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Abstract

We consider multi-period cost-of-capital valuation of a liability cash
flow subject to repeated capital requirements that are partly financed
by capital injections from capital providers with limited liability. Lim-
ited liability means that, in any given period, the capital provider is
not liable for further payment in the event that the capital provided at
the beginning of the period turns out to be insufficient to cover both
the current-period payments and the updated value of the remaining
cash flow. The liability cash flow is modeled as a continuous-time
stochastic process on [0,7]. The multi-period structure is given by a
partition of [0, 7] into subintervals, and on the corresponding finite set
of times a discrete-time value process is defined. Our main objective
is the analysis of existence and properties of continuous-time limits
of discrete-time value processes corresponding to a sequence of parti-
tions whose meshes tend to zero. Moreover, we provide explicit and
interpretable valuation formulas for a wide class of cash flow models.

1 Introduction

1.1 Multi-period cost-of-capital valuation

The paper focuses on the multi-period cost-of-capital valuation of a cumu-
lative liability cash flow L = {Lt}te[O,T] subject to repeated capital require-
ments at the beginning of each time period, where the time periods form
a partition of [0,7"]. Here T is a time after which no cash flow occurs. In
line with current regulatory frameworks, the time periods may be one-year
periods. However, we will here investigate the effects of varying the number
and lengths of the periods and in particular consider a sequence of partitions
of [0,T] whose meshes tend to 0. That is, we will analyze continuous-time
limits of discrete-time cost-of-capital valuations of the liability cash flow L.
In what follows, all cash flows and financial values are discounted by a given
numéraire, or equivalently, denoted in units of this numéraire. A classical
bank account numéraire, a rolling one-period bond, may be a natural choice.



In order to clarify the economic motivation of the valuation setup, let
T be a positive integer and consider times 0,1,...,7. The multi-period
cost-of-capital valuation of the liability cash flow L = {L;}c[o,r) is based
on considering a hypothetical transfer of the liability cash flow at time 0
from the company currently liable for this cash flow to another company
whose single purpose is to manage the runoff of the liability cash flow. The
company receiving the liability cash flow has no own funds but receives the
current value of the liability, Vj, together with the liability. In order to meet
the externally imposed capital requirements associated with the liability, ac-
cording to the regulatory environment, the receiver of the liability cash flow
requests external capital injections from a capital provider. The mathemat-
ical problem arising is the determination of Vj: this value is not a priori
given but rather a value implied by the repeated financing of the capital
requirements by a capital provider demanding compensation for providing
capital injections.

Let V; denotes the value of the liability cash flow {Ls} e 17, i-e. beyond
time t. In particular, Vp = 0. Assume that the amount V; is available at
time ¢ and that the required capital is VaRy p,(—=AL¢y1 — V1) > Vi, where
AL;yq := Ly 1 — Ly is the accumulated cash flow during the time period
(t,t + 1] and VaRy, is the risk measure Value-at-Risk conditional on the
information available at time t. A capital provider is asked to provide the
difference VaRy ;,(—ALs41—Viq1)— Vi between the required and the available
capital. If this capital is provided, then, in return, the capital provider
receives the amount (VaRy p(—ALiy1 — Vig1) —ALpy1 — Vig1) 4 at time t+1,
where (x)4 := max{x,0}. The rational for the amount (VaRy,(—AL¢y1 —
Vig1) — ALpy1 — Vigq)4 is the following. The capital provider is entitled
to any excess capital at time ¢t + 1 above what is needed for the one-period
payment AL;yq plus Vi1 that is needed to match the value of the remaining
liability cash flow at time t 4+ 1. A capital provider will accept providing the
capital at time ¢ if the expected return is good enough, in the sense that

E¢[(VaRe p(—=ALtt1 — Vi) — ALpyr — Vig1)+]
VaRt,p(_ALt+1 - Vt+1) - Vi

=14, (1)

where E; denotes conditional expectation with respect to the information
at time ¢, and 7, > 0 is the excess expected rate of return (above that of
the numéraire asset) at time ¢ on the capital provided until time ¢ 4+ 1. The
value of 7; is determined by a combination of factors such as the degree
of risk-averseness and competition between potential capital providers, be-
sides properties of the liability cash flow L. In what follows, we will simply
consider {nt}fz_ol to be an exogenously given stochastic process.

Given the liability cash flow {L;};c[o7) and a discrete-time stochastic
process {nt}z:)l, the acceptability condition (1) immediately gives the fol-



lowing backward recursion for {V;}_:

Vi = VaRy,(—ALiy1 — Vi)
1
1+
Vr =0.

E[(VaRsp(—ALiy1 — Vig1) — ALipr — Vig1) 4],

Notice that the values {V;}]_, are not a priori given but rather the solution

to the above recursion given a model for both {L;}cjo7) and {m tT:_Ol.

1.2 Related literature

The approach to multi-period cost-of-capital valuation above was studied in
[7] for more general risk measures and acceptability criteria. The choice of
one-year periods corresponds to the current regulatory solvency frameworks
under which both banks and insurance companies operate, and is in line with
accounting practice. However, it is quite reasonable to consider the financing
of liability cash flows subject to repeated capital requirements by capital
injections at a higher frequency. Moreover, by letting the length of the time
periods tend to zero we may derive explicit interpretable continuous-time
valuation formulas whereas solutions to discrete-time backward recursions of
the above type can often only be obtained numerically. It is also interesting
to analyze which features of a liability cash flow vanish and which persist in
the limit process from discrete-time valuation to continuous-time valuation
as the mesh of the partition of time periods tends to zero.

There are similarities with the our objectives here and works, such as
[21], [15] and [13], analyzing continuous-time dynamic risk measures (or
risk-adjusted values) which can be represented as limits of discrete-time risk
measures in multi-period models. However, there are also major differences.
A detailed comparison of our setup with that considered in [15] and [21] is
found in Remark 2. The aim in [13] is different from ours: there the objective
is the construction and analysis of dynamic risk measures expressed in terms
of backward stochastic differential equations (BSDEs) that arise as limits of
iterated spectral risk measures. Notice that a spectral risk measure is a form
of coherent and convex risk measure.

The vast majority of works on dynamic risk measurement consider coher-
ent or convex risk measures, and many of them aim for a representation of
the risk measure in terms of a solution to a BSDE. See [1], [2], [3], [4], [8], [9],
[12], [17], [18], [19], and references therein. The discrete-time value process
{Vi}_, from the multi-period cost-of-capital framework above share most of
the properties of the multi-period risk adjusted values in [2], precise state-
ments are found in [7]. In particular, the properties called time-consistency
and recursiveness hold. However, the limited liability of the capital provider,
which is an essential economic property, makes the value processes based on



multi-period cost-of-capital valuation lack the super-additivity property in
general. This fact holds irrespectively of whether VaR; ), is replaced by a co-
herent alternative. Therefore, the general representation results for dynamic
coherent or convex risk measures, or similarly for multi-period risk adjusted
values, are not available in our multi-period cost-of-capital valuation setup.
This fact makes the mathematical analysis here very different from that in
works on dynamic coherent and convex risk measures.

The multi-period cost-of-capital valuation described in the introduction
above is not market-consistent if the liability cash flow {Lt}te[o,T] includes
or depends on the values of traded financial instruments. For market-
consistency, a set of replication instruments must be considered and dy-
namic replication of the liability cash flow in these instruments. In this
case, the multi-period cost-of-capital valuation applies to the replication er-
ror which is always present. These issues are highly relevant for obtaining a
conceptually sound valuation framework for liability cash flows of insurance
companies. A valuation framework of this kind is presented in [14]. The
underlying principles of the current regulatory framework Solvency 2 are
similar, although the implementation of these principles into Solvency 2 is
not fully satisfactory and has received criticism, see e.g. [14].

1.3 Outline

Section 2 presents basic results for discrete-time value processes for a given
continuous-time liability cash flow. In this setting, the value process is
defined on a time grid 0 = 79 < -+ - < 7, = T corresponding to an arbitrary
partition 7 of [0, 7.

Section 3 presents the main results of this paper on existence and prop-
erties of continuous-time limits of a sequence of discrete-time value processes
for a given continuous-time liability cash flow. The continuous-time limit,
defined in Definition 4, arises by considering an arbitrary sequence {7} _;
of partitions whose meshes tend to 0.

Theorem 2 gives mild conditions under which the continuous-time value
of a sum of two cash flows decomposes into a sum of the corresponding two
continuous-time value processes. Moreover, it gives mild conditions under
which the continuous-time value process of a cash flow degenerates into a
process of conditional expectations of the remaining cash flow.

Theorem 3 presents a wide class of Itd processes that satisfy the con-
ditions of Theorem 2 under which the continuous-time value process is a
process of conditional expectations of the remaining cash flow.

Theorem 4 derives the continuous-time limit of discrete-time value pro-
cesses when the underlying liability cash flow is given by an additive process
with a jump component, with Lévy processes and compound Poisson pro-
cesses driven by inhomogeneous Poisson processes as special cases.

All proofs of the main results are found in Section 4. Section 5 contains



technical lemmas used in the proofs of the main results that may also be of
independent interest.

2 Discrete-time value processes

In this section we will present the mathematical framework for multi-period
cost-of-capital valuation of a continuous-time cumulative liability cash flow.

