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Abstract

Motivated by recent failures of polling to estimate populist party
support, we propose and analyse two methods for asking sensitive mul-
tiple choice questions where the respondent retains some privacy and
therefore might answer more truthfully. The first method consists of
asking for the true choice along with a choice picked at random. The
other method presents a list of choices and asks whether the preferred
one is on the list or not. Different respondents are shown different lists.
The methods are easy to explain, which makes it likely that the respon-
dent understands how her privacy is protected and may thus entice her
to participate in the survey and answer truthfully. The methods are
also easy to implement and scale up.

Keywords: Randomised response techniques, Non-randomised response tech-
niques, Survey design, Anonymity, Privacy

1 Introduction

When asking someone about a personal deed or preference one would expect
her to be less truthful, or willing to provide an answer, the more she thinks
that that deed or preference is illegal or shameful. This could be one of
the reasons many opinion polls have underestimated the public support for
populist parties and candidates in several countries in recent years. The
concrete example that motivates us is the larger than expected support for
the Sweden Democrats (SD), a nationalist party, in the Swedish general
election 2014.
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This phenomenon could work in two ways to skew the result of a poll.
Firstly, respondents may choose not to participate at all. This compounds
the larger problem of reaching a representative sample of the population.
Secondly, the respondents’ answers may be biased towards less sensitive
preferences. In this paper we suggest methods that let the respondents
keep some privacy by introducing noise or asking for a less exact answer.
Ideally this would affect both the participation rate and the bias, but we
only quantitatively analyse the possible reduction in bias.

The issue of reaching a representative sample of respondents, due to
both demographic reasons and the sensitivity of the questions asked, has
been raised recently in the Swedish press [15]. For in-depth analysis of UK
elections, see [17, 18] that comment on possible problems with sensitive
answers (“shy Tories”) and also highlight the importance of using proper
random samples.

Our particular interest is in genuine multiple choice questions, i.e. where
the number of choices is larger than two. This is necessary in the context of a
parliamentary system with proportional representation such as the Swedish
one. In elections with a first-past-the-post system there are usually only two
dominating parties.

In the situation where there are only two choices of interest, say in an
effectively two-party system, or when one wants to estimate a single propor-
tion in a population, e.g. the proportion that has committed a certain crime,
there are several methods to provide anonymity, such as the Randomised
Response Technique (RRT) introduced by [20].

In multiple choice situations this technique is not directly applicable,
but there are multiple choice extensions such as e.g. [1, 6], as well as other
techniques for scrambling data reported by the persons contributing to the
poll which can be found in e.g. [4] and the references therein. These methods
can be perceived as “weird” or hard to explain to the respondent due to the
need of a complicated randomisation device, that the respondents true an-
swer is neglected, or that unrelated questions are asked, see e.g. [12] and the
references therein. This also raises the concern that these types of methods
will in practice be difficult to implement on a sufficiently large scale, which
is needed in the context of assessing voting intentions in nationwide general
elections.

This motivates the need for methods to handle polling of sensitive mul-
tiple choice questions. The methods we describe focus on simple practical
implementation. In particular the methods allows for (i) some degree of
anonymity for the respondent, (ii) simple or no randomisation device, (iii)
simple questions and (iv) the possibility of using automated surveys. Point
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(iv) is important, since this implies that it is inexpensive to scale up the size
of the survey.

We will introduce and analyse two methods which we call the “pair
method” and the “list method”. In the pair method, the respondent is
asked to name her party preference and another party chosen uniformly at
random, and to reply with both parties in random order. The randomisation
is done privately by the respondent. This method is similar to the methods
of [7, 8]. For the list method, the respondent is presented with a list of
several parties and asked whether her preferred party is on the list or not.
Different respondents are presented with different lists. As opposed to the
pair method, the list method falls into the category of “non-randomized”
response techniques, see e.g. [19, 21].

The pair method provides anonymity since a respondent with the sen-
sitive preference will also reply with a non-sensitive one, so that from the
point of view of the interviewer she could also have had the non-sensitive
preference as her true preference and only responded with the sensitive one
by chance. The respondent has some plausible deniability. The list method
provides even more anonymity than the pair method if the presented lists
contain more than two parties. It is also easier to implement since it requires
no randomisation by the respondent.

The flip side of anonymity is that less information is gained from each
respondent and thus a larger sample is needed. The pair method is more
efficient than the list method in this regard. We analyse the methods both
from the perspective of the level of anonymity provided and the efficiency
lost.

In the above argumentation we have only referred to “anonymity” in
colloquial terms without defining this in more detail. Recall that for the
simple RRT introduced in [20] there is only a single sensitive answer in a
dichotomous response situation. In [14] it was suggested that one could
measure the degree of anonymity in the RRT setting using a measure called
“jeopardy”, which relates to how much information is revealed concerning
the sensitive answer. In the present paper we discuss this measure in rela-
tion to the information theoretical concept of entropy, see e.g. [11, 13, 16].
In particular we discuss the problem with measures similar to jeopardy in
the situation where, in the extreme case, all answers may be regarded as
sensitive. An example is that people may be reluctant to reveal their true
voting intention regardless of which political party they will place their vote
on.

The objective of the methods is to provide anonymity in order to reduce
bias. We therefore focus on unbiased estimators, rather than maximum like-
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lihood or Bayesian estimators. Even though we do not perform a Bayesian
analysis, it is worth noting that the measures of anonymity we use require
some reference to the distribution of preferences in the population, so that if
one wants to reason about the respondents’ perceived anonymity one must
consider their a priori views on this distribution. On the other hand, if you
are reluctant to specifying, or not interested in, the perceived level of privacy,
no opinion concerning the true a priori distribution of votes is needed.

Note that both suggested methods are very simple to explain to a re-
spondent. In the language of [12] we believe that the suggested methods
provide low levels of “weirdness”. Moreover, as opposed to standard RRTs
the respondent will always provide her true voting intention – this is impor-
tant, not the least w.r.t. the problem of getting respondents to participate at
all, see e.g. [15, 17, 18]. That is, if a pollster manages to contact a reluctant
potential respondent we believe that it is crucial that the respondent under-
stands, at least intuitively, what is meant with “anonymity” and that the
respondent’s true intention is accounted for. From a practical perspective
we believe that the pair method probably is more suitable to use either in
face-to-face situations, since the pollster may provide a suitable randomiza-
tion device, e.g. a box with cards where all parties are represented, or in a
web based survey where the randomisation can be done in the respondent’s
browser. The list method, due to its yes/no character even could be imple-
mented using cell phone text messages (SMS) – “Would you consider voting
for any of the political parties in the list provided below? Please reply to
this text message with ‘Yes’ or ‘No’.”. Moreover, the list method is based
on random sampling, and we believe it is inexpensive to implement using
automated surveys. This is an important feature w.r.t. the concerns raised
in [17, 18] on non-randomized sampling.

2 Measures of anonymity and information

2.1 Entropy, information, and privacy

We will introduce the concepts entropy and information. For more on these
topics see e.g. [16]. Let T be a discrete random variable with probability
function pT (t) := P[T = t], t ∈ T , and define its entropy by

H[T ] := −ET [log2 pT (T )] = −
∑
t∈T

pT (t) log2 pT (t).

