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Abstract

The outbreak of an infectious disease in a human population can lead
to individuals responding with preventive measures in an attempt to avoid
getting infected. This leads to changes in contact patterns. However, as
we show in this paper, rational behaviour at the individual level, such as
social distancing from infectious contacts, may not always be beneficial for
the population as a whole. We use epidemic network models to demon-
strate the potential negative consequences at the population level. We take
into account the social structure of the population through several net-
work models. As the epidemic evolves, susceptible individuals may distance
themselves from their infectious contacts. Some individuals replace their
lost social connections by seeking new ties. If social distancing occurs at
high rates at the beginning of an epidemic, then this can prevent an out-
break from occurring. However, we show that moderate social distancing
can worsen the disease outcome both in the initial phase of an outbreak
and the final epidemic size. Moreover, the same negative e↵ect can arise in
real-world networks. Our results suggest that one needs to be careful when
targeting behavioural changes as they could potentially worsen the epidemic
outcome. Furthermore, network structure crucially influences the way that
individual-level measures impact the epidemic at the population level. These
findings highlight the importance of careful analysis of preventive measures
in epidemic models.
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1. Introduction 
Mathematical models for the spread of infections have been successfully used to 
increase understanding of how epidemics may propagate: what are the most important 
features to determine the initial epidemic growth, final epidemic size or endemic 
level? Mathematical models are also useful to evaluate the possible effects on 
epidemic dynamics of preventive measures. This can guide public health officials to 
decide what measures could be put in place to reduce or even stop spreading of a 
disease [1].  
 
To prevent or control an epidemic, public health authorities may implement measures 
by e.g. isolating/treating detected infectious cases or starting a vaccination scheme, 
either before or during the outbreak [1]. In addition, individuals may take their own 
measures to prevent themselves from getting infected, e.g. by wearing face masks, 
taking hygienic measures such as hand washing, or by socially distancing themselves 
from infectious contacts. Such individual behaviour has been observed in e.g. the 
recent Ebola outbreak and the 2009 A/H1N1 epidemic [2-6]. 
 
In general, it is hard to predict the effect of preventive measures without using models 
to guide us. Epidemic dynamics are highly nonlinear and therefore preventive 
measures can lead to counter-intuitive effects. Standard epidemic models assume 
human behaviour is not influenced by the epidemic and is constant over time. 
Although it is often recognized that humans do take preventive measures in the course 
of an epidemic, models that incorporate behavioural dynamics are generally much 
harder to analyze. Recently, such models have started to receive more attention, and 
important advances have been made to gain understanding of the effect of different 
behavioural changes on epidemic dynamics [7-10].  
 
A crucial modelling ingredient is the contact pattern in the population as infection is 
transmitted through contacts between susceptible and infectious individuals. Owing to 
challenges in their analysis, the majority of models that consider behavioural 
responses to epidemic dynamics are relatively simple in modelling contact patterns 
[10]. Often the simplest assumption of homogeneous mixing, or some variant, is 
made. This assumption implies that any two individuals rarely meet more than once in 
a large population. To overcome the restriction of the lack of repeated contacts, 
network epidemic models have been proposed to model human contact patterns. This 
class of models have received much attention over the last 20 years or so [11,12]. In 
these models, individuals are socially connected in the network and infection is only 
possible along connections. Network models are also a natural way to incorporate 
heterogeneity in the number of connections that individuals in the population have. 
Throughout this paper, we refer to two individuals that are connected to each other as 
`neighbours'. Exactly what a neighbour is depends on the social structure under 
consideration, e.g. one may think of the neighbours as `colleagues' in workplaces or 
`sexual partners' in sexual networks.  
 
In the current paper we study a network SIR epidemic with preventive social 
distancing. We consider the setting where susceptible individuals distance themselves 
from their neighbours who they find out are infectious, perhaps sometimes simply 
dropping such connections and other times, in their wish to maintain a certain number 
of social connections, by seeking new connections (which we refer to as `rewiring'). 



We study the impact of social distancing on model networks as well as real-world 
networks.  
 
We show that rational preventive individual-level behaviour can have counter-
intuitive negative population-level consequences. From the perspective of an 
individual who distances him/herself from an infectious individual, this preventive 
behaviour is always rational in the sense that it decreases the risk of him/her getting 
infected during the epidemic outbreak (here `always' means for all rewiring and 
dropping rates on all networks). If the social distancing occurs at a high enough rate at 
the beginning of an epidemic, then this can prevent an outbreak from occurring. In 
such cases, the population-level effect is obviously always positive. However, we also 
show that having individuals who rewire away from infectious neighbours and 
possibly replace them with new ties may be harmful for the community as a whole. 
Depending on the network structure of the population, social distancing may in fact 
increase the epidemic threshold parameter from below to above its threshold value, 
making a large outbreak possible where without social distancing it was not. We also 
show that social distancing can increase the final size of the epidemic. It is important 
to stress that these features do not hold for all networks. However, we show that there 
are real-world networks as well as model networks which exhibit these properties. It 
is difficult to characterize completely when such individual preventive behaviour is 
harmful, but it tends to happen more easily if: a) the epidemic threshold parameter for 
an epidemic to take off (for the baseline setting without social distancing) is large, b) 
the network has many individuals with low degree and possibly other groups being 
highly inter-connected, and c) connections are more likely to be rewired than 
dropped.  
 
 
2 Model 
 
2.1 SIR epidemic with social distancing on a network 
 
We consider a population in which individuals are socially connected. Two 
individuals that are connected to each other are referred to as neighbours and contacts 
are only made between neighbours. The individuals and the connections between 
them together make up the network structure of the population. The stochastic SIR 
(susceptible-infectious-recovered) epidemic with social distancing on a network is as 
follows. Initially, usually one individual is infectious, we call this individual the index 
case, and all others in the population are susceptible (specific assumptions concerning 
the index case are given later). An individual that gets infected becomes infectious 
and remains so for an exponentially distributed time with mean 1/#. During its 
infectious period an individual transmits infection at a constant rate $independently to 
each susceptible neighbour. Moreover, a susceptible individual that has an infectious 
neighbour distances him/herself from this neighbour. The susceptible individual then 
either rewires the connection to an individual chosen uniformly at random from the 
population or drops the connection completely. We model this by a social distancing 
rate & and a probability ' to rewire rather than drop the connection. Whenever	a	
social	distancing	event	happens,	the	susceptible	individual	immediately	choses	a	
new	neighbour	uniformly	at	random	from	the	entire	population	with	probability	
',	and	with	the	remaining	probability	1-'	the	susceptible	individual	simply	



drops	the	connection	(so	a	susceptible	individual	rewires	from	an	infectious	
neighbour	at	rate	'&	and	drops	the	connection	at	rate	(1 − ')&).	Dropping and 
rewiring events happen independently between all pairs of susceptible and infectious 
individuals. The epidemic continues until there is no connected susceptible-infectious 
pair of individuals.  
 
Note that the preventive measure of social distancing is always beneficial from the 
individual perspective. Indeed, a susceptible individual that distances itself from an 
infectious neighbour avoids the risk of getting infected by that particular individual. 
In the case that it chooses to replace that social connection (rewiring), and that new 
neighbour is recovered (and immune), transmission can no longer occur through that 
connection. If the neighbour is susceptible, transmission through that connection 
could occur later on in the epidemic. If the neighbour is infectious, then all that has 
happened from an epidemic point of view is that one infectious neighbour is replaced 
by another one, and the risk of becoming infected is unchanged. Obviously, the most 
beneficial option from the point of view of avoiding getting infected is not to replace 
the connection (corresponding to ' = 0 and & > 0 in the model). At the population 
level this means that there are less connections through which the epidemic can 
spread. Therefore, this extreme case of dropping connections is always beneficial 
from both the individual and population perspective (in fact, one can mathematically 
analyse the model with only dropping of edges (F Ball, T Britton, KY Leung, D Sirl 
(2018). An SIR network epidemic model with preventive dropping of edges. 
Manuscript in preparation)). Consequently, provided infectives can recover (# > 0), 
if most of the social distancing is done through dropping connections rather than 
rewiring them (small ') then this will also be beneficial for the population. 
 
The epidemic with social distancing is studied on two network models as well as two 
real-world networks. The networks are described in Section 2.2 below. Our results in 
Section 3 involve several epidemiological measures for the beginning and the end of 
the epidemic, these concepts are introduced in Section 2.3. 
 
2.2 The networks 
 
2.2.1 Configuration network 
The configuration model is a well-studied network, both within and without the 
context of epidemic models [13-15]. The network is constructed by first defining its 
degree distribution {0

1
}, where 0

1
 is the probability that an individual has exactly 3 

connections. In a population of size 4, each of the 4 individuals picks a degree 
independently from {0

1
} and attaches that many half-edges to itself. Half-edges are 

then paired completely at random and the corresponding individuals are connected in 
the network. By way of this construction, some imperfections may arise, such as self 
loops or multiple connections between some pairs of individuals. However, such 
imperfections become sparse in the network as the population size 4 →� if the 
degree distribution has finite variance (see e.g. [16, Theorem 3.1.2] and SI Section 
S5). Under such conditions the asymptotic 4 → ∞ results in our paper hold also if the 
network is conditioned to have no such imperfections (see [17]). Those asymptotic 
results are valid as approximations only for large populations. What constitute large 
depends on many factors but simulations indicate that usually the approximations are 
good for sizes in the low hundreds.  
 