Fix T'> 0 and consider a filtered probability space (2, F,F,P), where
F := {ft}te[O,T] satisfies the so-called usual conditions, see e.g. Chapter
1 in [16]. Write LO(F;) (L*(F;)) for the set of F;-measurable (integrable)
random variables. Write L°(F) (L!(F)) for the set of F-adapted stochastic
processes X with X; € L°(F;) (X; € LY(F;)) for every t € [0,T]. For t < u
and Y F,-measurable we use subscript ¢ to denote conditioning on F;:

Fiy(y) =Py <y):=P(Y <y | F), E[Y]:=E[Y|F]

We consider an arbitrary partition of [0, 7] into subintervals and discrete-
time value processes evaluated at the time points corresponding to the given
partition. We will call a set of points 7 := {7 }]L, with0 =79 < --- <7, =
T a partition of the time interval [0,7"]. For any such partition we denote
by 6k := Tpr1 — T the lengths of the subintervals.

For Y € L%(F, 45,), Value-at-Risk of Y at the level 1 — oy, € (0,1)
conditional on F7, is defined as

VaRr 1-a5 (Y) = F' oy (as).

The discrete-time value of a liability cash flow is defined in terms of a back-
ward recursion of the kind presented in Section 1. The one-step valuation
mapping presented next enables this definition to be formulated with math-
ematical rigor.

Definition 1. For Y € LY(F, 1s,.), as, € (0,1) and a nonnegative 0, €
LO(Fy,), the one-step valuation mapping is defined as

1

4 o
WoE(Y) = VaRr, 1-a;, (=Y) - m

Er, [(VaRs, 1—a, (—Y) = Y),].

Remark 1. Notice that the backward recursion for the discrete-time value
process {Vi}1_o in Section 1 may be expressed as

Vi = WH(Lis1 — Le + Visr), Vi =0,
and corresponds to partitioning [0,T] into subintervals of lengths one.

For economically meaningful applications, 1 — as, , 77, are both close to
0: ny, is the expected excess rate of return, above that for the numéraire



asset, for the capital provider on the provided capital ensuring solvency at
time 7y, s, is essentially the probability that the provided solvency capital
at time 7 is found sufficient at time 7.1 = 7% + 0.

An alternative expression for Wflf (Y), see Lemma 2, is

1
)
Wi (Y) =

= {Enl¥] - (1= 05,) BSpi-as, (-Y)

+ (1= as, +15,) VaRe, 1-a;, (—Y)},

where ES;, 1-4 51 denotes Expected Shortfall conditional on F,, defined as

1 l1—as
ES;, 1-as(—Y) := o L VaR;, ,(—=Y)dp.

Theorem 1. Consider a partition T of [0,T],0 =719 < -+ <7, =T. For
each k, Wf: is a mapping from LY(F,, +s.) to L*(F,,) satisfying
if e LNF,,) and Y € LY(Fy,
ifY,Y e LNFy
W2k(0) = 0.

é 6
)y then WY + ) = WH(Y) 4 A,
) and Y <Y, then Wf: (V) < Wflf(f/),

The proof of Theorem 1 is an immediate consequence of Propositions 1
and 4 in [7] and therefore omitted.

Based on the statement of Theorem 1 we may define the discrete-time
value process {V;7 (L)} of a continuous-time cumulative liability cash flow
L e L'(F). By Theorem 1, {V;(L)}ier € L*({Fi }ter)-

Definition 2. Given L € L'(F) and a partition 7 of [0,T], 0 =19 < --- <
Tm = T, the value process {V] (L) }er of L with respect to the partition T and
filtration F is defined in terms of a sequence of one-step valuation mappings
defined in Definition 1 as follows:

VI(L) = WALy, + V7, (D). VF(L)=0, (2)

where AL L — L.

Tet1l © - HTry

In order to analyze continuous-time limits of sequences of discrete-time
value processes we will need a stability property with respect to small per-
turbations of oy, in the conditional risk measure VaR, 1« 5y Therefore, we
introduce the notion of lower and upper one-step valuation mappings and,
in Definition 3, lower and upper discrete-time value processes.



For 8 € (0,1) and Y € LY(F,, +5,), the lower and upper one-step valua-
tion mappings are defined as

770k, L 6

1- O[gk + nTk

W ( VaR-rk,l—a(;k-&-éiJrB (_Y) B VaRTkJ*Oéak (—Y)),
WP (Y) := Wik (Y)

1-— ag, + N,

W ( VaRTk,lfa(;kf&,ﬁ*B (=Y) = VaRy, 1—ay, (-Y)).

By the same arguments as in the proof of Theorem 1, Wf;ﬁ and 171\/7‘5:’5 are
mappings from L'(F, ;5,) to L*(F;,). In particular, the lower and upper

value process {YZT’B (L)}ter and {YZT’B (L) }ter may be defined analogously to
the definition of {V;”(L)}ser.

Definition 3. Given L € L'(F) and a partition 7 of [0,T], 0 =19 < --- <
Tm = T, the lower and upper value process {V;"" (L) }er and {V;"?(L)}ier of
L with respect to the partition T and filtration F are given by

VIA(L) i= WEP(AL,, ,, + VP (L), VEP(L):

Tk+1

VIA(L) = WALy, + VEP (L), VEP(L):

)

0
0.

Notice that V,"*(L) < V7 (L) < VP (L) for all t € 7.

The purpose of this paper is to study the behavior of the discrete-time
value processes when varying the partition 7 of [0,7] and in particular
the convergence to and properties of continuous-time value processes when
letting the mesh of the partition tend to zero. Serious modeling of the ex-
ogenously given random sequence {7, }Z‘:_Ol of cost-of-capital rates requires
modeling of how the risk aversion of the capital provider varies over time
and also mechanisms for competition between capital providers. Moreover,
realistic modeling of the random sequences {7, }Z‘;Ol as the partition 7 of
[0, T is replaced by a sequence of partitions {7, }r._; is not straightforward.
Those aspects of the valuation are not within the scope of the current pa-
per. Therefore, we will throughout the remainder of this paper make the
simplifying assumption that 7, = 7s, is nonrandom and depends only on
the length &y of the subinterval [7x, 7,+1) and not on 7.

Assumption 1. 70, = s, is nonrandom and depends only on the length dy
of the subinterval [T, Ti+1)-

We will consider sequences {7, }r._; of partitions of [0,T], 0 = 7,0 <

- < Tmm = T, with limy, o, mesh(7,,) = 0. With 6,5 = Tim k41 — Tk

: 1 -1

we further assume the existence of sequences {as,, , }i—y and {ns, ,}i ¢,



of nonrandom elements s, ,,7s,,, € (0,1), for m > 1, such that, for k =
0,....,m—1,

1 - a67rz,k 6m,k:

lim sup +log(a)| = lim sup

m=0pcm 1l Ok m=0 11 O

—log(l1+n)|=0
(3)

for some «a,n € (0,1). For the convergence from discrete to continuous time
to make economic sense, the limits

m—1 m—1

lim | | « i | |

m—o0 6”"»’“7 Tnh_{nw (1 + ném,k)
k=0 k=0

should exists finitely and be strictly positive. For the first limit, the in-
terpretation is that the probability that the repeated capital injections are
sufficient throughout the time period [0, T'] is some number strictly between
zero and one. Similarly, for the second limit the interpretation is that the
capital provider’s aggregate expected return on the repeated capital injec-
tions is finite. It is shown in Lemma 11 that (3) implies

m—1 m—1
. T . T
Trlll_l)noolﬂ)aam,k =a, nl@oolﬂ)(l—kngm’k) =(1+n)".

Remark 2. In our setup, as well as in [15] and [21], discrete-time multi-
period risk-adjusted values, given a partition T = {T}]", of [0,T], may be
expressed as

(I):k (X) = QOTk,Tk+1((I):k+1 (X))7 (I)}(X) = Xr, (4)

where the mapping or, -, ., 18 a mapping from a subspace of LO(F,

Tepn) tO @
subspace of LO(ka). In our setting,

X =1L, ‘I);k(X) =Ly + VTZ(L)v Pre,Ter1 = Wf::

where 8, = Tpyr1 — T and

1
Wf: (Y) = VaRTk,l—Otak (_Y) - 1+ ]ETk [(vaRTml—Oéak (_Y) - Y)+]
k
1
= T (B = (1= 06 B, ()

+ (1 = as, +ms,) VaRe, 1-a;, (—Y)}

with 1 — a5 ~ dloga and ns ~ dlog(l +n) as 6 — 0. Notice from the
last expression above for Wf: (Y) that for very small values ns,, Wo(Y) <

Tk

E; [Y]. This inequality is a consequence of the limited liability for the capital



provider. Notice also that for Wf:(Y) > E,, [Y] for at least moderately large
values ns, .

In [15], actuarial valuation rules are extended from discrete to continuous
time. Modified to our setting where financial values are expressed in the
numéraire, the valuation rule most similar to the one considered here is

Promens (V) = En Y]+ 03/6; VaRe 1-a(=Y — Er [-Y])
= (1 - n\/&)Em [Y] + nmvaRTk71—a(_Y)v (5)

where n,a € (0,1) are fized constants. Notice that o7, -, ., (Y) > Ep [Y]
if VaRr, 1-a(=Y) > E. [Y]. Although the expressions for ., .., may
appear similar, they are fundamentally different. The mapping ©r, 7., N
[15] is a priori given by an actuarial valuation rule whereas in our case it is
the result of the capital providers’ acceptability condition for financing the
repeated capital requirements, taking the capital providers’ limited liability
mto account.