The entropy measures the uncertainty about the outcome of T in the sense
that it gives bounds for the average number of yes/no-questions that are
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necessary to ascertain the outcome. The unit of measurement is called bit.
More specifically, with Q(T ) being the necessary number of dichotomous
questions needed to ascertain the outcome,

H[T ] ≤ E[Q(T )] < H[T ] + 1.

In our context, we think of T as the true voting intentions of a randomly
chosen respondent, i.e. the distribution of T has support on a set of political
parties. If the interviewer could only ask yes/no-questions of the kind “does
your preferred party belong to the set S” for different sets of parties S, then
the expected number of questions she would need would lie between H[T ]
and H[T ] + 1. From the definition of H[T ] it is also clear that its maximum
is attained when pT (t) = 1/|T | for all t ∈ T .

The respondent is afforded some degree of anonymity or privacy if she
does not have to divulge all information about her intentions, but rather
retain some bits of entropy. Let R be another discrete random variable
having joint probability function pT,R(t, r) with T . We will think of R as
the respondent’s answer to the interviewer.

With pT |R(t | r) being the conditional probability function, we can define
the joint entropy

H[T,R] := −ET,R[log2 pT,R(T,R)],

the conditional entropy

H[T | R] := −ET,R[log2 pT |R(T | R)] = H[T,R]−H[R]

and the mutual information

I[T ;R] := H[T ] +H[R]−H[T,R] = H[T ]−H[T | R].

The entropy H[T ] then measures the interviewer’s uncertainty about the
voting intentions of a respondent before responding and H[T | R] the un-
certainty after having responded. The mutual information I[T ;R] measures
how much the uncertainty has decreased due to receiving an answer. In
other words, the conditional entropy H[T | R] measures the amount of re-
tained privacy and the mutual information I[T ;R] measures the amount of
divulged information.

One can also note that I[T ;R] may be re-written according to

I[T ;R] =
∑

t∈T ,r∈R
pT,R(t, r) log2

pT,R(t, r)

pT (t)pR(r)

= DKL(pT,R || pT pR),
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where DKL(F || G) corresponds to the Kullback-Leibler divergence between
the probability distributions F and G, see e.g. [16, p. 34]. Further, it is
clear that DKL(F || G) ≥ 0, with equality iff F = G. Thus, I[T ;R] ≥ 0
and we only have equality iff T and R are statistically independent, i.e. by
knowing R no information is gained w.r.t. T and vice versa. In our setting
this corresponds to complete anonymity and will never be possible to attain
for the methods below.

In the case R = T , when the respondent tells the interviewer her pre-
cise voting intentions, H[T,R] = H[T ] so that H[T | R] = 0 and there is
no residual uncertainty or privacy. Likewise I[T ;R] = H[T ], meaning all
information has been divulged.

It must be noted that the measures of entropy and information are pop-
ulation averages. The individual respondent might be more interested in
− log2 pT (t), which measures how uncommon her intention t is and how
much information about herself she would give away by revealing that. Like-
wise, she might only want to participate in the survey if − log2 pT |R(t | r),
measuring her retained privacy, is high for all possible answers r that she
might be prompted by the survey design to give to the interviewer. This
should be kept in mind when designing the survey.

The description above also made the tacit assumption that the distribu-
tion of T is common knowledge. If that were the case, the survey wouldn’t
be needed in the first place! In order to obtain unbiased answers it is impor-
tant that the respondents’ perceived privacy is protected to some extent, and
that means that one must consider the respondents’ subjective distributions
of T , and possibly their beliefs about the interviewer’s belief etc. There is no
way to quantify these subjective probabilities so we proceed pragmatically
and assume that there is a rough agreement in the population about the
distribution of T .

The two proposed methods described in this paper are easily analysed
within this framework. Note that a single yes/no-question divulges at most
one bit since the entropy of a two-point distribution is less than or equal
to one, with equality in the case of equidistribution, as for a fair coin toss.
Indeed, in the pairs method, when each respondent provides her true voting
intention together with a randomly chosen other party, it only takes a single
additional yes/no-question to ascertain her true intention, viz. “is your true
preference the first of the two parties in the pair?” Therefore the retained
privacy is at most one bit.

The list method is on the other side of the spectrum since it only asks
a single yes/no-question, and therefore the amount of divulged information
is at most one bit. If the lists are chosen to have support of close to half of
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the population the divulged information is close to one bit.

2.2 Jeopardy

Above the concept of mutual information was introduced as a measure of
how much information about T is revealed by answering R. As will become
clear later on, we are mainly interested in situations where R may be seen
as a function of T . That is, given that a respondent’s voting preference is t
its answer will follow the distribution pR|T (r | t) for all r ∈ R, where R is
the set of all possible responses. Thus, if we let S be the set of sensitive or
stigmatizing preferences, it is clear that by applying Bayes’ theorem we get

pT |R(S | r)
pT |R(Sc | r)

=
pR|T (r | S)

pR|T (r | Sc)
pT (S)

pT (Sc)
,

where
pT (A) :=

∑
t∈A

pT (t), A ⊂ T ,

and
pT |R(A | r) :=

∑
t∈A

pT |R(t|r), A ⊂ T ,

which rephrased in terms of information by using log2 yields

log2
pR|T (r | S)

pR|T (r | Sc)
= log2

pT |R(S | r)
pT |R(Sc | r)

− log2
pT (S)

pT (Sc)
, (1)

see e.g. [13, Eq. (2.3)]. The ratio on the left-hand side of (1) is what is called
jeopardy, which was introduced in [14]:

J(r) :=
pR|T (r | S)

pR|T (r | Sc)
, P(T ∈ S ∪ Sc) = 1.

J(r) measures how much the unconditional odds have changed by answering
r, or, in other words, how much the respondent is jeopardized by answering
r. J(r) is therefore called the jeopardy with respect to S [14]. In [14] one
motivation for J(r) in the case with only a dichotomous sensitive question is
that J(r) is independent of the true population proportions pi, i.e. J(r) only
depends on the design probabilities of how responses are distributed given
the respondent’s position to the (single) sensitive answer. It is, however, im-
portant to note that in the situation when there are more than one sensitive
alternative, J(r) will depend on the true underlying population proportions
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as well. Hence, this situation applies to polling in political systems with
more than two political parties where respondents want to keep their vote
secret.

Another interpretation of (1) is in terms of likelihood ratios, since T ∈ S
or T ∈ Sc may be seen as two different parametrisations of a probability law,
see e.g. [13, pp. 4–5]. Hence, (1) tells us how much information is revealed
in favour of T ∈ S opposed to T ∈ Sc when providing the response R = r.

Further, as noted above, J(r) is a measure of jeopardy for a single re-
sponse. In order to overcome this limitation it has been proposed in [5] to
measure the overall jeopardy of a survey design by averaging over the set R
of all possible responses, and to consider the quantity

J̄ :=
1

|R|
∑
r∈R

J(r).

Remark 1. Recall the information theoretic interpretation of I[T ;R] in
terms of Kullback-Leibler divergence and consider J̄ and J(r). A natural
information theoretic extension of J(r) for the situation with multiple sen-
sitive answers is to consider

ER|T∈S [log2 J(R)] = DKL(pR|T∈S || pR|T∈Sc) ≥ 0,

which corresponds to the mean information in favour of T ∈ S over T ∈ Sc
when assuming that T ∈ S. For more on this, see e.g. [13, Eq. (2.5), p. 5]
and the surrounding discussion.

