context of Bayesian inference of optimal portfolios.

The Jeffreys non-informative prior, also known as the diffuse prior, is given by

π(µ,Σ) ∝ |Σ|−(k+1)/2 (5)

while the cojugate prior is expressed as

µ|Σ ∼ Nk
(
m0,

1

r0
Σ
)

, (6)

Σ ∼ IWk(d0,S0), (7)

where m0, r0, d0, S0 are additional model parameters known as hyperparameters. The symbol

IWk(d0,S0) denotes the inverse Wishart distribution with d0 degrees of freedom and parameter

matrix S0. The prior mean µ0 reflects our prior expectations about the expected asset returns,

while S0 presents in the model the prior beliefs about the covariance matrix. The other two

hyperparameters r0 and d0 are known as precision parameters for µ0 and S0, respectively. Note

that the prior (6)-(7) corresponds to the well-known conjugate normal-inverse-Wishart model

as discussed by, e.g., Gelman, Carlin, Stern, and Rubin (2014). In this case the posterior is

accessible in an analytical form and moreover, has the same distribution as the prior with

updated hyperparameters.

In Proposition 2, we present the marginal posterior of µ as well as the conditional posterior

of Σ given µ. These results will be later used in the derivation of Bayesian estimates for the

optimal portfolio weights. In the following the symbol tk(d, a,A) stands for the multivariate

k-dimensional t-distribution with d degrees of freedom, location vector a and dispersion matrix

A. In the case of k = 1, a = 0, and A = 1, we use the notation td to denote the standard

univariate t-distribution with d degrees of freedom.

Proposition 2. Let Xt−n+1, ...,Xt be conditionally independently distributed with Xi|µ,Σ ∼
Nk(µ,Σ) for i = t− n+ 1, ..., t with n > k. Then:

(a) Under the diffuse prior (5), the marginal posterior distribution of µ is given by

µ|xt,n ∼ tk

(
n− k,xt,d,

1

n(n− k)
St,d

)
with xt,d = xt and St,d = (n− 1)St.
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The conditional posterior distribution of Σ given µ is expressed as

Σ|µ,xt,n ∼ IWk(n+ k + 1,S∗t,d(µ)) with S∗t,d(µ) = St,d + n(µ− xt,d)(µ− xt,d)
>.

(b) Under the conjugate prior (6) and (7), the marginal posterior distribution of µ is given by

µ|xt,n ∼ tk

(
n+ d0 − 2k,xt,c,

1

(n+ r0)(n+ d0 − 2k)
St,c

)
with

xt,c =
nxt + r0m0

n+ r0
and St,c = St,d + S0 + nr0

(m0 − xt,c)(m0 − xt,c)
>

n+ r0
.

The conditional posterior distribution of Σ given µ is expressed as

Σ|µ,xt,n ∼ IWk(n+ d0 + 1,S∗t,c(µ)) with

S∗t,c(µ) = St,c + (n+ r0)(µ− xt,c)(µ− xt,c)
>.

The proof of Proposition 2 follows from chapter 3 in Gelman, Carlin, Stern, and Rubin

(2014) who presented the expressions of the marginal posterior distributions of µ under both

the diffuse and the conjugate priors. Then, the results for the conditional posteriors of Σ are

obtained from the joint posterior distributions using the formulae for the marginal posteriors

for µ. It is remarkable that although the results for the marginal posteriors for both µ and

Σ are widely used in Bayesian inferences and the conditional posteriors for µ given Σ have

been considered previously in literature (see, e.g., Sun and Berger (2007)), the results for the

conditional posteriors of Σ given µ have not been discussed nor used. Next, we show that the

last finding allows to derive posterior distributions for functions which includes both µ and Σ.

In order to assess the risk associated with estimating the optimal portfolio weights, we need

to derive results about the posterior distribution of the weights presented in Proposition 1

which are given as a product of the inverse covariance matrix and the mean vector. Next,

we establish very useful stochastic representations for these weights, endowing the parameters

with their diffuse and conjugate priors. The results are summarized in Theorem 1, where the

stochastic representations are derived for an arbitrary linear combination of optimal portfolio

weights. These findings are later used for calculating the Bayesian estimates of the portfolio

weights (Theorem 3) and their covariance matrix (Theorem 4). It is noted that the application

of the stochastic representation to describe the distribution of random quantities has been used

both in the conventional statistics (see, e.g., Givens and Hoeting (2012), Gupta, Varga, and

Bodnar (2013)) and the Bayesian statistics (c.f., Bodnar, Mazur, and Okhrin (2017)). Later

on, the symbol ”
d
=” denotes the equality in distribution. The proof of Theorem 1 is presented

in the appendix (Section 5).

Theorem 1. Let L be a p× k-dimensional matrix of constants. Then under the assumption of

Proposition 2 we get:
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(a) Under the diffuse prior (5), the stochastic representation of Lwt is given by

Lwt
d
= CtηLS∗t,d(µ)−1(µ− rf,t+1) + Ct

√
η
(

(µ− rf,t+1)
>S∗t,d(µ)−1(µ− rf,t+1) · LS∗t,d(µ)−1L>

− LS∗t,d(µ)−1(µ− rf,t+1)(µ− rf,t+1)
>S∗t,d(µ)−1L>

)1/2

z0,

where η ∼ χ2
n, z0 ∼ Np(0, Ip), and µ|x ∼ tk (n− k,xt,d,St,d/(n(n− k))); moreover, η, z0

and µ are mutually independent.

(b) Under the conjugate prior (6) and (7), the stochastic representation of Lwt is given by

Lwt
d
= CtηLS∗t,c(µ)−1(µ− rf,t+1) + Ct

√
η
(

(µ− rf,t+1)
>S∗t,c(µ)−1(µ− rf,t+1) · LS∗t,c(µ)−1L>

− LS∗t,c(µ)−1(µ− rf,t+1)(µ− rf,t+1)
>S∗t,c(µ)−1L>

)1/2

z0,

where η ∼ χ2
n+d0−k, z0 ∼ Np(0, Ip), and µ|x ∼ tk (n+ d0 − 2k,xt,c,St,c/((n+ r0)(n+ d0 − 2k)));

moreover, η, z0 and µ are mutually independent.

The results of Theorem 1 show that in both cases, i.e., when the mean vector and the covari-

ance matrix are endowed by the diffuse prior and the conjugate prior, the obtained stochastic

representations are very similar and the posterior distributions of the multi-period optimal

portfolio weights from Proposition 1 can be described by three random variables which have

standard univariate/multivariate distributions.

Another important application of Theorem 1 is that the results of this theorem also provide

a hint how these distributions can be accessed in practice via simulations, namely by simulating

samples from the χ2-distribution, the normal distribution, and the t-distribution. Although the

derived stochastic representations have some nice computational properties in terms of speed,

they are not computationally efficient. In the following theorem we derive further stochastic

representations under both priors by applying the Sherman-Morrison-Woodbury formula on

the inverse of the posterior scale matrices S∗t,d(µ) and S∗t,c(µ). The proof of the theorem is

provided in the appendix. Let F(d1, d2) denote the F -distribution with d1 and d2 degrees of

freedom.