In [21], a negative liability value corresponds to a positive value in our
setting, and vice versa. The mappings pr, in [21], modified to our sign
convention, are of the form

PesTht1 (Y) = (1 - @)Eﬂc [Y] - 5kFTk(_Y/\/£)

and F;, may be chosen as

Tk+1

Fr,(Y) = E,[Y] —nVaRy, 1-a(Y — E,[Y])
which gives

(kaaTk+1(Y) = (1 - U\/Fk)Em [Y] + U\/Kkvale—a(—Y)

which coincides with (5).

Notice that in [15] and [21] the quantities E;, [Y] and VaR,, 1_o(=Y)
appearing in the mapping -, -, (Y) are scaled appropriately in order to
obtain convergence of discrete-time value processes to continuous-time value
processes, and o and 1 are constants that do not depend on the partition of
the time interval [0,T]. In our setting, the sequences {cs,} and {ns. } are
chosen so that, regardless of the partition of [0, T, there is a reasonable non-
trivial probability of successful financing of the capital requirements through
the entire time period and a reasonable expected excess return to the capital
providers for providing capital. We find that our approach is more natural
from an economic perspective.

3 Continuous-time value processes

This section contains the main results of the paper. We first define the
continuous-time limit of a sequence of discrete-time value processes of a



given continuous-time liability cash flow, where the sequence of discrete-
time value processes corresponds to a sequence of partitions of [0,7] with
meshes tending to zero.

Definition 4. Given a sequence {Tp,}."_; of partitions of [0,T], 0 = Ty, 0 <

© < Tmom = T, such that lim,, o mesh(7,,) = 0, the stochastic process
{Vi(L)}tepo,r) is the continuous-time limit of the sequence of discrete-time
value processes {V,"™ (L) }ier,, if

sup |V, (L) — V¢(L)| = 0 a.s. as m — 0.

teETm

Recall from Section 2 that

Sm, 1
WTm,:(Y) = jL_’_némk{Eﬂn,k [Y] - (1 - aﬁm,k) ES’Tm,k:l_Oéém,k <_Y)
+ (1 — a5, T n5m,k) VaRTm,kJ—aam’k (_Y)}
and, by (2),
Om O m—
VT:n,k (L) = Tm,f ©---0 Wijm_ll (LT - LTm,k)' (6)

Motivated by economic arguments, we have assumed that 1 — a5, , and
ns,, . are both of order d,, ;. For some stochastic processes, precise details
are’provided below, the aggregate contribution to the value VT;’k(L) from
ESTm,iyl_aémi and VaRTm’i,l_%mi for ¢ > k will be asymptotically negligi-
ble as m — oo. In this case, aS};mptotically as m — o0, (6) collapses into
a composition of conditional expectations which, by the tower property of
conditional expectations, is simply a conditional expectation of the remain-
ing cash flow. Heuristically, cash flow models of e.g. diffusion-process type
give asymptotically negligible risk (VaR and ES) contributions to the lia-
bility value, whereas cash flow models allowing for jumps (with sufficiently
high probability) give nonnegligible risk contributions to the liability value.
Precise statements are found in Theorems 2, 3 and 4 below.

Notice also from the representation of the one-step valuation mapping
Wf;”: that a discrete-time value is not additive, VI (X +L) # VI (X)+
V7T (L), and not even subadditive in general. Theorem 2 below gives suf-

Tm,k
ficient conditions under which the continuous-time limit is additive, i.e.

Vi(X + L) = Vi(X) + V4(L). This property does not hold in general.

The following technical result, Lemma 1, is a key result for proving
convergence of a sequence of discrete-time value process to a continuous-
time limit process. Its main feature is that it enables explicit control of error
terms appearing in the sequence of recursions leading to the continuous-time
limit process. The reason why this result is placed here and not in Section 5
is that it is instructive to highlight the statement of Lemma 1 which provides
the induction step that is key to proving Theorem 2 below.

10



We use the notation f(§) € o(d) and g(d) € o(1) for a functions f,g
satisfying lims_,o f(d)/d = 0 and lims_,o g(d) = 0.

Lemma 1. Let L = {Li}yeor) and X = {Xi}epo,r) be processes in L' (F).
Suppose that there exist constants 6y € (0,1/2), u € (0,2), € € (0,1) and
C1,Cy > 0 such that for § € (0,80) and for any y = 6@ W2 and any
te[0,T — 4]

Py (|Xis — Xil > y(1+ X)) < Cud?y=", (7)
P (|X2 5 — X7 > y(1 + X)) < Cro%y 2, (®)
Pt(u@m Xp = Xiws] - B[ Xr = Xi]| > y(1+ X)) < Cro%y ", (9)
B[ X7 s — XP| < Co0(1 + X7). (10)

Let T be a partition of [0,T],0 =19 < -+ <7 =T, and let 0 <" <&’ <e.
If, for some i € {0,...,m — 1}, there exists a constant A > 0 such that

Tit+1
VTTfl (X + L) ETZ+1 [X - XTi+1] + ATi+1(1 + Xerl) + VTTfl (L)7 (11)
V’T‘:fl (X + L) ETz+1 [X - XT¢+1] - ATi+1(1 + XEH_I) Vrtfl (L) (12)

then, for T;+1 — 7; sufficiently small,

VIS (X + L) < B [Xr — X,,] +

X, A1+ X2) 4 VE(L), (13)
XV/T:,af(X + L) = E,[Xr — X5, —

A
AL+ X2)+ V(L) (14)

where, for some constant B > 0 and f(0) € o(9),

A = ATi+1(1 + B(7it1 — 7)) + f(Tix1 — 7). (15)

The following result, which relies strongly on Lemma 1, gives mild suf-
ficient conditions under which the continuous-time value process V(X + L)
of a sum of two cash flows X and L decomposes into a sum V(X)) + V(L)
of the continuous-time value processes of the two cash flows. Moreover, by
considering the special case L = 0, it gives sufficient conditions under which
the continuous-time value collapses into a conditional expectation of the re-
maining cash flow: V;(X) = E,[ X7 — X;]. Notice that in Theorem 2 below,
we make no assumptions about independence or some form of dependence
between the processes L and X.

Theorem 2. Let L = {Ly}ejo,r) and X = {Xi}epo,r) be processes in L' (F).
Suppose that there exist constants 6y € (0,1/2), u € (0,2), € € (0,1) and
C1,Cy > 0 such that for § € (0,80) and for any y = 6“2 and any

€ [0,T — 6], X satisfies conditions (7)-(10) in Lemma 1. Suppose that,

11



for some B2 € (0,¢), and any sequence {1} _, of partitions of [0,T], 0 =
Tm,0 <+ < Tmm = T with limy, . mesh(7,) = 0,

sup |V, (L) — Va(L)| = 0 a.s. as m — 0,
teETm

sup “ZT’"’BQ(L) — ‘v/tTm’ﬂQ(L)| — 0 a.s. as m — .

teETm

If further supyefo 7y X? < o, then for any B1 € (B2,€) and any sequence
{tm}o_1 of partitions of [0,T], 0 = Tpmo < -++ < Tmm = I, such that
lim,, o mesh(7,) = 0,

Sup |VtTm(X + L) — E¢[ X7 — X¢] — Vt(L)| — 0 a.s. asm — 0,

tETmM
sup ‘YA/tTm’Bl (X+1L)—- Xv/tTm’Bl (X +L)| >0 as. asm — 0.
te€ETm

Notice the following consequence of repeated application of Theorem 2.

Corollary 1. Let L = {Li}eory and X® = (X0, k= 1,...,n, be
processes in L'(F) such that the requirements of Theorem 2 hold for each
pair (L, X®), k=1,...,n. Then, as m — o,

sup v;m( i X® 4 L) - Zn] E,[x® - x®] - Vt(L)‘ —0 as.
k=1 k=1

tETM

Next we present an example of a wide class of stochastic processes X
which satisfies conditions (7)-(10) in Lemma 1 and Theorem 2. These pro-
cesses are strong solutions to stochastic differential equations driven by
Brownian motion, see (18) below.

Let p,0 :[0,00) x R — R be jointly measurable and satisfy the uniform
Lipschitz type growth conditions

p(t,z)? + o(t,z)? < Ki(1 + z?) (16)
|ty x) =t y)| + ot z) — ot y)| < Kilz —yl, (17)

for some constant K1 > 0. Let B be an R-valued F-adapted Brownian
motion and consider the stochastic differential equation

dXt = ,U,(t, Xt)dt + O'(t, Xt)dBt, XO = Ig. (18)

Conditions (16) and (17) ensure that (18) has a unique strong solution which
is a strong Markov process (see Theorem E7 in [5], Appendix E). Moreover,
(16) and (17) together imply that the solution X to (18) is in L!(F).

The following result gives sufficient conditions on the process { X }se0,17,
which is the strong solution to (18), under which {X}c[o) satisfies the
conditions in Theorem 2.