2.3 Variance, bias and bias-detection in practice

In the case of elections a benchmark estimator p̃i for each party i is the
one obtained from fitting a binomial distribution, i.e. p̃i is the fraction of
respondents who say they will vote for party i:

np̃i ∼ Bin(n, pi − bi),

where bi is the bias (
∑
i bi = 0).

Let p̂i be an unbiased estimator of pi, based on some anonymisation pro-
cedure. One would expect that Var[p̂i] > Var[p̃i] when both estimators are
derived from samples of equal size, since the anonymity decreases the pre-
cision. However, this might be a price worth paying if anonomity produces
a large enough reduction.

We will now describe how we may use both p̂i and p̃i to detect bias in
practice. Let us for a moment assume that we may calculate Var[p̂i] as well
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as obtain a Gaussian approximation of p̂i, we can calculate the power of the
test of {

H0: bi = 0
H1: bi > 0

based on the plug-in statistic

Ti(bi) :=
p̂i − p̃i − bi√

Varp̂i [p̂i] + Varp̃i [p̃i]
∼ asym. N(0, 1), (2)

given that the true bias is bi and where Varp[·] is calculated assuming the
true proportion is given by p. Note that the statistic Ti(bi) from (2) is only
truly computable in practice given that bi = 0. The asymptotic power of
this test is hence given by

πγ(bi) := P(reject H0 | H1)

= P(Ti(0) > zγ | H1 : bi > 0)

asym.
= 1− Φ(z1−γ −

bi√
Varp̂i [p̂i] + Varp̃i [p̃i]

). (3)

Thus, by using (3) we can e.g. assess the size of n needed in order to obtain
a specific level of power to detect a certain level of bias.

An important remark concerning (3) is that πγ(bi) is a decreasing func-

tion in
√

Varp̂i [p̂i] + Varp̃i [p̃i], which in itself typically is a decreasing func-

tion in terms of pi. This, hence, implies that it ought to be easier to detect
bias for parties with few intended voters.

3 The multinomial distribution

Since it is easier to work with a multinomial distribution rather than a
multivariate hypergeometric distribution, we will assume that we poll with
replacement or that the population size is infinite. This is an innocuous
assumption for the applications we have in mind. We recall some well-known
properties of the multinomial distribution.

Let X = (X1, . . . , XN )′ ∼ Mult(n,p) with p = (p1, . . . , pN )′ and
∑
k pk =

1 so that

P(X = x) =

(
n

x1, . . . , xN

)
px11 · · · p

xN
N

E[X] = np

Var[X] = n(diag(p)− pp′)
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To ease the notation we introduce V (p) := diag(p) − pp′. The maximum
likelihood estimator of p is

p̃ :=
1

n
X,

with

E[p̃] = p

Var[p̃] =
1

n
V (p) (4)

Let A(M,N) be the set of M ×N matrices with non-negative elements and
column sums all equal to 1.

The different protocols we describe all have in common that we want to
draw inference about a vector of probabilities p = (p1, . . . , pN )′ when the
data comes from a multinomial distribution Mult(n,u) with u = Ap for a
known matrix A, or more generally, when the data comes from independent
multinomials Mult(ni, Aip) for i = 1, . . . , L. We need Ai ∈ A(Mi, N) so
that ui is a vector of probabilities.

Lemma 1. Let Xi = (Xi1, . . . , XiKi) ∼ Mult(ni,ui) independently for i =
1, . . . , L, with ui = Aip for given Ai ∈ A(Ki, N) and αi := ni/n where
n =

∑
i ni. Denote by

A :=

α1A1
...

αLAL

 and X̄ :=

X1
...

XL

 .
If A has rank N , then

p̂ :=
1

n
(A′A)−1A′X̄ (5)

is an unbiased estimator of p with variance

Var[p̂] =
1

n
(A′A)−1

( L∑
i=1

α3
iA
′
iV (Aip)Ai

)
(A′A)−1. (6)

In the case L = 1 with A := A1 and n := n1, p̂ = 1
nA

+X1 and

Var[p̂] =
1

n

(
(A′A)−1A′ diag(Ap)A(A′A)−1 − pp′

)
.

See Section A for proof of this Lemma.
Note that the definition of p̂ from (5) is very natural w.r.t. u = Ap, since

p̂ is merely the standard least squares regression coefficient estimator of p.
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Moreover, due to this interpretation it is reasonable that the variance of p̂
will also average out deviations between observations relating to individual
pi’s — manifested by the multiplication from left and right by (A′A)−1,
which is a global quantity affecting all components of p. That is, given
that we do not obtain direct observations of individual pi’s, which in our
situation is a consequence of anonymisation, poor precision relating to one
component of p will to some degree contaminate the remaining estimators’
precision as well. Also note that p̂ is a linear transformation of X̄ and hence
there is no guarantee that p̂i is non-negative for all i.

Further, given Lemma 1 it is reasonable to expect that there exists a
corresponding central limit theorem, which there is:

Lemma 2. Let p̂ be defined according to Lemma 1. Assume that

αi =
ni
n
→ α̃i > 0, as ni, n→∞,

for all i such that
∑
i α̃i = 1 and denote

Ã :=

 α̃1A1
...

α̃LAL

 .
Then

√
n(p̂− p)

D→ G, as n, ni →∞, for all i,

where G is multivariate Gaussian with mean 0 and covariance

Var[G] = (Ã′Ã)−1
( L∑
i=1

α̃3
iA
′
iV (Aip)Ai

)
(Ã′Ã)−1.

The proof of Lemma 2 is based on a standard central limit theorem for
the multinomial Xis, which combined with Slutsky’s theorem and a general
version of the continuous mapping theorem which provides convergence for
sequences of mappings yields the desired result. A detailed proof is given in
Section A.
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4 Introducing two new anonymised survey meth-
ods with open answers: The Pair method and
the List method

4.1 Pair method

Consider the following polling protocol: each individual participating in the
poll is asked to name the party she intends to vote for together with an
additional party chosen uniformly at random amongst the remaining N − 1
parties. The answers are reported unordered, i.e. the interviewer does not
know which party is the true vote intention.

Note that we here assume that there is only a single sensitive party to
vote for. That is, it should not be possible to obtain a voting pair {i, j}
where both parties are regarded as being sensitive. We will return to this
situation when we discuss the list method.

The possible answers are the M :=
(N
2

)
= N(N−1)

2 unordered pairs {1, 2},
{1, 3}, . . . , {N − 1, N} = P1, . . . , PM . When we need to order all pairs we
always use this lexicographic ordering, i.e. {i, j}, where i < j. Let bik = 1 if
i ∈ Pk and bik = 0 otherwise.

Assuming that the true voting intentions have the frequencies p1, . . . , pN ,
the probability of receiving the answer {i, j} is given by

uij := pi
1

N−1 + 1
N−1pj = 1

N−1(pi + pj)

since either i or j must be the true intention with respective probability
pi and pj , and in either case the random choice, j and i respectively, has
probability 1

N−1 . If the poll size is n and Xij is the number of answers
{i, j}, then clearly X = (X12, X13, . . . , XN−1,N )′ ∼ Mult(n,u) with u :=
(u12, u13, . . . , uN−1,N )′. The ML estimator for u is û := 1

nX. This can be
used to derive an unbiased estimator of p, since we can re-write u = Ap,
where A is the N ×M matrix defined according to:

A :=
1

N − 1
B′ =

1

N − 1


1 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 1

 ,

where Bik = bik with bik given as above. That is, by using the above
definition of A it is clear that Lemma 1 applies to the pair method, which
yields the following explicit result:
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Theorem 1. The estimator

p̂i :=
N − 1

N − 2

∑
j

ûij −
1

N − 2
(7)

is an unbiased estimator of pi, i = 1, . . . , N , with

Var[p̂i] =
1

n

(
1 + (N − 3)pi

(N − 2)
− p2i

)
(8)

Cov[p̂i, p̂j ] = − 1

n

(
1− pi − pj
(N − 2)2

+ pipj

)
, i 6= j. (9)

A detailed proof of Theorem 1 is given in Section A.

