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Abstract

A game-theoretic framework for time-inconsistent stopping problems
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rium is de�ned. The equilibrium is characterized and other results with dif-
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1 Introduction

Consider a di�usion X and the classical problem of choosing a stopping time τ
that maximizes

Ex(h(Xτ )),

where h is a nice deterministic function. Recall that the solution to this problem is
consistent in the sense that the optimal rule for stopping, i.e. ’stop the �rst time
that X enters the stopping region’, is independent of the initial state x. Now
consider a non-linear nice deterministic function g and the problem of choosing
a stopping time τ that maximizes

g(Ex(h(Xτ ))).

The optimal stopping rule for this problem will, in contrast, typically depend
on the initial state x, which means that it will not generally satisfy Bellman’s
principle of optimality. In the literature this is known as time-inconsistency. In
the present paper we study a more general version of this problem, see (2.1)
below.
Time-inconsistent problems are typically studied using one of the following ap-
proaches:

• The game-theoretic approach, which means formulating the problem as a
game and look for equilibrium stopping times, cf. Remark 2.4 and Remark
2.5 below.

• The pre-commitment approach, which means formulating the problem for
a �xed initial state and allowing the corresponding optimal stopping rule
to depend on that initial state.

• The dynamic optimality approach, developed in [30]. See also [9] for a short
description.

Time-inconsistent problems were originally studied in �nancial economics where
the inconsistency is due to:

• Endogenous habit formation,

• Non-exponential discounting, or

• Mean-variance optimization/utility.
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For a description of these terms in a stopping problem context we refer to [9].
Mean-variance optimization is also described in Section 4.2.
In [9] we developed a game-theoretic framework for time-inconsistent stopping
problems covering endogenous habit formation and non-exponential discount-
ing. In the present paper, a game-theoretic framework for time-inconsistent stop-
ping problems that can handle e.g. mean-variance problems is developed. In
the present paper we also de�ne mixed strategy stopping times by allowing the
agents in the game to jointly choose the intensity function of a Cox process that
is used as a randomization device for the stopping decision, see De�nition 2.2
and Remark 2.4 below. The use of the Cox process is crucial for the de�nition of
mixed strategies in our framework as it allows us to identify equilibrium strate-
gies. This type of mixed strategy stopping time appears to be novel, although
other types of mixed strategies in stopping games have been considered and the
Cox process has been used in other ways in di�erent kinds of stopping games,
see Section 1.1.
The rest of the paper is organized as follows: In Section 2 we formulate the type
of time-inconsistent stopping problem that we consider and give the equilibrium
de�nition. In Section 3 the equilibrium is characterized and other results with
necessary and su�cient conditions for equilibrium are proven, these are the main
results of the present paper, see Theorem 3.2, Theorem 3.5, Theorem 3.6 and
Theorem 3.7. In Section 4 we formulate and study two well-known problems in
our framework; a mean-variance problem and a variance problem.

1.1 Previous literature

Recently, there has been a substantial e�ort to develop the literature on the game-
theoretic approach to time-inconsistent control problems, see e.g. [3, 4, 23] and
the references therein. The development of the literature on the game-theoretic
approach to time-inconsistent stopping problems is in an earlier stage. Recent
papers include [1, 9, 11, 18, 19, 20, 21]. For short surveys of time-inconsistent
stopping problems we refer to [1, 9, 30].
In [1] the game-theoretic approach is used to study mean-variance and mean-
standard deviation stopping problems in discrete time. The authors consider
mixed strategies de�ned as randomized stopping times and also equilibrium liq-
uidation strategies. In [33] a continuous-time Dynkin game with mixed strate-
gies de�ned as randomized stopping times is studied. It is instructive to note
that the number of players in the games of these papers are countable and two,
respectively, while the number of players in the game of the present paper is
uncountable; in the framework of the present paper it is the Cox process con-
struction of mixed stopping strategies that makes it possible to identify mixed
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equilibrium strategies.
Recent papers on time-inconsistent stopping problems and the dynamic optimal-
ity and pre-commitment approaches include [26, 30].
In [27], a mean-�eld optimal stopping game for e.g. bank-runs is studied. The
default time is modeled as the �rst jump time of a given Cox process. In [10,
16], optimal stopping problems where stopping can only occur at exogenously
determined Poisson jump times are studied.
See Section 4 for previous literature on mean-variance and variance problems.

2 Problem formulation

Let (Ω,F , (Ft)t≥0,Px) be a �ltered probability space carrying a one-dimensional
Wiener process W . Let X be a one-dimensional di�usion living on an open
interval E = (α, β), where −∞ ≤ α ≤ β ≤ ∞, which is the unique strong
solution to the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x.

The coe�cients µ : E → R and σ : E → (0,∞) are continuous and satisfy
conditions guaranteeing the existence of a unique strong solution, see e.g. [22].
Moreover, for each continuous function λ : E → [0,∞) the �ltered probability
space is assumed to carry anX-associated Cox process denoted byNλ, meaning
that Nλ is a Poisson process with intensity corresponding to λ(Xt) conditional
on the natural �ltration generated by X , see e.g. [2, Sec. 6.6]. It is assumed
that the �ltration (Ft)t≥0 satis�es the usual conditions and that x 7→ Px(F ) is
measurable for each F ∈ F . The associated expectations are denoted by Ex. It
is assumed that a measurable time shift operator θ with Xτ ◦ θτh = Xτ◦θτh+τh
exists, where τ is a, possibly in�nite, stopping time (with respect to (Ft)t≥0) and

τh := inf{t ≥ 0 : |Xt −X0| ≥ h}.

Now consider the functions f, h : E → R and g : R→ R satisfying Assumption
2.6 (below) and the problem of �nding a stopping time τ that maximizes

Jτ (x) := Ex(f(Xτ )) + g(Ex(h(Xτ ))). (2.1)

Remark 2.1. We use the convention that h(Xτ ) := lim supt→∞ h(Xt) on {τ =
∞} and similarly for f . We assume that the limits g(∞) := limx→∞ g(x) and
g(−∞) := limx→−∞ g(x) exist, see Assumption 2.6.
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The function g is allowed to be non-linear and hence, i) the standard theory for
optimal stopping problems cannot be used to �nd an optimal stopping time for
(2.1), and ii) even if we �nd an optimal stopping time for (2.1) it will generally be
time-inconsistent. Speci�cally, a stopping rule that is optimal for (2.1) when the
initial state is x is typically not optimal when the initial state is y 6= x. Based on
the second fact we will reinterpret the problem as a game.
Let us specify which type of stopping times are admissible (De�nition 2.2) and
then give the equilibrium de�nition (De�nition 2.3). For a �xed stopping time τ
we de�ne the functions ϕτ and ψτ by,

ϕτ (x) = Ex(f(Xτ )) and ψτ (x) = Ex(h(Xτ )).

De�nition 2.2. Consider a continuous function λ : E → [0,∞) and the corre-
sponding Cox process Nλ. Let τλ := inf{t ≥ 0 : Nλ

t 6= Nλ
t−}. Let C ⊂ E be an

open set and let τC := inf{t ≥ 0 : Xt /∈ C}. Then τλ,C := τλ∧ τC is said to be a
mixed Markov strategy stopping time. A mixed Markov strategy stopping time
τλ,C is said to be admissible if the function Jτλ,C in (2.1) is well-de�ned and the
functions ϕτλ,C and ψτλ,C are continuous. The space of admissible mixed Markov
strategy stopping times is denoted by N .

Usually we write ϕλ,C instead of ϕτλ,C and similarly for ψτλ,C and Jτλ,C . We
remark that the requirement that ϕλ,C and ψλ,C must be continuous in order for
τλ,C to be admissible is a technical condition. For τλ,C , τ η,D ∈ N we will use the
notation

τλ,C � τ η,D(h) = I{τη,D≤τh}τ
η,D + I{τη,D>τh}(τ

λ,C ◦ θτh + τh).

De�nition 2.3. A stopping time τ̂ ∈ N is said to be a (mixed Markov strategy)
equilibrium stopping time if the equilibrium condition

lim inf
h↘0

Jτ̂ (x)− Jτ̂�τη,D(h)(x)

Ex(τh)
≥ 0 (2.2)

is satis�ed for each τ η,D ∈ N and each x ∈ E. If τ̂ is an equilibrium stop-
ping time then Jτ̂ (x), x ∈ E, is said to be the corresponding equilibrium value
function.