2.2.2 Clique network 
The clique-network model [18] (also referred to as household-network model when 
the unit under consideration is interpreted as a household) has two types of 
connections: global network connections and clique connections. The global network 
structure is obtained through the configuration network with prescribed degree 
distribution {0

1
}. On top of this, the community is partitioned into distinct units 

(cliques) of size three (see SI Section S2 for a discussion on allowing for various 
clique sizes). The population can be partitioned into cliques by labelling all 
individuals from 1 to 4, and letting the first three individuals make up clique 1, the 
next three individuals make up clique 2, and so on. In the final network, individual 1 
is then connected to all individuals he/she is connected to from the construction of the 
configuration model together with individuals 2 and 3 from the clique construction, 
and similarly for the other individuals. As with the configuration network, the clique 
configuration network can be treated as a simple undirected network. 
 
2.2.3 Real-world networks 
The real-world networks for our studies are taken from the Stanford large network 
dataset collection [19], where datasets for several different networks are freely 
available. We considered the `arXiv General Relativity collaboration network' and the 
`Facebook social circles network'. Both networks are undirected. The arXiv General 
Relativity collaboration network describes scientific collaborations between authors 
that submitted papers to the arXiv in the General Relativity and Quantum Cosmology 
category. Edges between nodes represent two co-authors that have written a paper 
together. In the Facebook social circles network, nodes are survey participants of the 
social network website Facebook that were using a specific app. Edges between nodes 
represent the `circles' or `friends lists' of those participants. The networks are 
described in more detail using summary statistics such as degree mean, median and 
variance, numbers of nodes and edges in SI Section S3.1. Moreover, additional 
summary statistics such as clustering coefficients are documented in [19]. 
 
2.3 Epidemiological quantities: threshold parameters, the probability of a major 
outbreak, and final size 
In general, the social distancing model is challenging to analyze mathematically (see 
[20] for analysis of the beginning of an epidemic on the configuration network). As 
the network structure depends on the epidemic dynamics, models very soon become 
intractable. Therefore, in the main text we present the heuristics of our analytical 
results and refer to SI for the mathematical details. In Section 3 the main focus is on 
our findings from simulation studies. Here, we present the key epidemiological 
concepts that are used in Section 3. 
 
For the beginning of the epidemic, in the configuration network model we use the 
basic reproduction number 7

8  that has the interpretation as the expected number of 
secondary cases generated by one typical newly infected individual at the beginning 
of the epidemic. The number 7

8  is a threshold parameter with threshold value one in 
the sense that, in the limit as the population size 4 → ∞ there is a positive probability 
of a major outbreak (one which infects a strictly positive fraction of the population as 
4 → ∞ if 7

8
	> 1 and no major outbreak occurs if 7

8
≤ 1. Owing to stochastic 

effects, it is always possible that an epidemic dies out when introduced into a 
population (with finite size 4 even when 7

8
> 1. Previous work ([20]; see SI Section 



S1.2) showed that the basic reproduction number 7
8
	for the epidemic on the 

configuration network with social distancing is given by  

7
8
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? are the mean and variance of the degree distribution {0
1
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=
+
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− 1 is the expected number of susceptible 
connections of a typical newly infected individual in the early stages of an epidemic 
and $/($ + & + #) is the probability of transmitting to such a susceptible individual 
before he/she recovers or the neighbour drops the connection or rewires away.  
 
Related to 7

8  is the clique reproduction number 7
∗
 (also referred to as the household 

reproduction number when the cliques under consideration are households), which is 
more natural to consider when studying populations with a clique structure. Rather 
than considering a newly infected individual, one considers a newly infected clique as 
the unit of interest. The same threshold behaviour holds. The clique reproduction 
number 7

∗
	is derived in Section 3.2 and SI Section S2.1. 

 
For an epidemic on both the configuration network and the clique network, as 
population size	4 tends to infinity, the final fraction F

G
HHH of individuals that ever get 

infected converges in distribution to random variable F̅ with two-point distribution: 
J(F̅ = 0) = 1 − J(F̅ = K). In the event of a major outbreak, the limiting final 
fraction of the population infected by the epidemic is K. In general, this constant K is 
only characterized implicitly, even for the simplest Markovian homogeneously 
mixing SIR epidemic model. We use the practical definition in our simulation studies 
in Section 3 that an epidemic outbreak is major if the final number of infected 
individuals is more than 10% of the total population size. We use the fraction of 
simulations resulting in major outbreaks according to this definition as an 
approximation for the probability of a major outbreak to occur. Furthermore, we set 
the mean infectious period 1/# equal to 5 days as this is a typical for many infectious 
diseases. More details on the simulation studies are provided in SI Section S5. We call 
the model without social distancing & = 0) the baseline model.  
 
 
3 Results 
 
3.1 The configuration network 
Social distancing in the configuration network is always beneficial at the beginning of 
an epidemic in the sense that it lowers 7

8
. This conclusion follows immediately from 

expression (1). In fact, social distancing can ensure that 7
8  is reduced below the 

epidemic threshold value of one, see Fig. 1B for an example. At the beginning of an 
epidemic, from the point of view of a susceptible individual, social distancing from an 
infective neighbour ensures with high probability that he/she avoids infection during 
the early stages of an epidemic. Indeed, there are only few infectives in the population 
in that stage of the epidemic. This makes it unlikely for a susceptible individual to 
encounter another infectious individual at the beginning of the epidemic. 
 
However, social distancing need not be beneficial for the population as a whole. In 
fact, even though rewiring decreases 7

8
, it can still lead to an increase in the final 



size. To show analytically that the expected final size can increase with & we 
consider a very specific degree distribution, where individuals have either degree 0 or 
degree L, where L > 2, i.e. 0

8
= 1 − 0

N
 (proving things for more general degree 

distributions seems very hard). We analyze a related model that allows us to derive an 
asymptotic lower bound for the model of interest with strictly positive rewiring 
probability ' > 0. In the related model, we consider an SI infection # = 0). Then 
continuity arguments ensure that our results also hold for an SIR infection with # >
0	small enough. Individuals act differently depending on their degree. A susceptible 
individual that tries to rewire to a randomly chosen individual	O in the population will 
not do so if O is of degree L. If O is of degree 0, then rewiring takes place as usual, but 
O is prohibited from transmitting to other individuals. Therefore, the number of 
infections in the modified model is always less than in the original model (and is 
equal in the baseline model when there is no social distancing). For this modified 
model, we can derive an asymptotic (as 4 → ∞) lower bound for the final size that is 
increasing in & for small & > 0. It follows that, provided ' > 0, for sufficiently small 
# > 0, the final size of the model with social distancing is greater than that without 
social distancing for sufficiently small & > 0. The details of the analysis are found in 
SI Section S1.3. 
 
Rather than providing details for the analytical results for the final size here, we 
demonstrate the negative population level effects through simulation studies. We 
consider the social distancing model on a configuration network with heterogeneous 
degree distribution in Fig. 1. Parameter values are such that the basic reproduction 
number 7

8
 is large in the baseline setting and the majority of the social distancing is 

done through rewiring rather than dropping. The epidemic is started with 10 index 
cases (chosen uniformly at random from the population) in order to have most of the 
simulations resulting in major outbreaks. The number of index cases, unless 
sufficiently large, does not affect the final size of a major outbreak. We illustrate this 
fact by considering the scenario with one index case in SI Fig S1. Then the final size 
given a major outbreak increases as a function of social distancing as in Fig. 1, but the 
fraction of simulations resulting in a major outbreak is much smaller and 
consequently the average final size is decreasing. Additional results showing that 
social distancing can increase the final size for several other configuration network 
models are presented in SI Section S4. In particular, we consider different settings 
with a smaller rewiring probability ' > 0. 
 
Note that the fraction of epidemics that result in major outbreaks decreases with 
increasing social distancing rates (Fig. 1B). Despite this, the average final size of all 
outbreaks can still increase. Once the social distancing rate & increases to a level such 
that the basic reproduction number drops below the epidemic threshold value of one 
(Fig. 1B), mostly minor outbreaks will occur. Finally, we note that deviations from 
the average final size are generally small (also compared to the total population size 
of 5000), especially when conditioning on the occurrence of a major outbreak.  
 



 
Figure 1: Social distancing can lead to an increase in the final size for the configuration network 
model. (A) Average final size (with 95% confidence intervals (CI) whenever large enough to be visible 
on the scales used in the plots) over all outbreaks (solid line) and restricted to major outbreaks (dashed 
line); the dotted horizontal line is at the final size when & = 0, for reference. (B) 7

8
 as a function of 

social distancing rate & (dashed black line at 7
8
= 1 indicates the threshold value) and fraction of all 

outbreaks resulting in major outbreaks (with 95% CI). Model parameters are as follows. An individual 
in the population has degree 3 with 3 = 0,⋯ ,10 with probability 0

1
= R/(3 + 1), 3 = 0,⋯ ,10 with 

R = 0.331 the normalization constant. Other parameter values are ' = 0.9, $ = 200/day and 1/# = 5 
days, total population size 5000, and each epidemic starts with 10 randomly chosen index cases. For 
each value of &, 500 epidemics are simulated. 
 