4.2 List method

If there are two sensitive choices, the pair method will for some respondents
produce an answer with both those choices. To reintroduce some deniability,
the method could be extended to triples so that each true preference is
accompanied by two random choices. If there are three sensitive choices,
one could ask for quadruples, and so on. This quickly becomes unwieldy.

Instead of asking the respondent to produce a list of several parties,
where one is the true preference and all other are random, the interviewer
might simply show a list of parties and ask if the respondent’s preference is
on the list or not. If the interviewer picks lists from a well-constructed set of
lists, it is possible to derive an estimate of the population preferences. We
will shortly describe what we mean with “well-constructed”. Note that we
assume a fixed set of N possible choices so that a no-answer means that the
preferred party must be on the complementary list of parties.

If the respondent answers truthfully, the probability of a yes-answer is
ui :=

∑
k∈L+

i
pk when she is presented with a list L+

i . We can put this in

the notation of Section 3 if we let Ai be a 2 × N matrix with elements
a1k = 1{k ∈ L+

i } and a2k = 1{k /∈ L+
i }, so that ui = (ui, 1 − ui)′ = Aip

and the number of (yes, no) answers from asking ni people about the list
L+
i is Mult(ni,ui). Note that the first row of Ai codes for membership in

the list L+
i and the second codes for membership in the complementary list

L−i := {i : i /∈ L+
i } = {1, . . . , N} \ L+

i .
In order to apply Lemma 1 we need the matrix A that stacks all L

matrices A1 to AL for the lists L+
1 to L+

L to have rank N , i.e. the space
spanned by its N column must have full dimension N . This is what we
mean with a “well-constructed” set of lists.
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In order to see how this can be done in practice, let us consider the case
with N = 4, the first situation which provides anonymity when there is only
a single sensitive alternative, by constructing lists with two parties in each.
That is, we have

(N
2

)
= 6 such combinations of L+

i and L−i , i.e. 3 lists in
total, which stacked gives us

A :=

α1A1

α2A2

α3A3

 =



α1 α1 0 0
0 0 α1 α1

α2 0 α2 0
0 α2 0 α2

α3 0 0 α3

0 α3 α3 0


, where αi > 0 and

∑
i

αi = 1.

A has full column rank (= 4). Thus, we can write u = Ap and Lemma 1
applies, which directly gives us that p̂ given by (5) is an unbiased estimator
of p together with computational formulas for the estimator’s covariance.

Consequently, in the general situation, if we have a well-constructed set,
the estimator p̂ defined in Equation (5) is unbiased and has variance given by
(6). We can compare this variance with that of the ordinary ML-estimate of
p for some different sets of lists. As N grows the number of well-constructed
sets grows exponentially.

One idea is to construct lists with a priori voting support close to 50 %
(maximize anonymity) or with, as close to, equally many parties on all lists
(low weirdness). Another criterion used to choose lists could be to minimise
the variance. Note that all these possibilities amounts to choosing the αi’s
in a certain way. Here one can also note that the αi’s allow for ex post
calibration of potential non-response. In order to avoid too many subjective
choices we will from now on primarily focus on the situation where we use
all
( N
bN/2c

)
possible lists with (close to) equally many parties on each list and

its complementary list.
An interesting result with an even number of parties is the following:

Proposition 1. Let N = 2M be even and the set of lists include all L =(N−1
M−1

)
=
(N
M

)
/2 lists with M parties that include party one, so that the set

of complementary lists also cover M parties each, and all exclude party one.
The lists and complementary lists then cover all

(N
M

)
=
( N
N/2

)
combinations

of half of the N parties. Further, assume that αl = 1
L for all l. Then all

estimators p̂i of the list method have the same variance.

The value of the common variance depend on the true p, but it is still
remarkable that one can get a common margin of error for all parties.
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4.3 On relations to other methods

Let us consider the pair method when there is only a single sensitive answer.
Assume that our aim is to maximize the plausible deniability of this sensi-
tive voting intention, belonging to party 1, say. Given any answer r1j we
could consider replacing the uniform probability with which your true voting
intention is paired with an anonymising scrambling vote. Let πij denote the
probability that you add j as a possible voting preference to your answer
given that your true voting intention is i. A partial analog of a standard
Forced Response Technique, see [3], is obtained by setting πi1 ≡ 1, i 6= 1,
and let π1j ∈ [0, 1],

∑
j π1j = 1. That is, given that your true voting inten-

tion is 1 you add another possible voting preference j according to π1j , but
if your true voting intention is i 6= 1 you will always, i.e. you are “forced”
to, add the sensitive voting alternative 1 to your response. Thus, given this
mechanism for producing response pairs, you may only give an answer in
the set {1, j}, j = 2, . . . , N . It is, however, also clear from construction that
this is only a reasonable method given that there is exactly one sensitive
voting preference. Moreover, the choice of πij still remains. Given no a
priori knowledge of pi a natural choice of π1j is still π1j = 1/(N − 1), see
also the discussion on entropy in Section 2.1 and 5.1.

One may also note that the pair method coincides with the “Equiprob-
able Design Matrix” method in [8], although their definition of the method
is in some sense complementary. That is, the pair method in their setting
corresponds to choosing N − 2 parties uniformly at random amongst those
not containing the true voting intention. Hence, the remaining set which
is not chosen contains two parties where one is the true voting intention
together with an additional vote. On the other hand, this additional vote
can due to exchangeability be seen as chosen uniformly at random amongst
the N − 1 parties not containing the true vote.

The same method from [8] covers answering with n-tuples with n − 1
random choices added to the true preference.

5 Evaluation of the Pair method and the List method:
entropy, anonymity, bias and real-world exam-
ples

We will now apply the theory from Section 2 on the pair method and the
list method. Focus will be on results and conclusions which can be drawn
from these – all derivations are given in the appendix. We will, when rele-
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vant, provide analytical expressions, but also numerical expressions for the
situation when the true voting intention is uniform, i.e. pi = 1/N for all
i, as well as pi corresponding to the general election in Sweden in 2014.
The reason for analysing the situation with uniform voting preferences is
that this situation will have maximal entropy, i.e. H[T ] = log2N , and hence
have maximal anonymity. Moreover, in the Swedish general election of 2014
the voting preference of the Sweden Democrats (SD) turned out to be the
hardest to estimate correctly. Due to this our numerical illustrations for
measures of privacy will be w.r.t. to SD. The outcome of the Swedish gen-
eral election from 2014 is given in Table 1. For the numerical illustrations
we use equally balanced lists, i.e. a design with all lists that have 5 choices
out of the possible 10. Thus, the number of lists and complementary lists is(10
5

)
= 252.