This paper is devoted to the question of how to �nd equilibrium stopping times
of the type in De�nition 2.3.
Remark 2.4. The game corresponding to the equilibrium in De�nition 2.3 is in-
terpreted as follows (see also [9]): Consider a person who controls the processX
and who wants to maximize Jτ (x) in (2.1). Interpret this person as comprising
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di�erent versions of herself, one for each x ∈ E. These x-versions are inter-
preted as agents playing a sequential game against each other regarding when
to stop the process X . The equilibrium condition (2.2) ensures that no agent
wants to deviate from the equilibrium strategy τ̂ by using another strategy τ η,D
during the in�nitesimally short time interval [0, τh] as long as every other agent
plays τ̂ ; neither by stopping when τ̂ prescribes continuing, nor by continuing
when τ̂ prescribes stopping, nor by using a di�erent intensity than the one pre-
scribed by τ̂ . The equilibrium condition (2.2) is in line with the one in [9] and
inspired by time-inconsistent stopping problems in �nancial economics, see e.g.
[12, 17], and also by the equilibrium de�nition for time-inconsistent stochastic
control problems, see [3, 4, 23] and the references therein.
Remark 2.5. In game theory, a pure Markov strategy determines the action of an
agent based only on payo� relevant information. A mixed strategy determines
the action of an agent using a randomization device that randomly selects a pure
strategy. In the present model, a stopping strategy is thus pure if each x-version
bases the decision to stop or not only on the current value of the state process.
Hence, τC is a pure strategy stopping time. Strategies of the kind τλ in De�ni-
tion 2.2 use Cox processes as randomization devices. This motivates calling τλ,C
a mixed Markov strategy. We remark that De�nition 2.3 is a (mixed strategy)
subgame perfect Nash equilibrium, see e.g. [9, 25].

We denote the characteristic operator of X by AX , i.e. for any function f : E →
R,

AXf(x) = lim
h↘0

Ex(f(Xτh))− f(x)

Ex(τh)
,

whenever this expression exists. Recall that if f ∈ C2(E) then

AXf(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Throughout the paper we assume that the functions f, g and h in (2.1) satisfy the
following conditions:

Assumption 2.6.

• f, h ∈ C2(E) and g ∈ C3(R).

• g(∞) and g(−∞) exist in [−∞,∞].

• f is either bounded from below or above on E. This also holds for h.
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3 Equilibrium conditions

This section contains a characterization of the equilibrium, see Theorem 3.2. It
also contains other necessary and su�cient conditions for equilibrium, see Theo-
rem 3.5, Theorem 3.6 and Theorem 3.7. These are the main results of the present
paper. They rely on the results found in the appendix which mainly contain
explicit expressions for the type of limit that is found in the left side of the equi-
librium condition (2.2) for di�erent values of the initial state, see Lemma 5.2,
Lemma 5.3 and Lemma 5.4. The results in the appendix rely to a large extent
on arguments similar to those in the proof of Lemma 3.1 and standard Taylor
expansion. Theorem 3.5 and Theorem 3.6 rely on Proposition 3.3.

Lemma 3.1. For any τλ,C , τ η,D ∈ N and x ∈ D,

lim
h↘0

ϕτλ,C◦θτh+τh(x)− ϕτλ,C�τη,D(h)(x)

Ex(τh)
= η(x)(ϕλ,C(x)− f(x)).

Proof. Recall that D is open by de�nition ofN . This implies that for any x ∈ D
there exists a constant h̄ > 0 such τh < τD for each 0 < h ≤ h̄ (a.s.). Hence, for
0 < h ≤ h̄,

τλ,C � τ η,D(h) = I{τη,D≤τh}τ
η,D + I{τη,D>τh}(τ

λ,C ◦ θτh + τh)

= I{τη≤τh}τ
η,D + I{τη>τh}(τ

λ,C ◦ θτh + τh)

= I{τη≤τh}τ
η + I{τη>τh}(τ

λ,C ◦ θτh + τh).

It follows that

f
(
Xτλ,C�τη,D(h)

)
= I{τη,D≤τh}f

(
Xτλ,C�τη,D(h)

)
+ I{τη,D>τh}f

(
Xτλ,C�τη,D(h)

)
= I{τη≤τh}f

(
Xτλ,C�τη,D(h)

)
+ I{τη>τh}f

(
Xτλ,C�τη,D(h)

)
= I{τη≤τh}f (Xτη) + I{τη>τh}f

(
Xτλ,C◦θτh+τh

)
. (3.1)

Using the above, the properties of the Poisson process and by conditioning on
the �ltration generated by X , we obtain, for 0 < h ≤ h̄, (here ηt := η(Xt))

ϕτλ,C◦θτh+τh(x)− ϕτλ,C�τη,D(h)(x)

= Ex
(
f
(
Xτλ,C◦θτh+τh

)
− f

(
Xτλ,C�τη,D(h)

))
= Ex

(
I{τη≤τh}

(
f
(
Xτλ,C◦θτh+τh

)
− f (Xτη)

))
= Ex

(∫ ∞
0

ηte
−
∫ t
0
ηsdsI{t≤τh}

(
f
(
Xτλ,C◦θτh+τh

)
− f (Xt)

)
dt
)

= Ex
(∫ τh

0
ηte
−
∫ t
0
ηsds

(
f
(
Xτλ,C◦θτh+τh

)
− f (Xt)

)
dt
)
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= Ex
(
f
(
Xτλ,C◦θτh+τh

) ∫ τh

0
ηte
−
∫ t
0
ηsdsdt−

∫ τh

0
ηte
−
∫ t
0
ηsdsf (Xt) dt

)
.

By conditioning on Fτh and the strong Markov property we thus obtain

ϕτλ,C◦θτh+τh(x)− ϕτλ,C�τη,D(h)(x)

= Ex
(∫ τh

0
ηte
−
∫ t
0
ηsdsdtEx

(
f
(
Xτλ,C◦θτh+τh

)
|Fτh

)
−
∫ τh

0
ηte
−
∫ t
0
ηsdsf (Xt) dt

)

= Ex
(∫ τh

0
ηte
−
∫ t
0
ηsdsdtϕλ,C (Xτh)−

∫ τh

0
ηte
−
∫ t
0
ηsdsf (Xt) dt

)
= Ex

(∫ τh

0
ηte
−
∫ t
0
ηsds(ϕλ,C (Xτh)− f (Xt))dt

)
. (3.2)

Now use the continuity of the functions f, η, ϕλ,C and the paths of X , and that
X is bounded on [0, τh], to obtain

lim
h↘0

ϕτλ,C◦θτh+τh(x)− ϕτλ,C�τη,D(h)(x)

Ex(τh)

= lim
h↘0

Ex
(∫ τh

0 η(Xt)e
−
∫ t
0
η(Xs)ds (ϕλ,C (Xτh)− f (Xt)) dt

)
Ex(τh)

= η(x) (ϕλ,C(x)− f(x)) .

We are now ready to present the �rst main result, which characterizes the equi-
librium.

Theorem 3.2. A stopping time τλ,C ∈ N is an equilibrium stopping time if and
only if it is a solution to the following system,

Jλ,C(x)− f(x)− g(h(x)) ≥ 0, for x ∈ C, (I)
AXf(x) + g′(h(x))AXh(x) ≤ 0, for x ∈ int(Cc), (II)

f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x)) = 0, for x ∈ C with λ(x) > 0,
(III)

f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x)) ≤ 0, for x ∈ C with λ(x) = 0,
(IV)

lim inf
h↘0

−a(x, h)

Ex(τh)
≥ 0, for x ∈ ∂C , (V)

where

a(x, h) := Ex (ϕλ,C(Xτh))− ϕλ,C(x) + g (Ex (ψλ,C(Xτh)))− g(ψλ,C(x)).(3.3)
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See the appendix for a proof of Theorem 3.2. We will use the following general
result.

Proposition 3.3. Consider a �xed x ∈ E and a function k : E → R. Suppose
that there exists a constant h̄ > 0 such that k is C2 on [x− h̄, x] and [x, x+ h̄] and
continuous on [x− h̄, x+ h̄], then

lim
h↘0

(Ex(k(Xτh))− k(x))2

Ex(τh)
=

(
k′(x+)− k′(x−)

2

)2

σ2(x).

In particular, for the local time of X at x, denoted by lxt (X), it holds that

lim
h↘0

Ex
(
lxτh(X)

)2
Ex(τh)

= σ2(x).

Proof. Use the Itô-Tanaka formula, see e.g. [31] or [32, p. 75], to obtain, for
0 < h ≤ h̄,

k(Xτh)− k(x) =
∫ τh

0
AXk(Xt)I{Xt 6=x}dt+

∫ τh

0
k′(Xt)σ(Xt)I{Xt 6=x}dWt

+
1

2

∫ τh

0
(k′(Xt+)− k′(Xt−)) I{Xt=x}dl

x
t (X)

=
∫ τh

0
AXk(Xt)I{Xt 6=x}dt+

∫ τh

0
k′(Xt)σ(Xt)I{Xt 6=x}dWt

+
1

2
(k′(x+)− k′(x−)) lxτh(X).

Thus,

lim
h↘0

(Ex(k(Xτh))− k(x))2

Ex(τh)

= lim
h↘0

(
Ex
(∫ τh

0 AXk(Xt)I{Xt 6=x}dt
)

+ 1
2

(k′(x+)− k′(x−))Ex
(
lxτh(X)

))2
Ex(τh)

.