Theorem 2. Under the assumption of Theorem 1 we get:

(a) Under the diffuse prior (5), the stochastic representation of Lwt is given by

Lwt
d
= CtηLζd + Ct

√
η
(
εdLΥdL

> − Lζdζ
>
d L>

)1/2
z0, (8)
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with

εd = εd(Q,u) = (xt,d − rf,t+11)>S−1t,d (xt,d − rf,t+11)

+
2√
n

√
kQ/(n− k)

1 + kQ/(n− k)
(xt,d − rf,t+11)>S

−1/2
t,d u

+
1

n

kQ/(n− k)

1 + kQ/(n− k)
− kQ/(n− k)

1 + kQ/(n− k)

(
(xt,d − rf,t+11)>S

−1/2
t,d u

)2
,

ζd = ζd(Q,u) = S−1t,d (xt,d − rf,t+11) +
1√
n

√
kQ/(n− k)

1 + kQ/(n− k)
S
−1/2
t,d u

− kQ/(n− k)

1 + kQ/(n− k)
S
−1/2
t,d uu>S

−1/2
t,d (xt,d − rf,t+11),

Υd = Υd(Q,u) = S−1t,d −
kQ/(n− k)

1 + kQ/(n− k)
S
−1/2
t,d uu>S

−1/2
t,d ,

where η ∼ χ2
n, z0 ∼ Np(0, Ip), Q ∼ F(k, n − k), and u uniformly distributed on the unit

sphere in Rk; moreover, η, z0, Q, and u are mutually independent.

(b) Under the conjugate prior (6) and (7), the stochastic representation of Lwt is given by

Lwt
d
= CtηLζc + Ct

√
η
(
εcLΥcL

> − Lζcζ
>
c L>

)1/2
z0, (9)

with

εc = εd(Q,u) = (xt,c − rf,t+11)>S−1t,d (xt,c − rf,t+11)

+
2√

n+ r0

√
kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)
(xt,c − rf,t+11)>S

−1/2
t,d u

+
1

n+ r0

kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)
− kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)

(
(xt,c − rf,t+11)>S

−1/2
t,d u

)2
,

ζc = ζd(Q,u) = S−1t,c (xt,c − rf,t+11) +
1√

n+ r0

√
kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)
S
−1/2
t,c u

− kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)
S
−1/2
t,c uu>S

−1/2
t,c (xt,c − rf,t+11),

Υc = Υd(Q,u) = S−1t,c −
kQ/(n+ d0 − 2k)

1 + kQ/(n+ d0 − 2k)
S
−1/2
t,c uu>S

−1/2
t,c ,

where η ∼ χ2
n+d0−k, z0 ∼ Np(0, Ip), Q ∼ F(k, n+ d0 − 2k), and u uniformly distributed on

the unit sphere in Rk; moreover, η, z0, Q, and u are mutually independent.

Theorem 2 provides alternative stochastic representations of the optimal portfolio weights

obtained under the diffuse prior and under the conjugate prior. Although more difficult mathe-

matical expressions are present in Theorem 2, they are more computationally efficient than the

ones provided in Theorem 1. Namely, there is no need to calculate the inverse of the matrices

S∗t,d(µ) and S∗t,c(µ) in each simulation run and instead, we only calculate the inverse of the

10



matrices St,d and St,c once for the whole simulation study. This property surely speeds up the

simulation study considerably. Finally, we note that the realizations of the random vector u,

which is uniformly distributed on the unit sphere in Rk, are obtained by drawing z from the

k-dimensional standard normal distribution and calculating u = z/
√

z>z.

The results of Theorem 2 are used to derive Bayesian estimates for the weights of the

multi-period optimal portfolio at the initial period of investment as well as at each time of

reallocations. They are presented in Theorem 3.

Theorem 3. Under the assumption of Theorem 1, we get

(a) Under the diffuse prior (5), the Bayes estimate for the optimal portfolio weights at time

point t is given by

ŵt,d = E(wt|xt,n) = Ct(n− 1)S−1t,d (xt,d − rf,t+11) .

(b) Under the conjugate prior (6) and (7), the Bayes estimate for the optimal portfolio weights

at time point t is given by

ŵt,c = E(wt|xt,n) = Ct(n+ d0 − k − 1)S−1t,c (xt,c − rf,t+11) .

The proof of the theorem is given in the appendix. It is interesting to note that the estimate

for the optimal portfolio weights obtained under the diffuse prior coincides with the expression

derived in Section 2.1 for their frequentist estimate since St,d/(n− 1) = St.

Finally, we present the expressions for the covariance matrices of the optimal portfolio

weights in Theorem 4 with the proof moved to the appendix. These formulas characterize the

dependencies between the portfolio weight and also allow to access their Bayesian risk.

Theorem 4. Under the assumption of Theorem 1, we get:

(a) Under the diffuse prior (5), the covariance matrix of wt is given by

Vt,d = Var(wt|xt,n) = C2
t

(n− 1)S−1t,d (xt,d − rf,t+11)(xt,d − rf,t+11)>S−1t,d

+

(
n2 + k − 2

n(n+ 2)
+
k − 1

k
bd

)
S−1t,d

,
where bd = n(xt,d − rf,t+11)>S−1t,d (xt,d − rf,t+11).

(b) Under the conjugate prior (6) and (7), the covariance matrix of wt is given by

Vt,c = Var(wt|xt,n) = C2
t

(n+ d0 − k − 1)S−1t,c (xt,c − rf,t+11)(xt,c − rf,t+11)>S−1t,c

+

(
(n+ d0 − k)2 + k − 2

(n+ r0)(n+ d0 − k + 2)
+

(n+ d0 − k)(k − 1)

(n+ r0)k
bc

)
S−1t,c

,
where bc = (n+ r0)(xt,c − rf,t+11)>S−1t,c (xt,c − rf,t+11).
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The results of Theorems 3 and 4 provide the first two moments of optimal portfolio weights

and, consequently, they characterize their mean values, variances, and correlations. Although

different formulas are obtained under the diffuse prior and under the conjugate prior, when the

sample size increases the difference between the corresponding expressions becomes negligible.

More general results are provided in Theorem 5 where it is shown that wt converge to the

same asymptotic normal distribution under the diffuse prior and under the conjugate prior.

Theorem 5. Under the assumption of Theorem 1, it holds that

√
n(wt − ŵt)|xt,n

d−→ N

0, C2
t

S̆−1t (x̆t − rf,t+11)(x̆t − rf,t+11)>S̆−1t

+

(
1 +

k − 1

k
(x̆t − rf,t+11)>S̆−1t (x̆t − rf,t+11)

)
S̆−1t


as n −→∞ under both the diffuse prior and the conjugate prior where

x̆t ≡ lim
n−→∞

xt,d = lim
n−→∞

xt,c and S̆t ≡ lim
n−→∞

St,d
n− 1

= lim
n−→∞

St,c
n+ r0

and

ŵt ≡ lim
n−→∞

ŵt,d = lim
n−→∞

ŵt,c = CtS̆
−1
t (x̆t − rf,t+11).

The proof of Theorem 5 is given in the appendix. Its results are in line with the Bernstein-von

Mises theorem (c.f., Bernardo and Smith (2000)) which shows under some regularity conditions

that the posterior distribution converges to the normal one independently of the prior used

when the sample size tends to infinity. In practice, the asymptotic covariance matrix of wt is

approximated by using xt and St instead of x̆t and S̆t.