5.1 Entropy

All entropy calculation for the pair and the list method are given in Table 2
for easy reference. To start off, recall that I[T ;R] is the expected reduction
in uncertainty of T due to knowledge of R. Due to construction, we expect
that the pair method will disclose more information than the list method.
By inspecting the results in the situation with equal voting preferences it is
seen that the pair method only retains a single bit of information given an
answer whereas the list method only reveals one bit. This is reasonable, since
given that a respondent answers truthfully it is clear that the true voting
intention is contained in the pair with which she has answered. Thus, a
single yes/no question remains in order to fully disclose the respondents
true voting preference. Concerning the list method it is on the other hand
clear that very little information will be revealed when providing the yes/no
answer to a specific list – corresponding to revealing a single bit. This
argumentation also explains the remaining measures listed in Table 2 in the
case with uniformly distributed voting intentions.

If we instead turn to Table 3, where the true voting intentions are not
uniformly distributed, it is seen that for the pair method very little infor-
mation about the true voting intention is retained given an answer. This
is perhaps not surprising given the discussion above, but it is interesting to
see that the least anonymity contained when the true voting intention is SD
is approximately 0.1 bits, when SD is paired with the answer “O” corre-
sponding to “Other parties”. Concerning the list method, we see that the
situation is similar, but still more information is retained as a consequence
of that all lists contain 5 out of 10 parties.
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5.2 Jeopardy

From Table 4 it is clear that both J(r) and J̄ are greater than or equal to
one for both methods. This is easily seen for the pair method, assuming
1 ∈ r, since

J(r) =
1− p1
pj

=
pj +

∑
k 6∈{1,j} pk

pj
≥ 1,

and the same argument applies to the other expressions as well. Thus, from
the definition of jeopardy this tells us that an answer will increase the odds
of the respondent to actually have the sensitive voting preference. Moreover,
from Table 4 we see that for the situation with uniform voting preferences
the pair method will reveal more information about the true voting intention
than the list method – in agreement with the results on entropy.

If we instead consider the situation corresponding to the Swedish general
election from 2014, i.e. Table 5, we see that the same ordering of the meth-
ods w.r.t. J̄ remains. Again, the sensitive vote is taken to be the Sweden
Democrats (SD). One can also note that the pair method performs much
worse than the list method in this situation. It is, however, less clear how
to value a deviation from 1 as opposed to the entropy measures which have
a natural scale in terms of bits.

Recall from Section 2.2 that the original introduction of jeopardy from
[14] in the yes/no situation was possible to express in terms of “design”
probabilities – subjectively chosen probabilities which defines the random-
ization procedure being used. From Table 4 we see that this clearly is not
the case for the pair and the list method, since both J(r) and J̄ depend
on the true underlying voting intentions. Given this we believe that the
entropy measures introduced above, which also depend on the true voting
preferences, are closer to what a respondent is truly interested in. Due to
this, we recommend that the entropy measures should be used instead of
jeopardy in the present situation.

5.3 Variance and bias

Assuming no bias, bi = 0, then p̃i := Xi/n is the standard unbiased ML
estimator of pi assuming a direct response survey in an infinite population,
i.e. Xi ∼ Bin(n, pi), with Var[p̃i] = 1

npi(1− pi). Note that the variance of p̂i
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for the pair method from (8) above may be re-written according to

Var[p̂i] =
1

n
pi(1− pi) +

1

n(N − 2)
(1− pi)

= Var[p̃i] +
1

n(N − 2)
(1− pi)

> Var[p̃i],

as anticipated, since p̂i is based on anonymised information which results in
lack of precision compared to p̃i.

Although the list method has computable (co)variances, it is in general
not possible to obtain closed form expressions for a particular voting inten-
tion unless additional simplifying assumptions are made. In Table 6 this is
done for the case with uniform voting intentions. Compared with the re-
sults on entropy and jeopardy above, we see that the pair method here will
outperform the list method. This is not surprising, since, as seen above, the
pair method will disclose more information – information which contributes
to inference. In the situation when the true voting intentions are uniformly
distributed with N = 10 Table 6 implies that the variance for the list method
is 4 times higher than for the pair method and we see that the ratio between
the baseline variance w.r.t. p̃i and the pair method is 0.44 whereas the same
ratio for the list method is only 0.11. The latter corresponds to that the
pair method’s variance is approximately 2 times higher than the baseline
variance and the corresponding figure for the list method is 9 times higher.

When we consider the Swedish general election from 2014 in more de-
tail we will focus on the Sweden Democrats (SD – sensitive), the the Social
Democrats (S – largest) and those voting for “other” (O) less established
parties (smallest). First, note that since the Swedish general election con-
tains N = 10 different choices the list method will have constant variance
— which is not the case for the pair method and the benchmark binomial
method. In Figures 2, 3 and 4 we see that for the list method we need to
have a sample size of approximately n = 8 000 in order to have a standard
deviation of 1%, i.e. a 95% confidence interval with width of 3.9%, and need
a sample size of approximately n = 15 000 in order to reduce the standard
deviation to 0.75% (95% confidence width of 2.9%). Also note that the stan-
dard deviation for the list method is the same in all three figures. From the
same figures we see that we need approximately n = 5 000− 12 000 in order
for the pair method to have a standard deviation of 0.5%, noting that the
standard deviation for the pair method (and the baseline binomial) differs
between the figures.
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Further, if we turn to calculating power, πγ(bi), following (3), we need to
decide on the total survey size together with how many we should allocate to
the standard direct poll and how many which should be allocated to answer
according to the list or the pair method. In all analyses we use a total survey
size of n = 15 000 chosen based on the above variance discussions and use
the two alternatives for allocation: (i) nList = nPair = 13 500 and (ii)
use allocations which are optimised w.r.t. πγ(bi) under the null-hypothesis
bi = 0, that is we choose n• according to

n• = n

√
Varp̂[p̂]√

Varp̂[p̂] +
√

Varp̃[p̃]
,

where n• corresponds to either the list or the pair method. Moreover, in all
calculations we have used the confidence level (type I error) γ = 5%.

By comparing Figure 5 with Figure 6, and Figure 7 with Figure 8, we see
that there is a substantial gain in power when using the optimised allocation
between the types of surveys. At 90% power the difference in detectable
bias in the support for SD is approximately 1 percentage point for the pair
method and 0.5 percentage points for the list method. For the optimised
allocation (Figure 8) it is possible to detect bias which is slightly less than
2 percentage points with the pair method and 3 percentage points with the
list method, at 90% power. In the days before the Swedish general election
in 2014 most large opinion polls underestimated the SD support by 2 to 3
percentage points, see e.g. [9].

6 Concluding remarks

The present paper is concerned with methods on how to openly ask multi-
ple choice questions where at least one alternative is seen as sensitive and
where a response does not fully divulge the respondent’s true position to the
question asked. In order to do so we have presented two methods, the “pair
method” and the “list method”, which both rely on the idea that a response
is defined in terms of a subset of all possible choices which still contains the
respondent’s true choice. This provides the respondent with plausible deni-
ability if the sensitive answer(s) is contained in the subset of choices which
defines its response. The degree of anonymity which is obtained in this way
is possible to quantify in terms of both entropy related measures of privacy
and in terms of “jeopardy” measures. Using these measures it is possible to
communicate the degree of anonymity which is retained when participating
in this type of survey.
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Further, for both methods we have derived unbiased estimators of the
true underlying population proportions which belong to the different cat-
egories of choices, together with expressions for the estimators’ variances
as well as central limit theorems. Moreover, these results also allows us to
make power calculations w.r.t. detection of possible bias in responses when
compared with standard direct survey methods.