 
3.2 The clique network 
In the clique network individual preventive social distancing can have a negative 
population-level effect already at the beginning of an epidemic. To demonstrate this 
we consider 7

∗
 for the clique-network model. The clique reproduction number 7

∗
 is 

derived by differentiating between two types of newly infected cliques. A newly 
infected clique at first consists of one newly infected individual while the remaining 
clique members are susceptible. The two types are determined by the way the newly 
infected individual V

∗
 was infected: (1) V

∗
	was infected by a global neighbour (i.e. 

outside his/her own clique) that it had already before the start of the epidemic or (2) 
V
∗
 was infected by a global neighbour that it acquired through a social distancing 

event during the epidemic. The clique reproduction number is the dominant 
eigenvalue of the 2 × 2 matrix (X

YZ
)
Y,Z[\,?

, where X
YZ

 is the expected number of 
cliques of type ] generated by one newly infected clique of type ^. Details of the 
derivation of the X

YZ
	are found in SI Section S2.1. We find an explicit expression for 

7
∗
	that we can analyse as a function of social distancing & and rewiring probability ' 

for different degree distributions (see SI Section S2.2). We illustrate these analytical 
results with numerical examples in Fig. 2 for fixed rewiring probability ' = 0.9 (but 



note that there is generally a larger range for ' for which negative population effects 
can occur depending on the network under consideration and other model parameter 
values, see SI Section S4). 
 
As can be seen in Fig. 2A, 7

∗
 can increase as a function of the social distancing rate 

&. In particular, social distancing can move the epidemic threshold 7
∗
 from below to 

above its threshold value of one. In other words, individual preventive measures that 
are beneficial at the individual level can cause a major outbreak to become possible 
while without the preventive measures this is not possible. However, this depends 
heavily on the precise network structure. In Fig. 2B, the degree distribution is chosen 
such that 7

∗
 decreases for all social distancing rates. See SI Section S2 for more 

details and examples of the dependence of 7
∗
 on social distancing. Note that 7

∗
	will 

eventually decrease for large enough social distancing rates as can be seen in Fig. 2A. 
 
In settings where social distancing pushes 7

∗
 from below to above the threshold for 

an epidemic to occur, the effect of social distancing on the final size is large (Fig. 2C). 
Moreover, even in settings where social distancing reduces 7

∗
, the final size can 

initially increase when social distancing is introduced into the model (Fig. 2D). 
 

 
Figure 2: The effect of social distancing on the epidemic threshold parameter 7

∗
	and the final size. The 

fraction of epidemics resulting in major outbreaks (with 95% CI whenever large enough to be visible 
on the scales used in the plots) and 7

∗
 for (A) mean infectious period 1/# = 5 days, $ = 20/day and 

two-point degree distribution with 0
8
=

\

?

= 0
\
 and (B) mean infectious period 1/# = 5 days, $ =

2/day and two-point degree distribution with 0
8
=

\

?

= 0
_
Average final size with (dashed) and without 

(solid) conditioning on a major outbreak (with 95% CI) corresponding to (C) scenario A (D) scenario 
B; dotted horizontal lines are for comparison with the size at & = 0. Other parameter values are as 
follows: cliques have size 3, the population size is 5000 and ' = 0.9. Each epidemic is initiated with 
one randomly chosen infected individual and for each value of &, 500 epidemics are simulated. 
 
3.3 Application to real-world networks 
We consider two real-world networks: the arXiv General Relativity collaboration 
network and Facebook social circles network, taken from [19]. We simulate SIR 
epidemics with social distancing on these two real-world networks (see SI Section 



S3.1 for details). In Fig. 3 we demonstrate that social distancing can have a negative 
effect at the population level by increasing the final size in the collaboration network.  
 

 
Figure 3: Social distancing can increase the final size of the epidemic on real-world networks for large 
recovery rate. Social distancing in the arXiv General Relativity collaboration network. (A) The average 
final size with (dashed) and without (solid) conditioning on a major outbreak (with 95% CI whenever 
large enough to be visible on the scales used in the plots); dotted horizontal lines are for the size of the 
giant component (top) and comparison with the size at &=0 (bottom two). (B) Fraction of all outbreaks 
that resulted in major outbreaks (with 95%). Model parameter values are: mean infectious period 
1/# = 5 days, $ = 2/day and ' = 0.9. For each value of &, 500 epidemics are simulated. The index 
case is chosen uniformly at random from the sub-population of individuals that has median degree and 
are part of the largest connected component of the network. 
 
The second real-life network that we consider the social distancing epidemic model 
on is the Facebook social circles in Fig. 4. This serves to demonstrate that the precise 
network structure plays a crucial role for the effect that social distancing can have on 
the final size. We find that if we restrict to only the major outbreaks, then a modest 
increase in the final size can be observed when compared to the baseline setting. On 
the other hand, the average final size is more or less unaffected by social distancing 
for sufficiently small social distancing rates. This can be explained by the network 
structure of the underlying population. Since all individuals are part of the same 
connected component that contains many connections, i.e. all individuals are 
(indirectly) connected to each other, modest social distancing rates will not change the 
network structure in a way that significantly alters transmission patterns (see SI 
Section S3.1 for network summary statistics).  
 



 
Figure 4: Social distancing in the facebook social circles network with randomly chosen index case 
with median degree. (A) The average final size over all outbreaks (solid) and conditioning on major 
outbreaks (dashed) (with 95% CI whenever large enough to be visible on the scales used in the plots); 
dotted horizontal lines are for the size of the network (top) and comparison with the size at &=0 
(bottom two). (B) Fraction of all outbreaks that resulted in major outbreaks (with 95% CI). Model 
parameter values are: mean infectious period 1/# = 5 days, $ = 2/day and ' = 0.9. For each value of 
&, 500 epidemics are simulated. The index case is randomly chosen from the population that has 
median degree. 
 
In SI Section 4 additional scenarios for smaller probabilities ' for both real-world 
networks are considered. We find that negative population-level effects can occur for 
arXiv General Relativity collaboration network for a wider range of '-values while ' 
has minor effects on the final size on the Facebook social circles network. 
 
 
4. Conclusion and discussion 
 
In the event of an epidemic outbreak in a population, individuals may take preventive 
measures by changing their contact patterns. Individuals may try to avoid infection by 
social distancing from infectious contacts. If this is done at sufficiently high social 
distancing rate, then this can have a positive population level effect by bringing the 
reproduction number for an epidemic to take off below the threshold value of one. On 
the other hand, while preventive social distancing, also at moderate rates, is always 
rational at the individual level, it may be harmful at the population level. In fact, 
preventive social distancing can increase the final epidemic size at the population 
level and thus have negative effects for the community at large. We demonstrated this 
counter-intuitive result by means of different epidemic network models, as well as 
simulating epidemics with social distancing on existing real-world networks. Similar 
conclusions in terms of behavioural changes at the individual level and its population-



level consequences have been drawn in [21,22] for different behavioural change 
models. Both [21,22] considered changes in human mobility patterns in the event of 
an epidemic and its consequences for the geographical spread. Using a 
metapopulation model, they illustrated that individual preventive measures in 
mobility patterns can lead to epidemic spread in new locations, although their 
invasion thresholds are always increasing [21] or even independent [22] of the 
behavioural changes, which is quite different from the dependence on social 
distancing of the threshold parameters 7

8
 and 7

∗
 in our models.  

 
Whether or not social distancing of susceptible individuals from their infectious 
contacts will actually have negative epidemic outcomes depends strongly on the 
social network structure of the population. We demonstrated that social distancing can 
have different effects in the initial stages of the epidemic compared to the overall 
epidemic outbreak size. We considered the spread of an SIR epidemic on the clique-
network model and the configuration network model. We showed that social 
distancing can have negative effects for the community by (i) increasing the epidemic 
threshold parameter 7

∗
 from below to above the threshold value of one in clique-

networks with high clustering and (ii) by increasing the final size. Point (ii) for the 
final size was shown in (a) configuration networks with heterogeneous degree 
distribution, (b) clique-networks, and (c) a real-life collaboration network.  
 
In general, in the baseline setting that an epidemic outbreak may occur when no 
preventive measures are taken, social distancing can always have beneficial effects 
provided that the rate of social distancing is sufficiently large (e.g. Fig. 3A). Indeed, 
sufficiently large social distancing rates can prevent an epidemic from taking off by 
reducing the epidemic threshold parameter from above to below its threshold value. In 
such cases, social distancing ensures that only a small number of individuals get 
infected by the epidemic, while in the baseline setting a significant fraction of the 
population may be infected.  
 
Whereas social distancing never increases ones own risk of getting infected in our 
model, through rewiring, it can increase the risk for other individuals, e.g. by 
connecting to individuals that were previously not (so heavily) exposed to the 
epidemic. How and whether or not social distancing affects the population-level 
epidemic outcome depend on a variety of factors. Most notably, the network structure 
plays an important role (e.g. Fig. 2). While it was not our aim to investigate models 
for specific diseases, we have chosen parameter values (e.g. 1/# = 5 days and 7

8
 = 

4.5 in the baseline model for Fig. 1) which are relevant for many infectious diseases. 
For example mumps, rubella, and polio have estimated basic reproduction numbers 
around 5 and infectious periods are typically in the range of a few days to weeks.  
Note that we consider an infectious period that is exponentially distributed. The 
memoryless property of the exponential distribution ensures that social distancing is 
always beneficial at the individual level. Relaxing this assumption could potentially 
lead to different effects for the individual and/or the population level. This is an 
interesting extension to investigate in future work for which the current framework 
provides an excellent starting point. Furthermore, social distancing with larger values 
of ' can more easily lead to negative effects at the population level. Exactly what 
constitutes sufficiently large ' to realise this effect depends on the precise setting that 
one considers (e.g. for the clique network model with a Poisson degree distribution 
this occurs with 7

∗
	for all \

?