12



Theorem 3. Let {X;}e[o,r] be the strong solution to (18) with i and o
satisfying (16) and (17) and set u(t,z) := E[ X7 — X; | Xy = z]. If there
exists Ko > 0 such that u satisfies either

u(t, z) —u(s, y)| < Ka([t = s|(1 + |2]) + |z —y]) (19)
for all (t,x),(s,y) € [0,T] xR, or
'%u(x,t)’ < Ky (20)
for all (t,z) € [0,T] x R, then {Xi}se(0,1) satisfies (7)-(10) for u = 1/2 and
any € € (0,1).

Below we give an example of a fairly general class of It processes for
which both (19) and (20) hold.

Example 1. Consider a process X given by the SDE
dX; = (a(t) + b(t)Xy)dt + o(t, Xy)dB;,  Xo = 0. (21)

The functions a and b are assumed to be continuous and o is assumed to
satisfy the usual Lipschitz and linear growth conditions, ensuring exristence
of a strong solution. Then, u(t,x) = u(t,x) —z = E[Xp | Xy = x] is given
by the Feynman-Kac equation

ou ou  o?(t,x) 0*u

which has the easily verifiable solution u(t,x) = A(t) + B(t)z, where

B(t) = exp{ —L

As this yields u(t,x) = A(t) + (B(t) — 1)z, with A, B being Lipschitz contin-
uous functions on [0,T], it is easily seen that u satisfies (20). Furthermore,
u also satisfies (19):

u(t, ) — u(s, y)| < [A®) — A(s)| + |B(s)l|z — y| + | B(t) — B(s)|||

< Kap(ls = t{(1+ |2]) + [z — ),

T T

b(s)ds}, A(t) :f a(s)B(s)ds.

t

where K4 p is a Lipschitz constant for both A and B.

Due to the independent increment property, additive processes (see Chap-
ter 2 in [20]) provide examples of stochastic processes {L}e[o,r] for which
the sequence discrete-time value processes converges to an explicit continuous-
time limit {V;(L)}e[o,r], where Vi(L) is not equal to E;[Ly — L¢].

13



Theorem 4. Let {Li}iefo7] be an R-valued additive process in L°(F) with
system of generating triplets {(o?, Vi, Vi) Yeefo,r)- For each t € [0,T], let o7
and ¢ be constants and let vy be a measure on R\{0} whose restrictions to
sets bounded away from 0 are finite.

Consider the following statements:

(i) For eacht e [0,T1],

—_

(Ueré - U§7VS+5 — Vs, Vs4+6 — 'Ys) - (d?,bt,")/t) as o l 0,8 —
(22)

5

where the convergence in the second component means that

1
im -
510,5—t R\{0}

F(2)(Wars — 1) (da) = fR\{O} f(@)in(dz)

for all bounded and continuous functions vanishing in a neighborhood
of 0.

(ii) For each te [0,T),

1
lim lim supj 2= (Vo5 — vs)(da) = 0. (23)
el 010,5—t J[—e,e] 4

(11i) [0,T] x (0,00) 3 (¢t,x) — (x,0) € (0,00) is continuous and x —
v (x,00) is strictly decreasing on (0, 00).

(iv) For some q € (0,0) and for each t € [0,T], there exists q; € (q,0)
solving vy (q, 0) = —log av.

(v) SUPse(o,1] SUPsefo,7—5) 0 'E[(ALt15)%] < 0.

Let {1 }o_q be a sequence of partitions of [0,T], 0 = Tpmo < -+ < Trnm =
T, such that limy,—,o mesh(7,,) = 0. Let {V;"™(L)}ier,, be given by (2) for
T = Tm, with sequences {as,, ,} and {ns, .} satisfying (3). If (i)-(v) hold,
then L € LY(F) and

T
sup |V, (L) — E[Lr — L] — J KL(s)ds‘ — 0 a.s asm — o0, (24)
t

tE€ETM

where Kp,(t) is given by

0

KL (t) = log(1 + g — f o1z, o0)dz. (25)

qt

Moreover, for € (0,00),

sup |1A/tTm’6(L) - Iv/tTm’ﬁ(L)| — 0 a.s. as m — .

tETmM
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For the special case of Lévy processes or processes obtained by deter-
ministic time-changes of Lévy processes, Theorem 4 simplifies considerably.
Notice that a Lévy process is an additive process with system of generating
triplets {(02, v, )} = {(to?, tv,tv)}.

Corollary 2. Let {Et}te[o,oo) be an R-valued Lévy process with generating
triplet {(0*,v,7)} and with respect to a filtration G = {Gi}4e[0,00)- Consider
the following statements:

(i) §g2?v(dz) < o0 and lim. o S[is,s] 2?v(dx) = 0.
(ii) x — v(x,00) is continuous and strictly decreasing on (0, 0).

Let A : [0,T] — (0,00) be continuous, let p : [0,T] — (0,00) be given by
wu(t) = Sép A(s)ds and let {Lt}efo,r) be given by Ly = Eu(t). Now consider
{Lt}ieo,m) with respect to the filtration F := {G,, 4 }iejo,r])- Let {Tm}om=1 be
a sequence of partitions of [0,T], 0 = Typo < -+ < Tmm = T, such that
limy,, o0 mesh(r,y,) = 0. Let {V;™ (L) }ter,, be given by (2) for 7 = 7, with
sequences {as,, .} and {ns, ,} satisfying (3). If (i)-(ii) hold and, for some
q € (0,00) and for each t € [0,T), there exists q; > q solving A(t)v(qs, 0) =
—log o, then (24) holds, where -

0e]

K (t) =log(1l +n)g — A(t) J v(z,00)dz. (26)
qt

Example 2. A compound Poisson process driven by a Poisson process N
with mean-value function t — u(t) is an additive process with representa-
tion Ly = ZkNi1 Zy., where N is independent of the iid sequence {Zy}. The
Lévy measure of Ly is pu(t)Pz, where Py is the common distribution of the
variables Zy,. In the setting of Corollary 2, Lisa compound Poisson process
driven by a homogeneous Poisson process N with unit intensity and repre-
sentation Ly = SV Zy. If further 1+ (loga)/A(t) > 0 for all t € [0,T),
then (24) holds, where

Kp(t) = log(1 +n)g: — At) JOO Fz(z)dz, q = Fz'(1+ (loga)/A(t)),

qt

where Fz(z) = Pz(—w0,z] and Fz =1 — Fy.

15



4 Proofs

Proof of Lemma 1. To ease notation, let ¢t := 7;, § := 0; = 7,41 — 75, A 1=
A;,., and U := E¢[ X7 — X;]. By Lemma 2,

Vo (X + L) — B[ X — Xy
= WP (AKX + L)eys + V)5S (X + L) - Uy)

- jn (BAAX + L)ps + T35 (X + L) - U] (27)
( Ot(;) ESt71_a5 ( — (A(X + L)t+5 + VZ’_Z (X + L) — Ut)) (28)
(1= a5 +5) VaRyy o sieer (= (AKX + Ly + V5 (X + L) = ) )

(29)

If we replace = by *, the term (29) is replaced by

(1 —as+ns) VaR, . siver (= (A(X + L)gys + Vt (X+L)- Uy)).
(30)

We now bound (27)-(30) individually. We will use the bounds (11) and (12)
repeatedly throughout the arguments.

The term (27): An upper bound for (27) is constructed as follows:

E¢[A(X¢4s + Lt+6)

+ V(X + L) — U]
S E[ALiys +V f; (L
5 (
(
(

+ Ei[AX 45 + Uprs — Up + A(L + X25)]
+ A1+ X7 + B JAXE 5]

+ AL+ X2+ C20(1 + X))

+ A(1 4 Ce8)(1 + XP),

= Et[ALt+6 + Vt
E[ALis + Vi35
[

= Et ALH-(S + Vvt_;%

L

+46
)
L)
)
L)

|
]
]
|
where (11) was used for the first inequality, the tower property of condi-
tional expectations was used for the equality, (10) was used for the second
inequality and Lemma 7 was used for the third inequality. Similarly, a lower
bound for (27) if we replace ~ with ¥ is
Ei[ALiys + V75 (D)) = A(L+ Cad)(1 + X7).

The term (28): We first construct an upper bound for (28). Using (11)

16



and monotonicity and subadditivity of expected shortfall,

ESt1-a;(—A(Xit1s + Lits) — V,;f; (X +L)+Uy)
< BSt1ay(—ALiss — V5 (L) = AXyps — Upps + Uy — A(1+ X2,5))
S ESi1a;(—ALpys — ‘A/t:fs”(L))
+ESt1—ay(—AXt1s — Upss + Up — AL+ X2 5))
< ESt1-as(—ALpss — V75 (L)) + ESy1—as (—AXi15)
+ ESt1—as(—Upis + Up) + ESp 1 s (A1 + X2 5))
< BSy 1y (= ALis = V75 (D)) + BSp1-as (—[AX114])

+ ESt1—as (—|Utrs — Ut|) + ESt1—a, (—A(L + X715))
Notice that
ESi1-as (—XPhs) = ESti—as (AXP 5 — X7) < X7+ ESp 10, (—|AX7, ).
Applying Lemma 3 gives, for some function g(d) € o(1) as § — 0,

ESt1—as(—A(Xi1s + Lits) — V;st (X + L)+ Uy)

< ESt1—as(—ALys — ‘A/tlfs (L))

+29(8)(1 4+ X2) + A1 + g(6)(1 + X?).