As discussed in the introduction, our main motivation for this research
topic is the recently observed problems in estimating voting intentions in
general elections. In particular, the problem of correctly estimating the
population proportion which will vote for populist parties/candidates. Due
to this context, we believe that it is crucial that an anonymised survey
method, apart from allowing for an anonymised responses, does not rely on
complicated randomisation devices, is based on simple questions and allows
for automated survey procedures. The methods introduced in the present
paper allows for this. Moreover, by providing anonymity we believe that the
introduced methods should be able to reduce response bias. Still, the reduc-
tion in the estimators’ precision, due to anonymisation, is possible to com-
pensate for by increasing the sample size, which could be done inexpensively
using automation. It is also worth to stress that both methods are based on
random sampling — the use of non-randomised sampling techniques is one
of the explanations for poor performance given in the post-election analyses
given in [17, 18].
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A Proofs

Let 1 be a column vector of ones whose length depends on the context,
JM,N be an M × N matrix of ones, and let Mn(a, b) be the n × n matrix
with all diagonal elements equal to a and all off-diagonal elements equal to
b: Mn(a, b) := (a− b)I + bJn,n. We will sometimes write A+ for (A′A)−1A
since the latter is the Moore-Penrose inverse of A when A has full column
rank.

Proof of Lemma 1. We first note that A has dimensions (
∑
iKi) × N so

full (column) rank means having rank N and in particular (A′A)−1 is well-
defined. Since the Xi’s have expected value E[Xi] = niui = nαiAip and
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are independent with covariance matrices nV (Aip) = nαiV (Aip) we have

E[X̄] = nAp

Var[X̄] = n

α1V (A1p) 0
. . .

0 αLV (ALp)


so that

E[p̂] =
1

n
(A′A)−1A′E[X̄] = (A′A)−1A′Ap = p,

Var[p̂] =
1

n2
A+Var[X̄]A+′

=
1

n
(A′A)−1A′

α1V (A1p) 0
. . .

0 αLV (ALp)

A(A′A)−1

=
1

n
(A′A)−1

( L∑
i=1

α3
iA
′
iV (Aip)Ai

)
(A′A)−1.

In the case L = 1, the variance of the estimator is

Var[p̂] =
1

n
(A′A)−1A′V (Ap)A(A′A)−1 =

1

n

(
(A′A)−1A′ diag(Ap)A(A′A)−1 − pp′

)
.

(10)

Proof of Lemma 2. We want to prove a central limit theorem for

p̂ =
1

n
(A′A)−1A′X̄,

and will start by proving a central limit theorem for X̄. Recall that Xi ∼
Mult(ni,ui) which gives us that

ûi :=
1

ni
Xi

is an unbiased estimator of ui = Aip with covariance V (Aip)/ni. From e.g.
[2, Thm. 14.3-4] it then follows that

√
ni(

1

ni
Xi −Aip) =

√
ni(ûi − ui)

D→ Ui, as ni →∞,
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where Ui is multivariate Gaussian with mean 0 and covariance V (Aip).
Thus, if

αi =
ni
n
→ α̃i ≥ 0, as ni, n→∞,

for all i such that
∑
i α̃i = 1 it follows, due to Slutsky’s theorem, that

√
n(

1

n
Xi − αiAip) =

√
αi
√
ni(ûi − ui)

D→ Ũi, as ni, n→∞,

where Ũi is multivariate Gaussian with mean 0 and covariance α̃iV (Aip).
Hence, if we stack all Xi in X̄ as before, it follows, due to independence
between the Xis, that

√
n(

1

n
X̄i −Ap)

D→ Ũ, as ni, n→∞, for all i,

where Ũi is multivariate Gaussian with mean 0 and covariance

Var[Ũ ] =

α̃1V (A1p) 0
. . .

0 α̃LV (ALp),


by the same arguments as those used in the proof of Lemma 1. Thus, we
have obtained a central limit theorem for X̄.

Continuing, note that we may re-write

p̂ =
1

n
(A′A)−1A′X̄ = hn(

1

n
X̄)

where
hn(x) := (A′A)−1A′x ∈ RN×1

for x ∈ R(
∑

i
Ki)×1. Moreover, given that

αi =
ni
n
→ α̃i ≥ 0, as ni, n→∞,

for all i such that
∑
i α̃i = 1 it is clear that

A→ Ã, as ni, n→∞, for all i,

and that
(A′A)−1A′ → (Ã′Ã)−1Ã′.

Consequently, it follows that

hn(x)→ h(x), as ni, n→∞, for all i,
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which together with [10, Thm. 3.27] yields

√
n(p̂− p) = hn(

√
n(

1

n
X̄ −Ap))

D→ h(Ũ) = (Ã′Ã)−1Ã′Ũ ,

where G := (Ã′Ã)−1Ã′Ũ is multivariate Gaussian with mean 0 and covari-
ance

Var[G] = (Ã′Ã)−1
( L∑
i=1

α̃3
iA
′
iV (Aip)Ai

)
(Ã′Ã)−1,

which concludes the proof.

Proof of Theorem 1. As noted above, we can write u = Ap, where A =
1

N−1B
′ and B is the N ×M matrix with elements bik as defined above:

A :=
1

N − 1


1 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 1


Since A has rank N , we can use Lemma 1 with L = 1 to derive an

unbiased estimator of p, and we will in fact show that the p̂ of the Theorem
equals that of the Lemma, i.e. that p̂ of the Theorem equals A+û. We claim

A+ =
N − 1

N − 2
B − 1

N − 2
JN,M . (11)

To prove (11), it is sufficient to show that A+A = I. First note that
JK,MA = JK,N since A ∈ A(M,N) and thus 1′A = 1′. Also note that BB′

is a matrix with all diagonal elements equal to N − 1 and all off-diagonal
elements equal to 1, i.e.

BB′ = (N − 2)I + JN,N . (12)

Therefore,

A+A =

(
N − 1

N − 2
B − 1

N − 2
JN,M

)
A

=
N − 1

N − 2
BA− 1

N − 2
JN,N

=
1

N − 2
BB′ − 1

N − 2
JN,N

= I,
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and we have thus shown that (11) holds. Since û is a vector of probabilities,
JN,M û = 1, and

A+û =

(
N − 1

N − 2
B − 1

N − 2
JN,M

)
û =

N − 1

N − 2
Bû− 1

N − 2
1 = p̂,

where the right hand side is defined in (7). By Lemma 1, p̂ is an unbiased
estimator of p.

It remains to show that (10) specializes to (8) and (9) in our case. We
see that it suffices to show that A+ diag(Ap)A+′ has diagonal elements (1 +
(N − 3)pi)/(N − 2) for i = 1, . . . , N and off-diagonal elements −(1 − pi −
pj)/(N − 2)2.

In general, when a matrix E with elements eij , i, j = 1, . . . , N , is defined
as the product E := C diag(d)C ′ where C has elements cij for i = 1, . . . , N ,
j = 1, . . . ,M and d = (d1, . . . , dM )′, then

eij =
∑
k

dkcikcjk. (13)

We use equation (13) with d = Ap = 1
N−1(p1 + p2, . . . , pN−1 + pN )′ =

1
N−1B

′p and

C = A+ =
1

N − 2

(
(N − 1)B − JN,M

)
.