Since limh↘0
Ex(
∫ τh
0

AXk(Xt)I{Xt 6=x}dt)
Ex(τh)

converges and limh↘0 Ex
(
lxτh(X)

)
= 0 it

directly follows that

lim
h↘0

(Ex(k(Xτh))− k(x))2

Ex(τh)
=

(
(k′(x+)− k′(x−))

2

)2

lim
h↘0

Ex
(
lxτh(X)

)2
Ex(τh)

.(3.4)

Applying the result in (3.4) for k(y) := |y − x| (recall that x is �xed) gives us

lim
h↘0

(Ex(|Xτh − x|))
2

Ex(τh)
=

(
(1− (−1))

2

)2

lim
h↘0

Ex
(
lxτh(X)

)2
Ex(τh)
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= lim
h↘0

Ex
(
lxτh(X)

)2
Ex(τh)

. (3.5)

However, it is also easy to see that,

lim
h↘0

(Ex(|Xτh − x|))
2

Ex(τh)
= lim

h↘0

(ph|x+ h− x|+ (1− ph)|x− h− x|)2

Ex(τh)

= lim
h↘0

h2

Ex(τh)
, (3.6)

where ph := Px(Xτh = x + h). The result follows from (3.4), (3.5), and (3.6), if
we can prove that

lim
h↘0

h2

Ex(τh)
= σ2(x). (3.7)

Let us �nd a representation for Ex(τh). Recall that the scale function can be
represented as

s(x) =
∫ x

a
e
−
∫ y
a

2µ(z)

σ2(z)
dz
dy,

for an arbitrary a ∈ E, and that it solves the ODE µ(x)s′(x) + 1
2
σ2(x)s′′(x) = 0,

see [6, p.18]. Using this it is easy to verify that

u(x) := Bs(x)−
∫ x

a
s′(y)

∫ y

a

2

s′(z)σ2(z)
dzdy

solves

µ(x)u′(x) +
1

2
σ2(x)u′′(x) = −1, (3.8)

where B is an arbitrary constant. Let us choose B such that u(b) = 0 for some
constant b > a. This gives us

B =

∫ b
a s
′(y)

∫ y
a

2
s′(z)σ2(z)

dzdy

s(b)
.

Thus, for the chosen B, the function u solves (3.8) and satis�es the boundary
conditions u(b) = u(a) = 0 (the last equality is trivial). According to the stan-
dard theory it therefore follows that u(x) = Ex(τD) for x ∈ D := (a, b), see e.g.
[28, ch.9]. Now consider a and b to be variables and write the function u as

u(x, a, b) =
s(x)

s(b)

∫ b

a
s′(y)

∫ y

a

2

s′(z)σ2(z)
dzdy −

∫ x

a
s′(y)

∫ y

a

2

s′(z)σ2(z)
dzdy.
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where we note that also s′(y) = e
−
∫ y
a

2µ(z)

σ2(z)
dz and s(x) depend on a. It follows

that u(x, x− h, x+ h) = Ex(τh). Hence, with ξ(·) := 2µ(·)
σ2(·) , we obtain

Ex(τh) =
s(x)

s(x+ h)

∫ x+h

x−h
e
−
∫ y
x−h ξ(z)dz

∫ y

x−h

2e
∫ z
x−h ξ(u)du

σ2(z)
dzdy

−
∫ x

x−h
e
−
∫ y
x−h ξ(z)dz

∫ y

x−h

2e
∫ z
x−h ξ(u)du

σ2(z)
dzdy

=

∫ x
x−h e

−
∫ y
x−h ξ(z)dzdy∫ x+h

x−h e
−
∫ y
x−h ξ(z)dzdy

∫ x+h

x−h
e
−
∫ y
x−h ξ(z)dz

∫ y

x−h

2e
∫ z
x−h ξ(u)du

σ2(z)
dzdy

−
∫ x

x−h
e
−
∫ y
x−h ξ(z)dz

∫ y

x−h

2e
∫ z
x−h ξ(u)du

σ2(z)
dzdy. (3.9)

Using the representation (3.9) it is possible to show, using lengthy but straight-
forward calculations, that (3.7) holds. Indeed, the basic observation is that the
chain of equalities in (3.9) continues as follows, for small h > 0,

≈ 1

2

∫ x+h

x−h

∫ y

x−h

2

σ2(z)
dzdy −

∫ x

x−h

∫ y

x−h

2

σ2(z)
dzdy

=
1

2

∫ x+h

x

∫ y

x−h

2

σ2(z)
dzdy − 1

2

∫ x

x−h

∫ y

x−h

2

σ2(z)
dzdy

=
∫ x+h

x

∫ y

x−h

1

σ2(z)
dzdy −

∫ x

x−h

∫ y

x−h

1

σ2(z)
dzdy

=
∫ x+h

x

∫ y

x−h

1

σ2(z)
dzdy −

∫ x+h

x

∫ y−h

x−h

1

σ2(z)
dzdy

=
∫ x+h

x

∫ y

y−h

1

σ2(z)
dzdy,

which, when divided by h2, clearly approaches 1/σ2(x), as h→ 0.

Remark 3.4. The last part of the proof of Proposition 3.3 consists of showing that
(3.7) holds. This was also recently shown in [15].

Theorem 3.5 below presents a smooth �t condition that an equilibrium value
function must satisfy at any x ∈ ∂C , under additional assumptions. We use this
result when making an ansatz to �nding an equilibrium stopping time in Section
4.2.

Theorem 3.5. Suppose that τλ,C is an equilibrium stopping time. For a �xed x ∈
∂C , if the functions ϕλ,C and ψλ,C are C2 on [x − h̄, x] and [x, x + h̄] for some
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constant h̄ > 0, then the equilibrium value function Jλ,C satis�es smooth �t in the
sense that

J ′λ,C(x) = f ′(x) + g′(h(x))h′(x).

Proof. Consider a �xed x ∈ ∂C . For any ε, satisfying x + ε ∈ E (both negative
and positive such ε exist since E is open and ∂C is the boundary of C in E), it
holds that

Jλ,C(x+ ε) ≥ f(x+ ε) + g(h(x+ ε)).

To see this use that this inequality is an equality when x+ ε /∈ C , and condition
(I) for the case x + ε ∈ C . Moreover, since x ∈ ∂C it follows that Jλ,C(x) =
f(x) + g(h(x)). Hence,

Jλ,C(x+ ε)− Jλ,C(x) ≥ f(x+ ε)− f(x) + g(h(x+ ε))− g(h(x)).

If ε < 0 it follows that

Jλ,C(x+ ε)− Jλ,C(x)

ε
≤ f(x+ ε)− f(x)

ε
+
g(h(x+ ε))− g(h(x))

ε
.

Hence, the left derivative satis�es J ′(−)λ,C (x) ≤ f ′(x) + g′(h(x))h′(x). The right
derivative can be similarly dealt with and we thus obtain

J
′(−)
λ,C (x) ≤ f ′(x) + g′(h(x))h′(x) ≤ J

′(+)
λ,C (x). (3.10)

Let us now prove that if we would not have smooth �t then condition (V) would
be violated and hence smooth �t must hold, by Theorem 3.2. Note that if smooth
�t would not hold then J ′(+)

λ,C (x)− J ′(−)λ,C (x) > 0, cf. (3.10), which is equivalent to

ϕ′λ,C(x+) + g′(ψλ,C(x))ψ′λ,C(x+) > ϕ′λ,C(x−) + g′(ψλ,C(x))ψ′λ,C(x−).

To see this use that Jλ,C(x) = ϕλ,C(x) + g(ψλ,C(x)) and the chain rule, and
then the di�erentiability assumptions (i.e. ϕλ,C and ψλ,C are C2 on [x − h̄, x]
and [x, x+ h̄]) and continuity (of ϕλ,C and ψλ,C , cf. admissibility, De�nition 2.2).
Rewrite the equation above as

ϕ′λ,C(x+)− ϕ′λ,C(x−) + g′(ψλ,C(x))(ψ′λ,C(x+)− ψ′λ,C(x−)) > 0. (3.11)

The di�erentiability assumptions imply that we can use the Itô-Tanaka formula
to obtain, for 0 < h < h̄,

ϕλ,C(Xτh)− ϕλ,C(x)

12



=
∫ τh

0
AXϕλ,C(Xt)I{Xt 6=x}dt+

∫ τh

0
ϕ′λ,C(Xt)σ(Xt)I{Xt 6=x}dWt

+
1

2

(
ϕ′λ,C(x+)− ϕ′λ,C(x−)

)
lxτh(X).

Thus,

Ex (ϕλ,C(Xτh))− ϕλ,C(x) = a1(h) + a2 Ex
(
lxτh(X)

)
,

for a1(h) := Ex
(∫ τh

0 AXϕλ,C(Xt)I{Xt 6=x}dt
)

and a2 := 1
2
(ϕ′λ,C(x+)−ϕ′λ,C(x−)).

Similarly,

Ex (ψλ,C(Xτh))− ψλ,C(x) = b1(h) + b2 Ex
(
lxτh(X)

)
,

for b1(h) := Ex
(∫ τh

0 AXψλ,C(Xt)I{Xt 6=x}dt
)

and b2 := 1
2
(ψ′λ,C(x+)−ψ′λ,C(x−)).

Hence, using standard Taylor expansion of the function gwe write a(x, h) in (3.3)
as,

a(x, h) = a1(h) + a2 Ex
(
lxτh(X)

)
+ g′(ψλ,C(x)){b1(h) + b2 Ex

(
lxτh(X)

)
}

+
1

2
g′′(ψλ,C(x)){b1(h) + b2 Ex

(
lxτh(X)

)
}2 + ...