We now construct a lower bound for (28), replacing ~ with *. Using (12) and
monotonicity and subadditivity of expected shortfall,
ESt1as (—A(Xyps5 + LH(;) VIE(X + L)+ Uy)
> ES;1-a;(—ALpys — t+5 ( ) = AXiis — Ups + Up + A(L + X715))
> ESi1—as(—ALirs — V5 ( )
—ESi1—a;(AXpis + Uprs — Up — A(L+ X7205))

An upper bound for ESy1—a,;(AX¢45 4+ Uprs — Uy — A(L+ X2, 5)), derived as
above, gives the lower bound for (28):

~

ESt71_a5(—A(Xt+5 + Lt+§) V (X + L) + Ut)

> ESi1-as(=ALtss — V}lfs( )

—29(0)(2+ X7) — A(1 + 9(9) (1 + X7).

Notice that lims o6 (1 — a5) = —log . Therefore, there exist a function

17



f(9) € 0(6) such that for all § > 0 sufficiently small
(1 — as5) ESt1—as (—A(Xits + Leys) — V;—rf; (X+L)+Uy)
< (1= ag) ESp1a,(—ALps — V5 (1))
+((1—log@)dA + f(6))(1 + X7),
(1 — s) BSt1_ay(—A(Xi1s + Lt+5) VIE(X + L)+ Uy)
= (1 - ayg) ESt,l—ocs(_ALt+5 t+5 ( )
—((1 —loga)sA + f(6))(1 + XP).
The term (29): Now we construct an upper and a lower bound for (29).
Using (11) and monotonicity of value at risk,

VaR, |, si+e (= A(Xeqs + Lits) — V;Crf; (X+L)+Uy)

< VaRk (=ALiys — V;+5 (L) — |Upss — Ul = A(L + XP15) — |AX45])

< VaRt,1fa5751+s/(*ALt+6 - ‘7;;5 (L) — |AX i 5| — |Uprs — U] — A’AXt2+5|)
+ A1+ X7).

t,1—as—d1+e

Similarly
VaR, |, g1 (“AXpss + Livs) — V(X + L) + Uy)
> VaR, ,_,, grse (—ALiys = V75 (D) + [AX ] + |Uss — Uil + AJAXZ 4))
—A(1 + XP).
Applying Lemma 4, for § sufficiently small, yields the upper bound
VaR, | _grve (—ALiss = V75 (D) = [AX ] = |Uss — Ui — AJAXZ, 5))
< VaR, . _siver (—ALeys — V5 (L)) + 5607021 + A)(1 + XP).
Similarly,
VaRy ) o gree (“ALies = V75 (L) + [AX o] + [Uis — Ul| + AJAXZ )
> VaR, . siver (—ALeys — V75 (L)) = 560™/2(1 + A)(1 + XP).

Notice that lims_0 6 (1 — as + n5) = log(1 + 1) — log(a) and therefore,
there exist a function f(J) € o(d) such that for all § > 0 sufficiently small

(I —as+mns) VaR, | . sive (=AXips + Livs) — Viis(X + L) = Uy)
< (I—as+ns) VaR, . siver(=ALiys — ‘ZZEII(L))

+ A(1 +log(1 +n) —loga)d(1 + X2) + f(6)(1 + X?),

(L—as+ms) VaR, | 5100 (—AXpps + Ligs) — Viis (X + L) — Uy)
> (1—as+ns) VaR, |, sirer (=ALpys — thrf; (L))

— A(1 +log(1 +n) —loga)d(1 + X7) — f(6)(1 + X7).
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Summing up, there exist a function f(§) € o(d) such that for any sufficiently
small § > 0, defining B := Cs + logn + 2 — 2log a,

"

‘A/tT’el(X + L) S E[X7 — Xo] + WP (ALyys + ‘A/t:fs”(l’))
+ A(1+ (C2 +logn + 2 — 2log a)d) + f(9),
= E¢[ X7 — X4] + ‘ZT’GII(L) + AL+ Bo) + f(9),

"

V(X + L) > B[ X7 — X¢] + W) (ALpys + ‘v/t:fsn(L))
— A1+ (Cy +logn + 2 —2loga)d) + f(9)
— By[Xp — X,]+ V" (L) — A(1 + BS) + £(6).
The proof is complete. O

Proof of Theorem 2. Consider any sequence of partitions {7,,}o_,. Take m
sufficiently large so that mesh(7,,) is small enough for the statements of
Theorem 1 to hold for each t € 7, with respect to the triple B2 < 81 < €
and a function f(d) € 0(d). We show via backward induction that

VI (X + L) < Er, [Xr— Xo ]+ Ar, (L+ X2 )+ VIm2(0), (31)

VimP (X + L) 2 B, [ X — Xp] = An, L+ X2 )+ VImP2(L). (32)

Tm,i i
However, since the induction base ¢ = m is trivial and the induction step
follows immediately from Lemma 1, (31) and (32) immediately follows. Now
we note, by Lemma 5, that there exists h(d) € o(1) such that for each m
large enough and k = 0,...,m, A;_, < h(mesh(7y)). Hence

sup ’V;Tm(X + L) —E[Xr — X¢] — Vi(L)‘

tETm

< sup max (|1A/tTm’ﬁl(X + L) — B[ X7 — X¢] — Vi(L)],

teTm

"\}tnn,ﬂl (X + L) —E X — X¢] — V;S(L)D

< sup max (|77 (L) = Vi(L)|, [T (L) = Vi(L)])

te€ETm
+ sup A, (1+ Xfm L)
ke{0,...,m} ’ ’
< sup mae (|07 (L) = Vi(L) | [V () ~ Vi(L)])
€ETm
+ h(mesh(Tm))(l + sup XE)
te[0,T]
Similarly,
sup |1A/t7-’"’51 (X + L) — V™ (X + L)
teETm
< sup ’@Tm’ﬂz’(L) — P2 (L)| + 2h(mesh(7)) (1 + sup Xt2>
t€7m te[0,T
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Now, if supe(o, 1 X? < oo almost surely, then

sup max |V (L) = Vi(L)

tETm

TR (L) - V(D))

)

+ h(mesh(7,)) <1 + sup Xf) — 0 a.s. asm —

te(0,T]
and
sup ‘Y’/\;T"“&(L) — i (L)] + 2h(mesh(Tm))(1 + sup XE)
t€Tm te[0,T]
— 0 a.s. as m — 0.
This completes the proof. O

Proof of Theorem 3. Consider any ¢ € (0,1). By Lemma 6, for all y >
6(=8)/4 and t € [0, T — 6], for § > 0 sufficiently small,

IP’t< sup | Xs— X¢| >y(1+ ]Xt])> <y exp{ — —},
s€[t,t+6]

2

Po( sup |X2-X7|>y(1+|X])?) < Crexp{ - 2}
s€(t,t+6] C20

Notice that

2
C _
C1 exp{ - Cyé} < 7 ! S 201C26%y 4, (33)

from which it is clear that we may bound Cj exp{—%?/(C26)} from above
by C6%y=2/" for all y = 6“(1=9)/2 for u = 1/2 and C' = 2C1Cy. We have
therefore verified that conditions (7) and (8) in Lemma 1 hold.

Suppose first that the function u satisfies (19). Then

IP’t( sup |u(s, Xs) —u(t, X¢)| > y(1+ \Xﬂ))

se[t,t+6]
<P sup Ka(d(1+ X))+ [Xe = X) > (1 + |X)
s€[t,t+6]
=P sup [X.—X| > (y/Kz— )1+ |X).
se[t,t+4]

For any S € (0,¢), 6(179)/4/Ky — § > §(=A)/* for § sufficiently small. Hence,
by Lemma 6 and (33), condition (9) holds for 3 = 6(1=#/4, Since ¢ € (0,1)
was arbitrarily, we have verified that (9) in Lemma 1 holds for y > §(1=)/4,

Now suppose instead that the function u satisfies (20). Then the veri-
fication of (9) in Lemma 1 follows immediately from combining Lemma 8
and (33).

Finally, the verification of condition (10) in Lemma 1 follows immediately
from Lemma 7. O
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Proof of Theorem 4. First notice that, by (v), E[|L;|]] < E[L?]"/? < o and
therefore L € L?(F) < L'(F). Write AL;,s := L;1s — L; and notice that
ALy, s is infinitely divisible with Lévy measure vy, s — vy. We first show the
statement

: -1
s, [FaL,,s(00) = a =0. (34)

Write Far,,,(x) :=1— Far,, ;(2) and notice that
FA_£5+5(Q5) =min{z : Far, () = a5}
1 _
= min {:c : exp{glog (1 - Far, 5(3:))} > a(ls/é}
. 1
=m1n{ 6log(1—FALS+5( z)) >glog(1—(1—a5))}.

Notice that —y—y? < log(1—y) < —y for y € [0, 1) and recall that lims_,(1—
as5)/0 = —loga. By Lemma 9, Corollary 3 and the continuity of = —
v (x,0) for z > 0,

1 .
6l10HsILt 3 Far,.s(x) = ty(x,0) for every z > 0. (35)

Moreover, by combining the assumptions (ii7) and (iv), there exists a unique
gt > 0 such that (g, 0) = —log a. Statement (34) now follows.
We next show the statement

lim

510,5—t ’ 1) BB )

1+mns
where K7,(t) is given in (25). Notice that due to the independent increments
of additive processes, Wf(ALSJﬂ;) is independent of F, and

1, 1 1 .
sWe(ALsis) = <Fap, (o) = mE[(FALS+5(aé) — ALgsss). |
(= Far,(Fag,,,(a5) +n5)Far, ,(@s)
(1 +ms)0
E[ALssI{ALsys < Fxp_, (a5)}]
(1 +m5)0

(W2 (ALyss) - — Ki(t)] =0, (36)

Notice that
1 _
SE[ALSMI{ALSM < Fap,(as)}]
1 1 _
= EE[ALS-‘v-g] - SE[ALSMI{ALSM > FA£S+5(Q6)}]

FA_[1/5+6 (045)
o

P(ALgis > x)da.

