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Abstract

We consider the spread of a stochastic SIR (Susceptible, Infectious,

Recovered) epidemic on a con�guration model random graph. We

focus especially on the �nal stages of the outbreak and provide limit

results for the duration of the entire epidemic, while we allow for non-

exponential distributions of the infectious period and for both �nite

and in�nite variance of the asymptotic degree distribution in the graph.

Our analysis relies on the analysis of some subcritical continuous

time branching processes and on ideas from �rst-passage percolation.

Keywords: SIR epidemics; Time to extinction; Branching process
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1 Introduction

Mathematical models have been widely used to study the spread of infectious
diseases and to design control strategies for reducing the impact of those dis-
eases [11]. In many models, a fundamental assumption for the spread of
so-called Susceptible-Infectious-Recovered (SIR) epidemics is that the indi-
viduals are uniformly mixing, i.e. all pairs of individuals in the population
contact each other at the same rate, independently of each other. However,
in real life, individuals do not mix homogeneously within populations. In
order to gain some realism, a (social) network structure may be introduced
to the models where contacts are only possible between �neighbours� (pairs
of individuals that share a connection in the network; see e.g. [2, 21]). In
this set-up, each vertex represents an individual and an edge represents that
two individuals have a relationship that makes it possible for the disease to
transmit from one to the other.

Much work has already been done for (variants) of epidemics on random
graphs, e.g. by calculating the �nal size of the epidemic (the fraction of the
population infected during the epidemic) and the probability of a large or
major outbreak [10, 4]. In this paper we focus on the (random) duration of an
epidemic on a con�guration model graph. This duration is especially relevant
for animal diseases. When outbreaks of those diseases occur, often trade
bans are imposed on import from a�ected counties. So, longer durations of
epidemics might lead to severe economic costs.

For homogeneously mixing populations Barbour [6] provides rigorous re-
sults on the duration of (Markov) SIR epidemics and Britton [10] also
sketched some results about the duration of epidemic in a homogeneously
mixing population. A corollary of their results is that the time until the epi-
demic goes extinct is Θ(log n), where n is the population size and the �order
notation� is discussed in Section 2.1.

We consider SIR epidemics (see Section 2.3) on con�guration model
graphs in the large population limit. Con�guration model graphs are ran-
dom graphs with speci�ed vertex degrees (see Section 2.2, or for a detailed
description see [12, 14]). In this graph each individual/vertex has his or her
�xed degree (number of neighbours) with whom he/she can interact. The
neighbouring vertices are chosen in such a way that the graph is uniform
among all possible multigraphs with the given degree sequence.

We only consider major outbreaks of the epidemic, i.e. we assume that
the number of ultimately infected individuals is of the same order as the
number of individuals in the population. The beginning (until a small but
non-negligible fraction of the population is infected) and the middle part
(until a small but non-negligible fraction of the ultimately infected individuals
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still has to be infected) of a major outbreak on a con�guration model have
been studied before (e.g. in [7, 25, 17]). Volz [25] studied a deterministic
model for the spread of an SIR epidemic through a network using a set of
di�erential equations, keeping track of the probability that a vertex of given
degree avoids infection as a function of time. Barbour and Reinert [7] study
(among other things) a stochastic model for the spread of SIR epidemics
on a con�guration model with bounded degrees and minor conditions on
the infectious period distribution. The approach of the paper is tailored for
�nding the distribution of the time a typical individual in the population gets
infected, but is not directly suitable for �nding the time of the last infected
individual recovering (the end of the epidemic). Janson et al. [17] study the
spread of Markov SIR epidemics on quite general con�guration models and
their analysis heavily relies on the memoryless infectious period. As in [25]
and [7], Janson et al. do not study the time until the end of the epidemic.

The spread of epidemics on random graphs can also be studied using
�rst-passage percolation [9, 8, 1]. In �rst passage percolation i.i.d. weights
(lengths) are assigned to edges in the graph and questions regarding distances
between typical vertices in the graph can be answered. In epidemiological
terms the distance between a uniformly chosen vertex and the initially in-
fected vertex may be interpreted as the time of infection of that uniformly
chosen vertex in an SI epidemic (i.e. an SIR epidemic with in�nite infec-
tious period). In this setting the question regarding the duration of an SI
epidemic corresponds to the �ooding time of the giant component of the
random graph [1].

In the analysis of �rst passage percolation on random graphs in [9, 8]
growing �balls� around vertices are explored and the time at which the balls
touch provides precise results on the distance between the center vertices of
those balls. These methods are very well suited for obtaining the asymptotic
distribution of the distance between two vertices, but are less �t for �nding
�ooding times and diameters (however, see [1]).

As written above, we focus on the duration of the whole epidemic, and in
particular on the end of the epidemic. We allow for quite general infectious
period distributions (see Theorem 2.1 below), and do not have to restrict
ourselves to in�nite infectious periods as is the case in the �rst passage per-
colation literature. Furthermore, we pose milder conditions on the degree
distribution of the con�guration model than Barbour and Reinert [7], who
also allow for relatively general infectious period distributions. Our approach
is to use the results of [7] (which are obtained through methods similar to
those used in �rst passage percolation) to obtain the time until a typical
vertex gets infected and then use subcritical branching processes to approx-
imate the time between the infection of a typical vertex and the end of the
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whole epidemic. We show that the duration of the epidemic divided by log n
converges in probability to a (speci�ed) constant. We note that our result
is weaker in nature than the results of [7, 9, 8], where asymptotic distribu-
tions of infection times/distances of uniformly chosen vertices minus their
typical distances are provided. However, as stated, we allow for more general
distributions of the infectious period and degree distributions.

1.1 Outline of paper

The paper is structured as follows. In Section 2 we give a formal de�nition
of the model and we provide the main theorem of this paper, which deals
with the duration of the epidemic.

In Section 3 we discuss some techniques for analysing epidemics on graphs.
In particular, we introduce so called �epidemic generated graphs�. Further-
more, we summarise results on continuous time branching processes that we
need in the paper.

In Section 4 heuristics are given for the main theorem, while in Sections
5 and 6 this theorem is proved rigorously. In this proof the durations of the
initial and �nal phase of the epidemic are analysed separately.

2 De�nitions, notation and main results

2.1 Basic notation

The following basic notation and de�nitions are used throughout this paper
(see also e.g. [18, Section 1.2]). For real-valued functions, f and g and x→∞
we say,

f(x) = O(g(x)) if lim sup f(x)/g(x) <∞,
f(x) = o(g(x)) if lim f(x)/g(x) = 0,
f(x) = Θ(g(x)) if 0 < lim inf |f(x)/g(x)| ≤ lim sup |f(x)/g(x)| <∞.

All random processes and random variables that we consider are de�ned
on a rich enough probability space (Ω,F ,P), which we do not further specify.
The population size is always denoted by n. In this paper, asymptotic results
and limits are for n → ∞, unless explicitly stated otherwise. We say that
an event occurs with high probability (w.h.p.) if the probability of the event

converges to 1. Furthermore,
a.s.→ denotes almost sure convergence,

P→ denotes

convergence in probability, and
d→ denotes convergence in distribution.

Throughout, the cardinalities of a set X is denoted by |X |.

4



2.2 Construction of the random graph and assumptions

on the degree distribution

The epidemic spreads on a random graph G(n) = (V (n), E(n)). The set V (n)

consists of n vertices that represent the individuals, and the edge set E(n)

represent connections/relationships of individuals through which infection
might transmit. For v ∈ V (n), the degree of vertex v (i.e. the number of
edges adjacent to vertex v) is denoted by d(n)v . G(n) is generated through a
con�guration model with given degree sequence {d(n)v }v∈V (n) .

The graph is constructed by assigning d(n)v half-edges (edges with only
one endpoint assigned to a vertex) to the vertex v for v ∈ V (n) and pairing
those half-edges uniformly at random. By this construction every vertex has
the right degree, although it is possible that there is more than one edge
between a pair of vertices (parallel edges) or that an edge connects a vertex
to itself (a self-loop). In the graph, parallel edges are counted separately in
the degree and a self loop adds two to the degree of a vertex.

De�ne

`(n) =
∑

v∈V (n)

d(n)v and `2(n) =
∑

v∈V (n)

(d(n)v )2. (1)

We assume that there exists a random variable D such that as n→∞,

(A1) n−1
∑
v∈V (n) 11(d(n)v = k)→ pk = P(D = k),

(A2) n−1`(n)→ E[D] <∞,

(A3) n−1`2(n)→ E[D2] ∈ (0,∞].

Observe that `(n) is even, since every edge in E(n) adds 2 to the total degree
of the graph. We note that if the degrees of vertices are i.i.d. and distributed
as the random variable D, then the above assumptions are satis�ed w.h.p.
The �size biased� random variable D̃ is de�ned through

P(D̃ = k) = p̃k =
kpk
E[D]

.

Let D(n) be a random variable with the same distribution as the degree
of a vertex chosen uniformly at random from the graph. That is

P(D(n) = k) = n−1
∑

v∈V (n)

11(d(n)v = k) for k ∈ N≥0.

By (A1) and (A2), D(n) d→ D and E[D(n)]
d→ E[D]. Similarly, D̃(n) is the size

biased variant of D(n), i.e.

P(D̃(n) = k) =
kP(D(n) = k)

E[D(n)]
=
k
∑
v∈V (n) 11(d(n)v = k)

`(n)
for k ∈ N≥0.
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Note that D̃(n) is distributed as the degree of an end vertex of a uniformly

chosen edge from the graph. By (A1) and (A2), D̃(n) d→ D̃, while by (A3),

E[D̃(n)] = `2(n)
`(n)

d→ E[D2]/E[D] = E[D̃]. Note that E[D̃] may be in�nite.
For the epidemic process on the graph, we merge parallel edges and ig-

nore self-loops. Because E(D) < ∞, this assumption has no impact on the
asymptotic degree distribution although the number of self-loops and parallel
edges diverges if V ar(D) =∞ [14, p. 219].

2.3 The SIR epidemic

We consider an SIR (Susceptible → Infectious → Recovered) epidemic on
G(n). We say that a vertex is susceptible, infectious or recovered if the indi-
vidual it represents is in this �infection state�. Neighbours in the population
contact each other according to independent homogeneous Poisson processes
with rate β, and if the contact is between a susceptible and an infectious ver-
tex, then the susceptible one becomes immediately infectious itself. Infectious
vertices stay so for a random period distributed as the random variable L.
All infectious periods and Poisson processes are independent of each other. A
contact by an infectious vertex is called an infectious contact, whether or not
the �contactee� is susceptible. Throughout we assume that at time 0, there
is one infectious individual chosen uniformly at random from the population
and all other individuals are susceptible. It is straightforward to extend the
model to other initial conditions.

Let φL(β) =
∫∞
0 e−βtL(dt) be the Laplace transform of L. The probability,

ψ say, that an infected vertex makes a contact with a given neighbour during
its infectious period (and infect it if it is still susceptible) is given by

ψ =
∫ ∞
0

βe−βtP(L > t)dt = 1−
∫ ∞
0

βe−βtP(L ≤ t)dt = 1− φL(β), (2)

where the last identity is obtained through partial integration.
We denote the sets of susceptible, infectious and recovered individuals at

time t by S(t) = S(n)(t), I(t) = I(n)(t) and R(t) = R(n)(t) respectively. If
no confusion is possible, we sometimes suppress the (n) superscript. We say
that the epidemic goes extinct or ends before time t if |I(n)(t)| = 0.

