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Abstract

We consider multi-period cost-of-capital valuation of a liability cash
flow subject to repeated capital requirements that are partly financed
by capital injections from capital providers with limited liability. Lim-
ited liability means that, in any given period, the capital provider is
not liable for further payment in the event that the capital provided at
the beginning of the period turns out to be insufficient to cover both
the current-period payments and the updated value of the remaining
cash flow. The liability cash flow is modeled as a continuous-time
stochastic process on r0, T s. The multi-period structure is given by a
partition of r0, T s into subintervals, and on the corresponding finite set
of times a discrete-time value process is defined. Our main objective
is the analysis of existence and properties of continuous-time limits
of discrete-time value processes corresponding to a sequence of parti-
tions whose meshes tend to zero. Moreover, we provide explicit and
interpretable valuation formulas for a wide class of cash flow models.

1 Introduction

1.1 Multi-period cost-of-capital valuation

The paper focuses on the multi-period cost-of-capital valuation of a cumu-
lative liability cash flow L “ tLtutPr0,T s subject to repeated capital require-
ments at the beginning of each time period, where the time periods form
a partition of r0, T s. Here T is a time after which no cash flow occurs. In
line with current regulatory frameworks, the time periods may be one-year
periods. However, we will here investigate the effects of varying the number
and lengths of the periods and in particular consider a sequence of partitions
of r0, T s whose meshes tend to 0. That is, we will analyze continuous-time
limits of discrete-time cost-of-capital valuations of the liability cash flow L.
In what follows, all cash flows and financial values are discounted by a given
numéraire, or equivalently, denoted in units of this numéraire. A classical
bank account numéraire, a rolling one-period bond, may be a natural choice.



In order to clarify the economic motivation of the valuation setup, let
T be a positive integer and consider times 0, 1, . . . , T . The multi-period
cost-of-capital valuation of the liability cash flow L “ tLtutPr0,T s is based
on considering a hypothetical transfer of the liability cash flow at time 0
from the company currently liable for this cash flow to another company
whose single purpose is to manage the runoff of the liability cash flow. The
company receiving the liability cash flow has no own funds but receives the
current value of the liability, V0, together with the liability. In order to meet
the externally imposed capital requirements associated with the liability, ac-
cording to the regulatory environment, the receiver of the liability cash flow
requests external capital injections from a capital provider. The mathemat-
ical problem arising is the determination of V0: this value is not a priori
given but rather a value implied by the repeated financing of the capital
requirements by a capital provider demanding compensation for providing
capital injections.

Let Vt denotes the value of the liability cash flow tLsusPpt,T s, i.e. beyond
time t. In particular, VT “ 0. Assume that the amount Vt is available at
time t and that the required capital is VaRt,pp´∆Lt`1 ´ Vt`1q ą Vt, where
∆Lt`1 :“ Lt`1 ´ Lt is the accumulated cash flow during the time period
pt, t ` 1s and VaRt,p is the risk measure Value-at-Risk conditional on the
information available at time t. A capital provider is asked to provide the
difference VaRt,pp´∆Lt`1´Vt`1q´Vt between the required and the available
capital. If this capital is provided, then, in return, the capital provider
receives the amount pVaRt,pp´∆Lt`1´Vt`1q´∆Lt`1´Vt`1q` at time t`1,
where pxq` :“ maxtx, 0u. The rational for the amount pVaRt,pp´∆Lt`1 ´

Vt`1q ´ ∆Lt`1 ´ Vt`1q` is the following. The capital provider is entitled
to any excess capital at time t` 1 above what is needed for the one-period
payment ∆Lt`1 plus Vt`1 that is needed to match the value of the remaining
liability cash flow at time t`1. A capital provider will accept providing the
capital at time t if the expected return is good enough, in the sense that

EtrpVaRt,pp´∆Lt`1 ´ Vt`1q ´∆Lt`1 ´ Vt`1q`s

VaRt,pp´∆Lt`1 ´ Vt`1q ´ Vt
“ 1` ηt, (1)

where Et denotes conditional expectation with respect to the information
at time t, and ηt ě 0 is the excess expected rate of return (above that of
the numéraire asset) at time t on the capital provided until time t` 1. The
value of ηt is determined by a combination of factors such as the degree
of risk-averseness and competition between potential capital providers, be-
sides properties of the liability cash flow L. In what follows, we will simply
consider tηtu

T´1
t“0 to be an exogenously given stochastic process.

Given the liability cash flow tLtutPr0,T s and a discrete-time stochastic

process tηtu
T´1
t“0 , the acceptability condition (1) immediately gives the fol-
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lowing backward recursion for tVtu
T
t“0:

Vt “ VaRt,pp´∆Lt`1 ´ Vt`1q

´
1

1` ηt
EtrpVaRt,pp´∆Lt`1 ´ Vt`1q ´∆Lt`1 ´ Vt`1q`s,

VT “ 0.

Notice that the values tVtu
T
t“0 are not a priori given but rather the solution

to the above recursion given a model for both tLtutPr0,T s and tηtu
T´1
t“0 .

1.2 Related literature

The approach to multi-period cost-of-capital valuation above was studied in
[7] for more general risk measures and acceptability criteria. The choice of
one-year periods corresponds to the current regulatory solvency frameworks
under which both banks and insurance companies operate, and is in line with
accounting practice. However, it is quite reasonable to consider the financing
of liability cash flows subject to repeated capital requirements by capital
injections at a higher frequency. Moreover, by letting the length of the time
periods tend to zero we may derive explicit interpretable continuous-time
valuation formulas whereas solutions to discrete-time backward recursions of
the above type can often only be obtained numerically. It is also interesting
to analyze which features of a liability cash flow vanish and which persist in
the limit process from discrete-time valuation to continuous-time valuation
as the mesh of the partition of time periods tends to zero.

There are similarities with the our objectives here and works, such as
[21], [15] and [13], analyzing continuous-time dynamic risk measures (or
risk-adjusted values) which can be represented as limits of discrete-time risk
measures in multi-period models. However, there are also major differences.
A detailed comparison of our setup with that considered in [15] and [21] is
found in Remark 2. The aim in [13] is different from ours: there the objective
is the construction and analysis of dynamic risk measures expressed in terms
of backward stochastic differential equations (BSDEs) that arise as limits of
iterated spectral risk measures. Notice that a spectral risk measure is a form
of coherent and convex risk measure.

The vast majority of works on dynamic risk measurement consider coher-
ent or convex risk measures, and many of them aim for a representation of
the risk measure in terms of a solution to a BSDE. See [1], [2], [3], [4], [8], [9],
[12], [17], [18], [19], and references therein. The discrete-time value process
tVtu

T
t“0 from the multi-period cost-of-capital framework above share most of

the properties of the multi-period risk adjusted values in [2], precise state-
ments are found in [7]. In particular, the properties called time-consistency
and recursiveness hold. However, the limited liability of the capital provider,
which is an essential economic property, makes the value processes based on
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multi-period cost-of-capital valuation lack the super-additivity property in
general. This fact holds irrespectively of whether VaRt,p is replaced by a co-
herent alternative. Therefore, the general representation results for dynamic
coherent or convex risk measures, or similarly for multi-period risk adjusted
values, are not available in our multi-period cost-of-capital valuation setup.
This fact makes the mathematical analysis here very different from that in
works on dynamic coherent and convex risk measures.

The multi-period cost-of-capital valuation described in the introduction
above is not market-consistent if the liability cash flow tLtutPr0,T s includes
or depends on the values of traded financial instruments. For market-
consistency, a set of replication instruments must be considered and dy-
namic replication of the liability cash flow in these instruments. In this
case, the multi-period cost-of-capital valuation applies to the replication er-
ror which is always present. These issues are highly relevant for obtaining a
conceptually sound valuation framework for liability cash flows of insurance
companies. A valuation framework of this kind is presented in [14]. The
underlying principles of the current regulatory framework Solvency 2 are
similar, although the implementation of these principles into Solvency 2 is
not fully satisfactory and has received criticism, see e.g. [14].

1.3 Outline

Section 2 presents basic results for discrete-time value processes for a given
continuous-time liability cash flow. In this setting, the value process is
defined on a time grid 0 “ τ0 ă ¨ ¨ ¨ ă τm “ T corresponding to an arbitrary
partition τ of r0, T s.

Section 3 presents the main results of this paper on existence and prop-
erties of continuous-time limits of a sequence of discrete-time value processes
for a given continuous-time liability cash flow. The continuous-time limit,
defined in Definition 4, arises by considering an arbitrary sequence tτmu

8
m“1

of partitions whose meshes tend to 0.
Theorem 2 gives mild conditions under which the continuous-time value

of a sum of two cash flows decomposes into a sum of the corresponding two
continuous-time value processes. Moreover, it gives mild conditions under
which the continuous-time value process of a cash flow degenerates into a
process of conditional expectations of the remaining cash flow.

Theorem 3 presents a wide class of Itô processes that satisfy the con-
ditions of Theorem 2 under which the continuous-time value process is a
process of conditional expectations of the remaining cash flow.

Theorem 4 derives the continuous-time limit of discrete-time value pro-
cesses when the underlying liability cash flow is given by an additive process
with a jump component, with Lévy processes and compound Poisson pro-
cesses driven by inhomogeneous Poisson processes as special cases.

All proofs of the main results are found in Section 4. Section 5 contains
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technical lemmas used in the proofs of the main results that may also be of
independent interest.

2 Discrete-time value processes

In this section we will present the mathematical framework for multi-period
cost-of-capital valuation of a continuous-time cumulative liability cash flow.

Fix T ą 0 and consider a filtered probability space pΩ,F ,F,Pq, where
F :“ tFtutPr0,T s satisfies the so-called usual conditions, see e.g. Chapter
1 in [16]. Write L0pFtq (L1pFtq) for the set of Ft-measurable (integrable)
random variables. Write L0pFq (L1pFq) for the set of F-adapted stochastic
processes X with Xt P L

0pFtq (Xt P L
1pFtq) for every t P r0, T s. For t ă u

and Y Fu-measurable we use subscript t to denote conditioning on Ft:

Ft,Y pyq :“ PtpY ď yq :“ PpY ď y | Ftq, EtrY s :“ ErY | Fts.

We consider an arbitrary partition of r0, T s into subintervals and discrete-
time value processes evaluated at the time points corresponding to the given
partition. We will call a set of points τ :“ tτku

m
k“0 with 0 “ τ0 ă ¨ ¨ ¨ ă τm “

T a partition of the time interval r0, T s. For any such partition we denote
by δk :“ τk`1 ´ τk the lengths of the subintervals.

For Y P L0pFτk`δkq, Value-at-Risk of Y at the level 1 ´ αδk P p0, 1q
conditional on Fτk is defined as

VaRτk,1´αδk
pY q :“ F´1

τk,´Y
pαδq.

The discrete-time value of a liability cash flow is defined in terms of a back-
ward recursion of the kind presented in Section 1. The one-step valuation
mapping presented next enables this definition to be formulated with math-
ematical rigor.

Definition 1. For Y P L1pFτk`δkq, αδk P p0, 1q and a nonnegative ητk P
L0pFτkq, the one-step valuation mapping is defined as

W δk
τk
pY q :“ VaRτk,1´αδk

p´Y q ´
1

1` ητk
Eτk

“

pVaRτk,1´αδk
p´Y q ´ Y

˘

`

‰

.

Remark 1. Notice that the backward recursion for the discrete-time value
process tVtu

T
t“0 in Section 1 may be expressed as

Vt “W 1
t pLt`1 ´ Lt ` Vt`1q, VT “ 0,

and corresponds to partitioning r0, T s into subintervals of lengths one.