1
= SE[ALS+5] -

1 0

(1~ Far,.,(Fa}_.,(05))

0 Fuyp o (as)

ER)
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Hence,

-1
1 E[ALs 5]\ MFar, (o)
- W(S ALS _ — s+96
0 ( s +9) 14+ ns ) (14 ns5)d
1 o]

R P(ALgys > z)da.

(1 + )6 Fxp, (o)

Combining (3) and (34) establishes the appropriate convergence to log(1 +
1)q¢ of the first terms on the right-hand side as 6 — 0. We now address the
second term. First notice that, by (34), there exists ¢ € (0, 00) such that

Q0 1 0
lim sup ‘ f ———P(ALsy5 > z)dx — J v (x, oo)dx’
.=t gt g (LHms)3 a
< lim sup C‘FA_£5+5(Q5) —q
10,5t
i UOO L pALys > 2)d fo'( o0)da|
imsu —_— s>a)dr — | (w, x
5l073"1? qt (1 + 775)5 o qt '

0

: * 1
= hm Ssup ’ Lt WP(ALSJNS > l’)dﬂf — f

(e, oo)d:c‘. (37)
10,8t qt

We will show that (37) = 0. By continuity of x — 4(z,00) for x > 0 and
the fact that all functions in (35) are monotone, the pointwise convergence
in (35) is in fact uniform on any interval [a,b], 0 < a < b < c0. Hence, for
any b € (g1, %),

b
P(ALy. s > x)da — f o(z, oo)dx’ ~0

qt

b 1
lim su ‘J —_—
(5l0,5—£) qt (]— + 775)6

from which follows that
o0

®© 1
37 <limsupj ——P(ALg 5>xd:):—|—f U(x, 00)dx.
(37) imsup | (1+%)5( +6 > ) . +(x,00)

Next we show that the above upper bound on (37) can be chosen arbitrary
small by choosing b sufficiently large. By Markov’s inequality follows that

E[(ALs+6)°]

1 1
“P(ALg 5 > ) < 5]P>((ALS+5)2 > 27%) < —

1)
and further that
©1 1 9
7P(AL5+5 > fL‘)dﬂS < 7E[(ALS+5) ]
p O &b
In particular, the assumed property (v) gives

0
1
lim limsupf —— P(AL; 5 > z)dax = 0.
b= 5105t Jp (1 +75)0 (BLe )
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By Fatou’s lemma, assumption (v) and (35), for any b € (0, o0),

0 0 1
Jb vy (x,00)dz < }Sif(r)}sigf;ﬁ, SP(ALSM > z)dx

0

1

< lim supf —P(ALgys > z)dz < 0.
510,s—t Jp O

In particular,
o0
lim lim supf vy (x,00)dz = 0.
b—w 5§10 b

Summing up, we have shown that (37) = 0 from which it follows that

o0 1 o0
lim ————P(ALsys > x)dx = f vy (x, 00)dx
010,51 F;£5+5 (as) (1 +n5)d ! qt

and further that (36) holds. By combining the assumptions (i) and (iv),
there exists a unique ¢; > 0 such that (g, 0) = —loga. Moreover, by
joint continuity of (¢,z) — 4(x,00), t — ¢ is continuous. Since also t — ¢
is uniformly bounded away from 0, ¢t — K,(t) is continuous on [0,7']. Thus
(36) and Lemma 10 together imply

lim sup

‘ [ALH(S])
510 4ef0,7—5]10

<Wt (ALes) = = >

. KL(t)‘ —0. (38

It remains to prove the convergence in (24). For any k € {0,...,m — 1},

T
w(L) ~E[Lr— Ly, )= | Ki(s)ds
Tm,k
< E[AL,, 39
5 m—1
+ ‘WTT:L,f : WTr:ln'r:zn 11 ( Z ALT7IL,i+67IL,i>
i=k
m— ALT e m—1
$ — K (Tm.i)0m.i 40
; L+ s, ;f £{7im.1)m, (40)
- T
‘ Z £ (i) Omi — f KL(S)dS‘. (41)
i=k Tm,k

The term (41) converges to 0 as m — oo from the definition of the Riemann
integral. Moreover, as m — o0,

S o
(39) < sup |E[AL., +5,..] — 50
i<m—1 i=k 1+ 775m,i

)
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since the sum is uniformly bounded in m and, by Hoélder’s inequality and
assumption (v),

lim Sup Sup |E[ALT7VL,i+6ﬂL,i]

m—0 <m—1

< limsup sup EHALTWJF(;W

m—0 j<m—1

< limsup sup IE[(ALTmJJrgnm.)2]1/2

m—o0 <m—1

= limsup sup 9
m—0 <m—1

71,1/21 (E[(AL?#%&W )?] ) 1/2

1/2
< limsup sup 51/2.<limsup sup (15E[(ALt+5)2])/

m,i
m—0 i<m—1 510 te[0,7—5]

=0.

Using the translation invariance property in Theorem 1 (i) and (38),

m—1
10) = | 32 b (= (Wi (ALry es,) — =258 K (7))
( ) ;ﬂ m,? 5m’i Tm,i ( T7rL,z+67n,z) 1 + n(sm’l L(Tm,’b)
< Mt ) ) — — merTTmeo ) .
== TOSI’LIézir}L{fl ’ -y (W'rm,z (ALTTVL,Z+67VL,’L) 1 + ném’i ) KL(Tm,Z)
-0

as m — 0. Hence, (38) implies (24).
Now it only remains to show is that, for any /3 € (0, o0),

sup |TA/tTm"B(L) - IZT’”’B(L)| — 0 as. asm — 0.

te™m
This is straightforward considering the fact that also the sequences {as,, , —
571n+,§}’,;”:_01 and {as,, , + (51+B}Z‘:_01 satisfy (3), yielding

m,k

lim sup ‘FA_}J (5, T 5,1n+;f) —q| = 0.

m—o0 k<m—1 T,k T0m, k

rghus, the arguments in the above proof for V7 hold for both VB and
V7B This concludes the proof. O

Proof of Corollary 2. Notice that { Ly }c[o,7) has system of generating triplets
{(02,v1,7)} = {(w(t)o?, u(t)v, u(t)y)}. Now we verify the requirements
(i) — (v) in Theorem 4, noting that (67,24, %:) = A(t)(a?, v, 7).

(i): For each ¢ € (0,7] and s € [0,T — ¢], by the integral mean value
theorem there exist a 055 € [s, s + J] such that

1
5 (Uz-&-é - U?, Vs+§ = Vss Vs+86 — 73) = /\(9575)(02, v,7)
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By the continuity of ¢ — A(t), we immediately get

. 1
El%)l,rsn—nf 5 (03-&-5 - 03, Vg4§ — Vsy Vs+8 — '73)
= lim A0 2
sim A(0s5)(0%,v,7)
= A(t)(0*,v,7)
= ("71527%7"%&)-

(73): The statement follows from assumption (i) in Corollary 2 and the
fact

z22v(dz).

ol N = B+ ) —u(t)
j[_m]w (s — m)(da) = HEED =D f[ N

(7i7): The statement follows from ;(x, 00) = \(¢)v(x, ), which is jointly
continuous by assumption (iz) in Corollary 2 and the assumed continuity of

t— A(t).
(iv): Since (g, 0) = A(t)v(qr,0) and, by assumption, there exists
gt > 0 solving A(t)v(g, 0) = —log «, the statement follows.

_ (v): We first note that by assumption (ii) and Corollary 25.8 in [20],
Ly € L*(G). For any s > 0 and 6 € [0, s], by the stationary and independent
increments property,

! (E[L}] — E[Ls]?) = (s/6) Var(Ls) = s Var(L1) < o0

1.~ ~
ng[Lg] — sOE[L1]? = 55

from which supse(g ) 6*1E[E§] < o for any s > 0 follows. Notice that, for
any 0 € (0,7] and t € [0,T — 4],

~ ~ d ~
ALpvs = Lyers) = Luwy = Luge+o)—p()
and, from the mean-value theorem,

)\:= min )\(s)gw Y
s€[0,T7] o s€[0,7]

where 0 < A < A < 0. Hence,

1 -1 ~
sup  sup —E[(ALis)*] < sup A=E[(ALy)?]
5(0,T] te[0,7—5] O 5e(0,1] AS
1 ~
=X sup =E[(ALs)?]
3e(0,AT']
<w
which verifies statement (v). O
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5 Auxiliary results

Lemma 2. For Y € L'(F;,s),
1
1+ ns

W) = o (BelY] = (1~ a5) BSta-as ()

+ (1 —as + ns) VaRtyl_aa(—Y)).
Proof. Notice that
~ E[(VaRi1 oy () = ¥)1]

= —Ei[(VaRe1—0; (=) = Y) iy <vaRi 1oy (-1}

= Ee[(Y — VaRe,1-a; (=Y)) (1 = Liy>vaR, 1oy (-v)})]

= Ey[V] = VaRe1—a, (=) — E[(Y — VaRy1—a, (—Y))4].
Straightforward calculations, see Lemma 2.2 in [6], yields

EY[(Y = VaRo1_ay(=Y))+] = (1 = a5)(BSy1as (=Y) — VaRy1_ay(—1)
from which we conclude that
—E[(VaRe1—a;(=Y) = Y)4] = E¢[Y] — (1 — as5) ESt 10, (—Y)
— a5 VaRy 1-qs(—Y).