< ' ≤ 1 while for the same model with degree 



distribution 0
8
=

\

?

= 0
\
 the range of ' is larger at  \

_

< ' ≤ 1; see also SI Section 
S1.3, S2.2 and S4) . The same seems to apply when 7

8
 or 7

∗
	is high and the 

community has many individuals with low degrees and/or the community has highly 
connected cliques. In such cases, rewiring may introduce or increase connections to 
otherwise relatively isolated individuals. In this way the smaller chance of the 
individual who takes preventive measures getting infected is outweighed by the 
increased risk of transmission to a larger part of the population in the event of 
infection. 
 
The main point in the paper was to show, mathematically in the supplementary 
material and by means of simulations in the main text, that social distancing may for 
some networks actually increase the total number of infected at the end of the 
outbreak. Social distancing could also affect other features of an outbreak, such as the 
size and time of the peak and the duration of the outbreak. To show any mathematical 
results for such finer details of the outbreak appears to be very hard but can of course 
be addressed by means of simulations. A thorough study, preferably accompanied by 
some mathematical results, remains to be done. 
 
Although it is generally recognised that individual preventive measures are often 
taken once awareness of an epidemic is in place, it is not well understood how to 
model changes in individual behaviour. Here we considered the effect of social 
distancing on an epidemic. We modelled this on a contact network by assuming that 
susceptible individuals distance themselves from infectious contacts, allowing for 
both dropping of connections and replacement with new contacts in the desire to 
sustain a certain number of social contacts. Social behaviour is far more complex than 
our social distancing model, and many behavioural changes will depend on the 
epidemic and population under consideration. An important factor is e.g. risk 
perception. In the case of severe diseases, one can imagine that susceptible 
individuals will more likely drop connections rather than rewire them to other 
individuals in the population. There might be heterogeneity in preventive measures 
taken; some individuals might be willing to take more risks than others or have a 
stronger inclination to maintain a certain number of connections, e.g. for sexually 
transmitted infections (STI) one can often distinguish between groups with 
distinctively different levels of sexual activity. How such structures influence 
epidemic outcomes will likely depend strongly on assumptions made on e.g. mixing 
between risk groups (how assortative mixing is and whether individuals have the 
same assortative behaviour when rewiring to other individuals).  
 
In terms of different types of connections, another interesting extension is to 
distinguish between behavioural changes within and between cliques. If cliques 
represent e.g. households then one can imagine that susceptible individuals may drop 
connections to infectious individuals outside the household and instead intensify 
connections within the household instead. While the current study focuses on 
preventive behavioural changes of susceptible individuals, one could also consider 
behavioural changes of infectious individuals, e.g. isolation, either self imposed or 
implemented by public health authorities. Such measures regarding infectious 
individuals would generally not have the negative population effects as seen with 
social distancing of susceptible individuals, though see [23] which shows that 
replacing individuals with essential societal roles, such as health workers, when they 



are detected as being infectious, by susceptible individuals can accelerate disease 
transmission.  
 
Note that we assume that the network structure of the population is static in the 
absence of disease. Depending on the disease of interest it would be interesting to 
consider a network that is dynamic also in the absence of infection, as would be 
appropriate for STI such as HIV to incorporate partner separation and formation over 
time. Superimposed on the dynamic network are then the dynamics that follow from 
social distancing (or other preventive measures). These are just a few important ways 
to modify and extend the social distancing model that we consider. As we find 
counterintuitive results already in the current model with relatively simple social 
distancing rules, it is difficult to understand how such extensions impact the epidemic, 
and certainly it would be interesting to investigate that in future work.  
 
However, the aim of our paper is to show that rational individual-level preventive 
measures can have counter-intuitive consequences for the population-level. Public 
health interventions that aim at changing individual behaviour through social 
distancing could have adverse consequences, for example school closures could 
reduce social contacts between children in the school classes but may (partly) be 
replaced by social contacts outside of school. As our results show, it is not necessarily 
straightforward what effects such behaviour may have at the population level. These 
findings highlight the importance of modelling individual level behavioural changes 
in response to an epidemic to understand infectious disease dynamics.  
 
 
Competing interests 
We have no competing interests. 
 
 
Authors’ contributions 
K.Y.L., F.B., D.S., and T.B. designed and performed research; K.Y.L. and T.B. 
analyzed data; F.B. and D.S. advised on analysis and interpretation; K.Y.L. and T.B. 
wrote the manuscript; and F.B. and D.S. contributed to writing the manuscript. 
 
 
Funding  
This work was partially supported by a grant from the Simons Foundation and was 
carried out as a result of the authors' visit to the Isaac Newton Institute for 
Mathematical Sciences during the programme Theoretical Foundations for Statistical 
Network Analysis in 2016 (EPSRC Grant Number EP/K032208/1). T.B. and K.Y.L. 
are supported by the Swedish Research Council (VR) Grant Number 2015-050153. 
This work was also supported by a grant from the Knut and Alice Wallenberg 
Foundation, which enabled F.B. to be a guest professor at the Department of 
Mathematics, Stockholm University. 
 
 
Acknowledgements 
We thank two anonymous referees for valuable comments that helped improved the 
manuscript. We thank A. Allard for bringing ref [23] to our attention. 
 



 
References 
 
1. Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C,  
Eames KTD, Edmunds WJ, Frost SDW, Funk S, Hollingsworth TD, House T, Isham 
V, Klepac P, Lessler J, Lloyd-Smith JO, Metcalf CJE, Mollison D, Pellis L, Pulliam 
JRC, Roberts MG, Viboud C, Isaac Newton Institute IDD Collaboration 2015. 
Modeling infectious disease dynamics in the complex landscape of global health. 
Science 347(6227):aaa4339. 
 
2. Rubin GJ, Amlot R, Page L, Wessely S. 2009 Public perceptions, anxiety, and 
behavior change in relation to the swine flu outbreak: cross sectional telephone 
survey. BMJ 339:b2651. 
 
3. Jones JH, Salathe M. 2009 Early assessment of anxiety and behavioral response to 
novel swine origin influenza A (H1N1). PLOS ONE 4:e8032. 
 
4. Bayham J, Kuminoff NV, Gunn Q, Fenichel EP. 2015 Measured voluntary 
avoidance behaviour during the 2009 A/H1N1 epidemic. Proc R Soc B 
282:20150814.  
 
5. Fast SM, Mekaru S, Brownstein JS, Postlethwaite TA, Markuzon N. 2015 The role 
of social mobilization in controlling Ebola Virus in Lofa County, Liberia. Plos Curr 
2015, May 15. 
 
6. Funk S, Ciglenecki I, Tiffany A, Gignoux E, Camacho A, Eggo RM, Kucharski AJ, 
Edmunds WJ, Bolongei J, Azuma P, Clement P, Alpha TS, Sterk E, Telfer B, 
Engel G, Parker LA, Suzuki M, Heijenberg N, Reeder B. 2017 The impact of control 
strategies and behavioural changes on the elimination of Ebola from Lofa County, 
Liberia. Phil Trans R Soc B 372:20160302. 
 
7. Funk S, Salathé M, Jansen VAA. 2010 Modelling the influence of human 
behaviour on the spread of infectious diseases: a review. J R Soc Interface 
7(50):1247–1256. 
 
8. Manfredi P, d’Onofrio A, editors. Modeling the interplay between human behavior 
and the spread of infectious diseases. 2013 Springer-Verlag, New York. 
 
9. Funk S, Bansal S, Bauch CT, Eames KTD, Edmunds WJ, Galvani AP,  
Klepac P. 2015 Nine challenges in incorporating the dynamics of behaviour in 
infectious diseases models. Epidemics 10:21–25. 
 
10. Verelst F, Willem L, Beutels P. 2016 Behavioural change models for infectious 
disease transmission: a systematic review (2010-2015). J R Soc Interface 
13:20160820. 
 
11. Newman MEJ. 2010 Networks: an introduction. Oxford University Press, Oxford. 
 
12. Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV,  
Vernon MC. 2011 Networks and the epidemiology of infectious disease. Interdiscip 



Perspect Infect Dis 2011:1–28. 
 
13. Bollobás B. 2001 Random Graphs. Academic Press, New York. 
 
14. Molloy M, Reed B. A critical point for random graphs with a given degree 
sequence. 1995 Random Structures and Algorithms 6:161–179. 
 
15. Newman MEJ, Strogratz SH, Watts DJ. 2001 Random graphs with arbitrary 
degree distributions and their applications. Phys Rev E  64:026118. 
 
16. Durrett R. Random graph dynamics. 2006 Cambridge University Press, 
Cambridge. 
 
17. Janson S. 2009 The probability that a random multigraph is simple. Comb Probab 
Comput 18:205–225. 
 
18. Ball F, Sirl D, Trapman P. 2009 Threshold behaviour and final outcome of an 
epidemic on a random network with household structure. Adv Appl Probab 41:765–
796. 
 