2.3 Posterior predictive distribution

In this section we derive the posterior predictive distribution of the wealth at time point t+ 1,

Ŵt+1, given the observable data xt,n under the diffuse prior (5) and the conjugate prior(6) and

(7) for the given vector of portfolio weights vt and the current wealth Wt. Namely, the aim is

to derive the posterior predictive distribution of

Wt+1 = Wt(1 + rf,t + v>t (Xt+1 − rf,t+1)) (10)

given information provided by the observation matrix xt,n, i.e.

fŴt+1
(w|xt,n) =

∫
µ,Σ

fŴt+1
(w|µ,Σ,xt,n)π(µ,Σ|xt,n)dµdΣ,

where π(µ,Σ|xt,n) is the posterior distribution obtained under the diffuse prior or the conjugate

prior. The symbol Ŵt+1 denotes a random variable whose distribution coincides with the

posterior predictive distribution of the wealth calculated at time point t+ 1.
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In Theorem 6 we present the stochastic representations of the posterior predictive distri-

bution of Ŵt+1 with the proof given in the appendix. The symbol td stands for the standard

univariate t-distribution with d degrees of freedom.

Theorem 6. Under the assumption of Theorem 1 we get:

(a) Under the diffuse prior (5), the stochastic representation of the posterior predictive distri-

bution of Wt+1 is given by

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (xt,d − rf,t+1)

+
√

v>t St,dvt

 t1√
n(n− k)

+

√
1 +

t21
n− k

t2√
n− k + 1


where t1 and t2 are independent with t1 ∼ tn−k and t2 ∼ tn−k+1.

(b) Under the conjugate prior (6) and (7), the stochastic representation of the posterior predic-

tive distribution of Wt+1 is given by

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (xt,c − rf,t+1)

+
√

v>t St,cvt

 t1√
(n+ r0)(n+ d0 − 2k)

+

√
1 +

t21
n+ d0 − 2k

t2√
n+ d0 − 2k + 1

 ,
where t1 and t2 are independent with t1 ∼ tn+d0−2k and t2 ∼ tn+d0−2k+1.

The results in Theorem 6 are very useful in analyzing the behavior of the investor’s wealth

during the whole investment period as well as at the final point T . It allows: (i) to calculate

with which probability the investor can become bankrupt during the whole investment horizon

at each time point; (ii) to construct the prediction intervals for the wealths at each time

point of the investment period; (iii) to determine risk measures, like Value-at-Risk (VaR) and

conditional VaR (CVaR), of the investment strategy during all times of the future reallocation;

(iv) to specify a region where the final wealth belongs to with a high probability. We illustrate

these results based on real data in Section 3.

3 Empirical study

3.1 Data description

The data used in the empirical study consist of weekly returns on twelve stocks from the FTSE

100, namely Barclays, Glaxo Smith Kline, Standard Life, Marks and Spencer, Burberry Group

plc, HSBC, LLoyds Banking, NEXT plc, Rolls-Royce Holding, The Sage Group, Tesco plc
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Figure 1: Development of the gross returns for the twelve assets considered in the portfolio.

and Unilever which represent a variety of branches with strong international activities. Since

the parameters of the asset returns are not usually constant over a longer period of time, we

disregard the use of monthly data which are closer to the normal distribution and choose weekly

returns as a compromise between actuality and the assumption of conditional normality. As a

risk-free rate we use the weekly returns on the three-months US treasury bill.

The portfolio weights are estimated using a rolling window estimation with different sample

sizes of n ∈ {52, 78, 104, 130} corresponding to one year up to two and a half years of weekly

data in steps of six months. The portfolio runs from 6.6.2016 until 5.9.2016 (T = 13) covering a

precarious market situation due to Great Britains referendum to leave the European Union on

23.06.2016. The gross returns of these assets are given in Figure 1. Especially Barclays suffered

a loss of nearly 10 % in the week after the Brexit decision but also suffered losses in the weeks

prior to the Brexit. HSBC announced that significant parts of her banking operations is moved

from the City of London to different locations as a direct reaction to the referendum and it is

rumoured that Lloyds seeks for a German banking licence as a consequence to the Brexit. The

returns of the Marks and Spencer share were not as affected by the Brexit but the company

reported that consumer confidence would be weakened in the days prior to the Brexit. This
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also implies price uncertainty for domestic consumer products due to a decline of the pound

losing almost a fifth of his value against the dollar after the Brexit vote, which was emphasized

for example by Tesco and Unilever. But Glaxo Smith Kline and Standard Life seem to be

unaffected by the Brexit decision, yielding even positive returns. Rolls Royce, after all, faced

significant losses in the beginning of 2016 and is hit by the Brexit vote severely, since they need

to hedge a huge amount of British pounds against currency fluctuations because most of the

contracts in aerospace are conducted in dollars.

3.2 Posterior distribution of the weights

Due to Theorem 2 it is possible to access the posterior distribution of the weights directly. The

weights can be sampled using the following procedure:

1. Generate independently

• η ∼ χ2
n under the diffuse prior or η ∼ χ2

n+d0−k under the conjugate prior

• z0 ∼ Np(0, Ip)

• Q ∼ F(k, n−k) under the diffuse prior or Q ∼ F(k, n+d0−2k) under the conjugate

prior

• Z ∼ Nk(0, Ik) � u = Z/
√

Z′Z

2. Compute the vector of portfolio weights by using the stochastic representation (8) for the

diffuse prior or (9) for the conjugate prior.

3. Repeat steps (1) and (2) B times.

The implementation of this simulation procedure leads to sequences of optimal portfolio

weights of size B at each time point of the investment period, from which using their sample

distribution we approximate the posterior distributions of the weights as well as their important

quantiles from these distributions and the credible sets for portfolio weights. It is remarkable

that all computations can easily be done by generating samples from the well known univariate

distributions and high numerical precision could be achieved by choosing the corresponding

value of B.

In Figures 2 and 3, we analyze the finite-sample behavior of the results presented in Theorem

5. Namely, we investigate the speed of convergence of the posterior distribution of the optimal

portfolio weights to the corresponding asymptotic distribution which is a normal distribution

according to Theorem 5 for both priors. The choice of the hyperparameters m0 and S0 in the

case of the conjugate prior are of particular interest. According to the Bayesian paradigm, m0

and S0 represent the correct belief of the decision maker. In practice, however, there are several
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Figure 2: Histograms of the standardized Glaxo Smith Kline (GSK) weight for the diffuse prior. The hypothesis

that the weight is normally distributed can not be rejected for common significance levels when the sample size

is larger than n = 100.

data driven methods how to replace m0 and S0 by data-dependent values m̂0 and Ŝ0. We make

use of the empirical Bayes approach (see Section 5.2 in the appendix for the derivation of the

formulas) which is applied to the weekly data of the returns on the corresponding assets directly

from the time period before the empirical counterparts of the portfolio weights are estimated,

always with the same time window. Namely, they are given by

m̂0 = xn−t and Ŝ0 =
(d0 − k − 1)(n− 1)

n
Sn−t

with the derivation moved to the appendix (Section 5.2). The prior parameters for t > 1 are

estimated using a rolling window starting in the corresponding period. We set d0 equal to the

number of observations in the pres-sample period, i.e., d0 = n.