This can be written as,

−a(x, h)

Ex(τh)

= − a1(h)

Ex(τh)
− g′(ψλ,C(x))

b1(h)

Ex(τh)
(3.12)

− (a2 + g′(ψλ,C(x))b2)
Ex
(
lxτh(X)

)
Ex(τh)

(3.13)

− 1

2
g′′(ψλ,C(x))

(Ex (ψλ,C(Xτh))− ψλ,C(x))2

Ex(τh)
− ... (3.14)

Let us see what happens to the liminf of −a(x,h)Ex(τh)
when sending h↘ 0: The liminf

of the terms in (3.12) are �nite due to the di�erentiability assumptions for ϕλ,C
and ψλ,C . The term in (3.13) can be written as

− (a2 + g′(ψλ,C(x))b2)
Ex
(
lxτh(X)

)
Ex(τh)

= −1

2

(
ϕ′λ,C(x+)− ϕ′λ,C(x−) + g′(ψλ,C(x))(ψ′λ,C(x+)− ψ′λ,C(x−))

)
13



×
Ex
(
lxτh(X)

)
Ex(τh)

.

Thus, it follows from Proposition 3.3 and the contradiction assumption (3.11) that
the liminf of the term in (3.13) is equal to−∞ and that the liminf of the terms in
(3.14) are �nite (we remark that terms of order 3, and higher, vanish, since ψλ,C
is continous). This implies that condition (V) would indeed be violated if (3.11)
were true and smooth �t must therefore hold.

Theorem 3.2 presents necessary and su�cient conditions for a stopping time τλ,C
to be an equilibrium stopping time. If we for an equilibrium stopping time can-
didate τλ,C can �nd explicit expressions for the functions ϕλ,C and ψλ,C then it is
easy to verify if conditions (I)–(IV) hold whereas condition (V) is not necessarily
easy to verify. Theorem 3.6 below presents a more easily veri�ed characteriza-
tion of condition (V), given additional di�erentiability conditions. We will use
Theorem 3.6 to verify an ansatz to �nding an equilibrium in Section 4.2.

Theorem 3.6. Consider a stopping time τλ,C ∈ N . If for any �xed x ∈ ∂C there
exists a constant h̄ > 0 such that the functions ϕλ,C and ψλ,C are C2 on [x− h̄, x]
and [x, x + h̄] and such that the function ϕλ,C(·) + g′(ψλ,C(x))ψλ,C(·) is C1 on
[x− h̄, x+ h̄] then condition (V) is equivalent to,

AXϕλ,C(x+) + g′(ψλ,C(x))AXψλ,C(x+) + AXϕλ,C(x−) + g′(ψλ,C(x))AXψλ,C(x−)

+ g′′(ψλ,C(x))

(
ψ′λ,C(x+)− ψ′λ,C(x−)

2

)2

σ2(x) ≤ 0. (3.15)

Proof. Consider an arbitrary x ∈ ∂C . Use the Itô-Tanaka formula, to arrive at the
same expression as in (3.12)–(3.14). Note that the C1 assumption in the statement
of the theorem directly implies that a2 + g′(ψλ,C(x))b2 = 0. This implies, using
(3.12)–(3.14), that the expression that we take the limit of in (V) can be written
as

−a(x, h)

Ex(τh)

= −
Ex
(∫ τh

0

(
AXϕλ,C(Xt)I{Xt 6=x} + g′(ψλ,C(x))AXψλ,C(Xt)I{Xt 6=x}

)
dt
)

Ex(τh)

− 1

2
g′′(ψλ,C(x))

(Ex (ψλ,C(Xτh))− ψλ,C(x))2

Ex(τh)
− ...
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The di�erentiability assumptions and basic properties of di�usions imply that

lim
h↘0

Ex
(∫ τh

0

(
AXϕλ,C(Xt)I{Xt 6=x} + g′(ψλ,C(x))AXψλ,C(Xt)I{Xt 6=x}

)
dt
)

Ex(τh)


=

1

2
(AXϕλ,C(x+) + g′(ψλ,C(x))AXψλ,C(x+))

+
1

2
(AXϕλ,C(x−) + g′(ψλ,C(x))AXψλ,C(x−)) .

Now use Proposition 3.3 to obtain the result.

Theorem 3.7 below presents a necessary condition for equilibria for x ∈ C in the
case that the equilibrium intensity function is strictly positive, under additional
assumptions. This result will be used when we make an ansatz to �nding an
equilibrium stopping time in Section 4.1.

Theorem 3.7. Suppose that τλ,C is an equilibrium stopping time with λ(x) > 0
for x ∈ C and that ψλ,C is C2 on C . Then ψλ,C satis�es the (non-linear) ODE

−
(
µ(x)ψ′λ,C(x) +

1

2
σ2(x)ψ′′λ,C(x)

)
(h(x)− ψλ,C(x))g′′(ψλ,C(x))

= µ(x){f ′(x) + h′(x)g′(ψλ,C(x))}+
1

2
σ2(x){f ′′(x) + d(x)}, for x ∈ C,(3.16)

where

d(x) :=g′′′(ψλ,C(x))(ψ′λ,C(x))2 (h(x)− ψλ,C(x))

+ 2g′′(ψλ,C(x))ψ′λ,C(x)(h′(x)− ψ′λ,C(x)) + g′(ψλ,C(x))h′′(x).(3.17)

Moreover, the equilibrium intensity function λ satis�es

λ(x)(h(x)− ψλ,C(x))2g′′(ψλ,C(x))

= µ(x){f ′(x) + h′(x)g′(ψλ,C(x))}+
1

2
σ2(x){f ′′(x) + d(x)}, for x ∈ C.(3.18)

Proof. Suppose that τλ,C is an equilibrium stopping time with λ(x) > 0 for
x ∈ C . Consider an arbitrary �xed x ∈ C . By de�nition Jλ,C(x) = ϕλ,C(x) +
g(ψλ,C(x)) and hence

AX(Jλ,C(x)− ϕλ,C(x)− g(ψλ,C(x))) = 0. (3.19)

Condition (III) holds by Theorem 3.2, i.e.

0 = f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))
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= f(x)− (ϕλ,C(x) + g(ψλ,C(x))) + g(ψλ,C(x)) + g′(ψλ,C(x)) (h(x)− ψλ,C(x)) .

Since Jλ,C(x) = ϕλ,C(x) + g(ψλ,C(x)) we thus obtain

Jλ,C(x) = f(x) + g(ψλ,C(x)) + g′(ψλ,C(x)) (h(x)− ψλ,C(x)) .

This implies that

Jλ,C(x)− ϕλ,C(x)− g(ψλ,C(x))

= f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x)) . (3.20)

We will notationally suppress λ,C and (x) in the rest of the proof. From (3.19)
and (3.20) follows thatAXf−AXϕ+AX (g′(ψ) (h− ψ)) = 0 which implies that

AXϕ = AXf + AX (g′(ψ) (h− ψ)) . (3.21)

Now use Lemma 5.1 and then condition (III) to see that

AXϕ = λ(ϕ− f)

= λg′(ψ) (h− ψ) . (3.22)

Let us investigate the expressions in the right side of (3.21). The assumed di�er-
entiability implies that

AXf = µf ′ +
1

2
σ2f ′′, and

AX (g′(ψ) (h− ψ)) = µ(g′(ψ) (h− ψ))′ +
1

2
σ2(g′(ψ) (h− ψ))′′.

Use standard di�erentiation rules to �nd that the derivatives in the last expres-
sion can be written as

(g′(ψ) (h− ψ))′ = g′′(ψ)ψ′ (h− ψ) + g′(ψ) (h′ − ψ′)
= ψ′{g′′(ψ) (h− ψ)− g′(ψ)}+ h′g′(ψ)

= ψ′b+ h′g′(ψ),

where we use the temporary notation b := g′′(ψ) (h− ψ)− g′(ψ), and

(g′(ψ) (h− ψ))′′

= g′′′(ψ)ψ′ψ′ (h− ψ) + g′′(ψ)ψ′′ (h− ψ) + g′′(ψ)ψ′ (h′ − ψ′) + g′′(ψ)ψ′ (h′ − ψ′)

+ g′(ψ) (h′′ − ψ′′)
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= g′′′(ψ)(ψ′)2 (h− ψ) + 2g′′(ψ)ψ′(h′ − ψ′) + g′(ψ)h′′

+ ψ′′{g′′(ψ) (h− ψ)− g′(ψ)}
= d+ ψ′′b,

where d is de�ned in (3.17). It follows that the right side of (3.21) can be written
as

AXf + AX (g′(ψ) (h− ψ))

= µf ′ +
1

2
σ2f ′′ + µ(ψ′b+ h′g′(ψ)) +

1

2
σ2(d+ ψ′′b)

= µ{f ′ + h′g′(ψ)}+
1

2
σ2{f ′′ + d}+ b{µψ′ + 1

2
σ2ψ′′}

= µ{f ′ + h′g′(ψ)}+
1

2
σ2{f ′′ + d}+ bAXψ

= µ{f ′ + h′g′(ψ)}+
1

2
σ2{f ′′ + d}+ bλ(ψ − h),

where we in the last two rows relied on Lemma 5.1 (which analogously holds
also for the function ψ) and the di�erential operator form ofAX (where we again
relied on the assumed di�erentiability for ψ). Use the equality above, (3.21) and
(3.22) to obtain

λg′(ψ) (h− ψ) = µ{f ′ + h′g′(ψ)}+
1

2
σ2{f ′′ + d}+ bλ(ψ − h).