For economically meaningful applications, 1´ αδk , ητk are both close to
0: ητk is the expected excess rate of return, above that for the numéraire
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asset, for the capital provider on the provided capital ensuring solvency at
time τk, αδk is essentially the probability that the provided solvency capital
at time τk is found sufficient at time τk`1 “ τk ` δk.

An alternative expression for W δk
τk
pY q, see Lemma 2, is

W δk
τk
pY q “

1

1` ητk

!

EτkrY s ´ p1´ αδkqESτk,1´αδk p´Y q

` p1´ αδk ` ητkqVaRτk,1´αδk
p´Y q

)

,

where ESτk,1´αδk denotes Expected Shortfall conditional on Fτk defined as

ESτk,1´αδp´Y q :“
1

1´ αδ

ż 1´αδ

0
VaRτk,pp´Y qdp.

Theorem 1. Consider a partition τ of r0, T s, 0 “ τ0 ă ¨ ¨ ¨ ă τm “ T . For
each k, W δk

τk
is a mapping from L1pFτk`δkq to L1pFτkq satisfying

if λ P L1pFτkq and Y P L1pFτk`1
q, then W δk

τk
pY ` λq “W δk

τk
pY q ` λ,

if Y, rY P L1pFτk`1
q and Y ď rY , then W δk

τk
pY q ďW δk

τk
prY q,

W δk
τk
p0q “ 0.

The proof of Theorem 1 is an immediate consequence of Propositions 1
and 4 in [7] and therefore omitted.

Based on the statement of Theorem 1 we may define the discrete-time
value process tV τ

t pLqutPτ of a continuous-time cumulative liability cash flow
L P L1pFq. By Theorem 1, tV τ

t pLqutPτ P L
1ptFtutPτ q.

Definition 2. Given L P L1pFq and a partition τ of r0, T s, 0 “ τ0 ă ¨ ¨ ¨ ă

τm “ T , the value process tV τ
t pLqutPτ of L with respect to the partition τ and

filtration F is defined in terms of a sequence of one-step valuation mappings
defined in Definition 1 as follows:

V τ
τk
pLq :“W δk

τk
p∆Lτk`1

` V τ
τk`1

pLqq, V τ
T pLq :“ 0, (2)

where ∆Lτk`1
:“ Lτk`1

´ Lτk .

In order to analyze continuous-time limits of sequences of discrete-time
value processes we will need a stability property with respect to small per-
turbations of αδk in the conditional risk measure VaRτk,1´αδk

. Therefore, we
introduce the notion of lower and upper one-step valuation mappings and,
in Definition 3, lower and upper discrete-time value processes.
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For β P p0, 1q and Y P L1pFτk`δkq, the lower and upper one-step valua-
tion mappings are defined as

|W δk,β
τk

pY q :“W δk
τk
pY q

`
1´ αδk ` ητk

1` ητk

`

VaR
τk,1´αδk`δ

1`β
k
p´Y q ´VaRτk,1´αδk

p´Y q
˘

,

xW δk,β
τk

pY q :“W δk
τk
pY q

`
1´ αδk ` ητk

1` ητk

`

VaR
τk,1´αδk´δ

1`β
k
p´Y q ´VaRτk,1´αδk

p´Y q
˘

.

By the same arguments as in the proof of Theorem 1, |W δk,β
τk

and xW δk,β
τk

are
mappings from L1pFτk`δkq to L1pFτkq. In particular, the lower and upper

value process tqV τ,β
t pLqutPτ and tpV τ,β

t pLqutPτ may be defined analogously to
the definition of tV τ

t pLqutPτ .

Definition 3. Given L P L1pFq and a partition τ of r0, T s, 0 “ τ0 ă ¨ ¨ ¨ ă

τm “ T , the lower and upper value process tqV τ,β
t pLqutPτ and tpV τ,β

t pLqutPτ of
L with respect to the partition τ and filtration F are given by

qV τ,β
τk
pLq :“ |W δk,β

τk
p∆Lτk`1

` qV τ,β
τk`1

pLqq, qV τ,β
T pLq :“ 0,

pV τ,β
τk
pLq :“ xW δk,β

τk
p∆Lτk`1

` pV τ,β
τk`1

pLqq, pV τ,β
T pLq :“ 0.

Notice that qV τ,β
t pLq ď V τ

t pLq ď
pV τ,β
t pLq for all t P τ .

The purpose of this paper is to study the behavior of the discrete-time
value processes when varying the partition τ of r0, T s and in particular
the convergence to and properties of continuous-time value processes when
letting the mesh of the partition tend to zero. Serious modeling of the ex-
ogenously given random sequence tητku

m´1
k“0 of cost-of-capital rates requires

modeling of how the risk aversion of the capital provider varies over time
and also mechanisms for competition between capital providers. Moreover,
realistic modeling of the random sequences tητku

m´1
k“0 as the partition τ of

r0, T s is replaced by a sequence of partitions tτmu
8
m“1 is not straightforward.

Those aspects of the valuation are not within the scope of the current pa-
per. Therefore, we will throughout the remainder of this paper make the
simplifying assumption that ητk ” ηδk is nonrandom and depends only on
the length δk of the subinterval rτk, τk`1q and not on τk.

Assumption 1. ητk ” ηδk is nonrandom and depends only on the length δk
of the subinterval rτk, τk`1q.

We will consider sequences tτmu
8
m“1 of partitions of r0, T s, 0 “ τm,0 ă

¨ ¨ ¨ ă τm,m “ T , with limmÑ8meshpτmq “ 0. With δm,k :“ τm,k`1 ´ τm,k
we further assume the existence of sequences tαδm,ku

m´1
k“0 and tηδm,ku

m´1
k“0 ,
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of nonrandom elements αδm,k , ηδm,k P p0, 1q, for m ě 1, such that, for k “
0, . . . ,m´ 1,

lim
mÑ8

sup
kďm´1

ˇ

ˇ

ˇ

1´ αδm,k
δm,k

` logpαq
ˇ

ˇ

ˇ
“ lim

mÑ8
sup

kďm´1

ˇ

ˇ

ˇ

ηδm,k
δm,k

´ logp1` ηq
ˇ

ˇ

ˇ
“ 0

(3)

for some α, η P p0, 1q. For the convergence from discrete to continuous time
to make economic sense, the limits

lim
mÑ8

m´1
ź

k“0

αδm,k , lim
mÑ8

m´1
ź

k“0

p1` ηδm,kq

should exists finitely and be strictly positive. For the first limit, the in-
terpretation is that the probability that the repeated capital injections are
sufficient throughout the time period r0, T s is some number strictly between
zero and one. Similarly, for the second limit the interpretation is that the
capital provider’s aggregate expected return on the repeated capital injec-
tions is finite. It is shown in Lemma 11 that (3) implies

lim
mÑ8

m´1
ź

k“0

αδm,k “ αT , lim
mÑ8

m´1
ź

k“0

p1` ηδm,kq “ p1` ηq
T .

Remark 2. In our setup, as well as in [15] and [21], discrete-time multi-
period risk-adjusted values, given a partition τ “ tτku

m
k“0 of r0, T s, may be

expressed as

Φτ
τk
pXq “ ϕτk,τk`1

pΦτ
τk`1

pXqq, Φτ
T pXq “ XT , (4)

where the mapping ϕτk,τk`1
is a mapping from a subspace of L0pFτk`1

q to a
subspace of L0pFτkq. In our setting,

X “ L, Φτ
τk
pXq “ Lτk ` V

τ
τk
pLq, ϕτk,τk`1

“W δk
τk
,

where δk “ τk`1 ´ τk and

W δk
τk
pY q “ VaRτk,1´αδk

p´Y q ´
1

1` ηδk
Eτk

“

pVaRτk,1´αδk
p´Y q ´ Y

˘

`

‰

“
1

1` ηδk

!

EτkrY s ´ p1´ αδkqESτk,1´αδk p´Y q

` p1´ αδk ` ηδkqVaRτk,1´αδk
p´Y q

)

with 1 ´ αδ „ δ logα and ηδ „ δ logp1 ` ηq as δ Ñ 0. Notice from the
last expression above for W δk

τk
pY q that for very small values ηδk , W δk

τk
pY q ă

EτkrY s. This inequality is a consequence of the limited liability for the capital
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provider. Notice also that for W δk
τk
pY q ą EτkrY s for at least moderately large

values ηδk .
In [15], actuarial valuation rules are extended from discrete to continuous

time. Modified to our setting where financial values are expressed in the
numéraire, the valuation rule most similar to the one considered here is

ϕτk,τk`1
pY q “ EτkrY s ` η

a

δk VaRτk,1´αp´Y ´ Eτkr´Y sq

“ p1´ η
a

δkqEτkrY s ` η
a

δk VaRτk,1´αp´Y q, (5)

where η, α P p0, 1q are fixed constants. Notice that ϕτk,τk`1
pY q ą EτkrY s

if VaRτk,1´αp´Y q ą EτkrY s. Although the expressions for ϕτk,τk`1
may

appear similar, they are fundamentally different. The mapping ϕτk,τk`1
in

[15] is a priori given by an actuarial valuation rule whereas in our case it is
the result of the capital providers’ acceptability condition for financing the
repeated capital requirements, taking the capital providers’ limited liability
into account.

In [21], a negative liability value corresponds to a positive value in our
setting, and vice versa. The mappings ϕτk,τk`1

in [21], modified to our sign
convention, are of the form

ϕτk,τk`1
pY q “ p1´

a

δkqEτkrY s ´ δkFτkp´Y {
a

δkq

and Fτk may be chosen as

FτipY q “ EτirY s ´ ηVaRτi,1´αpY ´ EτirY sq

which gives

ϕτk,τk`1
pY q “ p1´ η

a

δkqEτkrY s ` η
a

δk VaRτk,1´αp´Y q

which coincides with (5).
Notice that in [15] and [21] the quantities EτkrY s and VaRτk,1´αp´Y q

appearing in the mapping ϕτk,τk`1
pY q are scaled appropriately in order to

obtain convergence of discrete-time value processes to continuous-time value
processes, and α and η are constants that do not depend on the partition of
the time interval r0, T s. In our setting, the sequences tαδku and tηδku are
chosen so that, regardless of the partition of r0, T s, there is a reasonable non-
trivial probability of successful financing of the capital requirements through
the entire time period and a reasonable expected excess return to the capital
providers for providing capital. We find that our approach is more natural
from an economic perspective.

3 Continuous-time value processes

This section contains the main results of the paper. We first define the
continuous-time limit of a sequence of discrete-time value processes of a
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given continuous-time liability cash flow, where the sequence of discrete-
time value processes corresponds to a sequence of partitions of r0, T s with
meshes tending to zero.

Definition 4. Given a sequence tτmu
8
m“1 of partitions of r0, T s, 0 “ τm,0 ă

¨ ¨ ¨ ă τm,m “ T , such that limmÑ8meshpτmq “ 0, the stochastic process
tVtpLqutPr0,T s is the continuous-time limit of the sequence of discrete-time
value processes tV τm

t pLqutPτm if

sup
tPτm

ˇ

ˇV τm
t pLq ´ VtpLq

ˇ

ˇÑ 0 a.s. as mÑ8.

Recall from Section 2 that

W
δm,k
τm,k pY q “

1

1` ηδm,k

!