19. Leskovec J, Krevl A. SNAP Datasets: Stanford large network dataset collection. 
Accessed: http://snap.stanford.edu/data, June 2014. 
 
20. Britton T, Juher D, Saldana. 2016 A network epidemic model with preventive 
rewiring: comparative analysis of the initial phase. Bull Math Biol 78:2427–2454. 
 
21.  Meloni S, Perra N, Arenas A, Gómez S, Moreno Y, Vespignani A. 2011 
Modeling human mobility responses to the large-scale spreading of infectious 
diseases. Scientific reports 1:62. 
 
22. Nicolaides C, Cueto-Felgueroso L, Juanes R. 2013 The price of anarchy in 
mobility-driven contagion dynamics. J R Soc Interface 10:20130495. 
 
23. Scarpino SV, Allard A, Hébert-Dufresne L. 2016 The effect of a prudent adaptive 
behaviour on disease transmission. Nature Physics 12:1042-1047  



Supplementary Information

Individual preventive social distancing during an epidemic

may have negative population-level outcomes

Ka Yin Leunga,1, Frank Ball2, David Sirl2, and Tom Britton1

5th June 2018

This supplementary information accompanies the manuscript ‘Individual preventive social
distancing during an epidemic may have negative population-level outcomes’. It contains de-
tails on mathematical results, additional figures, and summary statistics for the two real-world
networks.

In Section S1 analytical results and additional figures are presented for the social distancing
model on the configuration network model. In Section S1.3 we provide a proof that the final size
can increase with increasing social distancing rate ω by considering an asymptotic lower bound
for the final size. In ?? we provide some additional simulation studies on different configuration
networks. In Section S2 we derive the epidemic threshold parameter R∗ for the social distancing
model on the clique network, the so-called clique reproduction number. We show that social
distancing can move R∗ from below to above the threshold value of one, thereby leading to a
positive probability of a major outbreak to occur. In Section S3 properties of the two real-world
networks are listed. In Section S4 we show that negative population level effects can occur
for a range of α values large enough, where ‘large enough’ depends on the network structure
under consideration and other parameter value choices. Finally in Section S5 we describe the
technicalities of the simulation studies.

Section S1 Configuration network

Section S1.1 Notation and construction

The (Newman-Strogatz-Watts version of the) configuration model is defined in the main text in
Section 2.2.1. The degree D of an individual in the network is distributed as the pre-defined
distribution {pd}. The mean and variance of D are denoted by µD and σ2

D, respectively. In the
configuration network construction a given half-edge is d times as likely to be paired with a given
individual with degree d than with a given individual with degree 1. Therefore, a neighbour has
size-biased degree D̃, where P (D̃ = d) = dpd/µD, d = 1, 2, . . . The configuration model is well
studied, e.g. [7]. It is for instance known that, as the population size n → ∞, there will be zero
connected components that have size of exact order n if µD + σ2

D/µD − 1 ≤ 1, and precisely
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one connected component of exact order n if µD + σ2
D/µD − 1 > 1. Since there is at most one

component that has size of exact order n this component is often called the giant component.
Further, if the degrees are not small, then the giant often makes up close to all individuals. If
for example all individuals have the same degree d > 2, then all nodes are part of the giant
component with a probability tending to 1 as n → ∞.

Section S1.2 Epidemic threshold parameter R0

The basic reproduction number R0 for the configuration network model with rewiring and drop-
ping has been derived previously in [8]:

R0 =
β

β + ω + γ

(

µD +
σ2
D

µD
− 1

)

. (S.1)

From (S.1) we see that R0 is a monotonically decreasing function of ω, i.e. any social distancing
always reduces R0. In particular, if R0 is larger than one in the baseline setting without any
social distancing (ω = 0), then social distancing reduces R0 to below its epidemic threshold of
one if and only if ω ≥ β(µD + σ2

D/µD − 1)− γ. Therefore, social distancing is always beneficial
at the beginning of an epidemic in the configuration network.

Section S1.3 Asymptotic lower bound for the final size

Assume that the degree distribution of the population only takes on values 0 and d, so p0 = 1−pd
with d > 2. For ease of argument we consider the asymptotic lower bound first for the simpler
setting of our model where γ = 0 and α = 1, i.e. an SI infection (without recovery) and social
distancing is always through rewiring to new individuals. We indicate later how the argument
may be extended to the case when γ = 0 and α ∈ (0, 1]. By a continuity argument it follows
that, for any α ∈ (0, 1], the conclusions also hold for all sufficiently small γ > 0. The degree
of an individual may change over the course of an epidemic owing to rewiring. We say that an
individual has ‘original degree’ 0 or d if that was the degree of the individual in the configuration-
network construction before the epidemic.

We considerR0 as a function of ω. In the setting of this section, R0 = R0(ω) = β(d−1)/(β+ω)
(in the early stages of the epidemic, all newly infected individuals have degree d). Note that
R0(0) = d − 1, i.e. in an SI epidemic without rewiring, a newly infected individual transmits
infection to all its susceptible neighbours. Note that R0(0) > 1 since we have assumed that
d > 2 Let Z̄n(ω) denote the final fraction of the population that gets infected in the model with
population size n and rewiring rate ω. If ω = 0, then only transmission can occur (recall that
we consider γ = 0), so an index case will generate an outbreak of the size equal to the size of the
connected component this index case is part of. Asymptotically, as population size n → ∞, as
mentioned earlier, all individuals with degree d will be part of the giant component of the network
so the giant component consists of a fraction pd of the entire population. Therefore, as n tends to
infinity, Z̄n(0) tends to a two-point distribution Z̄(0) with P (Z̄(0) = 0) = p0 = 1−P (Z̄(0) = pd).
That is, in the setting without recovery, the asymptotic final fraction infected is either zero (if
the index case has degree 0) or pd (if the index case has degree d).

Note that for large enough ω, R0(ω) < 1. We consider ω > 0 sufficiently small such that
R0(ω) > 1. Furthermore, we assume that a major outbreak occurs. Therefore we assume that
the index case has degree d (if the index case has degree 0, then the final fraction Z̄n(ω) tends to
zero as n tends to infinity). Then the final fraction Z̄n(ω) tends in probability to τ(ω) as n → ∞.
We show that the relative final size τ(ω) of a major outbreak can increase for ω compared to
the baseline ω = 0 model. We do so by giving a lower bound τ̃ (ω) for τ(ω). This lower bound
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is obtained by considering a model with slightly different social distancing rules. Suppose that a
susceptible individual distances him/herself from its infectious neighbour. Then he/she tries to
rewire to a randomly chosen individual v in the population. If v is an individual with original
degree d, then no connection is made and the existing connection is dropped instead. On the
other hand, if v has original degree 0, then (i) a connection is made as in the original model
and (ii) v is not allowed to transmit infection to an individual with original degree d. Note that
all these modifications make infection less likely, so the final size of this modified model is less
than that of the original social distancing model. Furthermore, note that in the baseline model
without rewiring (ω = 0) the final size of the original model is equal to the lower bound obtained
from the modified model.

Mean final size

Previous work [5, Theorem 6 and Proposition 4] yields that the deterministic final fraction of
the population with original degree d that becomes infected in the epidemic is ρ = 1− zd where
z ∈ (0, 1) is the unique solution to

(β + ω)z − ω − βzd−1 = 0 (S.2)

(note that by considering only the original degree d individuals, the probability generating func-
tion in [5] is given by fD(s) = sd and µD = d). Let θ = ω/(β + ω) denote the probability
that social distancing occurs before transmission for a connection between a susceptible and an
infectious individual. Any original degree d individual that is exposed to at least one infectious
individual will rewire at least once with probability θ, so the fraction of the original degree d
population that rewires at least once is at least ρθ. These will include individuals that are not
subsequently infected. However, since the fraction of the original degree d population that avoid
infection is 1−ρ, the fraction of that population which rewire at least once and are subsequently
infected is at least ρθ − (1 − ρ). The probability that such a rewiring is to an original degree
0 individual is p0 and, given it is to an original degree 0 individual, the probability that indi-
vidual itself rewires before he/she is infected is 1− θ. Thus the fraction of the original degree d
population that rewires and transmits infection to an original degree 0 individual is at least

φ =
(

ρθ − (1− ρ)
)

p0(1− θ). (S.3)

Asymptotically, the probability that an individual of degree 0 escapes infection is at most
(1 − 1/(np0)φnpd) → e−φpd/p0 as n → ∞, since approximately at least nφpd individuals re-
wire and transmit infection to an original degree 0 individual, and for each such rewiring event
the individual rewired to is chosen uniformly at random from the np0 original degree 0 individu-
als. Therefore, a lower bound for the fraction of the population that originally had degree 0 and
get infected is p0(1 − e−φpd/p0). Hence, the total fraction of the population that eventually get
infected is, in the limit as n → ∞, at least

τ̃(ω) = pdρ+ p0(1− e−φpd/p0). (S.4)

The latter yields an asymptotic lower bound for the final fraction infected in the SI epidemic
on the configuration network with rewiring rate ω (i.e. where γ = 0, α = 1). We consider
the first order approximation of (S.4) in ω to show that the lower bound for the relative final
size is exact when ω = 0 and increasing for small ω, thus the final size of the original model
also increases for small ω. We approximate ρ by considering (S.2). Denote the left-hand side
of (S.2) by F (z(ω),ω), so F (z(ω),ω) = 0. Then ∂F/∂z · z′(ω) + ∂F/∂ω = 0, which yields
z′(ω) = −(z − 1)/(β + ω − β(d − 1)zd−2). Hence z(ω) = z(0) + z′(0)ω + o(ω) = ω/β + o(ω),
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and we can approximate ρ = 1 − (ω/β)d + o(ωd) for ω > 0 small enough. Next, recalling that
θ = ω/(β + ω) we make the approximation

φ =
[(

1− (ω/β)d
)

θ − (ω/β)d + o(ωd)
]

p0(1− θ)

= p0ω/β + o(ω)

as ω ↓ 0. The first order approximation of (S.4) is therefore

τ̃(ω) = pd(1 + p0ω/β) + o(ω).