Throughout we use continuous time branching processes [16] to approx-
imate the epidemic processes. We consider those processes for which there
exists a number α (called Malthusian parameter, or real-time growth rate)
which satis�es ∫ ∞

0
e−αtµ(dt) = 1, (3)

where µ(dt) denotes the mean measure for births of children of a particle.
Below we de�ne and justify a branching process approximation of the SIR
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epidemic model. The approximating branching process has mean o�spring
measure

µ′(dt) = E[D̃ − 1]βe−βtP(L > t)dt. (4)

Note that (using (2) for the last equality),

R0 := µ′(∞) =
∫ ∞
0

µ′(dt) = ψE(D̃ − 1) (5)

corresponds to the expected number of o�spring of a particle during all of
its life. If R0 > 1 the epidemic is supercritical and α exists and is strictly
positive. If on the other hand R0 < 1, the process is subcritical and α might
exist and if it does, α is strictly negative. If R0 = 1 the epidemic is critical
and the corresponding α trivially equals 0.

In epidemic literature R0 is arguably the most studied quantity (e.g. [11]).
It is usually de�ned as the average number of secondary infections caused by
a typical infected individual in the early stages of an epidemic in a further
susceptible population. This de�nition is consistent with equation (5).

2.4 The main results

In this subsection we state the main results of the paper. The proofs will be
provided in Sections 5 and 6. We consider an SIR epidemic on the con�gu-
ration model graph G(n) = (V (n), E(n)) with degrees satisfying assumptions
(A1)-(A3). The infectious periods are distributed as L, and neighbours con-
tact each other according to independent Poisson processes with intensity
β.

De�ne the time until extinction of an epidemic in a population of size n
by

T ∗ = T ∗(n) = inf{t ≥ 0; |I(n)(t)| = 0}. (6)

For E[D̃ − 1] <∞ and R0 > 1, let α′ be the solution of

1 =
∫ ∞
0

e−α
′tE[D̃ − 1]βe−βtP(L > t)dt =

∫ ∞
0

e−α
′tµ′(dt), (7)

where µ′(dt) is de�ned in (4). If E[D̃ − 1] =∞, we set α′ =∞.
If the following equation has a solution, then α∗ is the solution of

1 =
∫ ∞
0

e−α
∗tµ∗(dt), (8)

where

µ∗(dt) = E
[
(D̃ − 1)(1− ψ + ψq̃∗)D̃−2

]
βe−βtP(L > t)dt, (9)
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and q̃∗ is the smallest positive solution of

s = E
[
(1− ψ + ψs)D̃−1

]
. (10)

By standard theory on supercritical branching processes [16], we obtain
q̃∗ ∈ (0, 1), (because it can be interpreted as the extinction probability of
a supercritical branching process [4]). By Lemma 2.1 below the branching
process de�ned through µ∗(dt) is subcritical. A su�cient (but not necessary)
condition for α∗ > −∞ to exist is P(L > t0) = 0 for some t0 > 0 and
E[D̃ − 1] <∞.

Before stating the main theorem, we provide the following Lemma, the
proof of which is provided in Section 6. Recall R0 is de�ned in (5).

Lemma 2.1. Assume R0 > 1. If equation (8) has a solution, then the
solution α∗ is strictly negative.

The main theorem then reads.

Theorem 2.1. Conditioned on a large outbreak, and assuming that
(i) there exist c > 1 and αc < 0 such that c =

∫∞
0 e−αctµ∗(dt),

(ii) for α∗ as in (8),
∫∞
0 e(|α

∗|+η)tL(dt) <∞ for some η > 0 and
(iii) P(L > t+ s) < e−|α

∗|(s−s0)P(L > t) for all s, t > 0 and some s0 > 0,

we have that T ∗(n)
logn

P→ 1
α′

+ 1
|α∗| .

Remark. We believe that the assumptions of Theorem 2.1 can be replaced
by assuming that α∗ exists and

∫∞
0 te|α

∗|tL(dt) < ∞ (see Lemma 3.2 below).
However, in our proofs we use the conditions (i)-(iii), and we believe that the
current assumptions are a small price to pay for the availability of the proof
techniques we provide in the paper.

Remark. Intuition from �rst passage percolation (e.g. [9, 8]) and research
on the epidemic curve [17, 7] suggests that (possibly with some extra con-
ditions on the distributions of the infectious period and degrees) T ∗(n) −(

1
α′

+ 1
|α∗|

)
log n might converge in distribution to an a.s. �nite random vari-

able. We did not try to prove this or identify which extra conditions would
be necessary for such a proof.

In the theorem the summand 1
α′

is related to the duration of the early
stage, i.e. the exponentially growing phase, of the epidemic, while the sum-
mand 1

|α∗| is related to the duration of the �nal phase, i.e. the exponentially

declining phase, of the epidemic. The condition
∫∞
0 e(|α

∗|+η)tL(dt) < ∞ for
some η > 0 guarantees that none of the individuals infected during the epi-
demic will stay infectious for a time longer than log[n]/|α∗|. This condition
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is satis�ed if P(L > t) decays faster than exponential, but is not satis�ed if
P(L > t) decays slower than exponential.

In order to prove Theorem 2.1 we use some lemmas. Let

q∗ = E[(1− ψ + ψq̃∗)D], (11)

where q̃∗ is de�ned through (10). Copying the steps of the corresponding
result for random intersection graphs as provided in [5], we obtain

Lemma 2.2. Conditioned on a major outbreak, n−1|S(n)(∞)| P→ q∗.

In order to formulate the main lemmas, de�ne for γ ∈ (0, 1− q∗)

T ′γ = T ′γ(n) := inf{t > 0;n−1|S(n)(t)| < (1− γ)}. (12)

Theorem 2.1 now follows trivially from the following lemmas, where the �rst
is about the duration of the initial phase of the epidemic and the second
about the duration of the �nal phase.

Lemma 2.3. Conditioned on a major outbreak and for all γ ∈ (0, 1 − q∗),
we have

T ′γ(n)

logn

P→ 1
α′
.

Lemma 2.4. Assume that the assumptions of Theorem 2.1 are met. Condi-
tioned on a major outbreak, there exists γ ∈ (0, 1− q∗), such that

T ∗(n)− T ′γ(n)

log n
P→ 1

|α∗|
.

Note that Lemma 2.3 implies that Lemma 2.4 actually holds for all γ ∈
(0, 1− q∗).

3 The epidemic on the graph

3.1 The epidemic generated graph

3.1.1 Susceptibility sets and the epidemic generated graph

In this section, we construct Gepi, the so-called epidemic generated graph
(see e.g. [19, 22, 5]). In the random graph G, we replace all undirected edges
by two directed ones, pointing in opposite directions. For u ∈ V (n), we assign
to u a value Lu, where Lu is distributed as L. Lu may be interpreted as the
infectious period of u. Furthermore, we assign an exponentially distributed
random variables {τuv; (u, v) ∈ E(n)} with expectation 1/β to the directed
edges in E(n). τuv may be interpreted as the time between the infection of u
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(if ever) and the �rst contact after the infection of u between u and v. All
random variables de�ned in this paragraph are independent.

In order to obtain Gepi, we thin G by keeping all directed edges (u, v) ∈
E(n) satisfying τuv < Lu and delete all others. This implies that we delete an
edge emanating from vertex u with probability e−βLu . Deletion of the edge
from u to v means that if u gets infected, it will not succeed in passing the
infection to vertex v during the time it is infectious. Gepi is a directed graph
and the vertices that can be reached starting from the initially infectious
vertex correspond to the ultimately recovered vertices.

Recall that the initial infective vertex in the epidemic is chosen uniformly
at random from the population. So, we pick a vertex v0 uniformly at random
as a starting vertex for exploring Gepi. The vertices towards which v0 has
a directed edge in Gepi are the �rst generation vertices in the exploration
process. The vertices that can be reached by an edge from the �rst gener-
ation vertex are the second generation vertices (if they are not in an earlier
generation) and so on. It can be shown (see e.g. [4]) that the set of vertices
that can be reached from v0 is with high probability either Θ(1) or Θ(n).
Because it is unlikely that there are short circuits in this exploration process,
the exploration process is well approximated by a branching process, which
is described in Section 3.2.

For future reference we de�ne the susceptibility set S(u) of vertex u. The
susceptibility set of u is the set of all vertices such that if they were initially
infected then u would be ultimately recovered [3] i.e. v ∈ S(u) if and only
if there is a path form v to u in Gepi. In the large population limit, the
initial infected individual v0 is in the susceptibility set of u w.h.p. if both the
susceptibility set of u and the forward exploration set of v0 are large. If one
of those sets is small then v0 is w.h.p not in S(u).

The susceptibility set can be described by a discrete time process (for
detail see [5]), which is constructed by using the epidemic generated graph
in the following way. Let u be a vertex chosen uniformly at random from
the n vertices in the population. The degree of u is then distributed as D(n).
The probability that a given neighbour of u has an edge to u in the epidemic
generated graph is ψ (de�ned as in (2)) and the events that neighbours of u
have an edge to u in the epidemic generated graph are independent for di�er-
ent neighbours. Those neighbours with an edge to u are the �rst generation
of the backward process. The vertices in the �rst generation of the back-
ward process have (by the construction of the con�guration model) degrees
asymptotically distributed as D̃(n), where one of his or her neighbours is u.
The other neighbours are with high probability all di�erent and not in the
�rst generation of the backward process. We continue in this fashion: ver-
tices with an edge towards k-th generation vertices in the epidemic generated
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graph, which are not in any of the generations up to and including k are in
generation k+ 1. This generation view of the susceptibility set of u allows us
to approximate the backward process by a Galton-Watson process of which
the matriarch (the �rst ancestor) has a di�erent o�spring distribution than

all other individuals in the process [16]. Below we use that D(n) d→ D and

D̃(n) d→ D̃. For the approximating Galton-Watson process the probability of
extinction is therefore given by equation (11).

This result can be obtained in a similar fashion as the results on the
backward branching process in [4, 5].

3.1.2 Construction of the epidemic generated graph

For the proof of the main theorem we rely on the following explicit step-by-
step construction of the epidemic generated graph, Gepi, or more precisely,
of the cluster of vertices in Gepi reachable from the initially infectious vertex.
Label the vertices in V (n) by 1, 2, · · · , n, such that

d(n) = d
(n)
1 , · · · , d(n)n = d1, · · · , dn

is a non-decreasing degree sequence satisfying assumptions (A1)-(A3). Let

s = s(n) = {(1, 1), (1, 2), · · · , (1, d1), (2, 1), · · · , (2, d2), · · · , (n, 1), · · · , (n, dn)}

be the set containing `(n) elements, corresponding to the half-edges and let

x = x(n) = (x1, x
′
1), (x2, x

′
2), · · ·

be an in�nite sequence of (2 dimensional) elements of s(n), where the elements
are chosen independently and uniformly at random. Let x0 be the initially
infected vertex, which is chosen uniformly at random from the population.
Furthermore, let Lv (v ∈ {1, 2, · · · , n}) be the infectious period of vertex v,
if this vertex becomes infective during the epidemic.