Eτm,krY s ´ p1´ αδm,kqESτm,k,1´αδm,k p´Y q

` p1´ αδm,k ` ηδm,kqVaRτm,k,1´αδm,k
p´Y q

)

and, by (2),

V τ
τm,k

pLq “W
δm,k
τm,k ˝ ¨ ¨ ¨ ˝W

δm,m´1
τm,m´1 pLT ´ Lτm,kq. (6)

Motivated by economic arguments, we have assumed that 1 ´ αδm,k and
ηδm,k are both of order δm,k. For some stochastic processes, precise details
are provided below, the aggregate contribution to the value V τ

τm,k
pLq from

ESτm,i,1´αδm,i and VaRτm,i,1´αδm,i
for i ą k will be asymptotically negligi-

ble as m Ñ 8. In this case, asymptotically as m Ñ 8, (6) collapses into
a composition of conditional expectations which, by the tower property of
conditional expectations, is simply a conditional expectation of the remain-
ing cash flow. Heuristically, cash flow models of e.g. diffusion-process type
give asymptotically negligible risk (VaR and ES) contributions to the lia-
bility value, whereas cash flow models allowing for jumps (with sufficiently
high probability) give nonnegligible risk contributions to the liability value.
Precise statements are found in Theorems 2, 3 and 4 below.

Notice also from the representation of the one-step valuation mapping

W
δm,k
τm,k that a discrete-time value is not additive, V τ

τm,k
pX`Lq ‰ V τ

τm,k
pXq`

V τ
τm,k

pLq, and not even subadditive in general. Theorem 2 below gives suf-
ficient conditions under which the continuous-time limit is additive, i.e.
VtpX ` Lq “ VtpXq ` VtpLq. This property does not hold in general.

The following technical result, Lemma 1, is a key result for proving
convergence of a sequence of discrete-time value process to a continuous-
time limit process. Its main feature is that it enables explicit control of error
terms appearing in the sequence of recursions leading to the continuous-time
limit process. The reason why this result is placed here and not in Section 5
is that it is instructive to highlight the statement of Lemma 1 which provides
the induction step that is key to proving Theorem 2 below.
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We use the notation fpδq P opδq and gpδq P op1q for a functions f, g
satisfying limδÑ0 fpδq{δ “ 0 and limδÑ0 gpδq “ 0.

Lemma 1. Let L “ tLtutPr0,T s and X “ tXtutPr0,T s be processes in L1pFq.
Suppose that there exist constants δ0 P p0, 1{2q, u P p0, 2q, ε P p0, 1q and
C1, C2 ą 0 such that for δ P p0, δ0q and for any y ě δpu´εuq{2 and any
t P r0, T ´ δs

Pt
´

|Xt`δ ´Xt| ą yp1` |Xt|q

¯

ď C1δ
2y´2{u, (7)

Pt
´

|X2
t`δ ´X

2
t | ą yp1` |Xt|q

2
¯

ď C1δ
2y´2{u, (8)

Pt
´

ˇ

ˇEt`δrXT ´Xt`δs ´ EtrXT ´Xts
ˇ

ˇ ą yp1` |Xt|q

¯

ď C1δ
2y´2{u, (9)

ˇ

ˇEtrX2
t`δ ´X

2
t s
ˇ

ˇ ď C2δp1`X
2
t q. (10)

Let τ be a partition of r0, T s, 0 “ τ0 ă ¨ ¨ ¨ ă τm “ T , and let 0 ă ε2 ă ε1 ă ε.
If, for some i P t0, . . . ,m´ 1u, there exists a constant Aτi`1 ě 0 such that

pV τ,ε1

τi`1
pX ` Lq ď Eτi`1rXT ´Xτi`1s `Aτi`1p1`X

2
τi`1
q ` pV τ,ε2

τi`1
pLq, (11)

qV τ,ε1

τi`1
pX ` Lq ě Eτi`1rXT ´Xτi`1s ´Aτi`1p1`X

2
τi`1
q ` qV τ,ε2

τi`1
pLq, (12)

then, for τi`1 ´ τi sufficiently small,

pV τ,ε1

τi pX ` Lq ď EτirXT ´Xτis `Aτip1`X
2
τiq `

pV τ,ε2

τi pLq, (13)

qV τ,ε1

τi pX ` Lq ě EτirXT ´Xτis ´Aτip1`X
2
τiq `

qV τ,ε2

τi pLq, (14)

where, for some constant B ą 0 and fpδq P opδq,

Aτi “ Aτi`1p1`Bpτi`1 ´ τiqq ` fpτi`1 ´ τiq. (15)

The following result, which relies strongly on Lemma 1, gives mild suf-
ficient conditions under which the continuous-time value process V pX ` Lq
of a sum of two cash flows X and L decomposes into a sum V pXq ` V pLq
of the continuous-time value processes of the two cash flows. Moreover, by
considering the special case L “ 0, it gives sufficient conditions under which
the continuous-time value collapses into a conditional expectation of the re-
maining cash flow: VtpXq “ EtrXT ´Xts. Notice that in Theorem 2 below,
we make no assumptions about independence or some form of dependence
between the processes L and X.

Theorem 2. Let L “ tLtutPr0,T s and X “ tXtutPr0,T s be processes in L1pFq.
Suppose that there exist constants δ0 P p0, 1{2q, u P p0, 2q, ε P p0, 1q and
C1, C2 ą 0 such that for δ P p0, δ0q and for any y ě δpu´εuq{2 and any
t P r0, T ´ δs, X satisfies conditions (7)-(10) in Lemma 1. Suppose that,

11



for some β2 P p0, εq, and any sequence tτmu
8
m“1 of partitions of r0, T s, 0 “

τm,0 ă ¨ ¨ ¨ ă τm,m “ T with limmÑ8meshpτmq “ 0,

sup
tPτm

ˇ

ˇV τm
t pLq ´ VtpLq

ˇ

ˇÑ 0 a.s. as mÑ8,

sup
tPτm

ˇ

ˇ pV τm,β2
t pLq ´ qV τm,β2

t pLq
ˇ

ˇÑ 0 a.s. as mÑ8.

If further suptPr0,T sX
2
t ă 8, then for any β1 P pβ2, εq and any sequence

tτmu
8
m“1 of partitions of r0, T s, 0 “ τm,0 ă ¨ ¨ ¨ ă τm,m “ T , such that

limmÑ8meshpτmq “ 0,

sup
tPτm

ˇ

ˇV τm
t pX ` Lq ´ EtrXT ´Xts ´ VtpLq

ˇ

ˇÑ 0 a.s. as mÑ8,

sup
tPτm

ˇ

ˇ pV τm,β1
t pX ` Lq ´ qV τm,β1

t pX ` Lq
ˇ

ˇÑ 0 a.s. as mÑ8.

Notice the following consequence of repeated application of Theorem 2.

Corollary 1. Let L “ tLtutPr0,T s and Xpkq “ tX
pkq
t utPr0,T s, k “ 1, . . . , n, be

processes in L1pFq such that the requirements of Theorem 2 hold for each
pair pL,Xpkqq, k “ 1, . . . , n. Then, as mÑ8,

sup
tPτm

ˇ

ˇ

ˇ
V τm
t

´
n
ÿ

k“1

Xpkq ` L
¯

´

n
ÿ

k“1

Et
“

X
pkq
T ´X

pkq
t

‰

´ VtpLq
ˇ

ˇ

ˇ
Ñ 0 a.s.

Next we present an example of a wide class of stochastic processes X
which satisfies conditions (7)-(10) in Lemma 1 and Theorem 2. These pro-
cesses are strong solutions to stochastic differential equations driven by
Brownian motion, see (18) below.

Let µ, σ : r0,8q ˆ RÑ R be jointly measurable and satisfy the uniform
Lipschitz type growth conditions

µpt, xq2 ` σpt, xq2 ă K1p1` x
2q (16)

|µpt, xq ´ µpt, yq| ` |σpt, xq ´ σpt, yq| ă K1|x´ y|, (17)

for some constant K1 ą 0. Let B be an R-valued F-adapted Brownian
motion and consider the stochastic differential equation

dXt “ µpt,Xtqdt` σpt,XtqdBt, X0 “ x0. (18)

Conditions (16) and (17) ensure that (18) has a unique strong solution which
is a strong Markov process (see Theorem E7 in [5], Appendix E). Moreover,
(16) and (17) together imply that the solution X to (18) is in L1pFq.

The following result gives sufficient conditions on the process tXtutPr0,T s,
which is the strong solution to (18), under which tXtutPr0,T s satisfies the
conditions in Theorem 2.

12



Theorem 3. Let tXtutPr0,T s be the strong solution to (18) with µ and σ
satisfying (16) and (17) and set upt, xq :“ ErXT ´ Xt | Xt “ xs. If there
exists K2 ą 0 such that u satisfies either

|upt, xq ´ ups, yq| ă K2p|t´ s|p1` |x|q ` |x´ y|q (19)

for all pt, xq, ps, yq P r0, T s ˆ R, or

ˇ

ˇ

ˇ

B

Bx
upx, tq

ˇ

ˇ

ˇ
ă K2 (20)

for all pt, xq P r0, T s ˆ R, then tXtutPr0,T s satisfies (7)-(10) for u “ 1{2 and
any ε P p0, 1q.

Below we give an example of a fairly general class of Itô processes for
which both (19) and (20) hold.

Example 1. Consider a process X given by the SDE

dXt “
`

aptq ` bptqXt

˘

dt` σpt,XtqdBt, X0 “ x0. (21)

The functions a and b are assumed to be continuous and σ is assumed to
satisfy the usual Lipschitz and linear growth conditions, ensuring existence
of a strong solution. Then, rupt, xq :“ upt, xq ´ x “ ErXT | Xt “ xs is given
by the Feynman-Kac equation

Bru

Bt
` paptq ` bptqxq

Bru

Bx
`
σ2pt, xq

2

B2
ru

Bx2
“ 0,

which has the easily verifiable solution rupt, xq “ Aptq `Bptqx, where

Bptq “ exp
!

´

ż T

t
bpsqds

)

, Aptq “

ż T

t
apsqBpsqds.

As this yields upt, xq “ Aptq` pBptq´1qx, with A,B being Lipschitz contin-
uous functions on r0, T s, it is easily seen that u satisfies (20). Furthermore,
u also satisfies (19):

|upt, xq ´ ups, yq| ď |Aptq ´Apsq| ` |Bpsq||x´ y| ` |Bptq ´Bpsq||x|

ď KA,Bp|s´ t|p1` |x|q ` |x´ y|q,

where KA,B is a Lipschitz constant for both A and B.

Due to the independent increment property, additive processes (see Chap-
ter 2 in [20]) provide examples of stochastic processes tLtutPr0,T s for which
the sequence discrete-time value processes converges to an explicit continuous-
time limit tVtpLqutPr0,T s, where VtpLq is not equal to EtrLT ´ Lts.
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Theorem 4. Let tLtutPr0,T s be an R-valued additive process in L0pFq with
system of generating triplets tpσ2

t , νt, γtqutPr0,T s. For each t P r0, T s, let 9σ2
t

and 9γt be constants and let 9νt be a measure on Rzt0u whose restrictions to
sets bounded away from 0 are finite.

Consider the following statements:

(i) For each t P r0, T s,

1

δ

`

σ2
s`δ ´ σ

2
s , νs`δ ´ νs, γs`δ ´ γs

˘

Ñ
`

9σ2
t , 9νt, 9γt

˘

as δ Ó 0, sÑ t

(22)

where the convergence in the second component means that

lim
δÓ0,sÑt

1

δ

ż

Rzt0u
fpxqpνs`δ ´ νsqpdxq “

ż

Rzt0u
fpxq 9νtpdxq

for all bounded and continuous functions vanishing in a neighborhood
of 0.