Recall that the limiting mean fraction infected in the event of a large outbreak in the model
with no rewiring (ω = 0) is pd, i.e. this approximation is exact when ω = 0. Thus, since
pd (1 + p0ω/β) ≥ pd for all p0,ω > 0, we find that the final fraction infected in case of a major
outbreak is increased for all sufficiently small but strictly positive rewiring rates ω > 0 for the
modified model. In other words, the asymptotic lower bound for the relative final size given a
major outbreak is increasing in ω for small ω > 0.

Mean final size of a major outbreak

For the expected relative final size we have

E(Z̄(ω)) = τ(ω)Pω(major outbreak) ≥ pd(1 +
p0
β
ω)Pω(major outbreak) + o(ω).

since the expected relative final size of a minor epidemic is 0. In order to show that also
E(Z̄(ω)) has a lower bound that is increasing in ω for sufficiently small ω, it suffices to show
that Pω(major outbreak) does not decrease too fast. We show that 1 − Pω(major outbreak) =
Pω(minor outbreak) ≤ p0 + pdωd−1 + o(ωd−1) or equivalently that

Pθ(minor outbreak) ≤ p0 + pdθ
d−1 + o(θd−1). (S.5)

Note that there is a minor outbreak if either the index case has degree 0 (with probability p0),
or the index case has degree d (with probability pd = 1− p0) but the outbreak that takes place
amongst the individuals with degree d is a minor outbreak. Consider the configuration model
without the degree 0 individuals. We modify the model by letting the index case have degree d−1
and all other individuals have degree d. Consequently, all individuals, including the index case,
have d − 1 susceptible neighbours when newly infected in the beginning of the epidemic. This
modified model has a probability of a minor outbreak that is larger than the original model (and
is exact in the case θ = 0), i.e. Pθ(minor outbreak) ≤ Pθ(minor outbreak of the modified model).
Let π(θ) denote the probability of a minor outbreak for the modified model, given that the index
case is of degree d−1 (with probability pd = 1−p0). By conditioning on the number of neighbours
that avoid infection in the first generation, i.e. the number of neighbours that rewire away before
infection, we find the consistency equation

π(θ) =
d−1
∑

j=0

π(θ)d−1−j

(

d− 1

j

)

θj(1− θ)d−1−j =
(

θ + π(θ)(1 − θ)
)d−1

.

Note that π(0) = 0 since a major outbreak will occur without any rewiring. By the Taylor
expansion of π(θ) about θ = 0, we find that π(θ) = θd−1 + o(θd−1), proving (S.5). Since
E(Z̄(0)) = pd, we have a lower bound for the expected relative final size that is increasing for
sufficiently small ω > 0, and is exact for the baseline model ω > 0 without rewiring.
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Allowing dropping

Suppose that α ∈ (0, 1). Then since in the model with modified social distancing all attempted
rewirings to an original degree d individual results in the edge being dropped, the only change
in the argument leading to (S.4) is that the expression for φ in (S.3) becomes

φ =
(

ρθ − (1− ρ)
)

p0(1− θ)α.

It follows that φ = p0αω/β + o(ω) as ω ↓ 0 and, since α > 0, the asymptotic lower bound for
the relative final size given a major outbreak is again increasing in ω for small ω > 0. Finally,
note that the probability of a major outbreak is independent of α, so the above argument shows
that the expected relative final size is also increasing in ω for small ω > 0. These results are
illustrated with simulation studies in Fig. S4

Section S1.4 The number of index cases

We consider the social distancing model on the configuration network with degree distribution
{pd}10d=0 where pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the normalization constant. In
the main text, each epidemic is initiated with ten initially infected individuals that are randomly
chosen from the population. The rational behind this choice is to ensure sufficiently many
epidemics result in major outbreaks. Owing to the degree distribution of the population, a
large fraction of the population has degree 0 or degree 1. An individual with degree 0 has no
connections and is therefore unable to transmit infection in the population. Also an individual
with degree 1 is unlikely to generate a major outbreak. In Fig. S1 we compare the final epidemic
size for the case that each epidemic starts with 10 randomly chosen infectives to the case that
each epidemic starts with only 1 randomly chosen infective.
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Figure S1: The effect of social distancing on the final size of epidemics with different numbers of
initially infected individuals. (A) Average final size compared to the average final size in the baseline
model (with 95% CI) over all outbreaks (solid line) and restricted to major outbreaks (dashed line);
dotted horizontal lines are at the size of the epidemic when ω = 0, for reference. (B) R0 as a function
of ω (red line) and fraction of outbreaks resulting in a major outbreak for the setting of 10 initially
infectives (with 95% CI). (C) R0 as a function of ω (red line) and fraction of outbreaks resulting in
a major outbreak for the setting of 1 initially infective (with 95% CI). Black dashed line at R0 = 1
indicates the threshold value for the beginning of the epidemic. We consider the configuration network
model with degree distribution {pd}

10

d=0 where pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the
normalization constant. The population size is 5000 and 500 simulation runs are performed for each
value of ω. Parameter values are β = 20, γ = 0.2,α = 0.9. The index cases are randomly chosen in the
entire population. The blue curves show the results for 10 initially infected individuals (results main
text Fig. 1) whereas the green curve show the results for one initially infected individual.

Note that the effects of the number of initial infectives as shown in Fig. S1 are not surprising.

5



The average final size over all outbreaks is much smaller in the setting where epidemics are
initiated by one initial infective individual. Since this individual is randomly chosen over the
entire population, it is quite likely that he/she has degree 0 or 1. In such cases, epidemics will
(most likely) die out (Fig. S1C). By considering 10 initial infectives instead, it becomes more
likely that an epidemic outbreak occurs (Fig. S1B). This is both because there are simply more
infectives to start with, making it less likely that the epidemic dies out owing to stochastic
effects, and it being more likely that some initial infectives have higher degree, enabling further
transmission in the population. On the other hand, the average final size in case of a major
outbreak does not depend on the initial number of infectives (Fig. S1A, blue and green dashed
lines).

Section S2 The clique-network model

In the main text as well as in this supplement we consider the clique-network model where all
cliques consist of exactly three individuals. The reason for this choice is that it allows us to
illustrate our point that social distancing can have a negative effect on the initial stages of an
outbreak by increasing the epidemic threshold parameter R∗. At the same time, the choice of
cliques of size three simplifies the bookkeeping in the calculations below. Moreover, it yields
an explicit expression for the clique reproduction number R∗. However, in principle similar
calculations can be done also for clique sizes larger than three, or having variable clique sizes.

The clique network with variable clique sizes can be constructed as follows (see also [2, 3]
where the same model is referred to as household-network models). A clique-size distribution
{πh} is predefined that describes the sizes of cliques in the population. The population can be
divided into cliques with this distribution by drawing random sizes h1, h2, . . . independently from
{πh}, then labelling all individuals 1 up to n, and letting the first h1 individuals make up clique
1, the next h2 individuals make up clique 2, and so on. In the final network, individual 1 is then
connected to all individuals he/she is connected to from the construction of the configuration
model and individuals 2 up to h1 from the clique construction, and so on.

We denote the degree distribution for the global network connections by {pd}, and the mean
and variance by µD and σ2

D, respectively. We also use the size-biased degree distribution {p̃d}
with p̃d = dpd/µD. We let µ̃D denote the mean of the size-biased degree distribution, where
µ̃D =

∑

∞

d=1 dp̃d =
∑

∞

d=1 d
2pd/µD = µD + σ2

D/µD.

Section S2.1 Derivation of the epidemic threshold parameter R∗

We consider the clique reproduction number R∗ that can be interpreted as the expected num-
ber of secondary cliques generated by one typical newly infected clique at the beginning of an
epidemic [6, 1, 4]. So, rather than considering individuals as the units of interest we consider
cliques. The clique reproduction number R∗ satisfies the desired threshold behaviour that, as
the number of cliques tends to infinity, there is a strictly positive probability of a major outbreak
if R∗ > 1 and only minor outbreaks occur if R∗ ≤ 1.

At the start of an epidemic there are only few infected individuals and most individuals are
susceptible. Therefore, a newly infected clique at the beginning of an epidemic has most likely
only one newly infected individual that got infected by a neighbour outside his/her own clique.
In the SIR epidemic on the clique-network with social distancing, there are exactly two types of
newly infected clique: the first infected individual in the clique was infected through (1) a global
network neighbour or (2) a rewired network neighbour. Note that in case (1) the individual has
d − 1 susceptible global connections with probability p̃d while in case (2) the individual has d
susceptible global connections with probability pd (note that the probability that an individual
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is rewired to more than once is negligible in the early stages). The other two clique members
have d susceptible global connections with probability pd.