We set B = 105 for draws from the stochastic representations of Theorem 2 and compare

the standardized weight of Glaxo Smith Kline (GSK) calculated for the priod T − 1 in the

case of several sample sizes n ∈ {52, 78, 104, 130}. The corresponding histograms are given in

Figure 2 for the diffuse prior and in Figure 3 for the conjugate prior. In both figures we also

present the p-values of the Shapiro-Wilk test, indicating if the standardized weights follow a

standard normal distribution. This hypothesis is rejected for n = 52 and n = 78 in the case of
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Figure 3: Histograms of the standardized Glaxo Smith Kline (GSK) weight for the conjugate prior. The

hypothesis that the weight is normally distributed can not be rejected for common significance levels in the case

of all considered sample sizes.

the diffuse prior for a common significance level of 5 % but it cannot be rejected at this level

for larger sample sizes. Stronger results are obtained in the case of the conjugate prior, where

the null hypothesis cannot be rejected at 5 % level for all considered sample sizes. We therefore

conclude that the approximate distribution of Theorem 5 works reasonably well.

3.3 Wealth development and credibility intervals

Since the main purpose of investing is making money, investors are therefore interested in how

much money they made during an investment period. We focus again on the same investment

period covering the Brexit-referendum as in the previous subsection.

During the lifetime of the portfolio, no bankruptcy occurred. But more importantly, the

stochastic representation for the posterior predictive distribution given in Theorem 6 can be

used to calculate credible intervals for the wealth. By generating B = 105 draws from Theorem

6 and calculating the 95 % credible intervals, we generate upper and lower bounds for the

wealth in the specific period. These intervals together with the predicted and realized wealths

are shown in Figure 4. We observe a difference in the width of the intervals for lower and

larger sample sizes which was expected. The credible intervals are considerably smaller for n
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Figure 4: Wealth development and 95% credible intervals for the diffuse prior (above) and for the conjugate

prior (below). The wealth for smaller n is almost always higher compared to a portfolio estimated with larger

n, while the credible intervals are much narrower for larger n.

∈ {104, 130} compared to smaller n. Note that the sample size has to be sufficiently large in

relation to the number of assets. Otherwise, the credible intervals are inflated due to massive

estimation uncertainty known as the curse of dimensionality.

It might happen that both the diffuse and the conjugate priors do not perform well when the

sample size increases. The reason for the diffuse prior is that the empirical counterparts might

not describe the portfolio running period well, indicating a trade-off between the actuality and

stability of the parameters. This problem is amplified for the conjugate prior since the prior

parameters are determined using even more distant data. While the data-driven approach to the

conjugate prior is somewhat realistic, it is not completely in line with the Bayesian paradigm.

When the expectations and therefore the choice of hyperparameters are closer to the return

behaviour after the Brexit, the results could be improved. Although this is consistent with the

Bayesian paradigm, such an approach is of course not entirely practical but not impractical:

using appropriate forecasting methods, other data driven methods can be applicable as long

as they yield a reliable point estimate. This subjective approach emphasizes the possibility as

well as the necessity to resemble realistic future market behaviour in the prior parameterization

and it is left for future research.
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Figure 5: Default probabilities for the diffuse prior (above) and for the conjugate prior (below).

3.4 Default probability

Due to the accessability of the posterior predictive distribution, we can also calculate the default

probability of our portfolio at each time point, defined as the event that our wealth becomes

negative at this point in time. The predictive probability of default can easily be determined

by calculating the amount of defaults in relation to all draws, in this case B = 105. The

development of the defaults is given in Figure 5. Again, we find a pattern resembling the

credible intervals of the posterior predictive distribution illustrated in the previous section with

no surprises.

Starting with the diffuse prior, we observe a slightly increased default probability on 27.6.2016,

the week after the Brexit referendum. With the conjugate prior, this default probability is lower

in the same week. Again, the peak for n = 130 of the diffuse prior again resembles the trade-off

between parameter stability and actuality, resulting here in a slightly increased default proba-

bility. The default probability for the conjugate prior is slightly increased in the following week

compared to the diffuse prior, presumably due to parameters relying on a wider estimation

window.
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4 Summary

In this paper we consider the estimation of the multi-period portfolio for an exponential util-

ity function in a Bayesian setting. Since the portfolio weights are given as the product of

two multivariate/matrix-variate random quantities, accessing the distribution of the weights

is a challenging task. By choosing the non-informative and the conjugate prior, the posterior

distributions of the weights have pleasing properties since the conditional distribution of the

precision matrix for a given return vector is an inverted Wishart distribution. With this insight

we could use this well understood distribution (c.f. Muirhead (1982)) to derive stochastic rep-

resentations for the weights which is a direct access to the posterior distribution. Furthermore,

these representations also provide us with Bayesian estimates for the optimal portfolio weights

together with their covariance matrix. In addition to this, we derive the posterior predictive

distribution for the wealth which makes it possible to calculate the quantiles of the portfolio

wealth at each time point of the investment period and it is therefore highly relevant for risk

purposes. The method is then applied to real data from the FTSE 100 covering the period of the

Brexit referendum. With these data we determine the posterior distribution of the weights, the

predictive wealths in each period, the lower wealth quantiles as well as the default probability

in every time period.

It turns out that the use of stochastic representations to generate the posterior distribution

numerically is computationally highly efficient: the representations rely on samples from well

known distributions and no MCMC methods are needed. In the empirical part of Section

3 it was demonstrated that these methods work well and are easy to implement. We have

to emphasize several points: while the non-informative prior will yield results which coincide

with the common frequentist case and is as easily to apply as the classical case, the conjugate

or informative prior is said to involve a potentially large degree of subjectivity – sometimes

implying that the frequentist approach or the non-informative prior would be objective. But

we have to choose the sample size in all of these cases which is naturally a subjective choice with

a huge effect on the performance of the portfolio as we demonstrate in Section 3. This trade-off

between parameter actuality and parameter stability has to be faced by the practitioner. One

advantage of the conjugate prior is of course that we can incorporate our beliefs regarding the

future behaviour of the asset returns in our model which is not possible neither in the frequentist

nor in the non-informative case. This is clearly at the core of every investment decision and

reflects natural decision making. Nevertheless, the hyperparameters have to be chosen carefully

and a rigorous sensitivity analysis is left for future research.

There are still other open research questions regarding the multi-period portfolio choice with

exponential utility function which are left for future research. The present approach can be

extended to the case with predictable variables as discussed in Bodnar, Parolya, and Schmid
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(2015b) in the case of the known parameters of the asset return distribution. This, however, is

much more difficult due to the more complicated structure of the optimal portfolio weights and

the dependence structure of the asset returns. Furthermore, the multi-period optimal portfolios

obtained by using other utility functions can be estimated following the approach suggested in

the paper.

5 Appendix

5.1 Proofs of the theorems

In this part of the paper we present the proofs of the theoretical results. First, we note that

the derived posterior distributions under the diffuse prior and under the conjugate prior in

Proposition 2 have a similar structure. For that reason, we formulate and prove some lemmas

from which the results in both cases of the diffuse prior and the conjugate prior follow.