(ii) For each t P r0, T q,

lim
εÓ0

lim sup
δÓ0,sÑt

ż

r´ε,εs
x2 1

δ
pνs`δ ´ νsqpdxq “ 0. (23)

(iii) r0, T s ˆ p0,8q Q pt, xq ÞÑ 9νtpx,8q P p0,8q is continuous and x ÞÑ
9νtpx,8q is strictly decreasing on p0,8q.

(iv) For some q P p0,8q and for each t P r0, T s, there exists qt P pq,8q
solving 9νtpqt,8q “ ´ logα.

(v) supδPp0,T s suptPr0,T´δs δ
´1Erp∆Lt`δq2s ă 8.

Let tτmu
8
m“1 be a sequence of partitions of r0, T s, 0 “ τm,0 ă ¨ ¨ ¨ ă τm,m “

T , such that limmÑ8meshpτmq “ 0. Let tV τm
t pLqutPτm be given by (2) for

τ “ τm, with sequences tαδm,ku and tηδm,ku satisfying (3). If (i)-(v) hold,
then L P L1pFq and

sup
tPτm

ˇ

ˇ

ˇ
V τm
t pLq ´ ErLT ´ Lts ´

ż T

t
KLpsqds

ˇ

ˇ

ˇ
Ñ 0 a.s. as mÑ8, (24)

where KLptq is given by

KLptq “ logp1` ηqqt ´

ż 8

qt

9νtpx,8qdx. (25)

Moreover, for β P p0,8q,

sup
tPτm

ˇ

ˇ pV τm,β
t pLq ´ qV τm,β

t pLq
ˇ

ˇÑ 0 a.s. as mÑ8.
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For the special case of Lévy processes or processes obtained by deter-
ministic time-changes of Lévy processes, Theorem 4 simplifies considerably.
Notice that a Lévy process is an additive process with system of generating
triplets tpσ2

t , νt, γtqu “ tptσ
2, tν, tγqu.

Corollary 2. Let trLtutPr0,8q be an R-valued Lévy process with generating
triplet tpσ2, ν, γqu and with respect to a filtration G “ tGtutPr0,8q. Consider
the following statements:

(i)
ş

R x
2νpdxq ă 8 and limεÓ0

ş

r´ε,εs x
2νpdxq “ 0.

(ii) x ÞÑ νpx,8q is continuous and strictly decreasing on p0,8q.

Let λ : r0, T s Ñ p0,8q be continuous, let µ : r0, T s Ñ p0,8q be given by

µptq “
şT
0 λpsqds and let tLtutPr0,T s be given by Lt “ rLµptq. Now consider

tLtutPr0,T s with respect to the filtration F :“ tGµptqutPr0,T s. Let tτmu
8
m“1 be

a sequence of partitions of r0, T s, 0 “ τm,0 ă ¨ ¨ ¨ ă τm,m “ T , such that
limmÑ8meshpτmq “ 0. Let tV τm

t pLqutPτm be given by (2) for τ “ τm, with
sequences tαδm,ku and tηδm,ku satisfying (3). If (i)-(ii) hold and, for some
q P p0,8q and for each t P r0, T q, there exists qt ą q solving λptqνpqt,8q “
´ logα, then (24) holds, where

KLptq “ logp1` ηqqt ´ λptq

ż 8

qt

νpx,8qdx. (26)

Example 2. A compound Poisson process driven by a Poisson process N
with mean-value function t ÞÑ µptq is an additive process with representa-
tion Lt “

řNt
k“1 Zk, where N is independent of the iid sequence tZku. The

Lévy measure of Lt is µptqPZ , where PZ is the common distribution of the
variables Zk. In the setting of Corollary 2, rL is a compound Poisson process
driven by a homogeneous Poisson process rN with unit intensity and repre-

sentation rLt “
ř

rNt
k“1 Zk. If further 1 ` plogαq{λptq ą 0 for all t P r0, T q,

then (24) holds, where

KLptq “ logp1` ηqqt ´ λptq

ż 8

qt

FZpxqdx, qt “ F´1
Z p1` plogαq{λptqq,

where FZpzq “ PZp´8, zs and FZ “ 1´ FZ .
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4 Proofs

Proof of Lemma 1. To ease notation, let t :“ τi, δ :“ δi “ τi`1 ´ τi, A :“
Aτi`1 and Ut :“ EtrXT ´Xts. By Lemma 2,

pV τ,ε1

t pX ` Lq ´ EtrXT ´Xts

“ xW δ,ε1

t p∆pX ` Lqt`δ ` pV τ,ε1

t`δ pX ` Lq ´ Utq

“
1

1` ηδ

´

Etr∆pX ` Lqt`δ ` pV τ,ε1

t`δ pX ` Lq ´ Uts (27)

´ p1´ αδqESt,1´αδ
`

´ p∆pX ` Lqt`δ ` pV τ,ε1

t`δ pX ` Lq ´ Utq
˘

(28)

` p1´ αδ ` ηδqVaRt,1´αδ´δ1`ε1

`

´ p∆pX ` Lqt`δ ` pV τ,ε1

t`δ pX ` Lq ´ Utq
˘

¯

(29)

If we replace p̈ by q̈, the term (29) is replaced by

p1´ αδ ` ηδqVaRt,1´αδ`δ1`ε1

`

´ p∆pX ` Lqt`δ ` pV τ,ε1

t`δ pX ` Lq ´ Utq
˘

.

(30)

We now bound (27)-(30) individually. We will use the bounds (11) and (12)
repeatedly throughout the arguments.

The term (27): An upper bound for (27) is constructed as follows:

Etr∆pXt`δ ` Lt`δq ` pV τ,ε1

t`δ pX ` Lq ´ Uts

ď Etr∆Lt`δ ` pV τ,ε2

t`δ pLqs ` Etr∆Xt`δ ` Ut`δ ´ Ut `Ap1`X
2
t`δqs

“ Etr∆Lt`δ ` pV τ,ε2

t`δ pLqs `Ap1`X
2
t ` Etr∆X2

t`δsq

ď Etr∆Lt`δ ` pV τ,ε2

t`δ pLqs `Ap1`X
2
t ` C2δp1`X

2
t qq

“ Etr∆Lt`δ ` pV τ,ε2

t`δ pLqs `Ap1` C2δqp1`X
2
t q,

where (11) was used for the first inequality, the tower property of condi-
tional expectations was used for the equality, (10) was used for the second
inequality and Lemma 7 was used for the third inequality. Similarly, a lower
bound for (27) if we replace p̈with q̈ is

Etr∆Lt`δ ` qV τ,ε2

t`δ pLqs ´Ap1` C2δqp1`X
2
t q.

The term (28): We first construct an upper bound for (28). Using (11)
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and monotonicity and subadditivity of expected shortfall,

ESt,1´αδp´∆pXt`δ ` Lt`δq ´ pV τ,ε1

t`δ pX ` Lq ` Utq

ď ESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLq ´∆Xt`δ ´ Ut`δ ` Ut ´Ap1`X
2
t`δqq

ď ESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLqq

` ESt,1´αδp´∆Xt`δ ´ Ut`δ ` Ut ´Ap1`X
2
t`δqq

ď ESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLqq ` ESt,1´αδp´∆Xt`δq

` ESt,1´αδp´Ut`δ ` Utq ` ESt,1´αδp´Ap1`X
2
t`δqq

ď ESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLqq ` ESt,1´αδp´|∆Xt`δ|q

` ESt,1´αδp´|Ut`δ ´ Ut|q ` ESt,1´αδp´Ap1`X
2
t`δqq

Notice that

ESt,1´αδp´X
2
t`δq “ ESt,1´αδp´∆X2

t`δ ´X
2
t q ď X2

t ` ESt,1´αδp´|∆X
2
t`δ|q.

Applying Lemma 3 gives, for some function gpδq P op1q as δ Ñ 0,

ESt,1´αδp´∆pXt`δ ` Lt`δq ´ pV τ,ε1

t`δ pX ` Lq ` Utq

ď ESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLqq

` 2gpδqp1`X2
t q `Ap1` gpδqqp1`X

2
t q.

We now construct a lower bound for (28), replacing p̈with q̈. Using (12) and
monotonicity and subadditivity of expected shortfall,

ESt,1´αδp´∆pXt`δ ` Lt`δq ´ qV τ,ε1

t`δ pX ` Lq ` Utq

ě ESt,1´αδp´∆Lt`δ ´ qV τ,ε2

t`δ pLq ´∆Xt`δ ´ Ut`δ ` Ut `Ap1`X
2
t`δqq

ě ESt,1´αδp´∆Lt`δ ´ qV τ,ε2

t`δ pLqq

´ ESt,1´αδp∆Xt`δ ` Ut`δ ´ Ut ´Ap1`X
2
t`δqq

An upper bound for ESt,1´αδp∆Xt`δ `Ut`δ ´Ut´Ap1`X
2
t`δqq, derived as

above, gives the lower bound for (28):

ESt,1´αδp´∆pXt`δ ` Lt`δq ´ qV τ,ε1

t`δ pX ` Lq ` Utq

ě ESt,1´αδp´∆Lt`δ ´ qV τ,ε2

t`δ pLqq

´ 2gpδqp2`X2
t q ´Ap1` gpδqqp1`X

2
t q.

Notice that limδÑ0 δ
´1p1´ αδq “ ´ logα. Therefore, there exist a function
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fpδq P opδq such that for all δ ą 0 sufficiently small

p1´ αδqESt,1´αδp´∆pXt`δ ` Lt`δq ´ pV τ,ε1

t`δ pX ` Lq ` Utq

ď p1´ αδqESt,1´αδp´∆Lt`δ ´ pV τ,ε2

t`δ pLqq

` pp1´ logαqδA` fpδqqp1`X2
t q,

p1´ αδqESt,1´αδp´∆pXt`δ ` Lt`δq ´ qV τ,ε1

t`δ pX ` Lq ` Utq

ě p1´ αδqESt,1´αδp´∆Lt`δ ´ qV τ,ε2

t`δ pLqq

´ pp1´ logαqδA` fpδqqp1`X2
t q.

The term (29): Now we construct an upper and a lower bound for (29).
Using (11) and monotonicity of value at risk,

VaRt,1´αδ´δ1`ε1 p´∆pXt`δ ` Lt`δq ´ pV τ,ε1

t`δ pX ` Lq ` Utq

ď VaRt,1´αδ´δ1`ε1 p´∆Lt`δ ´ pV τ,ε2

t`δ pLq ´ |Ut`δ ´ Ut| ´Ap1`X
2
t`δq ´ |∆Xt`δ|q

ď VaRt,1´αδ´δ1`ε1 p´∆Lt`δ ´ pV τ,ε2

t`δ pLq ´ |∆Xt`δ| ´ |Ut`δ ´ Ut| ´A|∆X
2
t`δ|q

`Ap1`X2
t q.

Similarly

VaRt,1´αδ`δ1`ε1 p´∆pXt`δ ` Lt`δq ´ V
τ
t`δpX ` Lq ` Utq

ě VaRt,1´αδ`δ1`ε1 p´∆Lt`δ ´ qV τ,ε2

t`δ pLq ` |∆Xt`δ| ` |Ut`δ ´ Ut| `A|∆X
2
t`δ|q

´Ap1`X2
t q.

Applying Lemma 4, for δ sufficiently small, yields the upper bound

VaRt,1´αδ´δ1`ε1 p´∆Lt`δ ´ pV τ,ε2

t`δ pLq ´ |∆Xt`δ| ´ |Ut`δ ´ Ut| ´A|∆X
2
t`δ|q

ď VaRt,1´αδ´δ1`ε2 p´∆Lt`δ ´ pV τ,ε2

t`δ pLqq ` 5δpu´εuq{2p1`Aqp1`X2
t q.