We use the following process of partitions of the set of half edges.

{E (n)(t); t ≥ 0} = {E(t); t ≥ 0} = {(E (n)1 (t), E (n)2 (t), E (n)3 (t), E (n)4 (t); t ≥ 0}.

In this process at time t, E (n)1 (t) is the set of unpaired half-edges belonging

to susceptible vertices, E (n)2 (t) is the set of unpaired half-edges belonging

to infectious vertices, E (n)3 (t) is the set of unpaired half-edges belonging to

recovered vertices and E (n)4 (t) is the set of paired half edges. Let σ(v) be the

time the �rst half-edge belonging to vertex v is added to {E (n)4 (t); t ≥ 0}.
For t ≥ 0, let V(n)(t) be the set of vertices to which at least one of the half-

edges in E (n)2 (t)∪E (n)3 (t)∪E (n)4 (t) belongs. So, V(n)(t) corresponds to the set of
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vertices which is no longer susceptible at time t, i.e. V(n)(t) = V (n)(t)\S(n)(t).
Throughout the process the sequence x(n) is also explored element by element
and x(n)(t) is the set of elements of x(n) explored before or at time t.

The construction of {E (n)(t); t ≥ 0} is as follows.

• Start of construction: Choose a vertex (say x0) uniformly at random.
This vertex is the initial infected vertex. Set σ(x0) = 0. Note that x0
has degree dx0 in G.

At time t = 0, E (n)2 (0) = {(v, v′) ∈ s(n); v = x0} consists of all half edges
attached to x0, while all other half edges are in E (n)1 (0) = {(v, v′) ∈
s(n); v 6= x0}. None of the elements of x(n) are explored yet at time 0,
i.e. x(n)(0) = ∅.

• Assume that at time t, x(n) is explored up to and including (xk, x
′
k),

i.e. x(n)(t) = {(x1, x′1), · · · , (xk, x′k)}. De�ne

t+(t) = min({σ(v)+L(v); (v, v′) ∈ E (n)2 (t)}∪{σ(v)+τv,v′ ; (v, v′) ∈ E (n)2 (t)}),

which can be interpreted as the �rst time after time t something changes
in the process. In the interval [t, t+(t)) the process E (n)(t) is constant,
while if t+(t) = σ(u) + L(u) then all {(v, v′) ∈ E (n)2 (t); v = u} are

in E (n)3 (t+(t)). If t+(t) = σ(u) + τu,u′ , then (u, u′) ∈ E (n)4 (t+(t)). In
addition, consider (xk+1, x

′
k+1), which is the half-edge (u, u′) �wants

to� be paired with if it is still possible. The half edge (xk+1, x
′
k+1) is

considered explored from t+(t) on, i.e. (xk+1, x
′
k+1) ∈ x(n)(t+(t)). We

distinguish between the following cases for further changes in E (n)(t) at
time t+(t) = σ(u) + τu,u′ .

� If (xk+1, x
′
k+1) ∈ E

(n)
1 (t), then (xk+1, x

′
k+1) ∈ E

(n)
4 (t+(t)), while all

dxk+1
− 1 other half edges belonging to xk+1 (which necessarily

belong to E (n)1 (t)) move to E (n)2 (t+(t)). Furthermore, σ(xk+1) =
t+(t).

� If (xk+1, x
′
k+1) ∈ E

(n)
2 (t) ∪ E (n)3 (t), then (xk+1, x

′
k+1) ∈ E

(n)
4 (t+(t)),

while none of the other half edges change group.

� If (xk+1, x
′
k+1) ∈ E

(n)
4 (t), then take the above steps with (xk+1, x

′
k+1)

replaced by (xk+2, x
′
k+2) and so on (while treating all considered

half-edges as explored).

• Continue the above construction until E (n)2 (t) = ∅. That is, until there
are no unpaired half-edges left which belong to infectious vertices.
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3.2 Branching processes theory background

Throughout the manuscript we use several continuous time branching pro-
cesses. In this section we summarise some of the results we use in the anal-
ysis of the duration of the epidemic. The branching processes are two stage
branching processes in the sense that the reproduction law for the matriarch
(the �rst ancestor) is di�erent from that of the other particles in the pro-
cess. In the exposition below we use a single stage branching process, but
extending the results to two stage branching processes is straightforward.
For further theory we refer to [16, Chapter 6] and [14, Chapter 3].

Assume that particles give birth to other particles according to a ran-
dom point process distributed as {ξ(t); t ≥ 0}. De�ne µ(t) = E[ξ(t)]. If
µ(∞) > 1 then equation (3) has a strictly positive solution α, which is called
the Malthusian parameter of the process. We call a process supercritical if
µ(∞) > 1, critical if µ(∞) = 1 and subcritical if µ(∞) < 1.

Let Z(t) be the number of particles in the branching process at time t
and Ztot(t) the number of particles born in the branching process up to time
t. Furthermore, let Z(t; a) be the number of particles alive at time t, born
after time t − a. The following Lemma follows immediately from Theorems
2.1 and 2.4 of [15] and Theorem 5.4 of [20].

Lemma 3.1. Assume µ(∞) > 1 and let α be the Malthusian parameter
de�ned in (3). Furthermore, for log+ t := max(0, log t), if there exist ε > 0
such that

∫∞
0 t(log+ t)1+εe−αtµ(dt) <∞, then almost surely and in expectation

e−αtZ(t)→ W and e−αtZtot(t)→ W ′ as t→∞, (13)

where W and W ′ are a.s. �nite random variables satisfying

P(W > 0) = P(W ′ > 0) = P(Z(t) 6→ 0, for t→∞).

If in addition

E
[∫ ∞

0
e−αtξ(dt) log+

(∫ ∞
0

e−αtξ(dt)
)]

<∞,

then a.s. on {Z(t)→∞} we have

Z(t; a)

Z(t)
→

∫ a
0 P(L > a)e−αudu∫∞
0 P(L > a)e−αudu

, as t→∞. (14)

We need the following immediate Corollary of this Lemma.
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Corollary 3.1. Assume that the conditions of Lemma 3.1 hold. For k ∈ N,
de�ne T̂k = inf{t ≥ 0;Z(t) ≥ k} and T̂ ′k = inf{t ≥ 0;Ztot(t) ≥ k}. Then a.s.
on {Z(t)→∞ as t→∞} we have that

T̂k
log k

→ 1

α
and

T̂ ′k
log k

→ 1

α
as k →∞. (15)

To approximate the end of an epidemic we use a subcritical branching
process. For these branching processes equation (3) does not necessarily
have a solution. However if it has, then we may obtain some useful results.
First note that α < 0. Let the life-length of particles be distributed as L.
From Theorem 6.2 of [16], we immediately obtain

Lemma 3.2. Let µ(∞) < 1 and Z(0) = 1. Assume (i) equation (3)
has a solution, (ii)

∫∞
0 te|α|tL(dt) < ∞, (iii)

∫∞
0 te|α|tµ(dt) < ∞ and (iv)

E
[∫∞

0 e|α|tξ(dt) log+(ξ(∞))
]
<∞, then e|α|tP[Z(t) > 0] converges to a strictly

positive and �nite limit.

Below we use the following Corollary of this Lemma.

Corollary 3.2. Assume that the conditions of Lemma 3.2 hold. For k ∈ N,
de�ne T̂ ∗k = inf{t ≥ 0;Z(t) = 0} conditioned on Z(0) = k. Then,

T̂ ∗k
log k

P→ 1
|α|

for k →∞.

Proof. It is enough to prove that for every δ > 0,

P
(
T̂ ∗k ≤

1 + δ

|α|
log k

)
= P

(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)
→ 1

and

P
(
T̂ ∗k ≤

1− δ
|α|

log k

)
= P

(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = k

)
→ 0

as k → ∞. Note that {Z(t); t ≥ 0} is distributed as {∑k
j=1 Zj(t); t ≥ 0},

where the {Zj(t); t ≥ 0} are independent branching processes distributed as
the subcritical branching process conditioned on k = 1. Therefore,

{Z(t) = 0} = ∩kj=1{Zj(t) = 0}

and we obtain that

P(Z(t) = 0|Z(0) = k) = (P(Z(t) = 0|Z(0) = 1))k .

14



So,

P
(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)

=

(
P
(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = 1

))k
.

By Lemma 3.2 we know that there exists t0 > 0 such that for all t > t0
we have both

P(Z(t) > 0|Z(0) = 1) < e−|α|(1−δ/2)t and P(Z(t) > 0|Z(0) = 1) > e−|α|(1+δ)t.

So, we obtain

P
(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = k

)
=

(
P
(
Z

(
1 + δ

|α|
log k

)
= 0|Z(0) = 1

))k

>
(
1− e−(1−δ/2)(1+δ) log k

)k
=
(
1− k−(1+δ/2−δ2/2)

)k
=

(
1− k−(δ−δ

2)/2

k

)k
,

which converges to 1 for δ < 1, by (1− ck−1)k → e−c as k →∞. Similarly,

P
(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = k

)
=

(
P
(
Z

(
1− δ
|α|

log k

)
= 0|Z(0) = 1

))k

<
(
1− e−(1+δ)(1−δ) log k

)k
=
(
1− k−(1−δ2)

)k
=

(
1− kδ

2

k

)k
,

which converges to 0, by (1 − ck−1)k → e−c as k → ∞ and the proof of the
Corollary is complete.

4 Heuristics

In this subsection we provide some heuristic arguments for Theorem 2.1. If
a large outbreak occurs, the epidemic can be subdivided into three phases,
which can be roughly described as follows. Let ε > 0 be small. In the initial
phase the number of susceptible vertices decreases from n − 1 to (1 − ε)n.
In the intermediate phase the number of susceptible vertices decreases from
(1 − ε)n to (q∗ + ε)n. While the �nal stage of the epidemic last from the
moment that the number of susceptible vertices is (q∗ + ε)n until there are
no more infectious vertices in the population.
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4.1 The initial and intermediate phase of the epidemic

The primary intuition for the initial phase is that the number of infectious
vertices at time t (i.e. |I(t)|) and the number of vertices infected before time
t (i.e. |I(t)| + |R(t)|) are �well approximated� by a branching process with
mean measure given by (4) as long as n−1|S(t)| > 1− ε for ε > 0 but small.
The result of Lemma 2.3 then follows by applying Corollary 3.1 to k = εn.

To justify the use of (4), assume that the degree of a vertex uniformly
taken from the population of size n has exactly the same distribution function
as D, then a newly infected vertex has degree distribution D̃, because of size
biasing (see e.g. [12]). Apart from one (the infector) all of the neighbours
of this newly infected vertex are susceptible with high probability. A newly
infected vertex stays infectious for a random time L. Neighbours contacts
each other with intensity β, and if the contact is between a susceptible and
an infectious vertex then the susceptible one becomes infected, which can
be interpreted as being a child of his or her infector in the approximating
branching process. So in an approximating branching process we obtain
expression (4):

µ′(dt) = E[D̃ − 1]βe−βtP(L > t)dt,

where E[D̃− 1] is the expected number of susceptible neighbours of a newly
infected vertex, βe−βt is the density of the time since infection of the �rst con-
tact with a given neighbour, while P(L > t) is the probability that the vertex
is still infectious at this time of �rst contact. The Malthusian parameter of
this approximating branching process is therefore given by (7).