Equation (11) means that A+ has elements (A+)ik = 1
N−2

(
(N −1)bik−1

)
=

1. Element k of Ap = 1
N−1B

′p is 1
N−1

∑
l plblk.

For the diagonal elements we get(
A+ diag(Ap)A+′)

ii
=
∑
k

dkc
2
ik

=
1

(N − 1)(N − 2)2

∑
k,l

plblk
(
(N − 1)bik − 1

)2
{b2ik = bik} =

1

(N − 1)(N − 2)2

∑
k,l

plblk
(
(N − 1)(N − 3)bik + 1

)
=

N − 3

(N − 2)2

∑
k,l

plblkbik +
1

(N − 1)(N − 2)2

∑
k,l

plblk

{by (12) and def. of B} =
N − 3

(N − 2)2

(
(N − 2)pi +

∑
l

pl
)

+
1

(N − 2)2

∑
l

pl

=
1 + (N − 3)pi

N − 2
,
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which is what we want. We proceed with the off-diagonal elements with
i 6= j.(
A+ diag(Ap)A+′)

ij
=
∑
k

dkcikcjk

=
1

(N − 1)(N − 2)2

∑
k,l

plblk
(
(N − 1)bik − 1

)(
(N − 1)bjk − 1

)
=

N − 1

(N − 2)2

∑
k,l

plblkbikbjk −
1

(N − 2)2

∑
k,l

plblkbik

− 1

(N − 2)2

∑
k,l

plblkbjk +
1

(N − 1)(N − 2)2

∑
k,l

plblk

=
N − 1

(N − 2)2
(pi + pj)−

1

(N − 2)2
(
(N − 2)pi + 1

)
− 1

(N − 2)2
(
(N − 2)pj + 1

)
+

1

(N − 2)2

= −1− pi − pj
(N − 2)2

,

and the proof is done.

Proof of Proposition 1. We will apply Lemma 1 and make the expression in
(6) more explicit, at least with regards to the diagonal of the covariance
matrix. Note that

Mn(a, b)Mn(c, d) = Mn
(
ac+ bd(n− 1), ad+ bc+ bd(n− 2)

)
and thus

Mn(a, b)−1 = Mn

(
a+ b(n− 2)

(a− b)(a+ b(n− 1))
,

−b
(a− b)(a+ b(n− 1))

)
(14)

provided a 6= b and a 6= −b(n− 1). For the special case Jn,n = Mn(1, 1) we
have

Mn(a, b)Jn,n = Mn(a+ b(n− 1), a+ b(n− 1)) = (a+ b(n− 1))Jn,n. (15)

With A the matrix defined in Lemma 1:

A := α

A1
...
AL

 =: αĀ.
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The 2L×N matrix Ā codes with ones for membership of a party in each of
the 2L lists and complementary lists, and has zeros for non-membership.

The matrix A′A = α2Ā′Ā =: α2B where the elements of B = (bij) count
the number of lists and complementary lists that include both party i and
j. Since the lists and complementary lists include all combinations of N/2
out of N parties and each party is included in half of the combinations,
bii =

( N
N/2

)
/2 = L and bij =

( N−2
N/2−2

)
= LN/2−1N−1 for i 6= j. In other words, we

have

A′A = α2MN

(
L,L

N/2− 1

N − 1

)
= αMN

(
1,
N/2− 1

N − 1

)
with inverse, by (14),

(A′A)−1 = 2LMN

(
1− 2(N − 1)

N2
,−N − 2

N2

)
.

Observe that, by equation (15) and the matrices being symmetric,

(A′A)−1JN,N = JN,N (A′A)−1 =
1

N
JN,N . (16)

Since Aip = (p+i , p
−
i )′, where p◦i :=

∑
k∈L◦i

pk for ◦ = +,−, we have

V (Aip) = p+i p
−
i

(
1 −1
−1 1

)
=: qi

(
1 −1
−1 1

)
= qi(2I − J2,2),

where we defined qi := p+i p
−
i . Now

A′iV (Aip)Ai = qi(2A
′
iIAi −A′iJ2,2Ai) = qi(2A

′
iAi − JN,N ) = qiCi,

where the matrix Ci has equal number of 1’s and −1’s on each row and
column. For such a matrix, CiJN,N = JN,NCi = 0, where 0 := 0JN,N is the
zero matrix, and thus

MN (a, b)CiMN (a, b) = Mn(a, b)Ci
(
(a− b)I + bJN,N

)
= (a− b)MN (a, b)C

= (a− b)
(
(a− b)I + JN,N

)
Ci = (a− b)2Ci.

We can write equation (6)

Var[p̂] =
1

n
(A′A)−1

( L∑
i=1

α3
iA
′
iV (Aip)Ai

)
(A′A)−1

=
4

nL

L∑
i=1

qiMN

(
1− 2(N − 1)

N2
,−N − 2

N2

)
CiMN

(
1− 2(N − 1)

N2
,−N − 2

N2

)

=
4

nL

(
1− 1

N

)2 L∑
i=1

qiCi
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Since the diagonal of each Ci equals 1 all diagonal elements of the covariance
matrix Var[p̂] equal 4

nL(1− 1
N )2

∑L
i=1 qi.

Derivation of the variance and covariance entries in table 6. SinceAip = (12 ,
1
2)′

for all i, we have

V (Aip) =
1

4

(
1 −1
−1 1

)
=

1

4
(2I − J2,2)

and

A′iV (Aip)Ai =
1

4
(2A′iIAi −A′iJ2,2Ai) =

1

4
(2A′iAi − JN,N ),

and the sum that appears in equation (6) is

L∑
i=1

α3
iA
′
iV (Aip)Ai =

L∑
i=1

α3

4
(2A′iAi − JN,N )

=
α3

2

L∑
i=1

A′iAi −
α3L

4
JN,N

=
1

2L
A′A− 1

4L2
JN,N .

Putting it all together we get

1

n
(A′A)−1

( L∑
i=1

α3
iA
′
iV (Aip)Ai

)
(A′A)−1 =

1

n
(A′A)−1

(
1

2L
A′A− 1

4L2
JN,N

)
(A′A)−1

=
1

n

(
1

2L
(A′A)−1 − 1

4L2
(A′A)−1JN,N (A′A)−1

)
=

1

n

(
MN

(
1− 2(N − 1)

N2
,−N − 2

N2

)
− 1

N2
JN,N

)
=

1

n
MN

(
1− 2N − 1

N2
,−N − 1

N2

)
=

1

n
MN

((
1− 1

N

)2
,− 1

N

(
1− 1

N

))
.
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B Entropy calculations: Pair and list method

As stated in Section 2.1 the overall entropy of the distribution of voting
intentions is

H[T ] = −ET [log2 pT (T )] = −
N∑
i=1

pi log2 pi.

For the pair method it holds that

pT,R(i, {i, j}) = P(T = i, R = {i, j}) =
pi

N − 1

and
pT |R(i | {i, j}) = P(T = i | R = {i, j}) =

pi
pi + pj

for all i 6= j. Further, by using the above it follows that

H[T | R] = −ET,R[log2 pT |R(T | R)] = −
∑
i 6=j

pi
N − 1

log2
pi

pi + pj
(17)

and
I[T ;R] = H[T ]−H[T | R] = −

∑
i 6=j

pi
N − 1

log2(pi + pj). (18)

For the list method, let L◦l denote either L+
l or L−l , and let p◦l :=∑

k∈L◦
l
pk.

pT,R(i,L◦l ) = piαl

if i ∈ L◦l , and

pT |R(i | L◦l ) =
pi
p◦l
.