This implies that

λ (h− ψ) {g′(ψ) + b} = µ{f ′ + h′g′(ψ)}+
1

2
σ2{f ′′ + d}.

Use that b + g′(ψ) = g′′(ψ) (h− ψ) to see that (3.18) follows. Now use Lemma
5.1 to obtain AXψ = λ(ψ − h). Using the assumed di�erentiability for ψ we
also obtain AXψ = µψ′ + 1

2
σ2ψ′′. Hence, λ(h− ψ) = −

(
µψ′ + 1

2
σ2ψ′′

)
which,

together with (3.18), implies that (3.16) holds.

4 Examples

In this section we will use the general results of the previous section to solve two
particular time-inconsistent stopping problems.
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4.1 A variance stopping problem

The variance stopping problem corresponds to the time-inconsistent problem of
trying to maximize

Varx(Xτ ).

An economic motivation for a variance stopping problem is found in [29] and
the references therein. Variance stopping problems are also studied in [13, 14]
using randomized stopping times. We also refer to [7, 8]. All these references
consider the problem from the perspective of the pre-commitment approach.
The variance problem is given by f(x) := x2, g(x) := −x2 and h(x) := x. To
see this note that

Jτ (x) = ϕτ (x) + g(ψτ (x))

= Ex(f(Xτ )) + g(Ex(h(Xτ )))

= Ex(X2
τ )− E2

x(Xτ )

= Varx(Xτ ).

We consider a positive state process X . In this case Assumption 2.6 is satis�ed.
It follows that

g′(ψλ,C(x)) = −2ψλ,C(x) and Jλ,C(x) = ϕλ,C(x)− ψ2
λ,C(x). (4.1)

Hence,

f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))

= x2 − ϕλ,C(x)− 2ψλ,C(x) (x− ψλ,C(x))

= x2 − ϕλ,C(x)− 2xψλ,C(x) + 2ψ2
λ,C(x)

= −(ϕλ,C(x)− ψ2
λ,C(x)) + x2 − 2xψλ,C(x) + ψ2

λ,C(x)

= −Jλ,C(x) + (ψλ,C(x)− x)2. (4.2)

Since the variance is trivially minimized by stopping immediately it follows that
no equilibrium stopping time can ever recommend immediate stopping. Hence,
we make an ansatz withC = E. Speci�cally, we make the ansatz that an equilib-
rium stopping time is given by τλ,E for some strictly positive intensity function
λ which is to be determined. We will use the notation τλ,E = τλ, ψλ,E = ψλ etc.
We immediately obtain the following result.
Theorem 4.1. A stopping time τλ ∈ N , with λ(x) > 0 for each x ∈ E, is an
equilibrium stopping time for the variance problem if and only if

Jλ(x) = (ψλ(x)− x)2, for x ∈ E. (4.3)

Moreover, if (4.3) holds then Jλ given by (4.3) is the corresponding equilibrium value
function.
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Proof. Use that h(x) = x,−f(x)−g(x) = 0 and (4.2) to see that if (4.3) holds then
(I) and (III) hold, whereas (II), (IV) and (V) can be considered trivially ful�lled,
since we use C = E and λ(x) > 0. Now, if (III) holds then it follows from (4.2)
and C = E that (4.3) holds. Thus, the �rst assertion follows from Theorem 3.2.
The second assertion follows immediately.

Let us use the ODE condition (3.16) in Theorem 3.7 to identify a candidate for ψλ
and then use the result (3.18) to identify the corresponding candidate equilibrium
intensity function λ. In the present case the ODE (3.16) is

−
(
µ(x)ψ′λ(x) +

1

2
σ2(x)ψ′′λ(x)

)
(x− ψλ(x))(−2)

= µ(x){2x− 2ψλ(x)}+
1

2
σ2(x){2 + d(x)},

with

d(x) = 0− 2 · 2ψ′λ(x)(1− ψ′λ(x))

= 4(ψ′λ(x))2 − 4ψ′λ(x),

where we used (4.1), f ′(x) = 2x, g′′′(x) = 0 etc. We note that if x− ψλ(x) 6= 0,
then the ODE simpli�es to

µ(x)ψ′λ(x) +
1

2
σ2(x)ψ′′λ(x) = µ(x) +

1

2
σ2(x)

2 + d(x)

2x− 2ψλ(x)

= µ(x) +
1

2
σ2(x)

1 + 2(ψ′λ(x))2 − 2ψ′λ(x)

x− ψλ(x)

= µ(x) +
1

2
σ2(x)

(ψ′λ(x)− 1)2 + (ψ′λ(x))2

x− ψλ(x)
.(4.4)

In case X is a geometric Brownian motion it turns out that the problem can be
solved explicitly. Thus, from now we assume (in this example) that

dXt = µXtdt+ σXtdWt. (4.5)

In this case (4.4) becomes

µx(ψ′λ(x)− 1) +
1

2
σ2x2

(
ψ′′λ(x)− (ψ′λ(x)− 1)2 + (ψ′λ(x))2

x− ψλ(x)

)
= 0. (4.6)

The ODE (4.6) has, under appropriate assumptions for the constants µ and σ, one
solution (at least) on the form ψλ(x) = cx for some constant c 6= 0, 1. To see this
use that ψ′′λ(x) = (cx)′′ = 0 and that x > 0, since E = (0,∞) for the GBM. Now
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use (3.18) and the candidate ψλ(x) = cx to obtain the corresponding candidate
intensity

λ(x) =
µ(x){f ′(x) + h′(x)g′(ψλ(x))}+ 1

2
σ2(x){f ′′(x) + d(x).}

(h(x)− ψλ(x))2g′′(ψλ(x))

=
µx{2x− 2cx}+ 1

2
σ2x2{2 + 4c2 − 4c.}

(x− cx)2(−2)

=
µ{1− c}+ 1

2
σ2{1 + 2c2 − 2c.}

−(1− c)2
. (4.7)

This means the candidate solution ψλ(x) = cx corresponds to using a constant
intensity (depending on the constant c). This constant candidate intensity could,
with some e�ort, be found by identifying the constant(s) c such that ψλ(x) = cx
solves (4.6), and inserting this c into (4.7) and thereby obtaining a corresponding
constant equilibrium intensity candidate. We shall, however, instead use Theo-
rem 4.1 to identify the constant equilibrium intensity (it turns out that only one
constant equilibrium intensity exists) and thereby verify that the ansatz works.
This is done in the proof of Theorem 4.2.
Theorem 4.2. LetX be given by (4.5) where the constants µ and σ satisfy σ2 > 0
and

2µ+ σ2 < 0. (4.8)

Then τλ, with

λ =

√
−µ2(2µ+ σ2)

σ2
, (4.9)

is an equilibrium stopping time. The corresponding equilibrium value function is

Jλ(x) =
1(√

−(2µ+σ2)
σ2 + 1

)2x
2.

Remark 4.3. From the formula for the variance of the log-normal Xt it follows
that limt→∞ Varx(Xt) = 0 for anyx ∈ E if (4.8) holds, whereas limt→∞ Varx(Xt) =
∞ for any x ∈ E if (4.8) does not hold. Hence, we only consider the case when
(4.8) holds. We remark that condition (4.8) is also used in [29].

Proof. We remark that it follows from the calculations below that τλ is admis-
sible. Using that Xt = xe(µ−

1
2
σ2)t+σWt is log-normal and conditioning on the

exponentially distributed stopping time τλ we directly obtain

ψλ(x) = Ex(Xτλ) =
λ

λ− µ
x and ϕλ(x) = Ex(X2

τλ) =
λ

λ− 2µ− σ2
x2.
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Figure 1: The equilibrium value function x 7→ Jλ(x), where λ is given by (4.9),
for the parameters µ = −0.1 and σ2 = 0.15. In this case λ ≈ 0.0577.

Here we relied on the denominators being positive, which follows directly from
λ > 0 and µ < 0, and λ > 0 and (4.8) respectively; where (4.8) implied that
µ < 0 and λ > 0. It follows that

ψ2
λ(x) =

λ2

(λ− µ)2
x2,

(ψλ(x)− x)2 =

(
λ

λ− µ
− 1

)2

x2

=
µ2

(λ− µ)2
x2.

Using (4.1) and (4.9) we thus obtain, for any �xed x ∈ E,

Jλ(x)− (ψλ(x)− x)2

x2

=
ϕλ(x)− ψ2

λ(x)− (ψλ(x)− x)2

x2

=
λ

λ− 2µ− σ2
− λ2 + µ2

(λ− µ)2

=
λ(λ− µ)2 − (λ− 2µ− σ2)(λ2 + µ2)

(λ− 2µ− σ2)(λ− µ)2

=
(λ3 − 2λ2µ+ λµ2)− (λ3 − 2µλ2 − σ2λ2 + λµ2 − 2µ3 − σ2µ2)

(λ− 2µ− σ2)(λ− µ)2
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=
2µ3 + µ2σ2 + σ2λ2

(λ− 2µ− σ2)(λ− µ)2
.