Similarly,

VaRt,1´αδ`δ1`ε1 p´∆Lt`δ ´ qV τ,ε2

t`δ pLq ` |∆Xt`δ| ` |Ut`δ ´ Ut| `A|∆X
2
t`δ|q

ě VaRt,1´αδ`δ1`ε2 p´∆Lt`δ ´ qV τ,ε2

t`δ pLqq ´ 5δpu´εuq{2p1`Aqp1`X2
t q.

Notice that limδÑ0 δ
´1p1 ´ αδ ` ηδq “ logp1 ` ηq ´ logpαq and therefore,

there exist a function fpδq P opδq such that for all δ ą 0 sufficiently small

p1´ αδ ` ηδqVaRt,1´αδ´δ1`ε1 p´∆pXt`δ ` Lt`δq ´ V
τ
t`δpX ` Lq ´ Utq

ď p1´ αδ ` ηδqVaRt,1´αδ´δ1`ε2 p´∆Lt`δ ´ pV τ,ε2

t`δ pLqq

`Ap1` logp1` ηq ´ logαqδp1`X2
t q ` fpδqp1`X

2
t q,

p1´ αδ ` ηδqVaRt,1´αδ`δ1`ε1 p´∆pXt`δ ` Lt`δq ´ V
τ
t`δpX ` Lq ´ Utq

ě p1´ αδ ` ηδqVaRt,1´αδ`δ1`ε2 p´∆Lt`δ ´ qV τ,ε2

t`δ pLqq

´Ap1` logp1` ηq ´ logαqδp1`X2
t q ´ fpδqp1`X

2
t q.
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Summing up, there exist a function fpδq P opδq such that for any sufficiently
small δ ą 0, defining B :“ C2 ` log η ` 2´ 2 logα,

pV τ,ε1

t pX ` Lq ď EtrXT ´Xts `xW δ,ε2

t p∆Lt`δ ` pV τ,ε2

t`δ pLqq

`Ap1` pC2 ` log η ` 2´ 2 logαqδq ` fpδq,

“ EtrXT ´Xts ` pV τ,ε2

t pLq `Ap1`Bδq ` fpδq,

V τ
t pX ` Lq ě EtrXT ´Xts `|W δ,ε2

t p∆Lt`δ ` qV τ,ε2

t`δ pLqq

´Ap1` pC2 ` log η ` 2´ 2 logαqδq ` fpδq

“ EtrXT ´Xts ` qV τ,ε2

t pLq ´Ap1`Bδq ` fpδq.

The proof is complete.

Proof of Theorem 2. Consider any sequence of partitions tτmu
8
m“1. Take m

sufficiently large so that meshpτmq is small enough for the statements of
Theorem 1 to hold for each t P τm, with respect to the triple β2 ă β1 ă ε
and a function fpδq P opδq. We show via backward induction that

pV τm,β1
τm,i pX ` Lq ď Eτm,irXT ´Xτis `Aτm,ip1`X

2
τm,iq `

pV τm,β2
τm,i pLq, (31)

qV τm,β1
τi pX ` Lq ě Eτm,irXT ´Xτis ´Aτm,ip1`X

2
τm,iq `

qV τm,β2
τm,i pLq. (32)

However, since the induction base i “ m is trivial and the induction step
follows immediately from Lemma 1, (31) and (32) immediately follows. Now
we note, by Lemma 5, that there exists hpδq P op1q such that for each m
large enough and k “ 0, ...,m, Aτm,k ď hpmeshpτmqq. Hence

sup
tPτm

ˇ

ˇV τm
t pX ` Lq ´ EtrXT ´Xts ´ VtpLq

ˇ

ˇ

ď sup
tPτm

max
´

ˇ

ˇpV τm,β1
t pX ` Lq ´ EtrXT ´Xts ´ VtpLq

ˇ

ˇ,

ˇ

ˇ qV τm,β1
t pX ` Lq ´ EtrXT ´Xts ´ VtpLq

ˇ

ˇ

¯

ď sup
tPτm

max
´

ˇ

ˇpV τm,β2
t pLq ´ VtpLq

ˇ

ˇ,
ˇ

ˇ qV τm,β2
t pLq ´ VtpLq

ˇ

ˇ

¯

` sup
kPt0,...,mu

Aτm,kp1`X
2
τm,k

q

ď sup
tPτm

max
´

ˇ

ˇpV τm,β2
t pLq ´ VtpLq

ˇ

ˇ,
ˇ

ˇ qV τm,β2
t pLq ´ VtpLq

ˇ

ˇ

¯

` hpmeshpτmqq
´

1` sup
tPr0,T s

X2
t

¯

.

Similarly,

sup
tPτm

ˇ

ˇ pV τm,β1
t pX ` Lq ´ qV τm,β1

t pX ` Lq
ˇ

ˇ

ď sup
tPτm

ˇ

ˇ pV τm,β2
t pLq ´ qV τm,β2

t pLq
ˇ

ˇ` 2hpmeshpτmqq
´

1` sup
tPr0,T s

X2
t

¯
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Now, if suptPr0,T sX
2
t ă 8 almost surely, then

sup
tPτm

max
´

ˇ

ˇpV τm,β2
t pLq ´ VtpLq

ˇ

ˇ,
ˇ

ˇ qV τm,β2
t pLq ´ VtpLq

ˇ

ˇ

¯

` hpmeshpτmqq
´

1` sup
tPr0,T s

X2
t

¯

Ñ 0 a.s. as mÑ8

and

sup
tPτm

ˇ

ˇ pV τm,β2
t pLq ´ qV τm,β2

t pLq
ˇ

ˇ` 2hpmeshpτmqq
´

1` sup
tPr0,T s

X2
t

¯

Ñ 0 a.s. as mÑ8.

This completes the proof.

Proof of Theorem 3. Consider any ε P p0, 1q. By Lemma 6, for all y ě
δp1´εq{4 and t P r0, T ´ δs, for δ ą 0 sufficiently small,

Pt
´

sup
sPrt,t`δs

|Xs ´Xt| ą yp1` |Xt|q

¯

ď C1 exp
!

´
y2

C2δ

)

,

Pt
´

sup
sPrt,t`δs

|X2
s ´X

2
t | ą yp1` |Xt|q

2
¯

ď C1 exp
!

´
y2

C2δ

)

.

Notice that

C1 exp
!

´
y2

C2δ

)

ď
C1

1` y2

C2δ
`

y4

2C2δ2

ď 2C1C2δ
2y´4, (33)

from which it is clear that we may bound C1 expt´y2{pC2δqu from above
by Cδ2y´2{u for all y ě δup1´εq{2 for u “ 1{2 and C “ 2C1C2. We have
therefore verified that conditions (7) and (8) in Lemma 1 hold.

Suppose first that the function u satisfies (19). Then

Pt
´

sup
sPrt,t`δs

|ups,Xsq ´ upt,Xtq| ą yp1` |Xt|q

¯

ď Pt
´

sup
sPrt,t`δs

K2pδp1` |Xt|q ` |Xs ´Xt|q ą yp1` |Xt|q

¯

“ Pt
´

sup
sPrt,t`δs

|Xs ´Xt| ą py{K2 ´ δqp1` |Xt|q

¯

.

For any β P p0, εq, δp1´εq{4{K2 ´ δ ą δp1´βq{4 for δ sufficiently small. Hence,
by Lemma 6 and (33), condition (9) holds for y ě δp1´βq{4. Since ε P p0, 1q
was arbitrarily, we have verified that (9) in Lemma 1 holds for y ě δp1´εq{4.

Now suppose instead that the function u satisfies (20). Then the veri-
fication of (9) in Lemma 1 follows immediately from combining Lemma 8
and (33).

Finally, the verification of condition (10) in Lemma 1 follows immediately
from Lemma 7.
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Proof of Theorem 4. First notice that, by pvq, Er|Lt|s ď ErL2
t s

1{2 ă 8 and
therefore L P L2pFq Ă L1pFq. Write ∆Lt`δ :“ Lt`δ ´ Lt and notice that
∆Lt`δ is infinitely divisible with Lévy measure νt`δ ´ νt. We first show the
statement

lim
δÓ0,sÑt

ˇ

ˇF´1
∆Ls`δ

pαδq ´ qt
ˇ

ˇ “ 0. (34)

Write F∆Ls`δpxq :“ 1´ F∆Ls`δpxq and notice that

F´1
∆Ls`δ

pαδq “ mintx : F∆Ls`δpxq ě αδu

“ min
!

x : exp
!1

δ
log

`

1´ F∆Ls`δpxq
˘

)

ě α
1{δ
δ

)

“ min
!

x :
1

δ
log

`

1´ F∆Ls`δpxq
˘

ě
1

δ
logp1´ p1´ αδqq

)

.

Notice that´y´y2 ď logp1´yq ď ´y for y P r0, 1q and recall that limδÑ0p1´
αδq{δ “ ´ logα. By Lemma 9, Corollary 3 and the continuity of x ÞÑ
9νtpx,8q for x ą 0,

lim
δÓ0,sÑt

1

δ
F∆Ls`δpxq “ 9νtpx,8q for every x ą 0. (35)

Moreover, by combining the assumptions piiiq and pivq, there exists a unique
qt ą 0 such that 9νtpqt,8q “ ´ logα. Statement (34) now follows.

We next show the statement

lim
δÓ0,sÑt

ˇ

ˇ

ˇ

1

δ

´

W δ
s p∆Ls`δq ´

Er∆Ls`δs
1` ηδ

¯

´KLptq
ˇ

ˇ

ˇ
“ 0, (36)

where KLptq is given in (25). Notice that due to the independent increments
of additive processes, W δ

s p∆Ls`δq is independent of Fs and

1

δ
W δ
s p∆Ls`δq “

1

δ
F´1

∆Ls`δ
pαδq ´

1

p1` ηδqδ
E
“`

F´1
∆Ls`δ

pαδq ´∆Ls`δ
˘

`

‰

“
p1´ F∆Ls`δpF

´1
∆Ls`δ

pαδqq ` ηδqF
´1
∆Ls`δ

pαδq

p1` ηδqδ

`
E
“

∆Ls`δIt∆Ls`δ ď F´1
∆Ls`δ

pαδqu
‰

p1` ηδqδ
.

Notice that

1

δ
E
“

∆Ls`δIt∆Ls`δ ď F´1
∆Ls`δ

pαδqu
‰

“
1

δ
Er∆Ls`δs ´

1

δ
E
“

∆Ls`δIt∆Ls`δ ą F´1
∆Ls`δ

pαδqu
‰

“
1

δ
Er∆Ls`δs ´

F´1
∆Ls`δ

pαδq

δ
p1´ F∆Ls`δpF

´1
∆Ls`δ

pαδqq

´
1

δ

ż 8

F´1
∆Ls`δ

pαδq
Pp∆Ls`δ ą xqdx.
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Hence,

1

δ

´

W δ
s p∆Ls`δq ´

Er∆Ls`δs
1` ηδ

¯

“
ηδF

´1
∆Ls`δ

pαδq

p1` ηδqδ

´
1

p1` ηδqδ

ż 8

F´1
∆Ls`δ

pαδq
Pp∆Ls`δ ą xqdx.