Hence,

1
14+ 7s

Wi(Y) = VaRy1—q,(=Y)

1
N 1+ ns

Et[(vaRt,l—a5 (—Y) - Y)+]

(BeY] = (1= a5) ESy-a, (<Y)
+ (1 —as +ns) VaRt,l_aé(—Y)>.
]

Lemma 3. Let {X;}cor) and {Uilepor) be adapted processes. Suppose
that there exist constants oy € (0,1/2), u € (0,2), € € (0,1) and C; > 0 such
that for 6 € (0,00) and for any y = 6“=9/2 and any t € [0,T — 6]

P (A Xess] > y(1+|Xi])) < 1oty

Py (|AULs] > (1 + X)) < Cro2y=2/",

Pe(JAXZ s > y(1L + |Xi))?) < Cro%y 2",
Then, for some g(d) € o(1),

ESt1-as(—|AX4s]) <
ESt1-as (—]AUs]) <
ESi1—a; (—|AX7E ) <

9(0)(1 + [Xq)),
9(0) (1 + [ Xz]),
g(®) (1 + X7).
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Proof. By assumption,

—2/u
Pt(|AXt+5‘ > y) < C152(1 —i—y|Xt|)

for y = (1 + | X¢|)6(==%/2. Solving C16%y~2/*(1 + | X¢|)/* = p for y gives

yo) = 0+ X ()

Hence, for r € (0,1) and ¢ small enough,

1 sit+r
ESt1—a; (—|AX¢45]) < 51+TL y(p)dp

61+r

U, (N 1 —u
XD [ e
0

(1+[X)C /5u(1 (141)/2)
1—wu/2

=:g(&)(1 + | Xe]).

The same argument shows the upper bound for ES; 1o, (—|AUs4s]). A sim-
ilar argument applies for showing the upper bound for ES; 1_q, (—|AX}? Fesl):
By assumption,

y —2/u
P(|AX152+6 >y | F) < C16° <W>

for y = (1 + | X3])26(“=*%)/2, The same argument as above gives
ESt1—a; (—|AX75]) < g(0)(1 + | Xa]).

Noting that (1+|X¢[)? < 2(1+ X?) yields the upper bound in the statement.
O

Lemma 4. Let {Xi}iep01), {Yiteejo,r) and {Uthefo,r ] be adapted processes.
Suppose that there exist constants (50 € (0,1/2), u € (0,2), € € (0,1) and
C1 > 0 such that for 6 € (0,00) and for any y = 6“=9/2 and any t €
[0,T —¢]

(18015 >y + X)) < Cro®y~2,

(AU 5] > y(1 + X4 ) < 182y,

~
/\A/\

(1825 >y + X)) < Cro%y 2,

27



Then, for any K > 0, p1,P2 € (0,¢), with By < B1 and sufficiently small
o€ (07 60)7

K(|AX 5]+ |AUs| + 1AXE )
< VaR; o, g16: (—Yigs) + 5KUW2(1 4+ X2,
VaR, o, 15100 (=Yers + K(|AXpi5] + [AUs] + [AXE 4])
> VaRyy oy g1 (—Yig) — SKS0—0/2(1 + X2).
Proof. Let
= {|AX 6] + !AUt+6\ +|AXE | < 8¢T2(3 42X + X)),
Ex = {|AX 5] < 602 (1 4+ !Xt!)}
Ep = {|AUs| < 6“2 (1+ X))},
Exz = {|AX7 5| < 821+ 1X))%).

From P;(E) > Pi(Ex n Ey n Ex>) follows that P,(EC) < P(E$)+Pi(ES) +
Py(E$,). Hence, Py(EC) < 3C16%(6(4—=w/2)=%/u = 3C,§1*5. Notice that
Pi(Yirs — K(|AX 6] + |AUs| + [AXE 5]) < 2)
= Py(E 0 {Yigs — K(|AX 15| + [AUs| + |[AXE4]) < 2})
+Py(EC 0 {Yigs — K(IAX 5] + AU 5| + [AXE 5]) < 7))
S Py(Yigs < o+ K623 4+ 4 X + X2)) + P,(EC)

VaR, 1 _q,_gi+61 (—Yers —

and similarly
Pi(Yis + K(|AX 5] + |AU 5| + [AXT 5)) < )
> Py(Yirs + [ K|(|AX 18] + [AUs| + [AXE ) < )
> Py(E N {Vigs < @ — K6U™=W/2(3 + 4 X,| + X?)})
> P (Vigs < @ — K6W5/2(3 4+ 4] X,| + X2)) — P(E).
Hence we conclude that, for § small enough,
VaRy; 1o, 15140 (—Yirs + K(|AXy 5] + [AUys] + IAXZ50))
= VaRt717a6+51+B1 +Pt(EC)(_Y;f+5) — K5(u—eu)/2(3 + 4|Xt| + th)
= VaRt,l—a5+61+ﬁ1+3Cl61+5(_Y;‘+5) — K5(U—EU)/2(3 + 4‘Xt’ + Xt2)
and analogously that
VaRy 1 ;51461 (—Yers — K(|AXops| + [AUsss| + |AXE5])
< VaR, 1, s1+81 g0 51+ (—Yirs) + K623 44X, | + XP).

We note that 2|X;| < 1+ X?, 3 +4|Xy| + X? < 5+ 3X? < 5(1 + X?).
Moreover, 81781 4+ 30,817 < §11P2 for § sufficiently small. The proof is
complete. ]
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Lemma 5. Let {7, };_; be a sequence of partitions of [0,T] with 0 = 7y, 0 <
- < Tmm =T, let g(§) € 0(5) and let B > 0 be a constant. Define

A;Z =AT (14 B(Tmg+1 — Tmk)) + 9(Tmk+1 — Tmk), A7 :=0.

Tm,k+1 Tm,m

Then there exists h(8) € o(5) such that AT < h(mesh(7y)) for all m, k.

Proof. Let 6,k := Ty k+1 — Tim,k- Noticing that 1 + Bd,, x < eBomk gives
m—

m—1
AT < Y 90mg)exp{B Z mi
j=k

BT Z 5m max (6 .7)

k<j<m  Om.j

0
<TePT sup &
d<mesh(7p,) d

O]

Lemma 6. Let {Yi}e[o,r] be the strong solution to (18) with u and o satis-
fying (16) and (17). Then there are constants C1,Cy € (0,00) such that, for
§ € (0,1) sufficiently small and y > 6° for any given 3 € (0,1/2),

y2

t(seﬁfﬁaﬂ tl >y +| t|)> CleXp{ 025} )
2

P Y2 -Y? 1+1]Y))?) <2 - 2=}

t<s€?t1j}i5]| s =Y >3y(1+ ] tD) CleXp{ 025}

(43)

Proof. We first prove (42). Let 7 := inf {s € [t,t+6] : |[Y; = Y| > y(1+|¥3])}
and notice that
P sup |Y.—Yi|>y(1+I¥)
se(t,t+6]
= Pt(T <t+ (5)
<Pt(7' <t+4, sup

t<s<7

|t Yoau| > Guta + i) (14)

ft o, Vo)

Notice that s < 7 implies |Ys| < |z| +y(1 +|z|) which in turn, by the growth
condition (16) for x and o, implies that there is some finite constant M such
that

1
+Pt(7'<t+(5, sup B (1—1—]5/}\)) (45)

t<s<T

max { sup [u(s, Y5)|, sup |o(s, ;)| } < M(1+ [¥i]). (46)
selt, 7] selt,7]
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Hence, for ¢ € (0,1) sufficiently small, the probability in (44) is zero. The
probability in (45) can be bounded from above as follows. Since s +—
So u,Y,)dB, is a continuous local martingale, it may be expressed as
random time change s — H(s),

H(s) = J o, Yo) 2,

0

of a Brownian motion. By (46) and Theorem 18.4 in [10], there is standard
Brownian motion B such that,

1
(45) < Py (H(t +8) — H(t) < SM*(1 + [Yi])?, S [Brio| > 5yl + ¥i))

<]P’( B, )
A Bl = 5ap

Applying Lemma 5.2.1 in [5] to the last expression above gives
y \21
<t - () 3}
(45) < dexpy = \27) 25

We have proved (42). We now prove (43). Noting that |Y2 — 22| = |V, —
z||Ys + x| we get:

P sup |V - V2| > 3y(1+[Y)?)

se[t,t+6]
<P({ s Vi-Yil>y+[mDfof sw |vi+Y|>301+ v}
se(t,t+4] se(t,t+6]
<P sup |Yi—Yil>y(1+[i) + P sup [+ Vil >3(1+ 1))
se(t,t+6] se(t,t+6]

By Lemma 6, for ¢ > 0 sufficiently small,

2

Po( sup |Vi—Yil>y(l+Yi) < Crexp{ - 2}
se[t,t+6] C20
Moreover,
P swp [Vi+ Y >3(1+ )
se[t,t+6]
<P swp [Yi— Yl +21Y] > 3(1+ i)
se[t,t+6]
<P sup [Vi-¥il> 1+
se[t,t+6]
y2
<C { _ —}
1 €Xp 025
This concludes the proof. ]
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Lemma 7. Let X be the solution to the stochastic differential equation (18)

with coefficients p and o satisfying (16) and (17). Then there exist a con-
stant C such that

[E[JAXE, 5] < Co(1 + X7). (47)
Proof. Recall that AXt+5 = Xt+6 X?. Itd’s Lemma yields
t+4

t+6
AX2 s _L (2X, (s, Xs) + o (s, X5)?)ds + 2 t X,0(s, X;)dB,.