In the intermediate phase of the epidemic, |S(t)|, |I(t)|, and the number of
infectious-susceptible neighbour pairs are all Θ(n). This implies that changes
in n−1|S(t)|, occur at an Θ(1) rate and the intermediate phase has duration
Θ(1).

Our proof of Lemma 2.3, however makes use of the fact that the initial and
intermediate phase of the epidemic are, with some extra conditions on D and
L, studied in [7]. In [7] the (random) evolution of |S(T0+(α′)−1(1

2
log[n]+t))|

is studied, where T0 = inf{t ≥ 0; |S(t)| ≤ n −
√
n} is the time when

√
n

vertices are infected or recovered. As a corollary of the results of [7] it
follows that for T ′γ(n) de�ned as in Lemma 2.3, T ′γ(n)−(α′)−1 log n converges
in distribution as n→∞. We avoid the extra conditions of [7] at the cost of
only being able to study the convergence (in probability) of T ′γ(n)/(log n).

4.2 The �nal phase of the epidemic

In order to describe the end of the epidemic more work is required. We use
that for 1− q∗−γ > 0 but small, the time interval between T ′γ(n) and T ∗(n),
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none of the quantities n−1|S(n)(t)| and n−1|E (n)1 (t)|, n−1|E (n)2 (t)|, n−1|E (n)3 (t)|
and n−1|E (n)4 (t)| (as de�ned in Section 3.1.2) change much. So, we assume
that during the �nal stages of the epidemic, the environment of newly in-
fected vertices is more or less constant. That is, we assume that the degree
distribution and the fraction of the neighbours which are still susceptible of
newly infected vertices are constant during this �nal phase. In particular,
the degree distribution of a vertex infected during the �nal phase of the epi-
demic should be well approximated by the size biased degree distribution of
ultimately susceptible vertices, while the fraction of susceptible neighbours of
a newly infected vertex in this phase of the epidemic should be well approx-
imated by the fraction of susceptible neighbours of ultimately susceptible
vertices. We now �nd those quantities.

Let D∗ be a random variable, such that the degree of a uniformly chosen
ultimately susceptible vertex converges in distribution to D∗ as n→∞. And
let p∗ss be the probability that a given neighbour of an ultimately susceptible
vertex is ultimately susceptible itself. Below we show that p∗ss is indeed well
de�ned, and whether a given neighbour of an ultimately susceptible vertex
is susceptible is independent of the degree of that vertex.

The end of the epidemic is then described by o�spring measure

µ∗(dt) = E[D̃∗ − 1]p∗ssβe
−βtP(L > t)dt, (16)

which is derived in the same way as equation (4) and where D̃∗ is the size-
biased variant of D∗. Below we then derive that

E[D̃∗ − 1] =
E[(D̃ − 1)(1− ψ + ψq̃∗)D̃−1]

q̃
and p∗ss =

q̃∗

1− ψ + ψq̃∗
.

Combining the above with (16) and Corollary 3.2 then gives Lemma 2.4.

4.2.1 Degree distribution of ultimately susceptible individuals

It is important to note that in the epidemic process the probability of a vertex
being ultimately recovered or susceptible does not depend on its infectious
period, even when infectious periods are random. This fact help us to derive
the probability of a vertex being ultimately susceptible and of degree k (as in
[2]), which then yields the degree distribution of the ultimately susceptible.

Assume the epidemic takes o�, which occurs with the same probability
as the survival of an approximating forward branching process, see e.g. [4].
Recall that there is only one initially infectious individual. So, as n → ∞,
the probability that a uniformly chosen vertex is the initial infectious vertex
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goes to zero. Therefore, the probability that a uniformly chosen vertex v is
ultimately susceptible (i.e. it escapes the epidemic) is given by

ξ =
∞∑
k=0

ξkpk, (17)

where ξk is probability that a vertex of degree k does not acquire the infection
by any of its neighbours until the end of the epidemic. We denote a neighbour
of vertex v by u. Recall that 1 − ψ is the probability that u does not have
an infectious contact to v. Let q̃∗ denote the probability that u escapes the
epidemic (we determine q̃∗ later). Then, ξk is given by

ξk =
k∑
l=0

(1− ψ)l
(
k

l

)
(q̃∗)k−l(1− q̃∗)l = (1− ψ + ψq̃∗)k. (18)

Using (18) in (17), the probability for a uniformly chosen vertex x to escape
the epidemic is then given by

ξ =
∞∑
k=0

pk(1− ψ + ψq̃∗)k. (19)

Similarly, the probability q̃∗ that the neighbour of a vertex escaping in-
fection also escapes infection is given by

q̃∗ =
∞∑
k=0

ξ̃kp̃k, (20)

where ξ̃k is the probability that a degree k vertex does not acquire the infec-
tion from k − 1 given neighbouring vertices and is de�ned as

ξ̃k =
k−1∑
l=0

(1− ψ)l
(
k − 1

l

)
(q̃∗)k−l−1(1− q̃∗)l = (1− ψ + ψq̃∗)k−1. (21)

Here we consider only k−1 of the k neighbours of u because we are exploring
the second generation of the susceptibility set of v and we assume that u
does not acquire infection from v. Equations (20) and (21) give that q̃∗ is
the smallest solution of

q̃∗ =
∞∑
k=0

p̃k(1− ψ + ψq̃∗)k−1. (22)

This result gives the implicit expression for the probability q̃∗ that neighbour
u escapes the epidemic. Moreover, from (18) we obtain the probability that
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a vertex of degree k escapes the epidemic. From this we deduce that the
probability that an ultimately susceptible individual has degree k (say p∗k) is
given by

p∗k =
ξkpk
ξ

=
(1− ψ + ψq̃∗)kpk∑∞
j=1 pj(1− ψ + ψq̃∗)j

, (23)

where ξ is a normalising constant and is de�ned in (19). The size biased
distribution of the ultimately susceptible individuals is given through

p̃∗k =
kp∗k∑∞
j=1 jp

∗
j

=
kpk(1− ψ + ψq̃∗)k∑∞
j=1 jpj(1− ψ + ψq̃∗)j

,

=
p̃k(1− ψ + ψq̃∗)k−1∑∞
j=1 p̃j(1− ψ + ψq̃∗)j−1

=
p̃k(1− ψ + ψq̃∗)k−1

q̃∗
.

(24)

4.2.2 Fraction of ultimately susceptible neighbours of an ulti-

mately susceptible vertex

Let v be an arbitrary vertex of degree k and u one of its neighbours. We
compute the fraction of neighbours of the ultimately susceptible which are
also ultimately susceptible as the following conditional probability:

p∗ss = P(u is ultimately susceptible | v is ultimately susceptible),

=
P(v and u are ultimately susceptible)

P(v is ultimately susceptible)
=
q̃∗ ξ̃k
ξk

=
q̃∗

1− ψ + ψq̃∗
.

(25)

Note that this probability is independent of the degree k of the vertex v.
In computing the above probability, q̃∗ is the probability that the ini-

tially susceptible neighbour u escapes the infection from all its neighbouring
vertices, apart from possibly v, ξ̃k is the probability that v escapes infection
from all of its neighbours, apart from possibly u, and ξk is the unconditional
probability that vertex v does not acquire the infection until the end of the
epidemic.

5 Proof of Lemma 2.3

We split up the proof in the following two lemmas which trivially lead to the
proof of Lemma 2.3.

Lemma 5.1.
T ′γ(n)

logn
≤ 1

α′
+ δ w.h.p. for every δ > 0.

Lemma 5.2. Assume E[D2] <∞, then
T ′γ(n)

logn
≥ 1

α′+δ
w.h.p. for every δ > 0.
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Note that for E[D2] = ∞, also α′ = ∞ and the equivalent of Lemma 5.2 is
meaningless. Lemma 5.1 still holds in that case.

Proof of Lemma 5.1. Assume �rst that D(n) has uniformly bounded support,
that is, there exist K > 0 such that P(D(n) > K) = 0 for all n ∈ N.
Furthermore, we assume that there exists Lmax > 0 such that P(L > Lmax) =
0, i.e. we assume that L has bounded support. Under those assumptions the
conditions of [7, Thm. 3.3] are satis�ed. Note that in the notation of [7], λ is
the Malthusian parameter (α′ in our notation) and N is the population size
(n in our notation). Furthermore, it is easily deduced from equation (3.11)

and the de�nition of τN on page 27 of [7] that τN/[logN ]
P→ 1/(2λ) on the

event of a large outbreak. Finally, the expression ŝl(u) in [7] is independent of
N for all l ∈ {1, 2, · · · , K}. Translating the notation of [7, Thm. 3.3] to our
notation we obtain as an immediate corollary that for every γ ∈ (0, 1 − q∗)
and every δ > 0,

n−1|S(n)(((α′)−1 + δ) log n)| < q∗ + γ w.h.p.

To obtain the results without the extra conditions, let K = K(δ) be
a large constant satisfying some properties speci�ed later. Mark (before
the pairing) all half-edges belonging to vertices with degree strictly larger
than K. By assumptions (A1) and (A2) one can make the fraction of half-
edges that are marked to be arbitrary small by choosing K and n large
enough. The next step is to pair all half-edges (ignoring whether they are
marked and unmarked) uniformly at random as before. Then delete all edges
which contain at least one marked half-edge. If a fraction δ1 = δ1(K) of the
half-edges is marked then the remaining degree distribution of the graph
is dominated by a Mixed Binomial distribution with random �number of
trials parameter� D(n)11(D(n) ≤ K) and �probability parameter� 1 − δ1 (The
domination is because we ignore that some marked half-edges will be paired
with other marked half-edges). LetD

(n)
K be distributed as the Mixed Binomial

random variable, and D̃
(n)
K be the size-biased variant of D

(n)
K . It follows

immediately from assumptions (A1) and (A2) that

lim
K→∞

lim
n→∞

E[D
(n)
K ] = E[D].

Furthermore, both for E[D2] =∞ and E[D2] <∞, we obtain from (A1) and
(A3) that

lim
K→∞

lim
n→∞

E[(D
(n)
K )2] = E[D2].

In particular, we obtain that

lim
K→∞

lim
n→∞

E[D̃
(n)
K − 1] = E[D̃ − 1].
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In addition we consider an epidemic on the newly created (thinned) graph
with infectious period distribution

L′ = L11(L < Lmax) + Lmax11(L ≥ Lmax).

So, in the new model we have deleted some edges and shortened some in-
fectious periods, which make that the epidemic spreads faster in the original
model.

For this new epidemic we deduce from (7) that the Malthusian parameter
is the x satisfying

1

E[D̃
(n)
K − 1]

=
∫ Lmax

0
e−xtβe−βtP(L > t)dt =: f(x, Lmax). (26)

Note that f(x, Lmax) is continuous and decreasing in x and continuous and
increasing in Lmax. Furthermore, if ψE[D̃ − 1] > 1, then

f(0,∞) = ψ >
1

E[D̃ − 1]
.