Combining (3) and (34) establishes the appropriate convergence to logp1`
ηqqt of the first terms on the right-hand side as δ Ñ 0. We now address the
second term. First notice that, by (34), there exists c P p0,8q such that

lim sup
δÓ0,sÑt

ˇ

ˇ

ˇ

ż 8

F´1
∆Ls`δ

pαδq

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx´

ż 8

qt

9νtpx,8qdx
ˇ

ˇ

ˇ

ď lim sup
δÓ0,sÑt

c
ˇ

ˇ

ˇ
F´1

∆Ls`δ
pαδq ´ qt

ˇ

ˇ

ˇ

` lim sup
δÓ0,sÑt

ˇ

ˇ

ˇ

ż 8

qt

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx´

ż 8

qt

9νtpx,8qdx
ˇ

ˇ

ˇ

“ lim sup
δÓ0,sÑt

ˇ

ˇ

ˇ

ż 8

qt

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx´

ż 8

qt

9νtpx,8qdx
ˇ

ˇ

ˇ
. (37)

We will show that (37) “ 0. By continuity of x ÞÑ 9νtpx,8q for x ą 0 and
the fact that all functions in (35) are monotone, the pointwise convergence
in (35) is in fact uniform on any interval ra, bs, 0 ă a ă b ă 8. Hence, for
any b P pqt,8q,

lim sup
δÓ0,sÑt

ˇ

ˇ

ˇ

ż b

qt

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx´

ż b

qt

9νtpx,8qdx
ˇ

ˇ

ˇ
“ 0

from which follows that

(37) ď lim sup
δÓ0,sÑt

ż 8

b

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx`

ż 8

b
9νtpx,8qdx.

Next we show that the above upper bound on (37) can be chosen arbitrary
small by choosing b sufficiently large. By Markov’s inequality follows that

1

δ
Pp∆Ls`δ ą xq ď

1

δ
Ppp∆Ls`δq2 ą x2q ď

Erp∆Ls`δq2s
δx2

and further that
ż 8

b

1

δ
Pp∆Ls`δ ą xqdx ď

1

δb
Erp∆Ls`δq2s.

In particular, the assumed property pvq gives

lim
bÑ8

lim sup
δÓ0,sÑt

ż 8

b

1

p1` ηδqδ
Pp∆Lt`δ ą xqdx “ 0.
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By Fatou’s lemma, assumption pvq and (35), for any b P p0,8q,
ż 8

b
9νtpx,8qdx ď lim inf

δÓ0,sÑt

ż 8

b

1

δ
Pp∆Ls`δ ą xqdx

ď lim sup
δÓ0,sÑt

ż 8

b

1

δ
Pp∆Ls`δ ą xqdx ă 8.

In particular,

lim
bÑ8

lim sup
δÓ0

ż 8

b
9νtpx,8qdx “ 0.

Summing up, we have shown that (37) “ 0 from which it follows that

lim
δÓ0,sÑt

ż 8

F´1
∆Ls`δ

pαδq

1

p1` ηδqδ
Pp∆Ls`δ ą xqdx “

ż 8

qt

9νtpx,8qdx

and further that (36) holds. By combining the assumptions piiiq and pivq,
there exists a unique qt ą 0 such that 9νtpqt,8q “ ´ logα. Moreover, by
joint continuity of pt, xq ÞÑ 9νtpx,8q, t ÞÑ qt is continuous. Since also t ÞÑ qt
is uniformly bounded away from 0, t ÞÑ KLptq is continuous on r0, T s. Thus
(36) and Lemma 10 together imply

lim
δÓ0

sup
tPr0,T´δs

ˇ

ˇ

ˇ

1

δ

´

W δ
t p∆Lt`δq ´

Er∆Lt`δs
1` ηδ

¯

´KLptq
ˇ

ˇ

ˇ
“ 0. (38)

It remains to prove the convergence in (24). For any k P t0, ...,m´ 1u,

ˇ

ˇ

ˇ
V τm
τm,k

pLq ´ ErLT ´ Lτm,ks ´
ż T

τm,k

KLpsqds
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

m´1
ÿ

i“k

ηδm,i
1` ηδm,i

Er∆Lτm,i`δm,is
ˇ

ˇ

ˇ
(39)

`

ˇ

ˇ

ˇ
W

δm,k
τm,k ˝ ¨ ¨ ¨ ˝W

δm,m´1
τm,m´1

´
m´1
ÿ

i“k

∆Lτm,i`δm,i

¯

´

m´1
ÿ

i“k

Er∆Lτm,i`δm,is
1` ηδm,i

´

m´1
ÿ

i“k

KLpτm,iqδm,i

ˇ

ˇ

ˇ
(40)

`

ˇ

ˇ

ˇ

m´1
ÿ

i“k

KLpτm,iqδm,i ´

ż T

τm,k

KLpsqds
ˇ

ˇ

ˇ
. (41)

The term (41) converges to 0 as mÑ8 from the definition of the Riemann
integral. Moreover, as mÑ8,

(39) ď sup
iďm´1

ˇ

ˇEr∆Lτm,i`δm,is
ˇ

ˇ

m´1
ÿ

i“k

ηδm,i
1` ηδm,i

Ñ 0,
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since the sum is uniformly bounded in m and, by Hölder’s inequality and
assumption pvq,

lim sup
mÑ8

sup
iďm´1

ˇ

ˇEr∆Lτm,i`δm,is
ˇ

ˇ

ď lim sup
mÑ8

sup
iďm´1

Er
ˇ

ˇ∆Lτm,i`δm,i
ˇ

ˇs

ď lim sup
mÑ8

sup
iďm´1

Erp∆Lτm,i`δm,iq
2s1{2

“ lim sup
mÑ8

sup
iďm´1

δ
1{2
m,i

´Erp∆Lτm,i`δm,iq2s
δm,i

¯1{2

ď lim sup
mÑ8

sup
iďm´1

δ
1{2
m,i

´

lim sup
δÓ0

sup
tPr0,T´δs

1

δ
Erp∆Lt`δq2s

¯1{2

“ 0.

Using the translation invariance property in Theorem 1 piq and (38),

(40) “
ˇ

ˇ

ˇ

m´1
ÿ

i“k

δm,i

´ 1

δm,i

´

W
δm,i
τm,i p∆Lτm,i`δm,iq ´

Er∆Lτm,i`δm,is
1` ηδm,i

¯

´KLpτm,iq
¯ˇ

ˇ

ˇ

ď T max
0ďiďm´1

ˇ

ˇ

ˇ

1

δm,i

´

W
δm,i
τm,i p∆Lτm,i`δm,iq ´

Er∆Lτm,i`δm,is
1` ηδm,i

¯

´KLpτm,iq
ˇ

ˇ

ˇ

Ñ 0

as mÑ8. Hence, (38) implies (24).
Now it only remains to show is that, for any β P p0,8q,

sup
tPτm

ˇ

ˇ pV τm,β
t pLq ´ qV τm,β

t pLq
ˇ

ˇÑ 0 a.s. as mÑ8.

This is straightforward considering the fact that also the sequences tαδm,k ´

δ1`β
m,k u

m´1
k“0 and tαδm,k ` δ

1`β
m,k u

m´1
k“0 satisfy (3), yielding

lim
mÑ8

sup
kďm´1

ˇ

ˇF´1
∆Lτm,k`δm,k

pαδm,k ˘ δ
1`β
m,k q ´ qt

ˇ

ˇ “ 0.

Thus, the arguments in the above proof for V τm hold for both pV τm,β and
qV τm,β. This concludes the proof.

Proof of Corollary 2. Notice that tLtutPr0,T s has system of generating triplets
tpσ2

t , νt, γtqu “ tpµptqσ2, µptqν, µptqγqu. Now we verify the requirements
piq ´ pvq in Theorem 4, noting that p 9σ2

t , 9νt, 9γtq “ λptqpσ2, ν, γq.
piq: For each δ P p0, T s and s P r0, T ´ δs, by the integral mean value

theorem there exist a θs,δ P rs, s` δs such that

1

δ

`

σ2
s`δ ´ σ

2
s , νs`δ ´ νs, γs`δ ´ γs

˘

“ λpθs,δqpσ
2, ν, γq
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By the continuity of t ÞÑ λptq, we immediately get

lim
δÓ0,sÑt

1

δ

`

σ2
s`δ ´ σ

2
s , νs`δ ´ νs, γs`δ ´ γs

˘

“ lim
δÓ0,sÑt

λpθs,δqpσ
2, ν, γq

“ λptqpσ2, ν, γq

“
`

9σ2
t , 9νt, 9γt

˘

.

piiq: The statement follows from assumption piq in Corollary 2 and the
fact

ż

r´ε,εs
x2 1

δ
pνt`δ ´ νtqpdxq “

µpt` δq ´ µptq

δ

ż

r´ε,εs
x2νpdxq.

piiiq: The statement follows from 9νtpx,8q “ λptqνpx,8q, which is jointly
continuous by assumption piiq in Corollary 2 and the assumed continuity of
t ÞÑ λptq.
pivq: Since 9νtpqt,8q “ λptqνpqt,8q and, by assumption, there exists

qt ą 0 solving λptqνpqt,8q “ ´ logα, the statement follows.
pvq: We first note that by assumption piiq and Corollary 25.8 in [20],

rLt P L
2pGq. For any s ą 0 and δ P r0, ss, by the stationary and independent

increments property,

s
1

δ
ErrL2

δs ´ sδErrL1s
2 “ s

1

δ
pErrL2

δs ´ ErrLδs2q “ ps{δqVarprLδq “ sVarprL1q ă 8

from which supδPp0,ss δ
´1ErrL2

δs ă 8 for any s ą 0 follows. Notice that, for
any δ P p0, T s and t P r0, T ´ δs,

∆Lt`δ “ rLµpt`δq ´ rLµptq
d
“ rLµpt`δq´µptq

and, from the mean-value theorem,

λ :“ min
sPr0,T s

λpsq ď
µpt` δq ´ µptq

δ
ď max

sPr0,T s
λpsq “: λ,

where 0 ă λ ď λ ă 8. Hence,

sup
δPp0,T s

sup
tPr0,T´δs

1

δ
Erp∆Lt`δq2s ď sup

δPp0,T s
λ

1

λδ
Erp∆rLλδq

2s

“ λ sup
δPp0,λT s

1

δ
Erp∆rLδq

2s

ă 8

which verifies statement pvq.
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5 Auxiliary results

Lemma 2. For Y P L1pFt`δq,

W δ
t pY q “

1

1` ηδ

´

EtrY s ´ p1´ αδqESt,1´αδp´Y q

` p1´ αδ ` ηδqVaRt,1´αδp´Y q
¯

.

Proof. Notice that

´ EtrpVaRt,1´αδp´Y q ´ Y q`s

“ ´EtrpVaRt,1´αδp´Y q ´ Y qItYďVaRt,1´αδ p´Y qu
s

“ EtrpY ´VaRt,1´αδp´Y qqp1´ ItYąVaRt,1´αδ p´Y qu
qs

“ EtrY s ´VaRt,1´αδp´Y q ´ EtrpY ´VaRt,1´αδp´Y qq`s.

Straightforward calculations, see Lemma 2.2 in [6], yields

EtrpY ´VaRt,1´αδp´Y qq`s “ p1´ αδqpESt,1´αδp´Y q ´VaRt,1´αδp´Y qq

from which we conclude that

´EtrpVaRt,1´αδp´Y q ´ Y q`s “ EtrY s ´ p1´ αδqESt,1´αδp´Y q

´ αδ VaRt,1´αδp´Y q.

Hence,

WtpY q “ VaRt,1´αδp´Y q ´
1

1` ηδ
EtrpVaRt,1´αδp´Y q ´ Y q`s

“
1

1` ηδ

´

EtrY s ´ p1´ αδqESt,1´αδp´Y q

` p1´ αδ ` ηδqVaRt,1´αδp´Y q
¯

.