Thus

H[T | R] = −ET,R[log2 pT |R(T | R)] = −
L∑
l=1

∑
i∈L◦l
◦=+,−

piαl log2
pi
p◦l

= H[T ] +
L∑
l=1

αl(p
+
l log2 p

+
l + p−l log2 p

−
l ) (19)

and

I[T ;R] = H[T ]−H[T | R] = −
L∑
l=1

αl(p
+
l log2 p

+
l + p−l log2 p

−
l ). (20)
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Note that for both the pair method and the list method

pT |R(i|r) =
pi

pi +
∑
j∈r\{i} pj

For a given i this conditional probability is maximized when the other parties
indicated in the response r have the least possible support, e.g. when i by
chance is paired with the smallest other party in the pair method.

C Jeopardy calculations: Pair and list method

For the pair method P(R = {1, j} | T = 1) = 1
N−1 and

P(R = {1, j} | T 6= 1) =
P(R = {1, j}, T 6= 1)

P(T 6= 1)
=

1
N−1pj

1− p1
,

so

J({1, j}) =
1− p1
pj

,

and J(r) = 0 when 1 /∈ r. Averaging over the N(N−1)
2 possible responses

yields

J̄ =
2(1− p1)
N(N − 1)

∑
j 6=1

1

pj
.

The list method is similar with P(R = L◦l | T = 1) = αl when 1 ∈ L◦l
and

P(R = L◦l | T 6= 1) =
P(R = L◦l , T 6= 1)

P(T 6= 1)
=
αlP(T ∈ L◦l \ {1})

1− p1

=
αl

1− p1

∑
j∈L◦

l
\{1}

pj = αl
p◦l − p1
1− p1

.

The jeopardy is thus

J(L◦l ) =
1− p1
p◦l − p1

1{1 ∈ L◦l }

and averaging over all 2L lists and complementary lists we get

J̄ =
1− p1

2L

∑
L◦
l
:1∈L◦

l

1

p◦l − p1
.

31



D Tables

In all tables (∗) indicates that the the list method uses all lists with exactly
half of the number of parties each, and each list has equal weight αl. To
prevent double counting, party 1 is always on a list L+ and never on a
complementary list L−.

Swedish election 2014

SD S M MP C V FP KD FI O

pi 0.129 0.310 0.233 0.061 0.069 0.057 0.054 0.046 0.031 0.010

Table 1: Outcome of the Swedish general election from 2014.

General p pi = 1
N (∗)

H[T ] −
∑
i pi log2 pi log2N

P
ai

r I[T ;R] −
∑
i 6=j

pi
N−1 log2(pi + pj) log2N − 1

H[T |R] −
∑
i 6=j

pi
N−1 log2

pi
pi+pj

1

−maxr log2 pT |R(1|r) − log2 p1 + log2(p1 + minj 6=1 pj) 1

L
is

t

I[T ;R] −
∑L
l=1 αl(p

+
l log2 p

+
l + p−l log2 p

−
l ) 1

H[T |R] −
∑
i pi log2 pi +

∑L
l=1 αl(p

+
l log2 p

+
l + p−l log2 p

−
l ) log2N − 1

−maxr log2 pT |R(1|r) − log2 p1 + log2
(
p1 + minl,◦;1∈L◦

l

∑
j∈L◦

l
\{1} pj

)
log2N − 1

Table 2: Entropy related measures. I[T ;R] is the expected amount of di-
vulged information, H[T |R] is the expected amount of retained privacy, and
−maxr log2 pT |R(1|r) is the least possible amount of retained privacy for a
respondent with embarrassing opinion (1).
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Swedish election 2014 (∗) pi = 1
10 (∗)

H[T ] 2.80 3.32

P
a
ir

I[T ;R] 2.06 2.32

H[T |R] 0.74 1.00

−maxr log2 pT |R(1|r) 0.11 1.00

L
is

t

I[T ;R] 0.93 1.00

H[T |R] 1.87 2.32

−maxr log2 pT |R(1|r) 1.07 2.32

Table 3: Entropy related measures — the general Swedish election 2014.

General p pi = 1
N (∗)

P
ai

r J(r) 1−p1
pj

1{1 ∈ r} (N − 1)1{1 ∈ r}
J̄ 2(1−p1)

N(N−1)
∑
j 6=1

1
pj

2
(
1− 1

N

)

L
is

t J(L◦l )
1−p1
p◦
l
−p11{1 ∈ L◦l }

2(N−1)
N−2 1{1 ∈ L◦l }

J̄ 1−p1
2L

∑
L◦
l
:1∈L◦

l

1
p◦
l
−p1

N−1
N−2

Table 4: Jeopardy measures.

Swedish election 2014 (∗) pi = 1
10 (∗)

P
ai

r max J(r) 87.1 9.00

J̄ 4.42 1.80

L
is

t max J(L◦l ) 6.18 2.25

J̄ 1.37 1.13

Table 5: Jeopardy measures — the general Swedish election 2014.

pi = 1
N (∗) Var(p̂i) Cov(p̂i, p̂j)

Pair 2
n(N−2)(1−

1
N )2 − 2

nN(N−2)(1−
1
N )

List 1
n(1− 1

N )2 − 1
nN (1− 1

N )

Baseline 1
nN (1− 1

N ) − 1
nN2

Table 6: Variance and bias relations. The values for the pair method are
from Theorem 1 and the list expressions are deduced in Appendix A.
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E Figures

Figure 1: Standard deviation for the estimate of a party’s support as a
function of sample size in the case of equal true supports pi = 10% for
i = 1, . . . , 10.
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Figure 2: Standard deviation for the estimate of Sweden Democrats’ support
as a function of sample size in the case of true support equal to the 2014
election (12.9%).

Figure 3: Standard deviation for the estimate of Social Democrats’ support
as a function of sample size in the case of true support equal to the 2014
election (31.0%).
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Figure 4: Standard deviation for the estimate of minor parties’ support as a
function of sample size in the case of true support equal to the 2014 election
(1%).

Figure 5: Power calculation for bias-detection according to (3) where the
total size of both surveys is n = 15 000 with nList = nPair = 13 500,
p = 10%, N = 10. The confidence level (type I error) used is γ = 5%.
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Figure 6: Power calculation for bias-detection according to (3) where the
total size of both surveys is n = 15 000, with optimised allocation between
the standard binomial survey and the list and the pair method according to
nList = 11 250 and nPair = 9 000, p = 10%, N = 10. The confidence level
(type I error) used is γ = 5%.
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Figure 7: Power calculation for bias-detection according to (3) where the
total size of both surveys is n = 15 000 with nList = nPair = 13 500,
p = 12.9% (SD) Swedish election 2014, N = 10. The confidence level (type
I error) used is γ = 5%.
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Figure 8: Power calculation for bias-detection according to (3) where the
total size of both surveys is n = 15 000, with optimised allocation between
the standard binomial survey and the list and the pair method according to
nList = 10 781 and nPair = 8 758, p = 12.9% (SD) Swedish election 2014,
N = 10. The confidence level (type I error) used is γ = 5%.
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