Lemma 1. Let

Ω|ν,y ∼ IWk(ky,S
∗
y(ν)) and ν|y ∼ tk (dy,my,Sy/dy) ,

where S∗y(ν) = vy(Sy + (ν − my)(ν − my)
>) and let M be a p × k-dimensional matrix of

constants. Then the stochastic representation of MΩ−1(ν − a) is given by

MΩ−1(ν − a)
d
= ηMS∗y(ν)−1(ν − a)

+
√
η
(
(ν − a)>S∗y(ν)−1(ν − a) ·MS∗y(ν)−1M> −MS∗y(ν)−1(ν − a)(ν − a)>S∗y(ν)−1M>

)1/2
z0,

where η ∼ χ2
ky−k−1, z0 ∼ Np(0, Ip), and ν|y ∼ tk (dy,my,Sy/dy); moreover, η, z0 and ν are

mutually independent.

Proof of Lemma 1. Since Ω∗
d
= Ω|ν = ν∗,y ∼ IWk(ky,S

∗
y(ν

∗)) and, consequently, Ω∗−1 ∼
Wk(ky − k − 1,S∗y(ν

∗)−1) (c.f., Theorem 3.4.1 in Gupta and Nagar (2000), it holds that (see,

e.g., Theorem 3.2.5 in Muirhead (1982))

Ξ∗ = M̃Ω∗−1M̃> ∼ Wk(ky − k − 1,V∗),

with M̃ = (M>,ν∗ − a)> and V∗ = M̃S∗y(ν
∗)−1M̃>. Next, we partition Ξ∗ and V∗ in the

following way

Ξ∗ =

 Ξ∗11 Ξ∗12

Ξ∗21 Ξ∗22

 =

 MΩ∗−1M> (ν∗ − a)>Ω∗−1M>

MΩ∗−1(ν∗ − a) (ν∗ − a)>Ω∗−1(ν∗ − a)


and

V∗ =

 V∗11 V∗12

V∗21 V ∗22

 =

 MS∗y(ν
∗)−1M> (ν∗ − a)>S∗y(ν

∗)−1M>

MS∗y(ν
∗)−1(ν∗ − a) (ν∗ − a)>S∗y(ν

∗)−1(ν∗ − a)

 .
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The application of Theorem 3.2.10 in Muirhead (1982) yields

Ξ∗12|Ξ∗22 ∼ Np(V12V
−1
22 Ξ∗22,V11·2Ξ

∗
22) with V11·2 = V11 −

V12V21

V22
.

Defining η = Ξ∗22/V22 and using Theorem 3.2.8 of Muirhead (1982) we get that η ∼ χ2
ky−k−1.

Since the χ2
ky−k−1-distribution is independent of ν = ν∗ and y (on which the distribution of

Ξ∗22 depends on by definition of Ξ∗), it is also the unconditional distribution of η as well as η is

independent of both ν and y. Thus, the stochastic representation of MΩ−1(ν − a) is given by

MΩ−1(ν − a)
d
= ηMS∗y(ν)−1(ν − a) +

√
η

(ν − a)>S∗y(ν)−1(ν − a) ·MS∗y(ν)−1M>

− MS∗y(ν)−1(ν − a)(ν − a)>S∗y(ν)−1M>

1/2

z0,

where η ∼ χ2
ky−k−1, z0 ∼ Np(0, Ip), and ν|y ∼ tk (dy,my,Sy/dy); moreover, η, z0 and ν are

mutually independent. This completes the proof of the lemma.

Proof of Theorem 1. The results of Theorem 1 follow from Lemma 1 with M = CtL, Σ = Ω,

ν = µ, a = rf,t+11 and

(a) ky = n+ k+ 1, dy = n− k, vy = n, my = xt,d, Sy = St,d/n, and S∗y(ν) = S∗t,d(µ) in the case

of the diffuse prior;

(b) ky = n + d0 + 1, dy = n + d0 − 2k, vy = n + r0, my = xt,c, Sy = St,c/(n + r0), and

S∗y(ν) = S∗t,c(µ) in the case of the conjugate prior.

Lemma 2. Under the conditions of Lemma 1, we get the following stochastic representation of

MΩ−1(ν − a) expressed as

MΩ−1(ν − a)
d
= v−1y ηMζ + v−1y

√
η
(
εMΥM> −Mζζ>M>

)1/2
z0,

with

ε = ε(Q,u) = (my − a)>S−1y (my − a) + 2

√
kQ/dy

1 + kQ/dy
(my − a)>S−1/2y u

+
kQ/dy

1 + kQ/dy
− kQ/dy

1 + kQ/dy

(
(my − a)>S−1/2y u

)2
,

ζ = ζ(Q,u) = S−1y (my − a) +

√
kQ/dy

1 + kQ/dy
S−1/2y u− kQ/dy

1 + kQ/dy
S−1/2y uu>S−1/2y (my − a),

Υ = Υ(Q,u) = S−1y −
kQ/dy

1 + kQ/dy
S−1/2y uu>S−1/2y ,

where η ∼ χ2
ky−k−1, z0 ∼ Np(0, Ip), Q ∼ F(k, dy), and u uniformly distributed on the unit

sphere in Rk; moreover, η, z0, Q, and u are mutually independent.
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Proof of Lemma 2. The application of the Sherman-Morrison formula (see, e.g., p.125 in Meyer

(2000)) yields

(Sy + (ν −my)(ν −my)
>)−1 = S−1y −

S−1y (ν −my)(ν −my)
>S−1y

1 + (ν −my)>S−1y (ν −my)
(11)

Let

u =
S−1/2y (ν −my)√

(ν −my)>S−1y (ν −my)
and Q = dy(ν −my)

>S−1y (ν −my)/k. (12)

Since ν|y ∼ tk(dy,my,Sy/dy) and that the multivariate t-distribution belongs to the class

of the elliptically contoured distributions, we obtain that u and Q are independent, and u is

uniformly distributed on the unit sphere in Rk (see Theorem 2.15 of Gupta, Varga, and Bodnar

(2013)). Moreover, from the properties of the multivariate t-distribution (see p. 19 of Kotz

and Nadarajah (2004)), we get that Q ∼ F(k, dy), i.e., Q has an F -distribution with k and dy

degrees of freedom.

Hence, the application of the (11) and (12) leads to

(Sy + (ν −my)(ν −my)
>)−1 = S−1y −

kQ/dy
1 + kQ/dy

S−1/2y uu>S−1/2y ,

(Sy + (ν −my)(ν −my)
>)−1(ν − a)

= S−1y (ν − a)−
S−1y (ν −my)(ν −my)

>S−1y (ν −my + my − a)

1 + (ν −my)>S−1y (ν −my)

= S−1y (my − a) +
S−1y (ν −my)

1 + (ν −my)>S−1y (ν −my)
−

S−1y (ν −my)(ν −my)
>S−1y (my − a)

1 + (ν −my)>S−1y (ν −my)

= S−1y (my − a) +

√
kQ/dy

1 + kQ/dy
S−1/2y u− kQ/dy

1 + kQ/dy
S−1/2y uu>S−1/2y (my − a),

and

(ν − a)>(Sy + (ν −my)(ν −my)
>)−1(ν − a)

= (my − a)>S−1y (my − a) + 2
(my − a)>S−1/2y u

√
kQ/dy

1 + kQ/dy

+
kQ/dy

1 + kQ/dy
− kQ/dy

1 + kQ/dy

(
(my − a)>S−1/2y u

)2
.

Putting the above results together we obtain the statement of the lemma.