Lemma 3. Let tXtutPr0,T s and tUtutPr0,T s be adapted processes. Suppose
that there exist constants δ0 P p0, 1{2q, u P p0, 2q, ε P p0, 1q and C1 ą 0 such
that for δ P p0, δ0q and for any y ě δpu´εuq{2 and any t P r0, T ´ δs

Pt
´

|∆Xt`δ| ą yp1` |Xt|q

¯

ď C1δ
2y´2{u,

Pt
´

|∆Ut`δ| ą yp1` |Xt|q

¯

ď C1δ
2y´2{u,

Pt
´

|∆X2
t`δ| ą yp1` |Xt|q

2
¯

ď C1δ
2y´2{u.

Then, for some gpδq P op1q,

ESt,1´αδp´|∆Xt`δ|q ď gpδqp1` |Xt|q,

ESt,1´αδp´|∆Ut`δ|q ď gpδqp1` |Xt|q,

ESt,1´αδp´|∆X
2
t`δ|q ď gpδqp1`X2

t q.
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Proof. By assumption,

Ptp|∆Xt`δ| ą yq ď C1δ
2
´ y

1` |Xt|

¯´2{u

for y ě p1` |Xt|qδ
pu´εuq{2. Solving C1δ

2y´2{up1` |Xt|q
2{u “ p for y gives

yppq “ p1` |Xt|q

´ p

C1δ2

¯´u{2
.

Hence, for r P p0, 1q and δ small enough,

ESt,1´αδp´|∆Xt`δ|q ď
1

δ1`r

ż δ1`r

0
yppqdp

“ p1` |Xt|qC
u{2
1 δu

1

δ1`r

ż δ1`r

0
p´u{2dp

“
p1` |Xt|qC

u{2
1

1´ u{2
δup1´p1`rq{2q

“: gpδqp1` |Xt|q.

The same argument shows the upper bound for ESt,1´αδp´|∆Ut`δ|q. A sim-
ilar argument applies for showing the upper bound for ESt,1´αδp´|∆X

2
t`δ|q:

By assumption,

Pp|∆X2
t`δ ą y | Ftq ď C1δ

2
´ y

p1` |Xt|q
2

¯´2{u

for y ě p1` |Xt|q
2δpu´εuq{2. The same argument as above gives

ESt,1´αδp´|∆X
2
t`δ|q ď gpδqp1` |Xt|q

2.

Noting that p1`|Xt|q
2 ď 2p1`X2

t q yields the upper bound in the statement.

Lemma 4. Let tXtutPr0,T s, tYtutPr0,T s and tUtutPr0,T s be adapted processes.
Suppose that there exist constants δ0 P p0, 1{2q, u P p0, 2q, ε P p0, 1q and
C1 ą 0 such that for δ P p0, δ0q and for any y ě δpu´εuq{2 and any t P
r0, T ´ δs

Pt
´

|∆Xt`δ| ą yp1` |Xt|q

¯

ď C1δ
2y´2{u,

Pt
´

|∆Ut`δ| ą yp1` |Xt|q

¯

ď C1δ
2y´2{u,

Pt
´

|∆X2
t`δ| ą yp1` |Xt|q

2
¯

ď C1δ
2y´2{u.
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Then, for any K ą 0, β1, β2 P p0, εq, with β2 ă β1 and sufficiently small
δ P p0, δ0q,

VaRt,1´αδ´δ
1`β1 p´Yt`δ ´Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X

2
t`δ|qq

ď VaRt,1´αδ´δ
1`β2 p´Yt`δq ` 5Kδpu´εuq{2p1`X2

t q,

VaRt,1´αδ`δ
1`β1 p´Yt`δ `Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X

2
t`δ|qq

ě VaRt,1´αδ`δ
1`β2 p´Yt`δq ´ 5Kδpu´εuq{2p1`X2

t q.

Proof. Let

E :“ t|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ| ď δpu´εuq{2p3` 2|Xt| `X

2
t qu,

EX :“ t|∆Xt`δ| ď δpu´εuq{2p1` |Xt|qu,

EU :“ t|∆Ut`δ| ď δpu´εuq{2p1` |Xt|qu,

EX2 :“ t|∆X2
t`δ| ď δpu´εuq{2p1` |Xt|q

2u.

From PtpEq ě PtpEXXEUXEX2q follows that PtpECq ď PtpECXq`PtpECU q`
PtpECX2q. Hence, PtpECq ď 3C1δ

2pδpu´εuq{2q´2{u “ 3C1δ
1`ε. Notice that

PtpYt`δ ´Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ|q ď xq

“ PtpE X tYt`δ ´Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ|q ď xuq

` PtpEC X tYt`δ ´Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ|q ď xuq

ď PtpYt`δ ď x`Kδpu´εuq{2p3` 4|Xt| `X
2
t qq ` PtpECq

and similarly

PtpYt`δ `Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ|q ď xq

ě PtpYt`δ ` |K|p|∆Xt`δ| ` |∆Ut`δ| ` |∆X
2
t`δ|q ď xq

ě PtpE X tYt`δ ď x´Kδpu´εuq{2p3` 4|Xt| `X
2
t quq

ě PtpYt`δ ď x´Kδpu´εuq{2p3` 4|Xt| `X
2
t qq ´ PtpECq.

Hence we conclude that, for δ small enough,

VaRt,1´αδ`δ
1`β1 p´Yt`δ `Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X

2
t`δ|qq

ě VaRt,1´αδ`δ
1`β1`PtpECqp´Yt`δq ´Kδ

pu´εuq{2p3` 4|Xt| `X
2
t q

ě VaRt,1´αδ`δ
1`β1`3C1δ1`εp´Yt`δq ´Kδ

pu´εuq{2p3` 4|Xt| `X
2
t q

and analogously that

VaRt,1´αδ´δ
1`β1 p´Yt`δ ´Kp|∆Xt`δ| ` |∆Ut`δ| ` |∆X

2
t`δ|qq

ď VaRt,1´αδ´δ
1`β1´3C1δ1`εp´Yt`δq `Kδ

pu´εuq{2p3` 4|Xt| `X
2
t q.

We note that 2|Xt| ď 1 ` X2
t , 3 ` 4|Xt| ` X2

t ď 5 ` 3X2
t ď 5p1 ` X2

t q.
Moreover, δ1`β1 ` 3C1δ

1`ε ă δ1`β2 for δ sufficiently small. The proof is
complete.
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Lemma 5. Let tτmu
8
m“1 be a sequence of partitions of r0, T s with 0 “ τm,0 ă

¨ ¨ ¨ ă τm,m “ T , let gpδq P opδq and let B ą 0 be a constant. Define

Aτmτm,k :“ Aτmτm,k`1
p1`Bpτm,k`1 ´ τm,kqq ` gpτm,k`1 ´ τm,kq, Aτmτm,m :“ 0.

Then there exists hpδq P opδq such that Aτmτm,k ď hpmeshpτmqq for all m, k.

Proof. Let δm,k :“ τm,k`1 ´ τm,k. Noticing that 1`Bδm,k ď eBδm,k gives

Aτmτm,k ď
m´1
ÿ

j“k

gpδm,jq exp
!

B
m´1
ÿ

j“k

δm,j

)

ď eBT
m´1
ÿ

j“k

δm,k max
kďjďm

gpδm,jq

δm,j

ď TeBT sup
δďmeshpτmq

gpδq

δ
.

Lemma 6. Let tYtutPr0,T s be the strong solution to (18) with µ and σ satis-
fying (16) and (17). Then there are constants C1, C2 P p0,8q such that, for
δ P p0, 1q sufficiently small and y ą δβ for any given β P p0, 1{2q,

Pt
´

sup
sPrt,t`δs

|Ys ´ Yt| ą yp1` |Yt|q
¯

ď C1 exp
!

´
y2

C2δ

)

, (42)

Pt
´

sup
sPrt,t`δs

|Y 2
s ´ Y

2
t | ą 3yp1` |Yt|q

2
¯

ď 2C1 exp
!

´
y2

C2δ

)

. (43)

Proof. We first prove (42). Let τ :“ inf
 

s P rt, t`δs : |Ys´Yt| ą yp1`|Yt|q
(

and notice that

Pt
´

sup
sPrt,t`δs

|Ys ´ Yt| ą yp1` |Yt|q
¯

“ Ptpτ ď t` δq

ď Pt
´

τ ď t` δ, sup
tďsďτ

ˇ

ˇ

ˇ

ż s

t
µpu, Yuqdu

ˇ

ˇ

ˇ
ą

1

2
yp1` |Yt|q

¯

(44)

` Pt
´

τ ď t` δ, sup
tďsďτ

ˇ

ˇ

ˇ

ż s

t
σpu, YuqdBu

ˇ

ˇ

ˇ
ą

1

2
yp1` |Yt|q

¯

. (45)

Notice that s ď τ implies |Ys| ď |x|`yp1`|x|q which in turn, by the growth
condition (16) for µ and σ, implies that there is some finite constant M such
that

max
!

sup
sPrt,τ s

|µps, Ysq|, sup
sPrt,τ s

|σps, Ysq|
)

ďMp1` |Yt|q. (46)
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Hence, for δ P p0, 1q sufficiently small, the probability in (44) is zero. The
probability in (45) can be bounded from above as follows. Since s ÞÑ
şs
0 σpu, YuqdBu is a continuous local martingale, it may be expressed as a

random time change s ÞÑ Hpsq,

Hpsq :“

ż s

0
σpu, Yuq

2du,

of a Brownian motion. By (46) and Theorem 18.4 in [10], there is standard
Brownian motion rB such that,

(45) ď Pt
´

Hpt` δq ´Hptq ď δM2p1` |Yt|q
2, sup
sPrt,t`δs

ˇ

ˇ rBHpsq
ˇ

ˇ ą
1

2
yp1` |Yt|q

¯

ď Pt
´

sup
sPrt,t`δs

ˇ

ˇ rBs
ˇ

ˇ ą
y

2M

¯

.

Applying Lemma 5.2.1 in [5] to the last expression above gives

(45) ď 4 exp
!

´

´ y

2M

¯2 1

2δ

)

.

We have proved (42). We now prove (43). Noting that |Y 2
s ´ x2| “ |Ys ´

x||Ys ` x| we get:

Pt
´

sup
sPrt,t`δs

|Y 2
s ´ Y

2
t | ą 3yp1` |Yt|q

2
¯

ď Pt
´!

sup
sPrt,t`δs

|Yt ´ Yt| ą yp1` |Yt|q
)

Y

!

sup
sPrt,t`δs

|Yt ` Yt| ą 3p1` |Yt|q
)¯

ď Pt
´

sup
sPrt,t`δs

|Yt ´ Yt| ą yp1` |Yt|q
¯

` Pt
´

sup
sPrt,t`δs

|Yt ` Yt| ą 3p1` |Yt|q
¯

By Lemma 6, for t ą 0 sufficiently small,

Pt
´

sup
sPrt,t`δs

|Ys ´ Yt| ą yp1` |Yt|q
¯

ď C1 exp
!

´
y2

C2δ

)

.

Moreover,

Pt
´

sup
sPrt,t`δs

|Ys ` Yt| ą 3p1` |Yt|q
¯

ď Pt
´

sup
sPrt,t`δs

|Ys ´ Yt| ` 2|Yt| ą 3p1` |Yt|q
¯

ď Pt
´

sup
sPrt,t`δs

|Ys ´ Yt| ą 1` |Yt|
¯

ď C1 exp
!

´
y2

C2δ

)

.

This concludes the proof.
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Lemma 7. Let X be the solution to the stochastic differential equation (18)
with coefficients µ and σ satisfying (16) and (17). Then there exist a con-
stant C such that

|Etr∆X2
t`δs| ď Cδp1`X2

t q. (47)

Proof. Recall that ∆X2
t`δ :“ X2

t`δ ´X
2
t . Itô’s Lemma yields

∆X2
t`δ “

ż t`δ

t

`

2Xsµps,Xsq ` σps,Xsq
2
˘

ds` 2

ż t`δ

t
Xsσps,XsqdBs.