From Theorem 4.1 it therefore follows that τλ is an equilibrium stopping time
when 2µ3 + µ2σ2 + σ2λ2 = 0, i.e. when λ satis�es λ2 = −µ2(2µ+σ2)

σ2 . This proves
the �rst assertion. Using the calculations above, µ < 0, and Theorem 4.1, we
obtain

Jλ(x) =(ψλ(x)− x)2

=
µ2

(λ− µ)2
x2

=
µ2(√

−µ2(2µ+σ2)
σ2 − µ

)2x
2

=
1(√

−(2µ+σ2)
σ2 + 1

)2x
2,

which is the second assertion.

Remark 4.4. In [14], the results from [29] on the pre-commitment version of the
variance stopping problem are generalized to underlying geometric Lévy pro-
cesses. In this paper, we have decided to developed the theory only for underly-
ing di�usion processes to avoid certain technical di�culties. Therefore, applying
our time-consistent approach to underlying jump processes would need some
further work that we do not carry out here. We, nonetheless, want to mention
that obtaining equilibrium conditions of the form (4.3) for the variance problem
for underlying geometric Lévy processes of the form Xt = X0e

Lt , L a Lévy pro-
cess, can also be obtained. It is then interesting to note that considering τλ for a
constant λ > 0 yields – under suitable integrability conditions – that

ψλ(x) = E1(Xτλ)x = aλx, aλ =
λ

λ−ΨL(1)
and

ϕλ(x) = E1(X
2
τλ)x2 = bλx

2, bλ =
λ

λ−Ψ2L(1)
,

where Ψ denotes the Laplace exponent. Hence, a similar calculation as in the
previous proof yields both a formula for λ and the corresponding equilibrium
value function also in this case.

4.2 A mean-variance stopping problem

Mean-variance optimization is one of the classical problems in �nancial eco-
nomics. It was �rst studied in the context of optimal portfolio allocation in the
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seminal paper [24]. A vast number of papers on the topic have since then been
published. For short surveys and economic motivation of mean-variance prob-
lems we refer to [5, 30] and the references therein. The mean-variance stopping
problem corresponds to the time-inconsistent problem of trying to maximize

Ex(Xτ )− γVarx(Xτ ), with γ > 0.

Here γ is a given constant representing risk-aversion. In [30] a mean-variance
stopping problem for a geometric Brownian motion is studied using the dynamic
optimality approach and the pre-commitment approach. In [1] a mean-variance
stopping problem for a general discrete time Markov chain is studied, see also
Section 1.1. In [5] a mean-variance control problem is studied using the general
game-theoretic framework for time-inconsistent stochastic control of [3].
The mean-variance stopping problem is given by f(x) := −γx2, g(x) := x+γx2

and h(x) := x. To see this note that

Jτ (x) = ϕτ (x) + g(ψτ (x))

= Ex(f(Xτ )) + g(Ex(h(Xτ )))

= −γ Ex(X2
τ ) + Ex(Xτ ) + γ E2

x(Xτ )

= Ex(Xτ )− γVarx(Xτ ).

We consider a positive state process X . In this case Assumption 2.6 is satis�ed.
Note that g′(h(x)) = 1 + 2γx, g′(ψλ,C(x)) = 1 + 2γψλ,C(x), and Jλ,C(x) =
ϕλ,C(x) + ψλ,C(x) + γψ2

λ,C(x). Therefore,

f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))

= −γx2 − ϕλ,C(x) + (1 + 2γψλ,C(x)) (x− ψλ,C(x))

= −γx2 − ϕλ,C(x) + x− ψλ,C(x) + 2γxψλ,C(x)− 2γψ2
λ,C(x)

= x− (ϕλ,C(x) + ψλ,C(x) + γψ2
λ,C(x))− (γx2 − 2γxψλ,C(x) + γψ2

λ,C(x))

= x− Jλ,C(x)− γ(ψλ,C(x)− x)2.

It follows that conditions (III) and (IV) can be written as

Jλ,C(x) = x− γ(ψλ,C(x)− x)2, for x ∈ C with λ(x) > 0,

Jλ,C(x) ≥ x− γ(ψλ,C(x)− x)2, for x ∈ C with λ(x) = 0.

Using that f(x) + g(h(x)) = x we write condition (I) as,

Jλ,C(x) ≥ x, for x ∈ C. (4.10)
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Let us again consider the geometric Brownian motion. In the typical case it is
reasonable to suppose that Jλ,C(x)− x > 0 for x ∈ C and in this case we note,
using Lemma 5.2, that if τ η,D ∈ N with η = 0, then, for x ∈ C ∩D,

lim
h↘0

Jτλ,C (x)− Jτλ,C�τη,D(h)(x)

Ex(τh)
= λ(x){f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))}
= λ(x){x− Jλ,C(x)− γ(ψλ,C(x)− x)2}
< 0.

Consequently we make the ansatz λ(x) = 0 for x ∈ C . Speci�cally, we make the
ansatz that τC for C = (0, b) is an equilibrium stopping time for some b to be
determined. We start by noting that if τC satis�es (4.10) then condition (I) and
condition (IV) are satis�ed, and condition (III) is irrelevant (since the ansatz is
λ = 0 on C). Hence, if we can �nd a set C = (0, b) such that (4.10), (II) and (V)
are satis�ed then τC is an equilibrium strategy.

Theorem 4.5. Let X be given by

dXt = µXtdt+ σXtdWt, where σ2 > 0.

If µ ∈ (0, σ2/4], then τ̂ = inf{t ≥ 0 : Xt ≥ b} with b = ξ
γ(1−ξ) , where ξ := 2µ

σ2 , is
an equilibrium stopping time and the corresponding equilibrium value function is,

Jτ̂ (x) =

x, x ≥ b,

x1−ξ(bξ − γb1+ξ) + γb2ξx2−2ξ, x < b.

Remark 4.6. If µ ≤ 0 thenX is a supermartingale (with a last element) and it fol-
lows directly from Jτ (x) = Ex(Xτ )−γVarx(Xτ ), De�nition 2.3 and the optional
sampling theorem that it is an equilibrium strategy to always stop immediately.
If µ ≥ σ2

2
then τ b := inf{t ≥ 0 : Xt ≥ b} <∞ a.s. for any initial state x ≤ b for

each b ∈ E and Jτb(x) = Ex(Xτb)−γ
(
Ex(X2

τb)− E2
x(Xτb)

)
= b−γ(b2−b2) = b

can thus become arbitrarily large.
Remark 4.7. A mean-variance optimal stopping problem for a GBM is studied in
[30]. There it is shown that the stopping time τ̂ in Theorem 4.5 is dynamically
optimal when µ ∈ (0, σ2/2), see [30, Theorem 3]. It is also argued that this
stopping time is a subgame perfect Nash equilibrium when µ ∈ (0, σ2/4] , see
[30, Sec. 4], which is in line with our �ndings in Theorem 4.5. For the case
µ ∈ (σ2/4, σ2/2), it can be proved that the threshold time τ̂ is not an equilibrium
stopping time in our setting.
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Figure 2: The equilibrium value function x 7→ Jτ̂ (x) (solid) and x 7→ f(x) +
g(x) = x (dashed) in the GBM case with parameters µ = 0.07, σ2 = 0.45 and
γ = 1.1 (in this case b ≈ 0.4106).

Proof. We remark that it follows from the calculations below that τ̂ is admissible.
A stopping time is, according to Theorem 3.2, an equilibrium stopping time if and
only if conditions (I)—(V) are satis�ed. Note that we do not have to check (III)
since τ̂ has no Cox process component, which corresponds to λ(x) = 0 for each
x. Recall that if (4.10) is satis�ed then (I) and (IV) are also satis�ed. Note that (II)
can in this case be written as

AXf(x) + g′(h(x))AXh(x)

=

(
µx

∂

∂x
+

1

2
σ2x2

∂2

∂x2

)
(−γx2) + (1 + 2γx)

(
µx

∂

∂x
+

1

2
σ2x2

∂2

∂x2

)
x

= −γ
(
2µx2 + σ2x2

)
+ (1 + 2γx)µx

= x(−γσ2x+ µ)

≤ 0, for x ∈ int(Cc). (4.11)

It follows that if we can verify (4.10), (4.11) and (V) for τ̂ then we are done. Let us
now consider the candidate equilibrium stopping time τ b := inf{t ≥ 0 : Xt ≥ b}
and use the smooth �t condition to see that necessarily b = ξ

γ(1−ξ) . Recall, from
standard theory, that for any b,

Px(τ b <∞) = bξ−1x1−ξ, for x ≤ b.

Since Xt → 0 a.s. as t→∞, it hence holds, for any x ≤ b, that

ψτb(x) = Ex(Xτb)
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= Ex(XτbI{τb<∞}) + Ex(XτbI{τb=∞})

= bPx(τ b <∞)

= bξx1−ξ.

Similarly, Ex(X2
τb) = b1+ξx1−ξ. Hence, for x ≤ b,

Jτb(x) = Ex(Xτb)− γ
(
Ex(X2

τ )− E2
x(Xτ )

)
= bξx1−ξ − γ(b1+ξx1−ξ − (bξx1−ξ)2)

= x1−ξ(bξ − γb1+ξ) + γb2ξx2−2ξ.