Proof of Theorem 2. The results of Theorem 2 are obtained by using Lemma 2 with M = CtL,

Σ = Ω, ν = µ, a = rf,t+11 and

(a) ky = n+k+1, dy = n−k, vy = n, my−a = xt,d−rf,t+11, Sy = St,d/n, and S∗y(ν) = S∗t,d(µ)

in the case of the diffuse prior;

(b) ky = n+ d0 + 1, dy = n+ d0 − 2k, vy = n+ r0, my − a = xt,c − rf,t+11, Sy = St,c/(n+ r0),

and S∗y(ν) = S∗t,c(µ) in the case of the conjugate prior.
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Proof of Theorem 3. The proof of the theorem is based on the stochastic representations ob-

tained in Theorem 2. Let l be an arbitrary k-dimensional vector of constants.

(a) Using that η, z0 Q, and u are independent and that E(z0) = 0, in the case of the diffuse

prior we get

E(l>wt|xt,n) = CtE(η)l>E(ζd)

with E(η) = n and

E(ζd|xt,n) = S−1t,d (xt,d − rf,t+11) +
1√
n
E


√
kQ/(n− k)

1 + kQ/(n− k)
S
−1/2
t,d

E(u)

− E
(

kQ/(n− k)

1 + kQ/(n− k)
S
−1/2
t,d

)
E(uu>)S

−1/2
t,d (xt,d − rf,t+11)

= S−1t,d (xt,d − rf,t+11)− k

n

1

k
S−1t,d (xt,d − rf,t+11),

where we use that E(u) = 0 and E(uuT ) = 1
k
Ik (see, e.g. Gupta et al. (2013)) as well as

the fact that if Q ∼ F(k, n− k), then k
n−kQ/

(
1 + k

n−kQ
)
∼ Beta

(
k
2
, n−k

2

)
. Hence,

E

 k
(n−k)Q

1 + k
(n−k)Q

 =
k

n

and, consequently, since l was an arbitrary vector, we get

E(wt|xt,n) = Ct(n− 1)S−1t,d (xt,d − rf,t+11) .

(b) Similar computations as in part (a) leads to

E(wt|xt,n) = Ct(n+ d0 − k − 1)S−1t,c (xt,c − rf,t+11)

under the conjugate prior.

Lemma 3. Under the assumption of Lemma 2 with M = b> : 1× k, we get that

v2yE((b>Ω−1(ν − a))2|y) = (ky − k − 1)(ky − k)

(1− 2

k + dy
+

2

(k + dy)(k + dy + 2)

)
c212

+

(
dy

(k + dy)(k + dy + 2)
+

1

(k + dy)(k + dy + 2)
c2

)
c1


+ (ky − k − 1)

( k − 1

k + dy
+

(
1− 1

k
− 1

k + dy
+

1

(k + dy)(k + dy + 2)

)
c2

)
c1

+
2

(k + dy)(k + dy + 2)
c212

,
where c1 = b>S−1y b, c2 = (my − a)>S−1y (my − a), and c12 = b>S−1y (my − a).
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Proof. The proof of the lemma is based on the stochastic representations from Lemma 2. Since

η, z0, Q, and u are independent as well as E(z0) = 0 and E(z0z
>
0 ) = Ip, we obtain

v2yE((b>Ω−1(ν − a))2|y) = E(η2)E((b>ζ)2|y) + E(η)
(
E(εb>Υb|y)− E((b>ζ)2|y)

)
= (ky − k − 1)(ky − k)E((b>ζ)2|y) + (ky − k − 1)E(εb>Υb|y)

with E(η) = ky − k − 1 and E(η2) = (ky − k − 1)(ky − k + 1).

The application of E(uuT ) = 1
k
Ik and the fact that all odd mixed moments of u are zero

yield

E((b>ζ)2|y) = (b>S−1y (my − a))2 +
1

k
E
(

kQ/dy
(1 + kQ/dy)2

)
b>S−1y b

− 2

k
E
(

kQ/dy
1 + kQ/dy

)
(b>S−1y (my − a))2

+ E

( kQ/dy
1 + kQ/dy

)2
E ((b>S−1/2y U)2((my − a)>S−1/2y U)2|y

)

and

E
(
εb>Υb|y

)
= (my − a)>S−1y (my − a)b>S−1y b + E

(
kQ/dy

1 + kQ/dy

)
b>S−1y b

− 1

k
E
(

kQ/dy
1 + kQ/dy

)
(my − a)>S−1y (my − a)b>S−1y b

− 1

k
(my − a)>S−1y (my − a)b>S−1y b− 1

k
E
(

kQ/dy
1 + kQ/dy

)
bTS−1y b

+ E

( kQ/dy
1 + kQ/dy

)2
E

(
(b>S−1/2y u)2((my − a)>S−1/2y u)2|y

)
.

Since kQ/dy
1+kQ/dy

has a beta distribution with k/2 and dy/2 degrees of freedom, we obtain

E

(
kQ/dy

1 + kQ/dy

)
=

k

k + dy
,

E

(
kQ/dy

1 + kQ/dy

)2

=
2kdy + k2(k + dy + 2)

(k + dy)2(k + dy + 2)
=

k(k + 2)

(k + dy)(k + dy + 2)
.

Furthermore, using Q ∼ F(k, dy), we get

E

[
kQ/dy

(1 + kQ/dy)2

]
=

1

n0

∞∫
0

kt/dy
(1 + kt/dy)2

1

B
(
k
2
, dy

2

) ( k
dy

)k/2
tk/2−1

(
1 +

k

dy
t

)−(k+dy)/2
dt

=
1

B
(
k
2
, dy

2

) ∞∫
0

(
k

dy

)(k+2)/2

t(k+2)/2−1
(

1 +
k

dy
t

)−(k+dy+4)/2

dt

=
B
(
k+2
2
, dy+2

2

)
B
(
k
2
, dy

2

) =
kdy

(k + dy)(k + dy + 2)
,
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where B(·, ·) stands for the beta function (see, Mathai and Provost (1992, p. 256)).

Next, we compute E
(
(b>S−1/2y u)2((my − a)>S−1/2y u)2|y

)
. Let QN ∼ χ2

k be independent of

u. Then
√
QNu has a multivariate standard normal distribution, i.e. b>S−1/2y

(my − a)>S−1/2y

√QNu ∼ N2

0,

 b>S−1y b b>S−1y (my − a)

(my − a)>S−1y b (my − a)>S−1y (my − a)


= N2

0,

 c1 c12

c12 c2

 ,
where c1, c2, and c12 are defined in the statement of Lemma 3. Hence,

E
(
(b>S−1/2y u)2((my − a)>S−1/2y u)2|y

)
= E

[(
b>S−1/2y u

)2 (
(my − a)>S−1/2y u

)2
|y
] E(Q2

N)

E(Q2
N)

=
E
[(

b>S−1/2y

√
QNu

)2 (
(my − a)>

√
QNS−1/2y u

)2
|y
]

E(Q2
N)

=
c1c2 + 2c212
k(k + 2)

,

where the last equality follows from the Isserlis’ theorem (c.f., Isserlis (1918)).