The clique reproduction number R∗ is given by the dominant eigenvalue of the 2× 2 matrix
K = (Kij)i,j=1,2, where Kij is the expected number of cliques of type j generated by one newly
infected clique of type i. In the remainder of this section we derive expressions for the Kij by
considering all possible events that can occur within the clique. We denote the clique member
that was infected from outside of the clique by u∗. The other two clique members are denoted
by u1 and u2. We let

θ1 =
β

β + ω + γ
, θ2 =

ω

β + ω + γ
, θ3 = 1− θ1 − θ2 =

γ

β + ω + γ
,

so that θ1 is the probability that transmission occurs from an infectious individual to a given
susceptible connection before recovery or social distancing, θ2 is the probability that social dis-
tancing occurs before transmission or recovery, and θ3 is the remaining probability (of recovery
before either event).

The Kij can be derived directly from the above interpretation. First of all, note that K12 =
K22, i.e. the expected number of secondary cliques of type 2 generated by a newly infected clique
does not depend on the type of that clique as the global network degree of u∗ does not play a role.
A clique member within a clique can transmit infection to individuals in another clique through a
rewired edge if (i) there is at least one clique edge that is rewired away to a new individual in the
population, (ii) the individual u1 that rewires away becomes infected by a clique member, and
(iii) u1 transmits infection along its rewired clique connection. Since we need both that clique
connections rewire to new cliques and the individuals that rewire away to become infected, the
only possibility for secondary cliques of type 2 to be generated is if there is exactly one rewired
clique connection in the index clique.

When u∗ is newly infected and the other two clique members u1 and u2 are (still) susceptible,
the following events can occur: (i) u∗ recovers (at rate γ), (ii) u∗ transmits to u1 or u2 (at rate
2β), or (iii) u1 or u2 distances itself from u∗ (at rate 2ω). So we find that the probability that
u∗ transmits to u1 is

π =
β

γ + 2β + 2ω
. (S.6)

The other probabilities in the derivations below can be derived in similar manner and we leave
out the details. We find the following two possibilities.

• u∗ transmits to u1 with probability π, then u2 rewires one of its clique connections from
either u∗ or u1 (with probability 2αω/(2β + 2ω + 2γ)), after which u2 becomes infected
through its clique connection that was not rewired away (with probability θ1). Finally, u2

transmits to a global neighbour through its rewired clique edge (with probability θ1)

• u1 rewires away from u∗ to a new individual (with probability 2αω/(2β+γ+2ω)), then u∗

transmits to u2 (with probability θ1). Next, u2 transmits infection to u1 (with probability
θ1), and u1 transmits to a global neighbour through its rewired clique edge (with probability
θ1)

Therefore,

K12 =
4αω

(2β + γ + 2ω)
θ31 = K22. (S.7)

K11 and K21 are a bit more involved as there are more possibilities to take into account.
Note that the only difference between the two Ki1 is in the degree of u∗. We note that the
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expected number of newly infected cliques generated by network edges of u∗ is the probability
θ1 of transmission through a network connection (before recovery of u∗ or rewiring of network
edges) times the expected number of susceptible network neighbours of u∗. If u∗ is of type 1,
then the expected number of susceptible network neighbours is µ̃D − 1. If u∗ is of type 2, then
this expected number is µD.

Next, we note that clique members u1 and u2 are interchangeable in the sense that they
both have network degree d with probability pd, and all three clique members u1, u2, and u∗ are
connected to each other. If individual u1 gets infected, then the expected number of susceptible
network neighbours it has is µD. The expected number of secondary cases an infectious clique
member u1 generates is then θ1µD. We derive the probability that u1 becomes infected by taking
into account all relevant events and the order in which they occur.

The following events can occur (with corresponding probabilities):

• u∗ transmits to u1 with probability π

• u∗ transmits to u2 with probability π, after which u∗ or u2 transmits to u1 with probability
2β

2γ+2β+2ω = θ1.

• u∗ transmits to u2 with probability π, then u1 distances itself from either u∗ or u2 with
probability θ2, and finally u1 becomes infected by the clique member it did not distance
itself from with probability θ1

• u∗ transmits to u2 with probability π, then u∗ or u2 recovers with probability θ3, and
finally u1 becomes infected by the clique member that is still infectious with probability θ1

• u2 distances itself from u∗ with probability ω
γ+2β+2ω after which u∗ transmits to u1 with

probability θ1

• u1 distances itself from u∗ with probability ω
γ+2β+2ω , then u∗ transmits to u2 with prob-

ability θ1, and finally u2 transmits to u1 with probability θ1

The probability that u2 becomes infected is obtained by interchanging the names u1 and u2, so
we simply multiply by a factor 2 in the expected number of infected cliques generated by u1 and
u2.

Putting these pieces together, we find that the expressions for the Kij , i, j = 1, 2, are as
follows:

K11 = θ1(µ̃D − 1) + 2θ1µD

(

β

γ + 2β + 2ω
+

β

γ + 2β + 2ω
θ1 +

β

γ + 2β + 2ω
θ1θ2

+
β

γ + 2β + 2ω
θ3θ1 +

ω

γ + 2β + 2ω
θ1 +

ω

γ + 2β + 2ω
θ21

)

= θ1(µ̃D − 1) + 2θ1µD

(

β

γ + 2β + 2ω
(1 + θ1 + θ1θ2 + θ1θ3) +

ω

γ + 2β + 2ω
θ1(1 + θ1)

)

K21 = θ1µD + 2θ1µD

(

β

γ + 2β + 2ω
(1 + θ1 + θ1θ2 + θ1θ3) +

ω

γ + 2β + 2ω
θ1(1 + θ1)

)

Note that the sum 2 ω
(γ+2β+2ω)θ

2
1 = β

γ+2β+2ωθ1θ2+
ω

γ+2β+2ω θ
2
1 of the two terms β

γ+2β+2ωθ1θ2 and
ω

γ+2β+2ωθ
2
1 in K11 and K21 is the probability of social distancing of an initially susceptible clique

member that later becomes infected.
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Finally, the clique reproduction number R∗ is the dominant eigenvalue of the 2×2 matrixK =
(Kij)i,j=1,2. Therefore, we have an explicit expression of R∗ in terms of the model parameters:

R∗ =
tr +

√
tr2 − 4det

2
, (S.8)

where tr= K11+K22 and det= K11K22−K12K21 denote the trace and determinant of the matrix
K, respectively.

Section S2.2 Social distancing can increase R∗ but this depends on the
network structure

We consider two degree distributions for the degree D of the global network, and using (S.8)
for R∗, show that R∗ can increase for sufficiently small distancing rate ω > 0 and recovery rate
γ > 0. We consider a third choice for D to show that this need not always be the case. Assume
that γ = 0 and α = 1 and write R∗ = R∗(ω).

First, suppose that p1 = p = 1 − p0. Then µD = p and µD̃−1 = 0. Then R∗(0) = 2p and
R′

∗
(0) = (3 − 2p)/β. In particular, if p = 1/2, then R∗(0) = 1, and R′

∗
(0) > 0. Therefore, for

sufficiently small γ > 0 and sufficiently large α < 1, an increasing rewiring rate ω > 0 can push
the epidemic threshold parameter R∗ from below to above the threshold value of one as shown
numerically in Fig. 2A and Fig. 2C of the main text.

Next, suppose that D is Poisson with mean µD. Then D̃ − 1 is also Poisson with mean µD.
Then R∗(0) = 3µD, and R′

∗
(0) = (2 − 3µD)/β. In particular, if µD = 1/3, then R∗(0) = 1, and

R′

∗
(0) > 0. Thus, for sufficiently small γ > 0 and sufficiently large α < 1 and µD close to 1/3, an

increasing rewiring rate ω can push the epidemic threshold parameter R∗ from below to above
the threshold value of one as shown numerically in Fig. S2A.

Note that the derivations above do not rely on the specific choice α = 1. Indeed, we have
an analytical expression (S.8) for R∗ that is explicit in terms of the model parameters so we can
very well do the same derivations for some fixed value of α. By doing so, we can also derive a
threshold for α. For the model with p1 = p = 1 − p0, one gets sign[R′

∗
(0)] = sign[3α − 2p] so

R′

∗
(0) > 0 if α > 2p/3. In particular, if p = 1/2 then R′

∗
(0) > 0 if α > 1/3. For the Poisson

model, one gets sign[R′

∗
(0)] = sign[2α − 3µD], so R′

∗
(0) > 0 if α > 3µD/2. In particular, if

µD = 1/3 then R′

∗
(0) > 0 if α > 1/2. Note that this implies that the same conclusions hold for

R∗ for a much larger range of probabilities α than illustrated in Fig. 2 of the main manuscript.
Concretely, for the model with p1 = p = 1 − p0, R∗ can cross the threshold value of one for
the range 1/3 < α ≤ 1 and for the model with Poisson degree the range is 1/2 < α ≤ 1. We
illustrate these results in Fig. S5 for the model with degree distribution p1 = p = 1− p0.