It is easy to verify that Jτb(b) = b, for any b, and hence the function

Jτb(x) =

x, x ≥ b,

x1−ξ(bξ − γb1+ξ) + γb2ξx2−2ξ, x < b,

is continuous. Note that

J ′τb(x) =

1, x > b,

(1− ξ)x−ξ(bξ − γb1+ξ) + (2− 2ξ)γb2ξx1−2ξ, x < b,

where the lower part is, for x = b, equal to:

(1− ξ)b−ξ(bξ − γb1+ξ) + (2− 2ξ)γb2ξb1−2ξ = (1− ξ)(1− γb) + 2(1− ξ)γb
= (1− ξ)(1 + γb).

In order for the smooth �t condition (Theorem 3.5) to be satis�ed we need that
J ′τb(b) is equal to f ′(x)+g′(h(x))h′(x) = 1. We thus need that (1−ξ)(1+γb) = 1.
Hence, the only possible b is given by

b =
1

γ

(
1

(1− ξ)
− 1

)
=

ξ

γ(1− ξ)
.

It is easily veri�ed that (4.11) holds when b = ξ
γ(1−ξ) , using that µ ∈ (0, σ2/4]

and ξ ∈ (0, 1/2]. From the explicit form of Jτb(x) above it follows that (4.10) is
satis�ed exactly when

x1−ξ(bξ − γb1+ξ) + γb2ξx2−2ξ − x ≥ 0, for x < b.

It is straightforward to show that this inequality is satis�ed, using that ξ ∈
(0, 1/2] and b = ξ

γ(1−ξ) , and thereby verifying (4.10). The only thing we have
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left is to verify (V), which we will do using Theorem 3.6. From the calculations
above follows that

ϕτb(x) = Ex(−γX2
τb) =

−γx2, x ≥ b,

−γb1+ξx1−ξ, x < b,

ψτb(x) = Ex(Xτb) =

x, x ≥ b,

bξx1−ξ, x < b.

Let us drop the subscript τ b in the rest of the example. It follows that

ϕ′(x) =

−2γx, x > b,

−(1− ξ)γb1+ξx−ξ, x < b,

ϕ′′(x) =

−2γ, x > b,

ξ(1− ξ)γb1+ξx−ξ−1, x < b.

Thus,

AXϕ(x) = µxϕ′(x) +
1

2
σ2x2ϕ′′(x)

=

−2µγx2 − 1
2
σ2x22γ, x > b,

−µx(1− ξ)γb1+ξx−ξ + 1
2
σ2x2ξ(1− ξ)γb1+ξx−ξ−1, x < b,

=

−2γx2(µ+ 1
2
σ2), x > b,

−(1− ξ)γb1+ξx1−ξ(µ− 1
2
σ2ξ), x < b,

=

−2γx2(µ+ 1
2
σ2), x > b,

0, x < b,

where we in the last equality used that ξ = 2µ/σ2. Similarly,

ψ′(x) =

1, x > b,

(1− ξ)bξx−ξ, x < b,

ψ′′(x) =

0, x > b,

−ξ(1− ξ)bξx−ξ−1, x < b,

AXψ(x) = µxψ′(x) +
1

2
σ2x2ψ′′(x)

=

µx, x > b,

µx(1− ξ)bξx−ξ − 1
2
σ2x2ξ(1− ξ)bξx−ξ−1, x < b,
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=

µx, x > b,

(1− ξ)bξx1−ξ(µ− 1
2
σ2ξ), x < b,

=

µx, x > b,

0, x < b.

Note that g′(ψ(b)) = 1 + 2γψ(b) = 1 + 2γb. Thus,

AXϕ(x) + g′(ψ(b))AXψ(x) =

−2γx2(µ+ 1
2
σ2) + (1 + 2γb)µx, x > b,

0, x < b.

=

x{(1 + 2γb)µ− 2γx(µ+ 1
2
σ2)}, x > b,

0, x < b,

=

x{µ+ 2γµ(b− x)− γσ2x}, x > b,

0, x < b.
(4.12)

It is easily checked that ϕ and ψ are a C2 everywhere except at x = b and that
ϕ(·) + g′(ψ(b))ψ(·) is C1 everywhere. Hence, we may use Theorem 3.6. Let us
verify that (3.15) holds:
Trivially, g′′(b) = 2γ. For the GBM it holds that σ2(x) = x2σ2. Moreover,
ξ2

2
σ2 = ξµ, γb = ξ

1−ξ and −1 + σ2ξ/µ = 1. Using these �ndings, including
(4.12), we obtain

AXϕ(b+) + g′(ψ(b))AXψ(b+) + AXϕ(b−) + g′(ψ(b))AXψ(b−)

+ g′′(ψ(b))

(
ψ′(b+)− ψ′(b−)

2

)2

σ2(b)

= b(µ− γσ2b) + 0 + 2γ

(
ξ

2

)2

b2σ2

= b

(
µ− γσ2b− γbξ

2

2
σ2

)
= b

(
µ− γσ2b+ γbξµ

)
= b

(
µ(1− ξ)− σ2ξ + ξ2µ

1− ξ

)

= −bµ
(
ξ − 1 + σ2ξ/µ− ξ2

1− ξ

)

= −bµ1 + ξ − ξ2

1− ξ
≤ 0,
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where the inequality follows from ξ ∈ (0, 1/2]. This means that (3.15) holds,
which, by Theorem 3.6, implies that condition (V) holds and we are done.

5 Appendix

Lemma 5.1. For any τλ,C ∈ N and x ∈ C ,

AXϕλ,C(x) = lim
h↘0

ϕτλ,C◦θτh+τh(x)− ϕλ,C(x)

Ex(τh)
= λ(x)(ϕλ,C(x)− f(x)). (5.1)

Proof. Using arguments similar to those we used to arrive at (3.1) and the strong
Markov property we obtain

ϕτλ,C�τλ,C(h)(x) = Ex
(
f
(
Xτλ,C�τλ,C(h)

))
= Ex

(
I{τλ≤τh}f (Xτλ,C ) + I{τλ>τh}f

(
Xτλ,C◦θτh+τh

))
= Ex (f(Xτλ,C ))

= ϕλ,C(x),

for 0 < h ≤ h̄, for some h̄ > 0. This implies that the second equality in (5.1)
follows from Lemma 3.1. Now use the strong Markov property to see that

ϕτλ,C◦θτh+τh(x) = Ex
(
f
(
Xτλ,C◦θτh+τh

))
= Ex

(
Ex
(
f
(
Xτλ,C◦θτh+τh

)
|Fτh

))
= Ex (ϕλ,C(Xτh)) .

Hence, the �rst equality in (5.1) follows from the de�nition of the characteristic
operator AX .

Lemma 5.2. For any τλ,C , τ η,D ∈ N and x ∈ C ∩D,

lim
h↘0

Jλ,C(x)− Jτλ,C�τη,D(h)(x)

Ex(τh)
= (λ(x)− η(x)){f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))}.

Proof. Use the same argument as in the proof of Lemma 5.1 to obtain

Jτλ,C (x)− Jτλ,C�τη,D(h)(x)
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= Jτλ,C�τλ,C(h)(x)− Jτλ,C◦θτh+τh(x)− (Jτλ,C�τη,D(h)(x)− Jτλ,C◦θτh+τh(x)).(5.2)

The second part of (5.2) can, by de�nition, be written as

Jτλ,C�τη,D(h)(x)− Jτλ,C◦θτh+τh(x)

= ϕτλ,C�τη,D(h)(x)− ϕτλ,C◦θτh+τh(x) + g(ψτλ,C�τη,D(h)(x))− g(ψτλ,C◦θτh+τh(x)).

From Lemma 3.1 it follows that

lim
h↘0

ϕτλ,C�τη,D(h)(x)− ϕτλ,C◦θτh+τh(x)

Ex(τh)
= η(x)(f(x)− ϕλ,C(x)).

Use the same arguments as for (3.2) to obtain (here ηt := η(Xt))

ψτλ,C�τη,D(h)(x)

= ψτλ,C◦θτh+τh(x) + Ex
(∫ τh

0
ηte
−
∫ t
0
ηsds (h(Xt)− ψλ,C (Xτh)) dt

)
.

Using standard Taylor expansion we thus obtain

g(ψτλ,C�τη,D(h)(x))− g(ψτλ,C◦θτh+τh(x))

= g
(
ψτλ,C◦θτh+τh(x) + Ex

(∫ τh

0
ηte
−
∫ t
0
ηsds (h(Xt)− ψλ,C (Xτh)) dt

))
− g(ψτλ,C◦θτh+τh(x))

= g′
(
ψλ,C◦θτh+τh(x)

)
Ex
(∫ τh

0
ηte
−
∫ t
0
ηsds (h(Xt)− ψλ,C (Xτh)) dt

)
+ o(Ex(τh)).