Hence,

E(b>ζζ>b) = c212 +
1

k

kdy
(k + dy)(k + dy + 2)

c1

− 2

k

k

k + dy
c212 +

k(k + 2)

(k + dy)(k + dy + 2)

c1c2 + 2c212
k(k + 2)

=

(
1− 2

k + dy
+

2

(k + dy)(k + dy + 2)

)
c212

+

(
dy

(k + dy)(k + dy + 2)
+

1

(k + dy)(k + dy + 2)
c2

)
c1

and

E
(
εb>Υb

)
= c1c2 +

k

k + dy
c1 −

1

k

k

k + dy
c1c2

− 1

k
c1c2 −

1

k

k

k + dy
c1 +

k(k + 2)

(k + dy)(k + dy + 2)

c1c2 + 2c212
k(k + 2)

=
2

(k + dy)(k + dy + 2)
c212 +

(
k − 1

(k + dy)
+

(
1− 1

k
− 1

k + dy
+

1

(k + dy)(k + dy + 2)

)
c2

)
c1 .

Proof of Theorem 4. The results of Theorem 4 are obtained by using Lemma 3 with b = Ctl,

Σ = Ω, ν = µ, a = rf,t+11 and Theorem 3.

(a) In the case of the diffuse prior, using ky = n + k + 1, dy = n − k, vy = n, my − a =

xt,d − rf,t+11, Sy = St,d/n, c1 = nC2
t l
>S−1t,d l, c2 = n(xt,d − rf,t+11)>S−1t,d (xt,d − rf,t+11), and
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c12 = nCtl
>S−1t,d (xt,d − rf,t+11) we get

Var(l>wt|y)

=
1

n2

n(n+ 1)

(1− 2

n
+

2

n(n+ 2)

)
c212 +

(
n− k

n(n+ 2)
+

1

n(n+ 2)
c2

)
c1


+ n

(k − 1

n
+

(
1− 1

k
− 1

n
+

1

n(n+ 2)

)
c2

)
c1 +

2

n(n+ 2)
c212

− (n− 1)2c212


=

n− 1

n2
c212 + c1

1

n2

(
n2 + k − 2

n+ 2
+
n(k − 1)

k
c2

)

= l>
(
C2
t

(
(n− 1)S−1t,d (xt,d − rf,t+11)(xt,d − rf,t+11)>S−1t,d +

(
n2 + k − 2

n(n+ 2)
+
k − 1

k
bd

)
S−1t,d

))
l

where bd = n(xt,d − rf,t+11)>S−1t,d (xt,d − rf,t+11). Since l is an arbitrary vector, the results

in part (a) follow.

(b) In the case of the conjugate prior, the application of ky = n + d0 + 1, dy = n + d0 − 2k,

vy = n + r0, my − a = xt,c − rf,t+11, and Sy = St,c/(n + r0), c1 = (n + r0)C
2
t l
>S−1t,c l,

c2 = (n + r0)(xt,d − rf,t+11)>S−1t,c (xt,d − rf,t+11), and c12 = (n + r0)Ctl
>S−1t,c (xt,c − rf,t+11).

leads to

Var(l>wt|y)

=
1

(n+ r0)2

(n+ d0 − k)(n+ d0 − k + 1)

×

(1− 2

n+ d0 − k
+

2

(n+ d0 − k)(n+ d0 − k + 2)

)
c212

+

(
n+ d0 − 2k

(n+ d0 − k)(n+ d0 − k + 2)
+

1

(n+ d0 − k)(n+ d0 − k + 2)
c2

)
c1


+ (n+ d0 − k)

( k − 1

n+ d0 − k
+

(
1− 1

k
− 1

n+ d0 − k
+

1

(n+ d0 − k)(n+ d0 − k + 2)

)
c2

)
c1

+
2

(n+ d0 − k)(n+ d0 − k + 2)
c212

− (n+ d0 − k − 1)2c212


=

1

(n+ r0)2

n+ d0 − k − 1

(n+ d0 − k)2
c212 + c1

(
(n+ d0 − k)2 + k − 2

n+ d0 − k + 2
+

(n+ d0 − k)(k − 1)

k
c2

)
= l>

C2
t

(n+ d0 − k − 1)S−1t,c (xt,c − rf,t+11)(xt,c − rf,t+11)>S−1t,c

+

(
(n+ d0 − k)2 + k − 2

(n+ r0)(n+ d0 − k + 2)
+

(n+ d0 − k)(k − 1)

(n+ r0)k
bc

)
S−1t,c

l

where bc = (n+ r0)(xt,c− rf,t+11)>S−1t,c (xt,c− rf,t+11). Since l is an arbitrary vector, we get

the statement of Theorem 4.(b).
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Proof of Theorem 5. Let l be an arbitrary k-dimensional vector. From Theorem 1 with L = l>,

we get the following stochastic representations of Lwt under the diffuse prior and the conjugate

prior expressed as

l>wt
d
= Ctηl

>S∗t,d(µ)−1(µ− rf,t+1) + Ct
√
η
(

(µ− rf,t+1)
>S∗t,d(µ)−1(µ− rf,t+1) · l>S∗t,d(µ)−1l

− l>S∗t,d(µ)−1(µ− rf,t+1)(µ− rf,t+1)
>S∗t,d(µ)−1l

)1/2

z0,

where η ∼ χ2
n, z0 ∼ Np(0, Ip), and µ|x ∼ tk (n− k,xt,d,St,d/(n(n− k))), and

l>wt
d
= Ctηl

>S∗t,c(µ)−1(µ− rf,t+1) + Ct
√
η
(

(µ− rf,t+1)
>S∗t,c(µ)−1(µ− rf,t+1) · l>S∗t,c(µ)−1l

− l>S∗t,c(µ)−1(µ− rf,t+1)(µ− rf,t+1)
>S∗t,c(µ)−1l

)1/2

z0,

where η ∼ χ2
n+d0−k, z0 ∼ Np(0, Ip), and µ|x ∼ tk (n+ d0 − 2k,xt,c,St,c/((n+ r0)(n+ d0 − 2k))).

Moreover, since

√
n




η/n

z0/
√
n

µ

−


1

0

xt,d


 d−→ N

0,


2 0 0

0 Ip 0

0 0 S̆t




and

√
n




η/n

z0/
√
n

µ

−


1

0

xt,c


 d−→ N

0,


2 0 0

0 Ip 0

0 0 S̆t




as n −→∞ as well as

lim
n−→∞

xt,c = x̆t = lim
n−→∞

xt,d

and

lim
n−→∞

St,c
n+ r0

= S̆t = lim
n−→∞

St,d
n− 1

,

the application of the delta method (c.f., (DasGupta, 2008, Theorem 3.7)) proves that

√
n(l>wt − l>ŵt)|xt,n

d.−→ Nk(0, fd)

and
√
n(l>wt − l>ŵt)|xt,n

d.−→ Nk(0, fc),

as n −→∞ under the diffuse prior and the conjugate prior, respectively.
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Finally, the results of Theorem 4 yield

fd = lim
n−→∞

Var(
√
nl>wt) = lim

n−→∞
l>

C2
t

n(n− 1)S−1t,d (xt,d − rf,t+11)(xt,d − rf,t+11)>S−1t,d

+

(
n2 + k − 2

n(n+ 2)
+
k − 1

k
bd

)
S−1t,d

l

= l>

C2
t

S̆−1t (x̆t − rf,t+11)(x̆t − rf,t+11)>S̆−1t

+

(
1 +

k − 1

k
(x̆t − rf,t+11)>S̆−1t (x̆t − rf,t+11)

)
S̆−1t

l

and, similarly,

fc = l>

C2
t

S̆−1t (x̆t − rf,t+11)(x̆t − rf,t+11)>S̆−1t

+

(
1 +

k − 1

k
(x̆t − rf,t+11)>S̆−1t (x̆t − rf,t+11)

)
S̆−1t

l = fd.