While limx→∞ f(x, Lmax) = 0 for all Lmax > 0. It follows that the solution
of (26) converges to α′ as K → ∞ and Lmax → ∞. In particular, for every
δ > 0, there exists K0 and L0 such that for all K > K0 and Lmax > L0, the
x solving (26) satis�es 1/x < 1/α′ + δ/2.

So, by choosing Lmax and K large enough (but �nite), we are in the realm
of [7, Thm. 3.3] and for the corresponding model we obtain that for every
γ ∈ (0, 1− q∗) and δ > 0 with high probability it holds that,

n−1|S(n)(((α′)−1 + δ/2 + δ/2) log n)| < q∗ + γ,

which �nishes the proof of Lemma 5.1.

Proof of Lemma 5.2. In order to prove the lemma we prove the following
stronger statement: The number of vertices a�ected by the epidemic up to
time logn

α′+δ
satis�es |n− S( logn

α′+δ
)| = o(n) with high probability for all δ > 0.

Now, for δ1 > 0, let α1 = α1(δ1) satisfy

1

E[D̃] + δ1
=
∫ ∞
0

e−α1tβe−βtP(L > t)dt. (27)

As before, because R0 > 1, we know that α1 exists and is positive for all
δ1 ≥ 0 and is continuous increasing in δ1 on [0,∞). In particular, for every
δ > 0, we can and do choose δ1 > 0 such that α1(δ1) < α′ + δ/2.
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We use the notation of Section 3.1.2, where the vertices in V (n) are labelled
such that the degree sequence d1, d2, · · · , dn is non-decreasing. Recall that
`(n) =

∑n
v=1 dv and `2(n) =

∑n
v=1(dv)

2, which by assumption (A3) and the
assumption E[D2] <∞ (or equivalently E[D̃] <∞) is O(n).

Let ε1 ∈ (0, 1) be a number to be speci�ed later. For i ≤ ε1n de�ne the
random variable D′(n)(x; i) through

P(D′(n)(x; i) = k) =

∑n
v=1 11(dv = k)11(v 6∈ {x0, x1, · · ·xi})∑n

v=1 11(v 6∈ {x0, x1, · · ·xi})
.

That is, D′(n)(x; i) is the degree distribution of the vertices not chosen in the
�rst i elements of x.

Note that for all i ≤ i0 = bε1nc, the random variable D′(n)(x; i) is stochas-
tically dominated by D′′(n)(ε1), which is de�ned through

P(D′′(n)(ε1) = k) =

∑n
v=i0+1 11(dv = k)

n− i0
.

Let D̃′′(n)(ε1) be the size biased variant of D′′(n)(ε1). It follows that

E[D̃′′(n)(ε1)] =

∑n
v=i0+1(dv)

2∑n
v=i0+1 dv

.

Observe that
∑n
v=i0+1(dv)

2 ≤ ∑n
v=1(dv)

2 = `2(n), while

n∑
v=i0+1

dv =
n∑
v=1

dv −
i0∑
v=1

dv ≥ `(n)− i0E[D(n)] ≥ `(n)(1− ε1).

So,

E[D̃′′(n)(ε1)] ≤
`2(n)

`(n)(1− ε1)
=

1

1− ε1
E[D̃(n)].

Note that (apart from possibly x0), in the construction of {E(t); t ≥ 0}
the degree of a vertex added to the exploration is stochastically smaller than
D̃′′(n)(ε1), as long as t < t0, where t0 = t0(ε1) = max{t > 0; |x(t)| ≤ i0}. That
is up to we add the i0-th vertex to {E(t); t ≥ 0} the number of vertices in
E(t) is less than the number of particles in a branching process with o�spring
measure µ′′(n)(dt; i0) = E[D̃′′(n)(ε1)]βe

−βtP(L > t)dt. Denote the number of
particles in this branching process at time t (t ≥ 0) by Z ′′(n)(t).

Because E[D̃(n)] → E[D̃] as n → ∞, we have that for every δ1 > 0, we
can choose ε1 = ε1(δ1) > 0 and n0 = n0(δ1) ∈ N, such that E[D̃′′(n)(ε1)] <
E[D̃] + δ1 for all n > n0.
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So for ε1 = ε1(δ1) and n0 = n0(δ1) as above, {Z ′′(n)(t); t ∈ (0, t0)} is
dominated by a branching process {Z ′′(t); t ∈ (0, t0)} with o�spring measure

µ′′(dt) = (E[D̃] + δ1)βe
−βtP(L > t)dt.

This branching process has a Malthusian parameter α1(δ1), which satis�es
equation (27) and is less than α′ + δ/2.

Now observe that by Lemma 3.1,with high probability

|V (n)

(
log n

α′ + δ

)
\ S(n)

(
log n

α′ + δ

)
| = O

(
e(α
′+ δ

2
) logn
α′+δ

)
= O

(
n
α′+δ/2
α′+δ

)
= o(n).

Since i0 = θ(n) and the number of individuals infected before time t is
stochastically less than Z ′′( logn

α′+δ
), we obtain that n − |S( logn

α′+δ
)| = o(n) with

high probability for all δ > 0.

6 The �nal stage of the epidemic and proof of

Lemma 2.4

6.1 Proof of Lemma 2.1

Before we prove Lemma 2.4, we �rst provide the proof of Lemma 2.1.

Proof of Lemma 2.1. Because (8) has a solution and
∫∞
0 e−xtµ∗(dt) is decreas-

ing in x, we obtain that α∗ < 0 if and only if
∫∞
0 µ∗(dt) =

∫∞
0 e0·tµ∗(dt) < 1.

We obtain from (2) that∫ ∞
0

µ∗(dt) =
∫ ∞
0

E[(D̃ − 1)(1− ψ + ψq̃∗)D̃−2]βe−βtP(L > t)dt

= ψE[(D̃ − 1)(1− ψ + ψq̃∗)D̃−2].

The function

g(s) =
∞∑
k=1

p̃k(1− ψ + ψs)k−1

is convex and analytic on s ∈ [0, 1] and has derivative

g′(s) = ψ
∞∑
k=1

(k − 1)p̃k(1− ψ + ψs)k−2 = ψE[(D̃ − 1)(1− ψ + ψs)D̃−2].

Furthermore, by the de�nition of q̃∗ (see (10)) and the convexity of g(s), q̃∗

and 1 are the only two solutions of the equation s = g(s) in [0, 1]. This,
together with

∫∞
0 µ∗(dt) = g′(q̃∗), the convexity of g and q̃∗ < 1 implies that∫∞

0 µ∗(dt) < 1, which �nishes the proof.
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6.2 Time until the end of the epidemic

In this section we use the construction of the epidemic generated graph as
presented in Section 3.1.2. We restrict ourselves to major outbreaks. Our
approach is to de�ne a random time t1 = t

(n)
1 , when the fraction of susceptible

vertices among all vertices is larger than, but close to, its asymptotic value
and sandwich (w.h.p.) the process {|I(n)(t)|; t ≥ t

(n)
1 } between two branching

processes and then �nd the time until those branching processes go extinct.
We start with an almost trivial observation, which we need in the proof of

Lemma 2.4. Let D∗x be a random variable with distribution de�ned through

p∗k(x) = P(D∗x = k) =
pkx

k∑∞
l=0 plx

l
(28)

for k ≥ 0. Here pk = P(D = k) as in Section 2.2.

Claim 6.1. For x ∈ (0, 1) all moments of the random variable D∗x are �nite,
regardless of the distribution of D.

Proof. We use the D'Alembert ratio test for convergence of series [24, p. 65].
Consider the jth moment of D∗x:

E[(D∗x)
j] =

∞∑
k=1

kjp∗k(x) =
∞∑
k=1

kj
pkx

k∑∞
l=0 plx

l
=

E[DjxD]

E[xD]
.

To apply the ratio test we consider the limit of two subsequent terms

lim
k→∞

(k + 1)jxk+1

kjxk
= x ∈ (0, 1),

by assumption. This implies that the sum
∑∞
k=1 k

jxk converges. It then
follows that

∞∑
k=1

kjp∗k(x) =
∞∑
k=1

kj
pkx

k∑∞
l=0 plx

l
≤
∞∑
k=1

kj
xk∑∞

l=0 plx
l
<∞.

Let {E (n)(t); t ≥ 0} = {(E (n)1 (t), E (n)2 (t), E (n)3 (t), E (n)4 (t); t ≥ 0} be as in

Section 3.1.2. In our analysis below we consider |E (n)1 (t)|, |E (n)4 (t)| and∑
v∈S(n)(t)

dv11(dv ≥ k) =
∑

v∈V (n)

dv11(dv ≥ k)11(v ∈ S(n)(t)).
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Note that |E (n)1 (t)| and ∑
v∈S(n)(t) dv11(dv ≥ k) are decreasing in t, while

|E (n)4 (t)| is increasing in t. For ε ∈ (0, ψ(1− q̃∗)) de�ne

t(n)a (ε) := inf{t > 0; |E (n)1 (t)| ≤ E[(1− ψ + ψq̃∗ + ε)D̃]`(n)},
t
(n)
b (ε) := inf{t > 0; |E (n)4 (t)| ≥ `n − 1− (1− ψ + ψq̃∗ + ε)2`(n)},
t(n)c (ε) := inf{t > 0;

∑
v∈S(n)(t)

dv11(dv ≥ k) ≤ E[11(D̃ ≥ k)(1− ψ + ψq̃∗ + ε)D̃]`(n)},

where the in�mum of an empty set is ∞. Let

t
(n)
1 (ε) := max(t(n)a (ε), t

(n)
b (ε), t(n)c (ε))

and de�ne the event A(n)
1 (ε) = {t(n)1 (ε) <∞}. Let A(n)

2 (ε) be the event that
all of the following events hold.

|E (n)1 (∞)| > E[(1− ψ + ψq̃∗ − ε)D̃]`(n)

|E (n)4 (∞)| < `n − 1− (1− ψ + ψq̃∗ − ε)2`(n)∑
v∈S(n)(∞) dv11(dv ≥ k) > E[11(D̃ ≥ k)(1− ψ + ψq̃∗ − ε)D̃]`(n).

Finally de�ne A(n)(ε) = A(n)
1 (ε) ∩ A(n)

2 (ε).

Lemma 6.1. For all ε ∈ (0, ψ(1− q̃∗)) and conditioned on a large outbreak,

P(A(n)(ε))
P→ 1 and there exists c1 > 0, such that

|S(n)(t
(n)
1 (ε))| − |S(n)(∞)| = c1n w.h.p.

Proof. We start with some de�nitions. Let K1 = K
(n)
1 (ε) be a Poisson dis-

tributed random variable with expectation `(n)| log(1− ψ + ψq̃∗ + ε/2)| and
let K2 = K

(n)
2 (ε) be a Poisson distributed random variable with expectation

`(n)| log(1−ψ+ψq̃∗−ε/2)|. BothK1 andK2 are independent of the epidemic
process. Let {|x(t)|; t ≥ 0} be as in Section 3.1.2 and de�ne the random time
t′(Ki) := inf{t ≥ 0; |x(t)| ≥ Ki} for i ∈ {1, 2}.