Finally, to show that the result for R∗ does not hold in general, we consider the following
distribution. Suppose that pd = 1, for some fixed d > 1, so all individuals have degree d. Then
µD = d and µD̃−1 = d−1, whence R∗(0) = 3µD−1 and R′

∗
(0) = −(1−12µD+9µ2

D)/(β(3µD−1).
Note that 1− 12µD + 9µ2

D = (3µD − 2)2 > 0 as d > 1. We find that R′

∗
(0) < 0 for d > 1. This

shows that rewiring decreases the epidemic threshold parameter R∗ for sufficiently small ω > 0
(and α < 1, γ > 0) as illustrated in Fig. S2B.
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Figure S2: R∗ for the clique-network model with cliques of size 3 with mean infectious period 1/γ = 5
days, β = 200, α = 0.9 (A) Social distancing can increase the epidemic threshold parameter R∗ from
below to above its threshold value of one for clique-network models. Illustration with two-point degree
distribution with p0 = 1/2 = p1 (blue line) and Poisson degree distribution with mean µD = 0.335 (green
line) (B) Social distancing does not have to increase the epidemic threshold parameter R∗. Illustration
with degree distribution p3 = 1.

Section S3 Real-world networks

Section S3.1 Properties of the real-world networks

We summarize the most important characteristics of the real-world networks for our purpose,
other network summary statistics and more details are found in [9].

The ‘arXiv General Relativity’ collaboration network describes scientific collaborations
between authors that submitted papers to the arXiv in the General Relativity and Quantum
Cosmology category. Edges between nodes represent two co-authors that have written a paper
together. There are 5241 nodes and 14484 edges in the network. In total there are 354 connected
components that make up the network and the largest connected component covers a fraction of
0.793 nodes and 0.926 edges. The minimum and maximum degree in the population are 1 and
81, with a mean of 5.53 and a variance of 62.7. The median degree is 3. There are in total 777
nodes with degree 3, and out of these nodes, 676 are part of the largest connected component.
We choose the index case at random from these 676 nodes.

In the ‘Facebook social circles’ network, nodes are survey participants of the social network
website Facebook that were using a specific app. Edges between nodes represent the ‘circles’ or
‘friends lists’ of those participants. There are 4039 nodes and 88234 edges. The largest network
component is precisely the network itself. The minimum and maximum degree in the population
are 1 and 1045, with a mean of 43.70 and a variance of 2748.44. The median degree in the
population is 25, and there are 55 individuals with this median degree of 25. We choose an index
case at random from this set of individuals.

Section S4 Probability α that social distancing is through

rewiring rather than dropping

As previously noted, the setting that α = 0, i.e. all social distancing is done through dropping
of edges, is always beneficial for the population level. Therefore, only for α large enough, we
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will find negative population level effects. However, whether α is large enough depends much
on the network structure at hand and the choice of other parameter values. In this section we
illustrate the analytical results of Section S1.3 and Section S2.2 that negative population level
effects can occur for a range of α-values larger than the α = 0.9 taken in the studies in the main
manuscript. At the same time we show that these negative effects do not always occur.

First, in Fig. S3 we consider the scenario of Fig. 1 in the main manuscript, and compare the
effect of α = 0.9 to α = 0.5. We see that when α = 0.5, i.e. half of social distancing is through
dropping of edges, then this has a positive population level effect in the setting presented in
Fig. S3.
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Figure S3: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the configuration network with
degree distribution {pd}

10

d=0 where pd = c/(d + 1), d = 0, 1, . . . , 10, with c = 0.331 the normalization
constant. Dotted horizontal line is for comparison with the size at ω = 0. Model parameters are 1/γ = 5
days, β = 20 days−1, α = 0.9 and 0.5. Compare with Fig. 1 of the main manuscript (note that the
y-axis is scaled differently for better comparison with α values). For each value of ω 500 epidemics are
simulated. The epidemic is initiated with 10 index case that are chosen uniformly at random.

In Section Section S1.3 we proved that social distancing can have negative population level
effects on the final size of the epidemic for α ∈ (0, 1]. We illustrate this by considering an
epidemic on a configuration network with degree distribution p0 = 1/2 = p5 for different values
of α in Fig. S4. Note that generally the increase in the final size is smaller and occurs for a
smaller range of social distancing rates ω > 0 for smaller values of α.
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Figure S4: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic over all epidemic outbreaks (A) and given a major outbreak
(B) on the configuration network with degree distribution p0 = 1/2 = p5; dotted hoirzontal line is for
comparison with the size at ω = 0. Model parameters are 1/γ = 5 days, β = 200 days−1, and α = 0.9
(B), α = 0.7 (C), α = 0.5 (D) (note that the scaling of the y-axis for better comparison between different
α values). For each value of ω 500 epidemics are simulated. The index case is chosen uniformly at
random from degree 5 individuals.

Analysis in Section S2.2 shows that social distancing can push the epidemic threshold para-
meter R∗ across the threshold value of one in a clique network for a range of α values. We
illustrate this by considering the clique network with degree distribution p0 = 1/2 = p1 in
Fig. S5. We see in Figs. S5A and B that increasing ω can lead to R∗ crossing the threshold value
of one for both α = 0.9 and α = 0.5. Note however that parameter values are such that for
α = 0.5, R∗ remains very close to one, and therefore few epidemics result in major outbreaks.
Furthermore, the negative population level effect is generally smaller for smaller values of α.
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Figure S5: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the clique network with degree
distribution p0 = 1/2 = p1; dotted hoirzontal lines are for comparison with the size at ω = 0. Model
parameters are 1/γ = 5 days, β = 4000 days−1, and (A, C) α = 0.9, (B, D) α = 0.5 (note that the y-axis
is scaled differently in Figs. C and D. For each value of ω 500 epidemics are simulated. The index case
is chosen uniformly at random.

In Fig. S6 we find that the final size given a major outbreak can increase for small enough
social distancing rates ω under different rewiring probabilities α for an epidemic on the arXiv
collaboration network . Note however that the range of social distancing rates ω for which this
occurs, and the extent to which the final size can increase depend on the value of α. In contrast,
in Fig. S7 we find that the probability α has little effect on the final size given a major outbreak
for an epidemic on the facebook social circles network.
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Figure S6: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the arXiv collaboration network;
dotted hoirzontal lines are for the size of the giant component (top) and comparison with the size at
ω = 0. Model parameters are 1/γ = 5 days, β = 2 days−1, and α = 0.9, 0.7, and 0.5. For each value of
ω 500 epidemics are simulated. The index case is chosen uniformly at random from the sub-population
of individuals that has median degree and are part of the largest connected component of the network.
Compare with Fig. 3 of the main manuscript (note that the y-axis is scaled from 2000 to 5241 for better
comparison between the α).
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Figure S7: The effect of the probability α that social distancing is through rewiring rather than
dropping on the final size of the epidemic given a major outbreak on the facebook social circles network;
dotted hoirzontal lines are for the size of the network (top) and comparison with the size at ω = 0. Model
parameters are 1/γ = 5 days, β = 2 days−1, and α = 0.9, and 0.5. For each value of ω 500 epidemics are
simulated. The index case is chosen uniformly at random from the sub-population of individuals that
has median degree. Compare with Fig. 4 of the main manuscript (note that the y-axis is scaled from
2000 to 4039 for better comparison between the α).

Section S5 Simulation studies of the social distancing

model

We are interested the epidemic final size and the probability of a major outbreak for the social
distancing model applied to (i) the configuration network model, (ii) the clique network model,
and (iii) two real-world networks. The social distancing model is mathematically challenging to
analyse. Although we have some analytical results (presented in Sections Section S1 and Sec-
tion S2), e.g. for the threshold parameter R0 for the configuration network model and R∗ for the
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clique network model, other quantities of interest, i.e. the final size and the probability of a major
outbreak we have not managed to characterize mathematically. Moreover, on large real-world
networks it is impractical to exactly compute the quantities we are interested in. The results in
this text are obtained through simulation methods.

Given the structure of the networks it is fairly straightforward (since the epidemic process
is a continuous-time Markov chain) to write code to simulate realisations of the final size of
stochastic SIR epidemic process described in section Model description of the main article. By
inspecting histograms of these simulated final sizes we find that the cut-off of 10% of population
size (as stated in section Model description of the main text) is satisfactory for the networks we
consider.

In plots depicting the results of simulations we present point estimates, for example the
proportion of simulations that result in a final size greater than 10% of population size as an
estimate of major outbreak probability, the mean final size amongst outbreaks with a final size
greater than 10% of population size as an estimate of the relative final size of a major outbreak.
We also present confidence intervals (CI) around these estimates in cases where those intervals
are large enough to be visible on the scales used in the plots.

In simulations that are based on the configuration network construction imperfections of the
network such as self-loops and multiple edges may arise. However, there are generally only a small
number of such imperfections. In Table 1 imperfections are considered as a function of the total
number of edges in the population for different population sizes for the configuration network
with degree distribution pd10d=0 with pd = c/(d + 1), and c = 0.331 the normalization constant.
As predicted by theory, the average number of imperfections is independent of population size
while the fraction (as fraction of the total number of edges in the network) tends to zero with
growing population size.

Population size Number of edges Number of imperfections Fraction of imperfections
100 134 10.06 0.075
500 663 10.95 0.017
1000 1318 10.85 0.008
5000 6612 10.90 0.002

Table 1: The average number of self-loops and multiple edges for different population sizes for the
configuration network with degree distribution {pd}

10

d=0 with pd = c/(d + 1), and c = 0.331 the normal-
ization constant. The last column considers the average number of imperfections as fraction of the total
number of edges in the network. The average is taken over 100 realizations of the configuration network
for each population size.
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