Since, for each l the linear combination l>wt is asymptotically normally distributed, then we

also get that the vector of weights wt is asymptotically normal.

Proof of Theorem 6. Since xt+1|µ,Σ ∼ Nk(µ,Σ) and it is conditionally independent of xt,n,

we get

Ŵt+1|µ,Σ,xt,n ∼ N (Wt(1 + rf,t+1 + v>t (µ− rf,t+1)),W
2
t v>t Σvt).

(a) In the case of the diffuse prior, we observe that

v>t Σvt
v>t St,d(µ)∗vt

d
=

1

ξ
, (13)

where ξ ∼ χ2
n−k+1 and is independent of µ (see, e.g., Theorem 3.2.13 in Muirhead (1982)).

Then the stochastic representation of Ŵt+1 is given by

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (µ− rf,t+1) +

√
v>t St,d(µ)∗vt√
n− k + 1

t2

 ,

where t2 ∼ t1(n − k + 1, 0, 1) is independent of µ. Finally, from the properties of the

multivariate t-distribution, we obtain

v>t (µ− xt,d) ∼ t1

(
n− k, 0, v>t St,dvt

n(n− k)

)
,

which leads to

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (xt,d − rf,t+1)

+
√

v>t St,dvt

 t1√
n(n− k)

+

√
1 +

t21
n− k

t2√
n− k + 1

 ,
where t1 and t2 are independent with t1 ∼ tn−k and t2 ∼ tn−k+1.
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(b) Similarly, for the conjugate prior, it holds that

v>t Σvt
v>t St,c(µ)∗vt

d
=

1

ξ
, (14)

where ξ ∼ χ2
n+d0−2k+1 and is independent of µ. Then the stochastic representation of Ŵt+1

is given by

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (µ− rf,t+1) +

√
v>t St,c(µ)∗vt√
n+ d0 − 2k + 1

t2

 ,

where t2 ∼ tn+d0−2k+1 is independent of µ. From the properties of the multivariate t-

distribution, we get

v>t (µ− xt,c) ∼ t1

(
n+ d0 − 2k, 0,

v>t St,cvt
(n+ r0)(n+ d0 − 2k)

)
,

which leads to

Ŵt+1
d
= Wt

1 + rf,t+1 + v>t (xt,c − rf,t+1)

+
√

v>t St,cvt

 t1√
(n+ r0)(n+ d0 − 2k)

+

√
1 +

t21
n+ d0 − 2k

t2√
n+ d0 − 2k + 1

 ,
where t1 and t2 are independent with t1 ∼ tn+d0−2k and t2 ∼ tn+d0−2k+1.

5.2 Empirical Bayes estimation of the hyperparameters in the con-

jugate prior

In this section, we derive the empirical Bayes estimates for the hyperparameters of the conjugate

prior m0 and S0. Given the sample xτ,n the empirical Bayes estimates for m0 and S0 are

obtained by maximizing (see, e.g., Carlin and Louis (2000))

g(m0,S0) =
∫
µ

∫
Σ

L(xt,n|µ,Σ)π(µ,Σ)dΣdµ (15)

with respect to m0 and S0.

First, we calculate the integral in (15), ignoring the terms which do not depend on m0 and
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S0, to get

g(m0,S0) ∝
∫
µ

∫
Σ

L(xt,n|µ,Σ)π(µ,Σ)dΣdµ

∝
∫
µ

∫
Σ

|Σ|−n/2 exp
{
−n

2
(x̄τ − µ)>Σ−1(x̄τ − µ)− n− 1

2
tr(SτΣ

−1)
}

× |Σ|−1/2 exp
{
−r0

2
(µ−m0)

>Σ−1(µ−m0)−
}

× |Σ|−d0/2|S0|(d0−k−1)/2 exp
{
−1

2
tr(S0Σ

−1)
}

dΣdµ

= |S0|(d0−k−1)/2
∫
µ

∫
Σ

|Σ|−(n+d0+1)/2 exp
{
−1

2
tr
(
Σ−1Vτ (µ; m0,S0)

)}
dΣdµ

∝ |S0|(d0−k−1)/2
∫
µ

|Vτ (µ; m0,S0)|−(n+d0−k)/2dµ ,

where the last identity is obtained by recognizing that under the integral with respect to Σ

we have a kernel of the density function of IWk(n + d0 + 1,Vτ (µ; m0,S0)) with ȳτ (m0) =

(nx̄τ + r0m0)/(n+ r0) and

Vτ (µ; m0,S0) = S0 + (n− 1)Sτ + r0(µ−m0)(µ−m0)
> + n(x̄τ − µ)(x̄τ − µ)>

= S0 + (n− 1)Sτ + nr0
(m0 − ȳτ (m0))(m0 − ȳτ (m0))

>

n+ r0
+ (n+ r0)(µ− ȳτ ((m0)))(µ− ȳτ (m0))

> .

Let Ṽτ (m0,S0) = S0+(n−1)Sτ+nr0(m0−ȳτ (m0))(m0−ȳτ (m0))
>/(n+r0). The application

of Sylvester’s determinant theorem leads to

|Vτ (µ; m0,S0)| = |Ṽτ (m0,S0)|(1 + (n+ r0)(µ− ȳτ (m0))
>Ṽτ (m0,S0)

−1(µ− ȳτ (m0)))

and, hence,

g(m0,S0) ∝ |S0|(d0−k−1)/2
∫
µ

|Vτ (µ; m0,S0)|−(n+d0−k)/2dµ

∝ |S0|(d0−k−1)/2|Ṽτ (m0,S0)|−(n+d0−k)/2

×
∫
µ

(1 + (n+ r0)(µ− ȳτ (m0))
>Ṽτ (m0,S0)

−1(µ− ȳτ (m0)))
−(n+d0−k)/2dµ

∝ |S0|(d0−k−1)/2|Ṽτ (m0,S0)|−(n+d0−k−1)/2

= |S0|(d0−k−1)/2|S0 + (n− 1)Sτ |−(n+d0−k−1)/2

×
(
1 + nr0(m0 − ȳτ (m0))

>(S0 + (n− 1)Sτ )
−1(m0 − ȳτ (m0))/(n+ r0)

)−(n+d0−k−1)/2
,

where we use Sylvester’s determinant theorem for the second time. From the last line, we

conclude that g(m0,S0) is maximized with respect to m0 at m̂0 satisfying m0 = ȳτ (m0)

independently of S0 leading to m̂0 = x̄τ .
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Taking the logarithms of g(m0,S0), calculating the matrix derivative with respect to S0

which is then set to the zero matrix, and substituting m0 by m̂0, we get the following matrix

equation
d0 − k − 1

2
S−10 −

n+ d0 − k − 1

2
(S0 + (n− 1)Sτ )

−1 = O

with the solution given by

Ŝ0 =
(d0 − k − 1)(n− 1)

n
Sτ .
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