Use the equality above and ψτλ,C◦θτh+τh(x) = Ex (ψλ,C(Xτh)) to obtain

lim
h↘0

g(ψτλ,C�τη,D(h)(x))− g(ψτλ,C◦θτh+τh(x))

Ex(τh)

= lim
h↘0

g′
(
ψτλ,C◦θτh+τh(x)

)
Ex
(∫ τh

0 ηte
−
∫ t
0
ηsds (h(Xt)− ψλ,C (Xτh)) dt

)
Ex(τh)

= g′(ψλ,C(x))η(x)(h(x)− ψτλ,C (x)).

Putting the above together gives us that the limit for the second part of (5.2)
satis�es

lim
h↘0

Jτλ,C�τη,D(h)(x)− Jτλ,C◦θτh+τh(x)

Ex(τh)
= η(x){f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))}. (5.3)
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In the same way we obtain that the limit for the �rst part of (5.2) satis�es

lim
h↘0

Jτλ,C�τλ,C(h)(x)− Jτλ,C◦θτh+τh(x)

Ex(τh)
= λ(x){f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))}. (5.4)

The result follows from (5.2), (5.3) and (5.4).

Lemma 5.3. For any τλ,C , τ η,D ∈ N and x ∈ int(Cc) ∩D,

lim
h↘0

Jλ,C(x)− Jτλ,C�τη,D(h)(x)

Ex(τh)
= −AXf(x)− g′(h(x))AXh(x).

Proof. Since D and int(Cc) are open it follows that there exists a constant h̄ > 0
such that, for 0 < h ≤ h̄,

τλ,C � τ η,D(h) = I{τη,D≤τh}τ
η,D + I{τη,D>τh}(τ

λ,C ◦ θτh + τh)

= I{τη≤τh}τ
η + I{τη>τh}(τ

λ,C ◦ θτh + τh)

= I{τη≤τh}τ
η + I{τη>τh}τh

= τ η ∧ τh.

Since x ∈ int(Cc) ∩D it follows that

Jτλ,C (x)− Jτλ,C�τη,D(h)(x)

= f(x)− ϕτλ,C�τη,D(h)(x) + g(h(x))− g(ψτλ,C�τη,D(h)(x)). (5.5)

Use Itô’s formula to rewrite the �rst part of (5.5) as

f(x)− ϕτλ,C�τη,D(h)(x) = f(x)− Ex
(
f
(
Xτλ,C�τη,D(h)

))
= f(x)− Ex (f (Xτη∧τh))

= −Ex
(∫ τη∧τh

0
AXf(Xt)dt

)
.

It follows that
lim
h↘0

f(x)− ϕτλ,C�τη,D(h)(x)

Ex(τh)
= −AXf(x).

Use similar arguments and standard Taylor expansion to rewrite the second part
of (5.5)

g(h(x))− g(ψτλ,C�τη,D(h)(x))

= g(h(x))− g (Ex (h(Xτη∧τh)))
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= g(h(x))− g
(
h(x) + Ex

(∫ τη∧τh

0
AXh(Xt)dt

))

= g(h(x))−
(
g(h(x)) + g′(h(x))Ex

(∫ τη∧τh

0
AXh(Xt)dt

)
+ o(Ex(τh))

)

= −g′(h(x))Ex
(∫ τη∧τh

0
AXh(Xt)dt

)
+ o(Ex(τh)).

Thus,
lim
h↘0

g(h(x))− g(ψτλ,C�τη,D(h)(x))

Ex(τh)
= −g′(h(x))AXh(x).

The result follows.

Lemma 5.4. For any τλ,C , τ η,D ∈ N and x ∈ ∂C ∩D,

lim inf
h↘0

Jλ,C(x)− Jτλ,C�τη,D(h)(x)

Ex(τh)

= lim inf
h↘0

ϕλ,C(x)− Ex (ϕλ,C(Xτh)) + g(ψλ,C(x))− g (Ex (ψλ,C(Xτh)))

Ex(τh)
.

Proof. Here we use the temporary notation (A), (B) etc de�ned below. Write

Jλ,C(x)− Jτλ,C�τη,D(h)(x)

= Jλ,C(x)− Jτλ,C◦θτh+τh(x)− (Jτλ,C�τη,D(h)(x)− Jτλ,C◦θτh+τh(x))

= (A)− (B).

Write,

(B) := Jτλ,C�τη,D(h)(x)− Jτλ,C◦θτh+τh(x)

= ϕτλ,C�τη,D(h)(x)− ϕτλ,C◦θτh+τh(x) + g(ψτλ,C�τη,D(h)(x))− g(ψτλ,C◦θτh+τh(x))

= (B1) + (B2).

Use that x ∈ D and the same arguments as for (3.2) to see that there exists a
constant h̄ > 0 such that, for each 0 < h ≤ h̄,

(B1) := ϕτλ,C�τη,D(h)(x)− ϕτλ,C◦θτh+τh(x)

= Ex
(∫ τh

0
η(Xt)e

−
∫ t
0
η(Xs)ds (f(Xt)− ϕλ,C (Xτh)) dt

)
.

Similarly, using Taylor expansion, we obtain

(B2) := g(ψτλ,C�τη,D(h)(x))− g(ψτλ,C◦θτh+τh(x))
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= g
(
ψτλ,C◦θτh+τh(x) + Ex

(∫ τh

0
η(Xt)e

−
∫ t
0
η(Xs)ds (h(Xt)− ψλ,C (Xτh)) dt

))

− g
(
ψτλ,C◦θτh+τh(x)

)
= g′(ψτλ,C◦θτh+τh(x))Ex

(∫ τh

0
η(Xt)e

−
∫ t
0
η(Xs)ds (h(Xt)− ψλ,C (Xτh)) dt

)
+ o(Ex(τh))

= g′(Ex (ψλ,C(Xτh)))Ex
(∫ τh

0
η(Xt)e

−
∫ t
0
η(Xs)ds (h(Xt)− ψλ,C (Xτh)) dt

)
+ o(Ex(τh)).

Sinceϕλ,C(x)−f(x) = 0 andψλ,C(x)−h(x) = 0 for x ∈ ∂C , and these functions
are continuous (cf. admissibility), it follows that

lim inf
h↘0

−(B)

Ex(τh)
= lim inf

h↘0

−(B1)− (B2)

Ex(τh)
= 0.

Write

(A) : = Jλ,C(x)− Jτλ,C◦θτh+τh(x)

= ϕλ,C(x) + g(ψλ,C(x))−
(
ϕτλ,C◦θτh+τh(x) + g(ψτλ,C◦θτh+τh(x))

)
= ϕλ,C(x) + g(ψλ,C(x))− (Ex (ϕλ,C(Xτh)) + g(Ex (ψλ,C(Xτh))))

The result follows.

Proof. (of Theorem 3.2). In this proof we use the notation τ̂ = τλ,C . Let us �rst
suppose that τ̂ is an equilibrium stopping time, i.e. that it satis�es (2.2) for each
x ∈ E and each τ η,D ∈ N , and show that this implies that conditions (I)–(V) are
satis�ed. Let us consider di�erent cases for x.

• x ∈ C : Set D = C and use Lemma 5.2 to see that (2.2) can in this case be
written as

(λ(x)− η(x)){f(x)− ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))} ≥ 0.

It follows that conditions (III) and (IV) are satis�ed. To see this recall that
the non-negative function η can be chosen so that η(x) is arbitrarily large
or η(x) = 0.
Now setD = ∅, which implies that the numerator of the left side of (2.2) is
Jλ,C(x)− f(x)− g(h(x)), which does not depend on the constant h. This
implies that (I) holds.
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• x ∈ int(Cc): Set D = int(Cc) and use Lemma 5.3 to see that (2.2) can in
this case be written as −AXf(x) − g′(h(x))AXh(x) ≥ 0. It follows that
condition (II) is satis�ed.

• x ∈ ∂C : Set D = E and use Lemma 5.4 to see that the left side of (2.2) is
equal to the left side of the inequality in (V), which directly implies that
condition (V) holds.

Le us now suppose that τ̂ solves the system (I)–(V) and show that this implies
that τ̂ is an equilibrium stopping time, i.e. that it satis�es (2.2) for each x ∈ E
and each τ η,D ∈ N . Let us consider an arbitrary τ η,D ∈ N and di�erent cases
for x.

• x ∈ D:

– If x ∈ C and λ(x) > 0, then the left side of (2.2) is, by Lemma 5.2,
equal to (λ(x)−η(x)){f(x)−ϕλ,C(x)+g′(ψλ,C(x)) (h(x)− ψλ,C(x))}
and hence (III) implies that (2.2) must hold.

– If x ∈ C and λ(x) = 0, then the left side of (2.2) is, by Lemma 5.2,
equal to−η(x){f(x)−ϕλ,C(x) + g′(ψλ,C(x)) (h(x)− ψλ,C(x))} and
hence (IV) implies that (2.2) must hold.

– If x ∈ int(Cc), then Lemma 5.3 implies that the left side of (2.2) is
equal to−AXf(x)−g′(h(x))AXh(x) and hence (II) implies that (2.2)
must hold.

– If x ∈ ∂C , then Lemma 5.4 and (V) implies that (2.2) must hold.

• x ∈ Dc: The numerator of the left side of (2.2) is in this case Jλ,C(x) −
f(x) − g(h(x)) and hence (I) implies that (2.2) holds for x ∈ C . In case
x /∈ C then the numerator is zero.
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