Because the elements of x are i.i.d. and uniform among all `(n) half-edges,
we have by well-known properties of the Poisson distribution (see e.g. [23,
p. 317]) that the number of times a given half-edge is among the �rst K1

(resp. K2) elements of x is Poisson distributed with expectation | log(1−ψ+
ψq̃∗+ε/2)| (resp. Poisson distributed with expectation | log(1−ψ+ψq̃∗−ε/2)|)
and independent for di�erent half-edges. This implies that the events that
di�erent half-edges are not among the �rst K1 elements of x are independent
and have probability e−| log(1−ψ+ψq̃

∗+ε/2)| = 1− ψ + ψq̃∗ + ε/2. Similarly. the
events that di�erent half-edges are not among the �rst K2 elements of x are
independent and have probability 1− ψ + ψq̃∗ − ε/2.
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It is easy to see that the probability that none of the half-edges belonging
to a uniformly chosen vertex is part of the �rst K1 elements of x is given by

∞∑
k=0

P(D(n) = k)(1− ψ + ψq̃∗ + ε/2)k.

So, using a variant of the (weak) law of large numbers (e.g. [13, Problem

7.11.20]) and D(n) d→ D, we obtain

1

n
|S(n)(t′(K1))|

P→
∞∑
k=0

P(D = k)(1− ψ + ψq̃∗ + ε/2)k. (29)

By Lemma 2.2 and equation (11) we know that conditioned on a large out-
break

1

n
|S(n)(∞)| P→ q∗ =

∞∑
k=0

P(D = k)(1− ψ + ψq̃∗)k. (30)

Because
∑∞
k=0 P(D(n) = k)xk is strictly increasing on x ∈ [0, 1), and

D(n) d→ D, (29) and (30) imply that there exists c1 > 0, such that

|S(n)(t′(K1))| − |S(n)(∞)| > c1n w.h.p. (31)

Equation (30) also immediately gives that

1

n
|S(n)(∞)| >

∞∑
k=0

P(D = k)(1− ψ + ψq̃∗ − ε/2)k w.h.p.

and therefore,
x(∞) < K2(ε) w.h.p. (32)

Similarly, the probability that a uniformly chosen half-edge belongs to a
vertex of which none of the half-edges is part of the �rst K1 elements of x is
given by

1

`(n)
E[|E (n)1 (t′(K1))|] =

∞∑
k=0

P(D̃(n) = k)(1− ψ + ψq̃∗ + ε/2)k.

Using the same arguments as above this implies that t′(K1) > t(n)a (ε) w.h.p.
Combined with (31) this implies |S(n)(t(n)a (ε))|− |S(n)(∞)| > c1n w.h.p. Fur-
thermore, by (32)

1

`(n)
E[|E (n)1 (∞)|] >

∞∑
k=0

P(D̃(n) = k)(1− ψ + ψq̃∗ − ε/2)k
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and again using the same weak law of large numbers arguments we obtain
that

1

`(n)
|E (n)1 (∞)| >

∞∑
k=0

P(D̃(n) = k)(1− ψ + ψq̃∗ − ε/2)k w.h.p.

Now we turn our attention to |E (n)4 (t)|. In G, all half-edges are paired

uniformly at random. For a half-edge not to be part of E (n)4 (t), neither the
half-edge itself nor its partner should be part of x(t). So,

`(n)− |E (n)4 (t′(K1))| − 1

`(n)
<
`(n)− |E (n)4 (t′(K1))|

`(n)
P→ (1− ψ + ψq̃∗ + ε/2)2.

(33)

So, t′(K1) > t
(n)
b (ε) w.h.p. Combined with (31) this gives |S(n)(t

(n)
b (ε))| −

|S(n)(∞)| > c1n. From (32) we obtain in a similar fashion that

`(n)− |E (n)4 (∞)| − 1

`(n)
> (1− ψ + ψq̃∗ − ε/2)2 w.h.p.

Finally, we consider
∑
v∈S(n)(t) dv(dv − 1). We know,

E[ 1
`(n)

∑
v∈V (n) dv(dv − 1)11(v ∈ S(t′(Ka))]

= n
`(n)

1
n

∑
v∈V (n) dv(dv − 1)(1− ψ + ψq̃∗ + ε/2)dv

= 1
E[D(n)]

E[D(n)(D(n) − 1)(1− ψ + ψq̃∗ + ε/2)D
(n)

]

= E[(D̃(n) − 1)(1− ψ + ψq̃∗ + ε/2)D̃
(n)

],

which by D(n) P→ D, the bounded convergence theorem and Claim 6.1 con-
verges in probability to E[(D̃− 1)(1−ψ+ψq̃∗+ ε/2)D̃]. Using a law of large
number argument as before we then obtain that,

1

`(n)

∑
v∈V (n)

dv(dv − 1)11(v ∈ S(n)(t))
P→ E[(D̃ − 1)(1− ψ + ψq̃∗ + ε/2)D̃],

which implies that t′(Ka) > tc(ε) w.h.p. Combined with (31) this gives
|S(n)(t(n)c (ε))| − |S(n)(∞)| > c1n.

The proof of∑
v∈S(n)(∞)

dv(dv − 1) > E[(D̃ − 1)(1− ψ + ψq̃∗ − ε)D̃]`(n) w.h.p.

is completely analogous to the proof of |E (n)1 (∞)| > E[(1−ψ+ψq̃∗− ε)D̃]`(n)
w.h.p. Combining all the above results �nishes the proof of the lemma.
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Now we are almost ready to prove Lemma 2.4. In the proof we consider
who infected whom, and since individuals can be infected only once, this
leads to a tree representation of the infection process: the infection tree. We
say that vertex u is an ancestor of v if the path from the initial infectious
vertex to v in the infection tree contains u. To be complete we say that v is
an ancestor of itself. Let v be a vertex infected at time σ(v). Then de�ne
{J (n)

v (t); t ≥ 0}, through

J (n)
v (t) = I(n)(σ(v) + t) ∩ {u ∈ V (n); v is an ancestor of u}.

Furthermore, let V
(n)
∗ (t) ⊂ V (n), be the set of vertices infected after time t.

In the proofs below we use the standard notation that for any function
f : R→ R, f(t−) = lims↗t f(s).

6.2.1 Proof of Lemma 2.4

Proof of Lemma 2.4. Throughout the proof we restrict ourselves to the event
A(n)(ε) (de�ned as in Lemma 6.1) for some ε > 0 conveniently chosen.

Because there exists c1 > 0 such that |S(n)(t
(n)
1 (ε))| − |S(n)(∞)| > c1n

w.h.p., we immediately obtain that there exists γ ∈ (0, 1 − q∗) such that

T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)) w.h.p. The proof consists of the following steps:

1. There exists with high probability γ > 0 such that for v ∈ V (n)
∗ (T ′γ(n))

and for δ ∈ (0, |α∗|) small enough, we can construct a branching pro-
cess which is dominated by {J (n)

v (t); t ≥ 0} and has Malthusian param-
eter larger than −(|α∗| + δ/2) (i.e. the absolute value of the Malthu-
sian is less than |α∗| + δ/2) and a branching process which dominates
{J (n)

v (t); t ≥ 0} and has Malthusian parameter less than −(|α∗| − δ/2)
(i.e. the absolute value of the Malthusian is larger than |α∗| − δ/2).

2. Show that there exists γ > 0 and δ > 0 such that the dominating and
dominated branching process satisfy the conditions of Lemma 3.2.

3. Show that the number of vertices infected after time T ′γ(n), which are
infected by vertices infected before time T ′γ(n) is θ(n).

4. Show that for every δ ∈ (0, |α∗|), there exist γ > 0, such that T ∗(n)−
T ′γ(n) < logn

|α∗|−δ w.h.p.

5. Show that for every δ ∈ (0, 1), there exist γ > 0, such that T ∗(n) −
T ′γ(n) > (1− δ) logn|α∗| w.h.p.
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Combining the statements of step 4 and 5 immediately imply Lemma 2.4.

Step 1:

Let ε > 0 be small and chosen appropriately later. If at time t a half-edge
from E (n)2 (t−) is paired with another half-edge, this other half-edge belongs

to E (n)1 (t−) with probability

κ(n)(t) =
|E (n)1 (t−)|

`(n)− |E (n)4 (t−)| − 1
.

Here `(n) − |E (n)4 (t−)| is the number of not-yet paired vertices just before
time t and the −1 appear in the denominator because the half-edge from
E (n)2 (t−) cannot be paired with itself. Furthermore, the probability that if

the half-edge is paired with a half-edge from E (n)1 (t−), it belongs to a vertex
of degree at least k is given by

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv11(dv ≥ k)

|E (n)1 (t−)|
.

The quantities |S(n)(t)| and {|E (n)1 (t)|; t ≥ 0} are decreasing in t, while

{|E (n)4 (t)|; t ≥ 0} is increasing in t. So, for t1 := t
(n)
1 (ε) as in Lemma 6.1,

and t > t1 and on A(n)(ε),

κ(n)(t) ≤ |E (n)1 (t1)|
`(n)− |E (n)4 (∞)| − 1

≤ E[(1− ψ + ψq̃∗ + ε)D̃]`(n)

(1− ψ + ψq̃∗ − ε)2`(n)
=: κ+(ε) (34)

and

κ(n)(t) ≥ |E (n)1 (∞)|
`(n)− |E (n)4 (t1)| − 1

≥ E[(1− ψ + ψq̃∗ − ε)D̃]`(n)

(1− ψ + ψq̃∗ + ε)2`(n)
=: κ−(ε). (35)

Similarly, on A(n)(ε) and for k ≥ 1

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv11(dv ≥ k)

|E (n)1 (t−)|
≤ min

(
1,

∑
v∈S(n)(t1) dv11(dv ≥ k)

|E (n)1 (∞)|

)

≤ min

1,
E[(11(D̃ ≥ k)(1− ψ + ψq̃∗ + ε)D̃]`(n)

E[(1− ψ + ψq̃∗ − ε)D̃]`(n)

 =: P(D̃+(ε) ≥ k). (36)

That is, D̃+(ε) stochastically dominates the random variable de�ned through
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π
(n)
≥k (t) for t > t

(n)
1 (ε). Furthermore,

π
(n)
≥k (t) =

∑
v∈S(n)(t−) dv11(dv ≥ k)

|E (n)1 (t−)|
≥
∑
v∈S(n)(∞) dv11(dv ≥ k)

|E (n)1 (t1)|

≥ E[(11(D̃ ≥ k)(1− ψ + ψq̃∗ − ε)D̃]`(n)

E[(1− ψ + ψq̃∗ + ε)D̃]`(n)
=: P(D̃−(ε) ≥ k). (37)

That is, D̃−(ε) is stochastically dominated by the random variable de�ned

through π
(n)
≥k (t) for t > t

(n)
1 (ε).