Hence,
t+0
EAX2, ]| = ‘Etu (2X o5, X5) + a(s,XS)Q)ds”
t
t40
gEt[J ’2Xs,usX)—|—UsX |ds]
t+§t
— J Eo[[2X (s, Xs) + o (s, Xs)?|]ds.
t

Since p and o satisfy (16),

u(s,x) < (Ki(1+22) " < K21+ a),
(s, x) < Ky (o] + o) < 26,%(1 + 2?),
zu(s,x) + o(s, )2 < (Ki + 2K (1 + 22).

Hence, there is a constant C'; such that

t+6 t+6
J Ei[| Xsp(s, Xs) + 02(5,X8)|]ds < f E¢C(1 + Xf)]ds.
t t

By Theorem 4.5.4 in [11], there is a constant Co such that E;[X?2] < Co(1 +

X?) which immediately implies the existence of a constant C' such that (47)
holds. O

Lemma 8. Let X be the solution to the stochastic differential equation (18)
with coefficients p and o satisfying (16) and (17). Define u as in Theorem 3
and assume u satisfies (20). Then for any € (0,1/2), for 6 > 0 sufficiently
small and y > 6P, there exists constants Cy,Coy > 0 such that

P sup fuls +6, Xovs) — ult. Xo)| > y(1 +|Xi])) < Crexp { - 2}
SE[tt+6]
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Proof. We first notice that, by 1t6’s lemma and by Feynman-Kac, we have
du(ta Xt) = ux(t> Xt)a(tv Xt>dBt’

where subscript  denotes partial derivative with respect to the second ar-
gument of u. Let 7 :=inf {s € [t,t+ 6] : | Xs — X;| > y(1+|X;|)} and notice
that

B sup uls, X) —u(t, X)) > y(1+ X))
se(t,t+4]

+Pt<7>t+5 sup ’j g (u, Xy)o(u, Xy)

se[t,t+40]

(1+[a])).

Since s — §§ uz(u, Xy)o(u, Xy)dB,y, is a continuous local martingale, it may
be expressed as a random time change s — H(s) of a Brownian motion:

t+48
H(s) := j g (u, Xo) 2o (u, X, )%du.
t

Notice that if 7 > ¢ + 4§, then H(t + ) < dK1K3(1 + |X;¢])2. By Theorem
18.4 in [10], there is standard Brownian motion B such that,

IP’t<7'>t+(5 sup ‘fuqu) (u, Xy)
selt,t+9]

< IP’(T >1+0, sup |BH(s | >y(1+ |Xt|))
se(t,t+6]

Yy
s P<s€?tl;8-5] |BS’ ” 51/2K1K3>'

(1+ 1))

Applying Lemma 5.2.1 in [5] to the last expression above gives

<o () 5}

Noting that

Py <t+0) = }P’t< sup | Xs — Xy > y(1 + |Xt|)>
se(t,t+6]

can be bounded by Lemma 6 completes the argument showing (48). O

Lemma 9. Let {Lt}efor) be an R-valued additive process with system of
generating triplets {(af,yt,’yt)}te[oﬂ. For each t € [0,T], let 62 and % be
constants and let vy be a measure on R\{0} whose restrictions to sets bounded
away from 0 are finite.
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Fiz t € [0,T] and assume that

1 L9 ..
S(O’§+§ - 037 Vs+§ — Vsy Vs+5 — ’YS) - (U§7Vt77t) as o l 075 - tv (49)

where the convergence in the second component means that

1 .
jR\{O} F(2)(Vsss — v5)(dar) = f F(@)in(dx)

lim —
§10,s—t ) R\{0}

for all bounded and continuous functions vanishing in a neighborhood of 0.
Assume further that

1
lim lim supf 22~ (Vgys — vs)(dz) = 0. (50)
el0 50,5t Jl—ce] O

Consider sequences 0y, | 0, t, — t, with t,, € [0,T — 6,] and, for every n, let

Onstn

d
t+0n = ALtn+5n and let /‘I’dnytn

{Lg"’t7l}se[07T] be a Lévy process satisfying AL
be the probability distribution of L‘j”’t”. Then

1 .
lim — fa)ug, (dz) — f(@)i(de)
040 On Jr\ (0} ’ B\{0}

for bounded and continuous functions vanishing in a neighborhood of 0.

Proof. Notice that ps, 4, is infinitely divisible with Lévy triplet

i ( 2 ) . . )
5 Ot 48, — Ot Vt46n = Vins Vin+6n — Vin
n

By Theorem 8.7 in [20], (49) and (50) together imply that us, ;, converges
weakly to an infinitely divisible distribution p with Lévy triplet (2, &, ;).
In particular, the corresponding characteristic functions converges pointwise:

(}% fi6, 8, (2) = fi(2) (51)

Define i, via its characteristic function fi,(z) as
fin(2) = exp {8, (g 1 () = 1)} = exp {0, fR\{ (e = Dy, (@)}
0

From pp. 38-39 in [20], in particular (8.7) follows that pu,, is infinitely divis-
ible with Lévy triplet (0,6, " ,ugZ’tn, 0). Moreover,

fin(2) = exp {0, (15,1, (2)7 — 1)}
= exp {67:1(6671 log(fisy, tn (7)) _ 1)}
= exp {5, (6, log(ju(2)) + O(62))},

33



where the last equality is due to (51) which, as in the proof of Theorem 8.7
in [20], implies that lims, o log fi5, +(2) = log fi(z) uniformly on any compact
set. Hence, lim, .o fin(2) = [i(2) for every z, implying p, — u weakly.
Theorem 8.7 in [20] now gives

lim 1 f(x)ugzﬂfn (dx) = JR\{O} f(z)in(dz)

for all bounded and continuous functions vanishing in a neighborhood of
0. O]
An important special case of Lemma 9 is the following:

Corollary 3. If the conditions of Lemma 9 hold, and if x > 0 is a continuity
point of y — 14(y, ), then

. 15 .
Mlol’rLgILté Far,, s(x) = 0(x,0).
Proof. Let f(y) = 1(3,0)(y) which is bounded, vanishes in a neighborhood

of 0 but not continuous. For m > 0, let f and J be polygon functions given
by

B 0, y<z—1/m,
fly) =1 my—z+1/m), ye(x—1/m,x),
1, y =
and
0, Yy <@,
fy) =1 my—z+1/m), ye (z,z+1/m),
1, y=z+1/m.

and
.1 — )
lim - (f —i)ugj; i, (dy) < o[z —1/m, 2 + 1/m]
9110 0n Jiy (o) |
which tends to 0 as m — 0. O

Lemma 10. Let f: {(t,0) € [0,T) x (0,T] : t + 6 < T} — R and suppose
there exists a continuous function g : [0,T] — R such that, for all t € [0,T],
limg o st f(5,0) = g(t). Then lims o supyepo 1y | (2, 0) — g(t)| = 0.
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Proof. By assumption, lims o |f(¢,9)—g(t)| = 0 for every t € [0,T"). Suppose
that the convergence is not uniform in ¢. Then there exists € > 0 and a
sequence {(tn,0n)}tn>1 < {(t,0) € [0,T) x (0,T] : t +0 < T} with §, - 0
such that |f(tn,0n) — g(tn)] > € for all n. By the Bolzano Weierstrass
theorem, there exists ¢ € [0, 7] and a subsequence {t,, }x>1 of {t,}n>1 such
that limy ¢, = t. Hence,

e <|f(tny, 0ny) = ()| < [f (bngs On) — 9()] + 19 (tn,) — ()] — 0 as k — oo,

From this contradiction we conclude that the convergence is indeed uniform,
thereby proving the statement. O

Lemma 11. Let {as,, ,} and {ns,, .} satisfy (3). Then
m— m—1
lim HO s, =o', lim ﬂ)u +05,) = (L+1)T.

Proof. We prove the first statement for as,,,. The proof of the second
statement is completely analogous and omitted. Notice that

1—Oé§m 1/0m.k\ Om.k
one = ((1=0ns (5 2)) )

m,

We immediately use this to see that

log [:ﬁ Oé5m,k] = 7:201 Om i log [(1 — ik (1_50[67“))1/67“]

m,k

By (3) and the well-known convergence result
1/6
hm (1 +6ta+ 0(5)) = e,

for any real a and any higher order term o(d), we get

lim sup )(1 — Ok (1_5%“))1/5%]6 - a) = 0.

M=% p<m—1 m,k

Hence we conclude that
hm log[ H ] = T'log(av).

This proves the result for H};’Z)l Q6 1 O
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