Hence,

|Etr∆X2
t`δs| “

ˇ

ˇ

ˇ
Et
”

ż t`δ

t

`

2Xsµps,Xsq ` σps,Xsq
2
˘

ds
ıˇ

ˇ

ˇ

ď Et
”

ż t`δ

t

ˇ

ˇ2Xsµps,Xsq ` σps,Xsq
2
ˇ

ˇds
ı

“

ż t`δ

t
Et
“
ˇ

ˇ2Xsµps,Xsq ` σps,Xsq
2
ˇ

ˇ

‰

ds.

Since µ and σ satisfy (16),

µps, xq ď
`

K1p1` x
2q
˘1{2

ď K
1{2
1 p1` |x|q,

xµps, xq ď K
1{2
1 p|x| ` x2q ď 2K

1{2
1 p1` x2q,

xµps, xq ` σps, xq2 ď pK1 ` 2K
1{2
1 qp1` x2q.

Hence, there is a constant C1 such that

ż t`δ

t
Etr|Xsµps,Xsq ` σ

2ps,Xsq|sds ď

ż t`δ

t
EtrC1p1`X

2
s qsds.

By Theorem 4.5.4 in [11], there is a constant C2 such that EtrX2
s s ď C2p1`

X2
t q which immediately implies the existence of a constant C such that (47)

holds.

Lemma 8. Let X be the solution to the stochastic differential equation (18)
with coefficients µ and σ satisfying (16) and (17). Define u as in Theorem 3
and assume u satisfies (20). Then for any β P p0, 1{2q, for δ ą 0 sufficiently
small and y ą δβ, there exists constants C1, C2 ą 0 such that

Pt
´

sup
sPrt,t`δs

|ups` δ,Xs`δq ´ upt,Xtq| ą yp1` |Xt|q

¯

ď C1 exp
!

´
y2

C2δ

)

(48)
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Proof. We first notice that, by Itô’s lemma and by Feynman-Kac, we have

dupt,Xtq “ uxpt,Xtqσpt,XtqdBt,

where subscript x denotes partial derivative with respect to the second ar-
gument of u. Let τ :“ inf

 

s P rt, t` δs : |Xs´Xt| ą yp1`|Xt|q
(

and notice
that

Pt
´

sup
sPrt,t`δs

|ups,Xsq ´ upt,Xtq| ą yp1` |Xt|q

¯

ď Ptpτ ď t` δq

` Pt
´

τ ą t` δ, sup
sPrt,t`δs

ˇ

ˇ

ˇ

ż s

0
uxpu,Xuqσpu,XuqdBu

ˇ

ˇ

ˇ
ą yp1` |x|q

¯

.

Since s ÞÑ
şs
0 uxpu,Xuqσpu,XuqdBu is a continuous local martingale, it may

be expressed as a random time change s ÞÑ Hpsq of a Brownian motion:

Hpsq :“

ż t`δ

t
uxpu,Xuq

2σpu,Xuq
2du.

Notice that if τ ą t ` δ, then Hpt ` δq ď δK1K3p1 ` |Xt|q
2. By Theorem

18.4 in [10], there is standard Brownian motion rB such that,

Pt
´

τ ą t` δ, sup
sPrt,t`δs

ˇ

ˇ

ˇ

ż s

0
uxpu,Xuqσpu,XuqdBu

ˇ

ˇ

ˇ
ą yp1` |Xt|q

¯

ď P
´

τ ą t` δ, sup
sPrt,t`δs

ˇ

ˇ rBHpsq
ˇ

ˇ ą yp1` |Xt|q

¯

ď P
´

sup
sPrt,t`δs

ˇ

ˇ rBs
ˇ

ˇ ą
y

δ1{2K1K3

¯

.

Applying Lemma 5.2.1 in [5] to the last expression above gives

(45) ď 4 exp
!

´

´ y

K1K3

¯2 1

2δ

)

.

Noting that

Ptpτ ď t` δq “ Pt
´

sup
sPrt,t`δs

|Xs ´Xt| ą yp1` |Xt|q

¯

can be bounded by Lemma 6 completes the argument showing (48).

Lemma 9. Let tLtutPr0,T s be an R-valued additive process with system of
generating triplets tpσ2

t , νt, γtqutPr0,T s. For each t P r0, T s, let 9σ2
t and 9γt be

constants and let 9νt be a measure on Rzt0u whose restrictions to sets bounded
away from 0 are finite.
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Fix t P r0, T s and assume that

1

δ

`

σ2
s`δ ´ σ

2
s , νs`δ ´ νs, γs`δ ´ γs

˘

Ñ
`

9σ2
t , 9νt, 9γt

˘

as δ Ó 0, sÑ t, (49)

where the convergence in the second component means that

lim
δÓ0,sÑt

1

δ

ż

Rzt0u
fpxqpνs`δ ´ νsqpdxq “

ż

Rzt0u
fpxq 9νtpdxq

for all bounded and continuous functions vanishing in a neighborhood of 0.
Assume further that

lim
εÓ0

lim sup
δÓ0,sÑt

ż

r´ε,εs
x2 1

δ
pνs`δ ´ νsqpdxq “ 0. (50)

Consider sequences δn Ó 0, tn Ñ t, with tn P r0, T ´ δns and, for every n, let

tLδn,tns usPr0,T s be a Lévy process satisfying ∆Lδn,tnt`δn

d
“ ∆Ltn`δn and let µδn,tn

be the probability distribution of Lδn,tn1 . Then

lim
δnÓ0

1

δn

ż

Rzt0u
fpxqµδnδn,tnpdxq Ñ

ż

Rzt0u
fpxq 9νtpdxq

for bounded and continuous functions vanishing in a neighborhood of 0.

Proof. Notice that µδn,tn is infinitely divisible with Lévy triplet

1

δn

`

σ2
tn`δn ´ σ

2
tn , νt`δn ´ νtn , γtn`δn ´ γtn

˘

By Theorem 8.7 in [20], (49) and (50) together imply that µδn,tn converges
weakly to an infinitely divisible distribution µ with Lévy triplet p 9σ2

t , 9νt, 9γtq.
In particular, the corresponding characteristic functions converges pointwise:

lim
δnÓ0

µ̂δn,tnpzq “ µ̂pzq (51)

Define µn via its characteristic function µ̂npzq as

µ̂npzq :“ exp
 

δ´1
n pµ̂δn,tnpzq

δn ´ 1q
(

“ exp
!

δ´1
n

ż

Rzt0u
peizx ´ 1qµδnδn,tnpdxq

)

.

From pp. 38-39 in [20], in particular p8.7q follows that µn is infinitely divis-
ible with Lévy triplet p0, δ´1

n µδnδn,tn , 0q. Moreover,

µ̂npzq “ exp
 

δ´1
n pµ̂δn,,tnpzq

δn ´ 1q
(

“ exp
 

δ´1
n pe

δn logpµ̂δn,tn pzqq ´ 1q
(

“ exp
 

δ´1
n pδn logpµ̂pzqq `Opδ2

nqq
(

,
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where the last equality is due to (51) which, as in the proof of Theorem 8.7
in [20], implies that limδnÓ0 log µ̂δn,tpzq “ log µ̂pzq uniformly on any compact
set. Hence, limnÑ8 µ̂npzq “ µ̂pzq for every z, implying µn Ñ µ weakly.
Theorem 8.7 in [20] now gives

lim
δnÓ0

1

δn

ż

Rzt0u
fpxqµδnδn,tnpdxq “

ż

Rzt0u
fpxq 9νtpdxq

for all bounded and continuous functions vanishing in a neighborhood of
0.

An important special case of Lemma 9 is the following:

Corollary 3. If the conditions of Lemma 9 hold, and if x ą 0 is a continuity
point of y ÞÑ 9νtpy,8q, then

lim
δÓ0,sÑt

δ´1F∆Ls`δpxq “ 9νtpx,8q.

Proof. Let fpyq “ 1px,8qpyq which is bounded, vanishes in a neighborhood

of 0 but not continuous. For m ą 0, let f and f be polygon functions given
by

fpyq “

$

&

%

0, y ď x´ 1{m,
mpy ´ x` 1{mq, y P px´ 1{m,xq,
1, y ě x.

and

fpyq “

$

&

%

0, y ď x,
mpy ´ x` 1{mq, y P px, x` 1{mq,
1, y ě x` 1{m.

Then f ď f ď f ,

lim
δnÓ0

1

δn

ż

Rzt0u
gpyqµδnδn,tnpdyq “

ż

Rzt0u
gpyq 9νtpdyq, g “ f, f ,

and

lim
δnÓ0

1

δn

ż

Rzt0u
pf ´ fqµδnδn,tnpdyq ď 9νtrx´ 1{m,x` 1{ms

which tends to 0 as mÑ8.

Lemma 10. Let f : tpt, δq P r0, T q ˆ p0, T s : t ` δ ď T u Ñ R and suppose
there exists a continuous function g : r0, T s Ñ R such that, for all t P r0, T s,
limδÓ0,sÑt fps, δq “ gptq. Then limδÓ0 suptPr0,T q |fpt, δq ´ gptq| “ 0.
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Proof. By assumption, limδÓ0 |fpt, δq´gptq| “ 0 for every t P r0, T q. Suppose
that the convergence is not uniform in t. Then there exists ε ą 0 and a
sequence tptn, δnquně1 Ă tpt, δq P r0, T q ˆ p0, T s : t ` δ ď T u with δn Ñ 0
such that |fptn, δnq ´ gptnq| ą ε for all n. By the Bolzano Weierstrass
theorem, there exists t P r0, T s and a subsequence ttnkukě1 of ttnuně1 such
that limk tnk “ t. Hence,

ε ă |fptnk , δnkq ´ fptnkq| ď |fptnk , δnkq ´ gptq| ` |gptnkq ´ gptq| Ñ 0 as k Ñ8.

From this contradiction we conclude that the convergence is indeed uniform,
thereby proving the statement.

Lemma 11. Let tαδm,ku and tηδm,ku satisfy (3). Then

lim
mÑ8

m´1
ź

k“0

αδm,k “ αT , lim
mÑ8

m´1
ź

k“0

p1` ηδm,kq “ p1` ηq
T .

Proof. We prove the first statement for αδm,k . The proof of the second
statement is completely analogous and omitted. Notice that

αδm,k “
´´

1´ δm,k

´1´ αδm,k
δm,k

¯¯1{δm,k
¯δm,k

,

We immediately use this to see that

log
”
m´1
ź

k“0

αδm,k

ı

“

m´1
ÿ

k“0

δm,k log
”´

1´ δm,k

´1´ αδm,k
δm,k

¯¯1{δm,k
ı

By (3) and the well-known convergence result

lim
δÑ0

´

1` δ´1a` opδq
¯1{δ

“ ea,

for any real a and any higher order term opδq, we get

lim
mÑ8

sup
kďm´1

ˇ

ˇ

ˇ

´

1´ δm,k

´1´ αδm,k
δm,k

¯¯1{δm,k
´ α

ˇ

ˇ

ˇ
“ 0.

Hence we conclude that

lim
mÑ8

log
”
m´1
ź

k“0

αδm,k

ı

“ T logpαq.

This proves the result for
śm´1
k“0 αδm,k .
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[20] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, 1999.

[21] M. Stadje. Extending dynamic convex risk measures from discrete
time to continuous time: A convergence approach. Insurance Math.
Econom., 47(3):391–404, 2010.

37