Let v be a vertex infected at time t. Then v has degree distribution
de�ned through π

(n)
≥k (t). One of the dv half-edges attached to v is paired

at time t, while the other dv − 1 are still unpaired at time t. Let Lv be
the infectious period of v and let τv,1, τv,2, · · · τv,dv−1 be independent expo-
nentially distributed random variables with expectation 1/β assigned to the
di�erent un-paired half-edges of v. If τv,i ≤ Lv, then t + τv,i is the time at
which a contact is made along the half-edge (and the half-edge is paired),
while if τv,i > Lv, then τv,i does not have an epidemiological interpretation. If
τv,i ≤ Lv then the contact made at time t+τv,i is with a susceptible with prob-

ability κ(n)(t). By (34) and (36) we thus obtain that for all v ∈ V (n)
∗ (t

(n)
1 (ε)),

{|J (n)
v (t)|; t ≥ 0} is stochastically dominated by a branching process in which

particles give birth at ages given by the point process

{ξ̂+ε (t); t ≥ 0} =


D̃+(ε)−1∑
k=1

11(τv,k < min(L, t))Y +
k (ε); t ≥ 0

 ,
where Y +

k (ε) is a Bernoulli random variable with success probability κ+(ε)
and all de�ned random variables are independent. The mean o�spring mea-
sure of this branching process is then given by

{µ+
ε (t); t ≥ 0} = E[D̃+(ε)− 1]κ+(ε)P(τv,k < min(L, t)),

where

E[D̃+(ε)− 1] ≤
∞∑
k=1

E[(11(D̃ ≥ k)(1− ψ + ψq̃∗ + ε)D̃]

E[(1− ψ + ψq̃∗ − ε)D̃]
− 1

=
E[(D̃ − 1)(1− ψ + ψq̃∗ + ε)D̃]

E[(1− ψ + ψq̃∗ − ε)D̃]
,

while (34) gives

κ+(ε) =
E[(1− ψ + ψq̃∗ + ε)D̃]

(1− ψ + ψq̃∗ − ε)2
.
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Finally,

P(τv,k < min(L, t)) =
∫ t

0
(1− e−βs)L(ds) =

∫ t

0
βe−βsP(L > s)ds. (38)

Combining the above terms we obtain that

µ+
ε (dt)

≤ E[(D̃ − 1)(1− ψ + ψq̃∗ + ε)D̃]

E[(1− ψ + ψq̃∗ − ε)D̃]

E[(1− ψ + ψq̃∗ + ε)D̃]

(1− ψ + ψq̃∗ − ε)2
βe−βtP(L > t)dt

= K+(ε)µ∗(dt), (39)

where

K+(ε) =
E[(D̃ − 1)(1− ψ + ψq̃∗ + ε)D̃]

E[(D̃ − 1)(1− ψ + ψq̃∗)D̃−2]

E[(1− ψ + ψq̃∗ + ε)D̃]

E[(1− ψ + ψq̃∗ − ε)D̃+2]
(40)

and µ∗(dt) is de�ned in (9).

Similarly, by (35) and (37) we obtain that for all v ∈ V (n)
∗ (t1), the pro-

cess {|J (n)
v (t)|; t ≥ 0} stochastically dominates a branching process in which

particles give birth at ages given by the point process

{ξ̂−ε (t); t ≥ 0} =


D̃−(ε)−1∑
k=1

11(τv,k < min(L, t))Y −k (ε); t ≥ 0

 ,
where Y −k (ε) is a Bernoulli random variable with success probability κ−(ε)
and all de�ned random variables are independent. The mean o�spring mea-
sure of this branching process is given by

{µ−ε (t); t ≥ 0} = E[D̃−(ε)− 1]κ−(ε)P(τv,k < min(L, t)),

where

E[D̃−(ε)− 1] =
∞∑
k=1

E[(11(D̃ ≥ k)(1− ψ + ψq̃∗ − ε)D̃]

E[(1− ψ + ψq̃∗ + ε)D̃]
− 1

=
E[(D̃ − 1)(1− ψ + ψq̃∗ − ε)D̃]

E[(1− ψ + ψq̃∗ + ε)D̃]
,

while (34) gives

κ−(ε) =
E[(1− ψ + ψq̃∗ − ε)D̃]

(1− ψ + ψq̃∗ + ε)2
.
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As for the upperbound

P(τv,k < min(L, t)) =
∫ t

0
(1− e−βs)L(ds) =

∫ t

0
βe−βsP(L > s)ds.

Combining this with (38), we obtain that

µ−ε (dt)

=
E[(D̃ − 1)(1− ψ + ψq̃∗ − ε)D̃]

E[(1− ψ + ψq̃∗ + ε)D̃]

E[(1− ψ + ψq̃∗ − ε)D̃]

(1− ψ + ψq̃∗ + ε)2
βe−βtP(L > t)dt

= K−(ε)µ∗(dt), (41)

where

K−(ε) =
E[(D̃ − 1)(1− ψ + ψq̃∗ − ε)D̃]

E[(D̃ − 1)(1− ψ + ψq̃∗)D̃−2]

E[(1− ψ + ψq̃∗ − ε)D̃]

E[(1− ψ + ψq̃∗ + ε)D̃+2]
(42)

and µ∗(dt) is de�ned in (9).
Because there exists with high probability γ ∈ (0, 1 − q∗) such that

T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)), we obtain that with high probability and for all

v ∈ V (n)
∗ (T ′γ(n)), we have constructed a branching process with reproduction

process {ξ̂+ε (t); t ≥ 0} and mean o�spring measure {µ+
ε (t); t ≥ 0}, which

stochastically dominates the process {|J (n)
v (t)|; t ≥ 0} and an independent

branching process with reproduction process {ξ̂−ε (t); t ≥ 0} and mean o�-
spring measure {µ−ε (t); t ≥ 0}, which is stochastically dominated by the
process {|J (n)

v (t)|; t ≥ 0}.

Step 2:

In this step we wish to show that there exists ε > 0 such that
(i) there exists α−ε < 0 such that 1 =

∫∞
0 e−α

−
ε tµ−ε (dt),

(ii)
∫∞
0 te|α

−
ε |tL(dt) <∞,

(iii)
∫∞
0 te|α

−
ε |tµ−ε (dt) <∞ and

(iv) E
[∫∞

0 e|α
−
ε |tξ̂−ε (dt) log+(ξ(∞))

]
<∞.

After that we show that the corresponding results with the − superscript
replaced by + easily follow.

All expectations in K+(ε) and K−(ε) as de�ned in (40) and (42), are �nite
by Claim 6.1 and continuous in ε. Furthermore, K+(ε) is clearly increasing
in ε, while K−(ε) is decreasing. So, µ+

ε (dt) decreases for every t > 0 to µ∗(dt)
as ε↘ 0 and µ−ε (dt) increases for every t > 0 to µ∗(dt) as ε↘ 0.

By the conditions in Theorem 2.1, we know that there exist c > 1 and
αc < 0 such that c =

∫∞
0 e−αcµ∗(dt). Assume that ε is small enough for
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K−(ε) ∈ (1/c, 1). It follows that∫ ∞
0

e−αcµ−ε (dt) =
∫ ∞
0

e−αcK−(ε)µ∗(dt) = cK−(ε) > 1.

From
∫∞
0 e−αctµ∗(dt) = c < ∞, we deduce that g(x) :=

∫∞
0 e−xtµ−ε (dt) is

continuous and decreasing in x on [αc,∞), with g(αc) = cK−(ε) > 1 and

g(0) = µ−ε (∞) < 1. So there exists α−ε < 0 such that 1 =
∫∞
0 e−α

−
ε tµ−ε (dt).

The justi�cation that there exists α+
ε < 0 such that 1 =

∫∞
0 e−α

+
ε tµ+

ε (dt),
runs entirely parallel.

To show that
∫∞
0 te|α

−
ε |tL(dt) < ∞, we observe that because K−(ε) is

decreasing and continuous in ε, α−ε is negative and continuous and decreasing
in ε as long as µ−ε (∞) < 1. Therefore, |α−ε | is increasing in ε and |α−ε | ↘ α∗ as
ε↘ 0. In particular, for ε > 0 but small enough we have that |α−ε | < |α∗|+η,
where η is as in the assumption of Theorem 2.1. The desired result now
follows immediately from this assumption.

Observe that if
∫∞
0 e(|α

−
ε |+η)tµ−ε (dt) < ∞ for some η > 0, then we also

have that
∫∞
0 te|α

−
ε |tµ−ε (dt) <∞. Then setting η = β > 0 gives∫ ∞

0
e(|α

−
ε |+η)tµ−ε (dt) = K−(ε)

∫ ∞
0

e(|α
−
ε |+β)tβe−βtP(L > t)dt

=
K−(ε)

|α−ε |

∫ ∞
0

te|α
−
ε |tβL(dt).

From
∫∞
0 te|α

−
ε |tL(dt) <∞ it then follows that

∫∞
0 te|α

−
ε |tµ−ε (dt), so the third

condition of Lemma 3.2 is satis�ed.
Finally,

E
[∫∞

0 e|α
−
ε |tξ̂−ε (dt) log+(ξ̂−ε (∞))

]
≤ E

[∫∞
0 e|α

−
ε |tξ̂−ε (dt) log+(D̃−(ε)− 1))

]
= E[(D̃−(ε)− 1) log+(D̃−(ε)− 1)]κ−(ε)

∫∞
0 e|α

−
ε |tβe−βtP (L > t)dt

≤ E[(D̃−(ε)− 1)2]κ−(ε)
∫∞
0 e|α

−
ε |tβe−βtP (L > t)dt

= E[(D̃−(ε)−1)2]
E[D̃−(ε)−1]

∫∞
0 e|α

−
ε |tµ−ε (dt).

It follows from Claim 6.1 that the quotient of expectations is �nite, while the
integral is �nite by step (iii). So assumption (iv) is met. Conditions (ii)-(iv)
are also satis�ed for {ξ̂+ε (t); t ≥ 0} together with {µ+

ε (t); t ≥ 0}, because
|α+
ε | < |α−ε | and µ+

ε (dt)/µ−ε (dt) ≤ K+(ε)/K−(ε) <∞.

Step 3:

Let γ ∈ (0, 1− q∗) and γ′ ∈ (γ, 1− q∗). By the de�nition

T ′γ(n) = inf{t > 0;n−1|S(n)(t)| < 1− γ},
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we obtain that if T ′γ′(n) <∞, then n−1|S(n)(t)| ≥ 1−γ′ for t < T ′γ′(n) and in

particular, n−1|S(n)(T ′γ(n))| ≥ 1 − γ′. Combined with Lemma 2.2 this gives

that |S(n)(T ′γ(n))| − |S(n)(∞)| = θ(n) w.h.p.

For t > 0, let V
(n)
† (t) ⊂ V

(n)
∗ (t) be the set of vertices infected after time t,

which are infected by vertices infected before time t (in the language of [9],

V
(n)
† (t) is the coming generation). So, V

(n)
† (t) is the subset of V

(n)
∗ (t) of which

the infecting vertex is not in V
(n)
∗ (t). Assume that |V (n)

† (t)| = o(n). From

Step 1 we know that |V (n)
∗ (t)| is stochastically smaller than the total progeny

of |V (n)
† (t)| sub-critical branching processes with mean o�spring measure µ+

ε

and thus expected total number of children per particle µ+
ε (∞). However the

total size of such a branching process has expected size (1−µ+
ε (∞))−1 = θ(1).

This implies that if |V (n)
† (T ′γ(n))| = o(n), then E[|V (n)

∗ (T ′γ(n))|] = o(n), which

implies that |V (n)
∗ (T ′γ(n))|] = |S(n)(T ′γ(n)| − |S(n)(∞)| = o(n) w.h.p., which

is a contradiction. This �nishes step 3.

Step 4:

Let δ ∈ (0, |α∗|). We can choose ε > 0, such that α+
ε exists and |α+

ε | ∈
(|α∗| − δ, |α∗|). Furthermore, by Lemma 6.1 we know that t

(n)
1 (ε) < T ∗(n)

w.h.p. and we may w.h.p. choose γ such that T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)). For

v ∈ V (n)
† (T ′γ(n))) let u be the �infector� of v. We consider the di�erence in

infection time

σ(v)− σ(u) = (T ′γ(n)− σ(u)) + (σ(v)− T ′γ(n)).

Let τ be an exponentially distributed random variable with parameter β and
let Lv be the infectious period of v, which is distributed as L and independent
of τ . Then,

P
(
σ(v)− T ′γ(n) > x|v ∈ V (n)

† (T ′γ(n))
)

= P(σ(v)− T ′γ(n) > x|σ(v)− σ(u) > T ′γ(n)− σ(u), σ(v)− σ(u) <∞)
= P(σ(v)− σ(u) > x+ T ′γ(n)− σ(u)|σ(v)− σ(u) > T ′γ(n)− σ(u), σ(v)− σ(u) <∞)
= P(τ > x+ T ′γ(n)− σ(u)|τ > T ′γ(n)− σ(u), L > τ)

= P(τ > x+ T ′γ(n)− σ(u)|τ > T ′γ(n)− σ(u))
P(L>τ |τ>x+T ′γ(n)−σ(u),τ>T ′γ(n)−σ(u))

P(L>τ |τ>T ′γ(n)−σ(u))

= P(τ > x)
P(L>τ |τ>x+T ′γ(n)−σ(u))
P(L>τ |τ>T ′γ(n)−σ(u))

= P(τ > x)
P(L>τ+x+T ′γ(n)−σ(u))
P(L>τ+T ′γ(n)−σ(u))

= P(τ > x)P
(
L > τ + x+ T ′γ(n)− σ(u)|L > τ + T ′γ(n)− σ(u)

)
,

(43)
where we used the memoryless property of the exponential distribution in the
last two steps. Now let s0 be such that P(L > t + s) < e−|α

∗|(s−s0)P(L > t)
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for all t and s (which is possible by assumption (iii) of Lemma 2.1). Then
(43) together with τ being exponentially distributed with expectation 1/β
gives,

P(σ(v)− T ′γ(n) > x|v ∈ V (n)
† (T ′γ(n)))

< P(τ > x)e−|α
∗|(x−s0) = e−(|α

∗|+β)xe|α
∗|s0 . (44)

Next observe that for t > T ′γ(n),

|I(n)(t)| =
∑

v∈V (n)
† (T ′γ(n))

|Jv(t− σ(v))|+ |I(n)(t) ∩ I(n)(T ′γ(n))|. (45)

This implies that

P(|I(n)(t)| > 0)

≤
∑

v∈V (n)
† (T ′γ(n))

P(|Jv(t− σ(v))| > 0) + P(|I(n)(t) ∩ I(n)(T ′γ(n))| > 0). (46)

Recall that {Jv(t); t ≥ 0} is dominated by a branching process with mean
o�spring measure {µ+

ε (t); t ≥ 0}. Consider a sequence of i.i.d. copies of this
process and let Z+

ε,k(t) be the number of alive particles in the k-th copy of
this branching process at time t. So, (46) implies

P(|I(n)(t)| > 0)

≤
|V (n)
† (T ′γ(n))|∑
k=1

P(|Z+
ε,k(t− σ(v))| > 0) + P(|I(n)(t) ∩ I(n)(T ′γ(n))| > 0). (47)

Lemma 3.2 and Step 2 above now give that for all k ∈ N there exists c1 ∈
(0,∞) such that e|α

+
ε |tP(Z+

ε,k(t) > 0) → c1, which implies that there exists

c2 > c1 such that P(Z+
ε,k(t) > 0) < c2e

−|α+
ε |t for all t > 0. So, the probability

that v ∈ V (n)
† (T ′γ(n)) still has any o�spring t∗ = logn

|α∗|−δ time units after T ′γ(n)
is bounded from above by

∫ t∗

0
P(|Z+

ε,k(t− s)| > 0)P
(
σ(v)− T ′γ(n) ∈ ds|v ∈ V (n)

† (T ′γ(n))
)

+ P
(
σ(v)− T ′γ(n) > t∗|v ∈ V (n)

† (T ′γ(n))
)
. (48)

By (44), Lemma 3.2 and t∗ →∞ as n→∞ we obtain that (48) is bounded
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from above by

e|α
∗|s0

(∫ t∗

0
c2e
−|α+

ε |(t∗−s)(|α∗|+ β)e−(|α
∗|+β)sds+ e−(|α

∗|+β)t∗
)

= e|α
∗|s0

(
c2e
−|α+

ε |t∗
∫ t∗

0
(|α∗|+ β)e−(|α

∗|−|α+
ε |+β)sds+ e−(|α

∗|+β)t∗
)

= e|α
∗|s0

(
c2

|α∗|+ β

|α∗| − |α+
ε |+ β

(e−|α
+
ε |t∗ − e−(|α∗|+β)t∗) + e−(|α

∗|+β)t∗
)

= e|α
∗|s0

(
c2

|α∗|+ β

|α∗| − |α+
ε |+ β

(
n−

|α+ε |
|α∗|−δ − n−

|α∗|+β
|α∗|−δ

)
+ n−

|α∗|+β
|α∗|−δ

)

= e|α
∗|s0

(
c2

|α∗|+ β

|α∗| − |α+
ε |+ β

n−
|α+ε |
|α∗|−δ − (c2 − 1)(|α∗|+ β) + |α+

ε |
|α∗| − |α+

ε |+ β
n−

|α∗|+β
|α∗|−δ

)

=
1

n
e|α
∗|s0

(
c2

|α∗|+ β

|α∗| − |α+
ε |+ β

n−
|α+ε |−(|α∗|−δ)
|α∗|−δ − (c2 − 1)(|α∗|+ β) + |α+

ε |
|α∗| − |α+

ε |+ β
n−

δ+β
|α∗|−δ

)

Because |α+
ε | > |α∗|−δ this expression is o(1/n). Together with |V (n)

† (T ′γ(n))| =
θ(n), this in turn implies that the expression

|V (n)
† (T ′γ(n))|∑
k=1

P(|Z+
ε,k(t

∗ − σ(v))| > 0)

as given in equation (47) is o(1).
We also know that

P(|I(n)(t) ∩ I(n)(T ′γ(n))| > 0) ≤ |I(n)(T ′γ(n))|max
s>0

P(Lu > t+ s|Lu > s).

By assumption (iii) of Theorem 2.1 and |I(n)(T ′γ(n))| ≤ n we obtain that

P(|I(n)(t) ∩ I(n)(T ′γ(n))| > 0) ≤ ne|α
∗|s0e−|α

∗|t.

So with t∗ = logn
|α∗|−δ as above we obtain that

P(|I(n)(t∗) ∩ I(n)(T ′γ(n))| > 0)

≤ ne|α
∗|s0n−

|α∗|
|α∗|−δ = e|α

∗|s0n−
δ

|α∗|−δ = o(1).

Therefore, if t
(n)
1 (ε) < T ∗(n) and for all δ ∈ (0, α∗),

P
(
T ∗(n)− T ′γ(n) >

log n

|α∗| − δ

)

= P
(
|I(n)

(
T ′γ(n)) +

log n

|α∗| − δ

)
| > 0

)
= o(1)
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as desired and Step 4 is completed.

Step 5:

Let δ ∈ (0, |α∗|). We can choose ε > 0, such that α−ε exists and |α−ε | ∈
(|α∗|, |α∗|(1 + δ/2)). Furthermore, by Lemma 6.1 we know that t

(n)
1 (ε) <

T ∗(n) w.h.p. and we choose γ such that T ′γ(n) ∈ (t
(n)
1 (ε), T ∗(n)).

Observe that for t > T ′γ(n),

|I(n)(t)| =
∑

v∈V (n)
† (T ′γ(n))

|Jv(t− σ(v))|+ |I(n)(t) ∩ I(n)(T ′γ(n))|

≥
∑

v∈V (n)
† (T ′γ(n))

|Jv(t− σ(v))|, (49)

where Jv(s) = 0 for s < 0.
Recall that {Jv(t); t ≥ 0} dominates a branching process with mean o�-

spring measure {µ−ε (t); t ≥ 0}. Consider a sequence of i.i.d. copies of this
branching process and let Z−ε,k(t) be the number of alive particles in the k-

th copy of this process at time t. So, |I(n)(t)| is stochastically larger than∑|V (n)
† (T ′γ(n))|

k=1 Z−ε,k(t − σ(v)). By the independence of the branching processes
we then obtain that

P(|I(n)(T ′γ(n) + t)| = 0) ≤
|V (n)
† (T ′γ(n))|∏
k=1

P(Z−ε,k(T
′
γ(n) + t− σ(v)) = 0)

≤
|V (n)
† (T ′γ(n))|∏
k=1

P(Z−ε,k(t) = 0) =
(
P(Z−ε,1(t) = 0

)|V (n)
† (T ′γ(n))|

= P
(
Z−ε,1(t) = 0|Z−ε,1(0) = |V (n)

† (T ′γ(n))|
)
. (50)

For the second inequality we used that {Z−ε,k(t) = 0} is increasing in t. Now
we can apply Corollary 3.2, which gives that for all δ > 0

P

Z−ε,1
(1− δ/3)

log |V (n)
† (T ′γ(n))|
|α−ε |

 = 0|Z−ε,1(0) = |V (n)
† (T ′γ(n))|

→ 0.

By step 3 we obtain that log |V (n)
† (T ′γ(n))| = θ(n), which implies that

P
(
Z−ε,1

(
(1− δ/2)

log n

|α−ε |

)
= 0|Z−ε,1(t) = |V (n)

† (T ′γ(n))|
)
→ 0.
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and thus by (50) we obtain

P
(
|I(n)

(
T ′γ(n) + (1− δ/2)

log n

|α−ε |

)
| = 0

)
→ 0.

By |α−ε | < |α∗|(1 + δ/2) we then obtain

P
(
|I(n)

(
T ′γ(n) +

1− δ/2
1 + δ/2

log n

|α−ε |

)
| = 0

)
→ 0.

Because 1− δ < 1−δ/2
1+δ/2

, this implies that

P
(
|I(n)

(
T ′γ(n) + (1− δ) log n

|α−ε |

)
| = 0

)
→ 0,

which in turn leads to

P
(
T ∗(n)− T ′γ(n) < (1− δ) log n

|α∗|

)

= P
(
|I(n)

(
T ′γ(n)) + (1− δ) log n

|α∗|

)
| = 0

)
→ 0.
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